1051
|
Jia LT, Zhang R, Shen L, Yang AG. Regulators of carcinogenesis: emerging roles beyond their primary functions. Cancer Lett 2015; 357:75-82. [PMID: 25448403 DOI: 10.1016/j.canlet.2014.11.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Cancers are characterized by aberrant cell signaling that results in accelerated proliferation, suppressed cell death, and reprogrammed metabolism to provide sufficient energy and intermediate metabolites for macromolecular biosynthesis. Here, we summarize the emerging "unconventional" roles of these regulators based on their newly identified interaction partners, different subcellular localizations, and/or structural variants. For example, the epidermal growth factor receptor (EGFR) regulates DNA synthesis, microRNA maturation and drug resistance by interacting with previously undescribed partners; cyclins and cyclin-dependent kinases (CDKs) crosstalk with multiple canonical pathways by phosphorylating novel substrates or by functioning as transcriptional factors; apoptosis executioners play extensive roles in necroptosis, autophagy, and in the self-renewal of stem cells; and various metabolic enzymes and their mutants control carcinogenesis independently of their enzymatic activity. These recent findings will supplement the systemic functional annotation of cancer regulators and provide new rationales for potential molecular targeted cancer treatments.
Collapse
Affiliation(s)
- Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lan Shen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - An-Gang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
1052
|
Kim MY, Park SJ, Shim JW, Yang K, Kang HS, Heo K. Naphthazarin enhances ionizing radiation-induced cell cycle arrest and apoptosis in human breast cancer cells. Int J Oncol 2015; 46:1659-66. [PMID: 25633658 DOI: 10.3892/ijo.2015.2857] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 11/05/2022] Open
Abstract
Naphthazarin (Naph, DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is one of the naturally available 1,4-naphthoquinone derivatives that are well-known for their anti-inflammatory, antioxidant, antibacterial and antitumor cytotoxic effects in cancer cells. Herein, we investigated whether Naph has effects on cell cycle arrest and apoptosis in MCF-7 human breast cancer cells exposed to ionizing radiation (IR). Naph reduced the MCF-7 cell viability in a dose-dependent manner. We also found that Naph and/or IR increased the p53-dependent p21 (CIP/WAF1) promoter activity. Noteworthy, our ChIP assay results showed that Naph and IR combined treatment activated the p21 promoter via inhibition of binding of multi-domain proteins, DNMT1, UHRF1 and HDAC1. Apoptosis and cell cycle analyses demonstrated that Naph and IR combined treatment induced cell cycle arrest and apoptosis in MCF-7 cells. Herein, we showed that Naph treatment enhances IR-induced cell cycle arrest and death in MCF-7 human breast cancer cells through the p53-dependent p21 activation mechanism. These results suggest that Naph might sensitize breast cancer cells to radiotherapy by enhancing the p53-p21 mechanism activity.
Collapse
Affiliation(s)
- Min Young Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan 619-953, Republic of Korea
| | - Seong-Joon Park
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan 619-953, Republic of Korea
| | - Jae Woong Shim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan 619-953, Republic of Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan 619-953, Republic of Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan 619-953, Republic of Korea
| |
Collapse
|
1053
|
Hamdi A, Lesnard A, Suzanne P, Robert T, Miteva MA, Pellerano M, Didier B, Ficko-Blean E, Lobstein A, Hibert M, Rault S, Morris MC, Colas P. Tampering with Cell Division by Using Small-Molecule Inhibitors of CDK-CKS Protein Interactions. Chembiochem 2015; 16:432-9. [DOI: 10.1002/cbic.201402579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 11/07/2022]
|
1054
|
Jayapal SR, Wang CQ, Bisteau X, Caldez MJ, Lim S, Tergaonkar V, Osato M, Kaldis P. Hematopoiesis specific loss of Cdk2 and Cdk4 results in increased erythrocyte size and delayed platelet recovery following stress. Haematologica 2015; 100:431-8. [PMID: 25616574 DOI: 10.3324/haematol.2014.106468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mouse knockouts of Cdk2 and Cdk4 are individually viable whereas the double knockouts are embryonic lethal due to heart defects, and this precludes the investigation of their overlapping roles in definitive hematopoiesis. Here we use a conditional knockout mouse model to investigate the effect of combined loss of Cdk2 and Cdk4 in hematopoietic cells. Cdk2(fl/fl)Cdk4(-/-)vavCre mice are viable but displayed a significant increase in erythrocyte size. Cdk2(fl/fl)Cdk4(-/-)vavCre mouse bone marrow exhibited reduced phosphorylation of the retinoblastoma protein and reduced expression of E2F target genes such as cyclin A2 and Cdk1. Erythroblasts lacking Cdk2 and Cdk4 displayed a lengthened G1 phase due to impaired phosphorylation of the retinoblastoma protein. Deletion of the retinoblastoma protein rescued the increased size displayed by erythrocytes lacking Cdk2 and Cdk4, indicating that the retinoblastoma/Cdk2/Cdk4 pathway regulates erythrocyte size. The recovery of platelet counts following a 5-fluorouracil challenge was delayed in Cdk2(fl/fl)Cdk4(-/-)vavCre mice revealing a critical role for Cdk2 and Cdk4 in stress hematopoiesis. Our data indicate that Cdk2 and Cdk4 play important overlapping roles in homeostatic and stress hematopoiesis, which need to be considered when using broad-spectrum cyclin-dependent kinase inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Senthil Raja Jayapal
- Institute of Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Republic of Singapore
| | - Chelsia Qiuxia Wang
- Institute of Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Republic of Singapore Cancer Science Institute of Singapore, National University of Singapore, Republic of Singapore
| | - Xavier Bisteau
- Institute of Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Republic of Singapore
| | - Matias J Caldez
- Institute of Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Republic of Singapore National University of Singapore, Department of Biochemistry, Republic of Singapore
| | - Shuhui Lim
- Institute of Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Republic of Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Republic of Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Republic of Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, A*STAR Agency for Science, Technology and Research, Republic of Singapore National University of Singapore, Department of Biochemistry, Republic of Singapore
| |
Collapse
|
1055
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
1056
|
Chen Z, Sui J, Zhang F, Zhang C. Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. J Cancer 2015; 6:233-42. [PMID: 25663940 PMCID: PMC4317758 DOI: 10.7150/jca.11076] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
Cullin family proteins function as scaffolds to form numerous E3 ubiquitin ligases with RING proteins, adaptor proteins and substrate recognition receptors. These E3 ligases further recognize numerous substrates to participate in a variety of cellular processes, such as DNA damage and repair, cell death and cell cycle progression. Clinically, cullin-associated E3 ligases have been identified to involve numerous human diseases, especially with regard to multiple cancer types. Over the past few years, our understanding of cullin proteins and their functions in genome stability and tumorigenesis has expanded enormously. Herein, this review briefly provides current perspectives on cullin protein functions, and mainly summarizes and discusses molecular mechanisms of cullin proteins in tumorigenesis.
Collapse
Affiliation(s)
- Zhi Chen
- 1. Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China, 200433
| | - Jie Sui
- 2. Orthopedics Department, 102 Hospital of People's Liberation Army, Changzhou, Jiangsu, China, 213003
| | - Fan Zhang
- 1. Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China, 200433
| | - Caiguo Zhang
- 3. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA, 80045
| |
Collapse
|
1057
|
Correlation of CCNA1 promoter methylation with malignant tumors: a meta-analysis introduction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134027. [PMID: 25654082 PMCID: PMC4310450 DOI: 10.1155/2015/134027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 01/09/2023]
Abstract
Epigenetic silencing of tumor suppressor genes by promoter methylation plays vital roles in the process of carcinogenesis. The purpose of this meta-analysis was to determine whether the aberrant methylation of cyclin A1 (CCNA1) may be of great significance to human malignant tumors. By searching both English and Chinese language-based electronic databases carefully, we tabulated and analyzed parameters from each study. All human-associated case-control studies were included providing available data for CCNA1 methylation and reporting the adjusted odds ratios (ORs) and 95% confidence intervals (CI) conducted with the use of Version 12.0 STATA software. A total of 10 case-control studies (619 patients with cancers and 292 healthy controls) were included for the following statistical analysis. Pooled OR values from all articles revealed that the frequency of CCNA1 methylation in cancer tissues was significantly higher than those of normal tissues (P < 0.001). Further ethnicity indicated that the frequency of CCNA1 methylation was correlated with the development of malignant tumors among all those included experimental subgroups (all P < 0.05). These data from results indicated a significant connection of CCNA1 methylation with poor progression in human malignant tumors among both Caucasian and Asian populations.
Collapse
|
1058
|
Ji YB, Ling N, Zhou XJ, Mao YX, Li WL, Chen N. Schedule-dependent effects of kappa-selenocarrageenan in combination with epirubicin on hepatocellular carcinoma. Asian Pac J Cancer Prev 2015; 15:3651-7. [PMID: 24870773 DOI: 10.7314/apjcp.2014.15.8.3651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a relatively higher incidence in many countries of Asia. Globally, HCC has a high fatality rate and short survival. Epirubicin, a doxorubicin analogue, may be administered alone or in combination with other agents to treat primary liver cancer and metastatic diseases. However, the toxic effects of epirubicin to normal tissues and cells have been one of the major obstacles to successful cancer chemotherapy. Here, we investigated the effects of epirubicin in combination with kappa-selenocarrageenan on mice with H22 implanted tumors and HepG-2 cell proliferation, immune organ index, morphology, cell cycle and related protein expressions in vivo and in vitro with sequential drug exposure. The inhibitory rate of tumor growth in vivo was calculated. Drug sensitivity was measured by MTT assay, and the King's principle was used to evaluate the interaction of drug combination. Morphological changes were observed by fluorescent microscopy. Cell cycle changes were analyzed by flow cytometry. Expression of cyclin A, Cdc25A and Cdk2 were detected by Western blotting. In vivo results demonstrated that the inhibitory rate of EPI combined with KSC was higher than that of KSC or EPI alone, and the Q value indicated an additive effect. In addition, KSC could significantly raise the thymus and spleen indices of mice with H22 implanted tumors. In the drug sensitivity assay in vitro, exposure to KSC and EPI simultaneously was more effective than exposure sequentially in HepG-2 cells, while exposure to KSC prior to EPI was more effective than exposure to EPI prior to KSC. Q values showed an additive effect in the simultaneous group and antagonistic effects in the sequential groups. Morphological analysis showed similar results to the drug sensitivity assay. Cell cycle analysis revealed that exposure to KSC or EPI alone arrested the cells in S phase in HepG-2 cells, exposure to KSC and EPI simultaneously caused accumulation in the S phase, an effect caused by either KSC or EPI. Expression of cyclin A, Cdc25A and Cdk2 protein was down-regulated following exposure to KSC and EPI alone or in combination, exposure to KSC and EPI simultaneously resulting in the lowest values. Taken together, our findings suggest that KSC in combination with EPI might have potential as a new therapeutic regimen against HCC.
Collapse
Affiliation(s)
- Yu-Bin Ji
- Life Science and Environmental Science Research Center, Harbin University of Commerce, Harbin, China E-mail :
| | | | | | | | | | | |
Collapse
|
1059
|
Kim JY, Park SY, Lyoo HR, Koo ES, Kim MS, Jeong YS. Extended stability of cyclin D1 contributes to limited cell cycle arrest at G1-phase in BHK-21 cells with Japanese encephalitis virus persistent infection. J Microbiol 2015; 53:77-83. [PMID: 25557483 PMCID: PMC7090764 DOI: 10.1007/s12275-015-4661-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
There is increasing evidence that many RNA viruses manipulate cell cycle control to achieve favorable cellular environments for their efficient replication during infection. Although virus-induced G0/G1 arrest often delays early apoptosis temporarily, a prolonged replication of the infected virus leads host cells to eventual death. In contrast, most mammalian cells with RNA virus persistent infection often escape cytolysis in the presence of productive viral replication. In this study, we demonstrated that the extended endurance of cyclin D1 was clearly associated with the suppression of glycogen synthase kinase-3ß (GSK-3ß) expression in BHK-21 cells that are persistently infected with Japanese encephalitis virus (JEV). The G0/G1 arrest of these cells turned much loose compared to the normal BHK-21 cells with JEV acute infection. After cycloheximide treatment, cyclin D1 in the persistently infected cells lasted several hours longer than those in acutely infected cells. Furthermore, both p21Cip1 and p27Kip1, positive regulators for cyclin D1 accumulation in the nucleus, were suppressed in their expression, which contrasts with those in JEV acute infection. Inhibition of the GSK-3ß by lithium chloride treatment rescued a significant number of cells from cytolysis in JEV acute infection, which coincided with the levels of cyclin D1 that escaped from proteolysis. Therefore, the limitation of G1/S arrest in the BHK-21 cells with JEV persistent infection is associated with the suppression of GSK-3ß expression, resulting in the extended duration of cyclin D1.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
1060
|
Gao J, Fang C, Xiao Z, Huang L, Chen CH, Wang LT, Lee KH. Discovery of novel 5-fluoro- N2, N4-diphenylpyrimidine-2,4-diamines as potent inhibitors against CDK2 and CDK9. MEDCHEMCOMM 2015; 6:444-454. [PMID: 25914804 DOI: 10.1039/c4md00412d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Based on a 3D-QSAR pharmacophore derived from a diverse set of known cyclin-dependent kinase 9 (CDK9) inhibitors and a composite pharmacophore extracted from the complex structure of flavopiridol (FVP)-CDK9, thirty novel 5-fluoro-N2,N4-diphenylpyrimidine-2,4-diamine derivatives were designed and synthesized. Initial tests against four tumor cell lines with the sulforhodamine B (SRB) assay identified a series of potent compounds with GI50 values at lower micromolar or submicromolar level. Most of the highly cytotoxic compounds exhibited potent inhibitory activities against both CDK2/cyclin E1 and CDK9/cyclin T1. Notably, inhibitions against the two enzymes were generally correlated well with the cytotoxicity of these compounds. Appreciable inhibition was also observed for selected compounds in the anti-HIV-1 assay. Docking studies on compounds 6d and 9g provided conducive clues to further structural optimization.
Collapse
Affiliation(s)
- Jiadi Gao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng Fang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Huang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Chin-Ho Chen
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Li-Ting Wang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA ; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
1061
|
Kalatova B, Jesenska R, Hlinka D, Dudas M. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem 2015; 117:111-25. [PMID: 25554607 DOI: 10.1016/j.acthis.2014.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/08/2023]
Abstract
Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context.
Collapse
|
1062
|
Kesikli SA, Guler N. Chemotherapeutic Agents in Cancer Treatment and Tryptophan Metabolism. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2015:291-333. [DOI: 10.1007/978-3-319-15630-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
1063
|
Overexpression of Lhx8 inhibits cell proliferation and induces cell cycle arrest in PC12 cell line. In Vitro Cell Dev Biol Anim 2014; 51:329-35. [PMID: 25475040 DOI: 10.1007/s11626-014-9838-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022]
Abstract
LIM-homeobox genes play a pivotal function in tissue patterning and differentiation, Lhx8 is a member of LIM-homeobox gene family, and it is selectively expressed in embryonic basal forebrain and is a key factor for the determination of cholinergic cells fate. However, besides cholinergic differentiation, little is known about the potential role of Lhx8 in cell biology. In this study, we transfected Lhx8 complementary DNA (cDNA) into PC12 cell line using lentiviral vectors to acquire the cells which stably expressed high level of Lhx8, and we provide the experimental evidence that overexpression of Lhx8 inhibits cell proliferation and induces cell cycle arrest but not apoptosis in vitro. In conclusion, besides cholinergic differentiation, our results suggest that Lhx8 also plays as a suppressor gene of proliferation in cell biology.
Collapse
|
1064
|
Cheng J, Fang ZZ, Nagaoka K, Okamoto M, Qu A, Tanaka N, Kimura S, Gonzalez FJ. Activation of intestinal human pregnane X receptor protects against azoxymethane/dextran sulfate sodium-induced colon cancer. J Pharmacol Exp Ther 2014; 351:559-567. [PMID: 25277138 PMCID: PMC4244584 DOI: 10.1124/jpet.114.215913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023] Open
Abstract
The role of intestinal human pregnane X receptor (PXR) in colon cancer was determined through investigation of the chemopreventive role of rifaximin, a specific agonist of intestinal human PXR, toward azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon cancer. Rifaximin treatment significantly decreased the number of colon tumors induced by AOM/DSS treatment in PXR-humanized mice, but not wild-type or Pxr-null mice. Additionally, rifaximin treatment markedly increased the survival rate of PXR-humanized mice, but not wild-type or Pxr-null mice. These data indicated a human PXR-dependent therapeutic chemoprevention of rifaximin toward AOM/DSS-induced colon cancer. Nuclear factor κ-light-chain-enhancer of activated B cells-mediated inflammatory signaling was upregulated in AOM/DSS-treated mice, and inhibited by rifaximin in PXR-humanized mice. Cell proliferation and apoptosis were also modulated by rifaximin treatment in the AOM/DSS model. In vitro cell-based assays further revealed that rifaximin regulated cell apoptosis and cell cycle in a human PXR-dependent manner. These results suggested that specific activation of intestinal human PXR exhibited a chemopreventive role toward AOM/DSS-induced colon cancer by mediating anti-inflammation, antiproliferation, and proapoptotic events.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kenjiro Nagaoka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Minoru Okamoto
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aijuan Qu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
1065
|
Yang HL, Huang PJ, Chen SC, Cho HJ, Kumar KJS, Lu FJ, Chen CS, Chang CT, Hseu YC. Induction of macrophage cell-cycle arrest and apoptosis by humic acid. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:741-750. [PMID: 25179584 DOI: 10.1002/em.21897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Humic acid (HA) in well water is associated with Blackfoot disease and various cancers. Previously, we reported that acute humic acid exposure (25-200 µg/mL for 24 hr) induces inflammation in RAW264.7 macrophages. In this study, we observed that prolonged (72 hr) HA exposure (25-200 µg/mL) induces cell-cycle arrest and apoptosis in cultured RAW264.7 cells. We also observed that exposing macrophages to HA arrests cells in the G2 /M phase of the cell cycle by reducing cyclin A/B1 , Cdc2, and Cdc25C levels. Treating macrophages with HA triggers a sequence of events characteristic of apoptotic cell death including loss of cell viability, morphological changes, internucleosomal DNA fragmentation, sub-G1 accumulation. Molecular markers of apoptosis associated with mitochondrial dysfunction were similarly observed, including cytochrome c release, caspase-3 or caspase-9 activation, and Bcl-2/Bax dysregulation. In addition to the mitochondrial pathway, HA-induced apoptosis may also be mediated through the death receptor and ER stress pathways, as evidence by induction of Fas, caspase-8, caspase-4, and caspase-12 activity. HA also upregulates p53 expression and causes DNA damage as assessed by the comet assay. These findings yield new insight into the mechanisms by which HA exposure may trigger atherosclerosis through modulation of the macrophage-mediated immune system.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
1066
|
The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway. Cancer Cell Int 2014; 14:126. [PMID: 25530715 PMCID: PMC4272549 DOI: 10.1186/s12935-014-0126-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023] Open
Abstract
Background The mechanism underlying the differential cytotoxicity of curcumin in various cancer types, however, remains largely unclear. The aims of this study is to examine the concentration- and time-related effects of curcumin on two different breast cancer cells, MCF-7 and MDA-MB-231, and investigated the functional changes induced by curcumin treatment, as well as their relationship to the PI3K/Akt-SKP2-Cip/Kips pathway. Methods First, WST-1 and clonogenic assay were performed to determine the cytotoxicity of curcumin in MCF-7 and MDA-MB-231 cells. Then, the expression of CDK interacting protein/Kinase inhibitory protein (Cip/Kips) members (p27, p21 and p57) and S-phase kinase-associated protein-2 (SKP2) was investigated by QRT PCR and Western Blotting. Curcumin’s effect on PI3K (phosphatidylinositol 3-kinase) /Akt and its substrates Foxo1 and Foxo3a were then studied by Western Blotting. Small interfering RNAs (siRNAs) targeting SKP2 was used to explore the relationship between SKP2 and Cip/Kips members. Finally, WST-1 assay was tested to explore the concomitant treatment with curcumin and the inhibition of PKB or SKP2 signaling on curcumin sensitivity in MCF-7 and MDA-MB-231 cells. Results We demonstrated MCF-7 and MDA-MB-231 cells exhibited differential responses to curcumin by WST-1 and clonogenic assay (MDA-MB-231 cells was sensitive, and MCF-7 cells was resistant), which were found to be related to the differential curcumin-mediated regulation of SKP2-Cip/Kips (p21 and p27 but not p57) signaling. The differential cellular responses were further linked to the converse effects of curcumin on PI3K/Akt and its substrates Foxo1 and Foxo3a. Importantly, PI3K inhibitor wortmannin could counteract both curcumin-induced phosphorylation of Akt and up-regulation of SKP2 in MCF-7 cells. Subsequent WST-1 assay demonstrated concomitant treatment with curcumin and wortmannin or SKP2 siRNA not only further augmented curcumin sensitivity in MDA-MB-231 cells but also overcame curcumin resistance in MCF-7 cells. Conclusions Our study established PI3K/Akt-SKP2-Cip/Kips signaling pathway is involved in the mechanism of action of curcumin and revealed that the discrepant modulation of this pathway by curcumin is responsible for the differential susceptibilities of these two cell types to curcumin.
Collapse
|
1067
|
Mahale S, Bharate SB, Manda S, Joshi P, Bharate SS, Jenkins PR, Vishwakarma RA, Chaudhuri B. Biphenyl-4-carboxylic Acid [2-(1H-Indol-3-yl)-ethyl]-methylamide (CA224), a Nonplanar Analogue of Fascaplysin, Inhibits Cdk4 and Tubulin Polymerization: Evaluation of in Vitro and in Vivo Anticancer Activity. J Med Chem 2014; 57:9658-72. [DOI: 10.1021/jm5014743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sachin Mahale
- School
of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| | | | | | | | | | - Paul R. Jenkins
- Department
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | - Bhabatosh Chaudhuri
- School
of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| |
Collapse
|
1068
|
Liu ML, Wang JL, Wei J, Xu LL, Yu M, Liu XM, Ruan WL, Chen JX. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells. Reproduction 2014; 149:163-70. [PMID: 25385720 DOI: 10.1530/rep-14-0446] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have a deleterious effect on the male reproductive system in animals besides delayed neurotoxicity. Our preliminary results found that TOCP could disrupt the seminiferous epithelium in the testis and inhibit spermatogenesis, but the precise mechanism is yet to be elucidated. This study shows that TOCP inhibited viability of rat spermatogonial stem cells in a dose-dependent manner. TOCP could not lead to cell cycle arrest in the cells; the mRNA levels of p21, p27, p53, and cyclin D1 in the cells were also not affected by TOCP. Meanwhile, TOCP did not induce apoptosis of rat spermatogonial stem cells. After treatment with TOCP, however, both LC3-II and the ratio of LC3-II/LC3-I were markedly increased; autophagy proteins ATG5 and beclin 1 were also increased after treatment with TOCP, indicating that TOCP could induce autophagy in the cells. Ultrastructural observation under the transmission electron microscopy indicated that autophagic vesicles in the cytoplasm containing extensively degraded organelles such as mitochondria and endoplasmic reticulum increased significantly after the cells were treated with TOCP. In summary, we have shown that TOCP can inhibit viability of rat spermatogonial stem cells and induce autophagy of the cells, without affecting cell cycle and apoptosis.
Collapse
Affiliation(s)
- Meng-Ling Liu
- Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China
| | - Jing-Lei Wang
- Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China
| | - Jie Wei
- Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China
| | - Lin-Lin Xu
- Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China
| | - Mei Yu
- Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China
| | - Xiao-Mei Liu
- Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China
| | - Wen-Li Ruan
- Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China
| | - Jia-Xiang Chen
- Department of PhysiologyMedical College of Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, People's Republic of ChinaMedical Research CenterThe First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of ChinaLibraryMedical College of Nanchang University, Nanchang 330006, People's Republic of ChinaNursing School of Jiujiang UniversityJiujiang 332000, People's Republic of China
| |
Collapse
|
1069
|
Li Z, Li X, Li C, Su Y, Fang W, Zhong C, Ji W, Zhang Q, Su C. Transcription factor OCT4 promotes cell cycle progression by regulating CCND1 expression in esophageal carcinoma. Cancer Lett 2014; 354:77-86. [DOI: 10.1016/j.canlet.2014.07.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 01/31/2023]
|
1070
|
Patrick R, Lê Cao KA, Kobe B, Bodén M. PhosphoPICK: modelling cellular context to map kinase-substrate phosphorylation events. ACTA ACUST UNITED AC 2014; 31:382-9. [PMID: 25304781 DOI: 10.1093/bioinformatics/btu663] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MOTIVATION The determinants of kinase-substrate phosphorylation can be found both in the substrate sequence and the surrounding cellular context. Cell cycle progression, interactions with mediating proteins and even prior phosphorylation events are necessary for kinases to maintain substrate specificity. While much work has focussed on the use of sequence-based methods to predict phosphorylation sites, there has been very little work invested into the application of systems biology to understand phosphorylation. Lack of specificity in many kinase substrate binding motifs means that sequence methods for predicting kinase binding sites are susceptible to high false-positive rates. RESULTS We present here a model that takes into account protein-protein interaction information, and protein abundance data across the cell cycle to predict kinase substrates for 59 human kinases that are representative of important biological pathways. The model shows high accuracy for substrate prediction (with an average AUC of 0.86) across the 59 kinases tested. When using the model to complement sequence-based kinase-specific phosphorylation site prediction, we found that the additional information increased prediction performance for most comparisons made, particularly on kinases from the CMGC family. We then used our model to identify functional overlaps between predicted CDK2 substrates and targets from the E2F family of transcription factors. Our results demonstrate that a model harnessing context data can account for the short-falls in sequence information and provide a robust description of the cellular events that regulate protein phosphorylation. AVAILABILITY AND IMPLEMENTATION The method is freely available online as a web server at the website http://bioinf.scmb.uq.edu.au/phosphopick. CONTACT m.boden@uq.edu.au SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ralph Patrick
- School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Kim-Anh Lê Cao
- School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
1071
|
MCL1 and BCL-xL levels in solid tumors are predictive of dinaciclib-induced apoptosis. PLoS One 2014; 9:e108371. [PMID: 25289887 PMCID: PMC4188521 DOI: 10.1371/journal.pone.0108371] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/19/2014] [Indexed: 01/22/2023] Open
Abstract
Dinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib's antitumor effect and relevant to the clinical duration of exposure. This was further underscored by kinetics of dinaciclib-induced downregulation of the antiapoptotic BCL2 family member MCL1 and correlation of sensitivity with the MCL1-to-BCL-xL mRNA ratio or MCL1 amplification in solid tumor models in vitro and in vivo. This MCL1-dependent apoptotic mechanism was additionally supported by synergy with the BCL2, BCL-xL and BCL-w inhibitor navitoclax (ABT-263). These results provide the rationale for investigating MCL1 and BCL-xL as predictive biomarkers for dinaciclib antitumor response and testing combinations with BCL2 family member inhibitors.
Collapse
|
1072
|
Fluorescent biosensors for drug discovery new tools for old targets--screening for inhibitors of cyclin-dependent kinases. Eur J Med Chem 2014; 88:74-88. [PMID: 25314935 DOI: 10.1016/j.ejmech.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases play central roles in regulation of cell cycle progression, transcriptional regulation and other major biological processes such as neuronal differentiation and metabolism. These kinases are hyperactivated in most human cancers and constitute attractive pharmacological targets. A large number of ATP-competitive inhibitors of CDKs have been identified from natural substances, in high throughput screening assays, or through structure-guided approaches. Alternative strategies have been explored to target essential protein/protein interfaces and screen for allosteric inhibitors that trap inactive intermediates or prevent conformational activation. However this remains a major challenge given the highly conserved structural features of these kinases, and calls for new and alternative screening technologies. Fluorescent biosensors constitute powerful tools for the detection of biomolecules in complex biological samples, and are well suited to study dynamic processes and highlight molecular alterations associated with pathological disorders. They further constitute sensitive and selective tools which can be readily implemented to high throughput and high content screens in drug discovery programmes. Our group has developed fluorescent biosensors to probe cyclin-dependent kinases and gain insight into their molecular behaviour in vitro and in living cells. These tools provide a means of monitoring subtle alterations in the abundance and activity of CDK/Cyclins and can respond to compounds that interfere with the conformational dynamics of these kinases. In this review we discuss the different strategies which have been devised to target CDK/Cyclins, and describe the implementation of our CDK/Cyclin biosensors to develop HTS/HCS assays in view of identifying new classes of inhibitors for cancer therapeutics.
Collapse
|
1073
|
Gulec S, Collins JF. Silencing of the Menkes copper-transporting ATPase (Atp7a) gene increases cyclin D1 protein expression and impairs proliferation of rat intestinal epithelial (IEC-6) cells. J Trace Elem Med Biol 2014; 28:459-64. [PMID: 25156967 PMCID: PMC4344117 DOI: 10.1016/j.jtemb.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 11/20/2022]
Abstract
The Menkes copper-transporting ATPase (Atp7a) has dual roles in mammalian enterocytes: pumping copper into the trans-Golgi network (to support cuproenzyme synthesis) and across the basolateral membrane (to deliver dietary copper to the blood). Atp7a is strongly induced in the rodent duodenum during iron deprivation, suggesting that copper influences iron homeostasis. To investigate this possibility, Atp7a was silenced in rat intestinal epithelial (IEC-6) cells. Irrespective of its influence on iron homeostasis, an unexpected observation was made in the Atp7a knockdown (KD) cells: the cells grew slower (∼40% fewer cells at 96h) and were larger than negative-control shRNA-transfected cells. Lack of Atp7a activity thus perturbed cell cycle control. To elucidate a possible molecular mechanism, expression of two important cell cycle control proteins was assessed. Cyclin D1 (CD1) protein expression increased in Atp7a KD cells whereas proliferating-cell nuclear antigen (PCNA) expression was unaltered. Increased CD1 expression is consistent with impaired cell cycle progression. Expression of additional cell proliferation marker genes (p21 and Ki67) was also investigated; p21 expression increased, whereas Ki67 decreased, both consistent with diminished cell growth. Further experiments were designed to determine whether increased cellular copper content was the trigger for the altered growth phenotype of the Atp7a KD cells. Copper loading, however, did not influence the expression patterns of CD1, p21 or Ki67. Overall, these findings demonstrate that Atp7a is required for normal proliferation of IEC-6 cells. How Atp7a influences cell growth is unclear, but the underlying mechanism could relate to its roles in intracellular copper distribution or cuproenzyme synthesis.
Collapse
Affiliation(s)
- Sukru Gulec
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
1074
|
Witkiewicz AK, Cox D, Knudsen ES. CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer 2014; 5:261-72. [PMID: 25221644 PMCID: PMC4162138 DOI: 10.18632/genesandcancer.24] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/06/2014] [Indexed: 01/27/2023] Open
Abstract
In spite of the efficacy of Her2-targeted therapies, recurrence and progression remain a challenge for treatment of Her2 positive breast cancer. CDK4/6 controls pathway downstream of Her2, Inhibition of these kinases could represent an important therapeutic approach to augment the effectiveness of standard therapies. In models of acquired resistance to Her2-targeted therapies, Cyclin D1 was inappropriately activated and CDK4/6 inhibition was effective at blocking proliferation by targeting this common pathway associated with resistance. These data were recapitulated in Her2 positive xenografts. Furthermore, in a series of 35 primary breast tumor explants, treatment with PD-0332991 resulted in a greater than 4-fold suppression of the Ki67. The effects of CDK4/6 inhibition were dependent on an intact RB-pathway, and consonantly, loss of RB and high-levels of p16 were associated with resistance to CDK4/6 inhibition. Combination studies illustrated that CDK4/6 inhibition is cooperative with multiple Her2-targeted agents and provides a complementary mechanism of action to T-DM1 to efficiently suppresses the proliferation of residual Her2-positive tumor cell populations that survive T-DM1. Together, these data indicate CDK4/6 is a viable therapeutic target that functions downstream of Her2, and tissue based markers are available to direct rational utilization of CDK4/6 inhibitors in combination with Her2-targeted agents.
Collapse
Affiliation(s)
- Agnieszka K Witkiewicz
- Department of Pathology, Simmons Cancer Center, Dalls, TX ; Department of Pathology, UT Southwestern, Dallas, TX
| | - Derek Cox
- Department of Pathology, Simmons Cancer Center, Dalls, TX
| | - Erik S Knudsen
- Department of Pathology, Simmons Cancer Center, Dalls, TX ; Department of Pathology, UT Southwestern, Dallas, TX
| |
Collapse
|
1075
|
Clinical study of the novel cyclin-dependent kinase inhibitor dinaciclib in combination with rituximab in relapsed/refractory chronic lymphocytic leukemia patients. Cancer Chemother Pharmacol 2014; 74:1057-64. [PMID: 25217392 DOI: 10.1007/s00280-014-2583-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Dinaciclib is a novel selective inhibitor of cyclin-dependent kinase (CDK)1, CDK2, CDK5, and CDK9. We conducted a phase I study to investigate the effects of dinaciclib when administered with rituximab. METHODS In this phase I nonrandomized dose-escalation 3 + 3 trial, patients with relapsed/refractory chronic lymphocytic leukemia (CLL) were treated with dinaciclib and rituximab. Dinaciclib was administered intravenously (IV) over 2 h on days 1, 8 and 15 in cycles 2-13 (28-day cycles). Rituximab 375 mg/m(2) was administered IV on days 1, 8, 15 and 22 in cycle 1 (28-day cycle) and on day 1 during cycle 3-13. Rituximab was not administered in cycle 2. Rituximab and dinaciclib were given alone in cycles 1 and 2, respectively, and in combination in cycles 3-13. Primary objectives included determination of the recommended phase II dose of dinaciclib and evaluation of pharmacokinetics (PK) when administered with rituximab. RESULTS Five patients completed the study due to early termination. All presented with drug-related adverse events (AEs), but no dose-limiting toxicities were observed. The most commonly observed toxicities included hematological, digestive and metabolic AEs. However, no tumor lysis syndrome has been reported in the study. Four patients achieved stable disease, and one patient achieved complete response according to 2008 iwCLL criteria at cycle 3. PK samples were collected from 5 patients, and no obvious interaction between dinaciclib and rituximab was observed. CONCLUSIONS Limited data from this study shows dinaciclib in combination with rituximab was well tolerated and revealed encouraging clinical activity in relapsed/refractory CLL patients.
Collapse
|
1076
|
Van TNN, Pellerano M, Lykaso S, Morris MC. Fluorescent Protein Biosensor for Probing CDK/Cyclin Activity in vitro and in Living Cells. Chembiochem 2014; 15:2298-305. [DOI: 10.1002/cbic.201402318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 11/10/2022]
|
1077
|
Ke XX, Zhang D, Zhu S, Xia Q, Xiang Z, Cui H. Inhibition of H3K9 methyltransferase G9a repressed cell proliferation and induced autophagy in neuroblastoma cells. PLoS One 2014; 9:e106962. [PMID: 25198515 PMCID: PMC4157855 DOI: 10.1371/journal.pone.0106962] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023] Open
Abstract
Histone methylation plays an important role in gene transcription and chromatin organization and is linked to the silencing of a number of critical tumor suppressor genes in tumorigenesis. G9a is a histone methyltransferase (HMTase) for histone H3 lysine 9. In this study, we investigated the role of G9a in neuroblastoma tumor growth together with the G9a inhibitor BIX01294. The exposure of neuroblastoma cells to BIX01294 resulted in the inhibition of cell growth and proliferation, and BIX01294 treatment resulted in the inhibition of the tumorigenicity of neuroblastoma cells in NOD/SCID mice. Therefore, G9a may be a potential therapeutic target in neuroblastoma. Moreover, we found several specific characteristics of autophagy after BIX01294 treatment, including the appearance of membranous vacuoles and microtubule-associated protein light chain 3 (LC3B). Similar results were observed in G9a-knockdown cells. In conclusion, our results demonstrated that G9a is a prognostic marker in neuroblastoma, and revealed a potential role of G9a in regulating the autophagy signaling pathway in neuroblastoma.
Collapse
Affiliation(s)
- Xiao-Xue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Dunke Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail: (ZX); (HC)
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail: (ZX); (HC)
| |
Collapse
|
1078
|
Chen B, Zhang C, Dong P, Guo Y, Mu N. Molecular regulation of cervical cancer growth and invasion by VEGFa. Tumour Biol 2014; 35:11587-93. [PMID: 25135429 DOI: 10.1007/s13277-014-2463-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/06/2014] [Indexed: 12/25/2022] Open
Abstract
Although antivascular endothelial growth factor a (VEGFa) treatment has been well applied in cervical cancer therapy, the underlying molecular basis has not been precisely identified. Here, we examined the levels of VEGFa on the tumor growth and invasion in four commonly used human cervical cancer cell lines. We found that overexpression of VEGFa in these lines increased the tumor growth and invasiveness, while inhibition of VEGFa decreased the tumor growth and invasiveness. To figure out the involved signaling pathways, we applied specific inhibitors for ERK/MAPK, JNK, and PI3K/Akt signaling pathways, respectively, to VEGFa-overexpressing cervical cancer lines and found that only inhibition of PI3K/Akt signal transduction abolished VEGFa-induced increases in cell growth and invasiveness. Inhibition of Akt downstream mTor signaling similarly inhibited cell growth and invasion in VEGFa-overexpressing cervical cancer cells, suggesting that VEGFa may activate PI3K/Akt, and subsequently its downstream mTor signaling pathway, to promote cervical cancer cell growth and invasion. Furthermore, the effects of VEGFa-induced activation of mTor signaling cascades appeared to promote cancer cell growth through cyclinD1 and CDK4 activation and promote cancer cell invasion through MMP2 and MMP3. Taken together, our data suggest that anti-VEGFa treatment in cervical cancer may inhibit both tumor cell growth and invasion through PI3k/Akt/mTor signaling pathway.
Collapse
Affiliation(s)
- Baohuan Chen
- Department of Gynecology, Yantaishan Hospital, 91 Jiefang Road, Yantai, 264001, China
| | | | | | | | | |
Collapse
|
1079
|
Sphingomyelin Synthase 1 Regulates Neuro-2a Cell Proliferation and Cell Cycle Progression Through Modulation of p27 Expression and Akt Signaling. Mol Neurobiol 2014; 51:1530-41. [PMID: 25084761 DOI: 10.1007/s12035-014-8829-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
Abstract
Sphingomyelin synthase (SMS) is a key enzyme involved in the generation of sphingomyelin (SM) and regulation of cell growth and survival. However, the effects of SMS on neuronal cell proliferation and cell cycle progression are not completely elucidated. In this study, we examined the direct effects of SMS1 in regulating cell cycle progression and proliferation of Neuro-2a cells that exhibit neuronal characteristics. Neuro-2a cells transfected with SMS-specific small hairpin RNA (shRNA) expressed significantly lower levels of SMS1. RNA interference-mediated depletion of SMS1 in Neuro-2a cells caused a significant decrease in SM levels. Decreased SMS1 levels resulted in reduced proliferation rate and morphological changes including neurite-like outgrowth. Also, silencing of SMS1 induced cell cycle arrest as shown by the increased percentage of cells in G0/G1 and decreased proportion of cells in S phase. These changes were accompanied by upregulation of cyclin-dependent kinase inhibitor p27 and decreased levels of cyclin D1 and phospho-Akt. Nuclear accumulation of p27 was also evident in SMS1-deficient cells. Furthermore, loss of SMS1 inhibited the migratory potential of Neuro-2a cells in association with decreased levels of matrix metalloproteinases. These results indicate that SMS1 plays an important role in mediating the key signaling pathways that are involved in the tight coordination of multiple cellular activities, including neuronal cell proliferation, cell cycle progression, and migration, and therefore may have significant implications in neurodegenerative diseases.
Collapse
|
1080
|
Synthesis and biological evaluation of tetrahydro[1,4]diazepino[1,2-a]indol-1-ones as cyclin-dependent kinase inhibitors. Eur J Med Chem 2014; 83:617-29. [DOI: 10.1016/j.ejmech.2014.06.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/04/2014] [Accepted: 06/27/2014] [Indexed: 11/21/2022]
|
1081
|
|
1082
|
Zhou Y, Zhao HY, Han KL, Yang Y, Song BB, Guo QN, Fan ZC, Zhang YM, Teng YO, Yu P. 5-(2-carboxyethenyl) isatin derivative induces G₂/M cell cycle arrest and apoptosis in human leukemia K562 cells. Biochem Biophys Res Commun 2014; 450:1650-5. [PMID: 25044115 DOI: 10.1016/j.bbrc.2014.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/11/2014] [Indexed: 12/20/2022]
Abstract
Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC50) level of 3nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G2/M phase and accumulated subsequently in the sub-G1 phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G2/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.
Collapse
Affiliation(s)
- Yao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hong-Ye Zhao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Kai-Lin Han
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yao Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bin-Bin Song
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qian-Nan Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Chuan Fan
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, PR China; Obesita & Algaegen LLC, College Station, TX 77845, United States
| | - Yong-Min Zhang
- Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 Place Jussieu, 75005 Paris, France
| | - Yu-Ou Teng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
1083
|
Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 2014; 30:575-83. [PMID: 25016609 DOI: 10.1093/ndt/gfu230] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For several decades, acute kidney injury (AKI) was generally considered a reversible process leading to complete kidney recovery if the individual survived the acute illness. Recent evidence from epidemiologic studies and animal models, however, have highlighted that AKI can lead to the development of fibrosis and facilitate the progression of chronic renal failure. When kidney injury is mild and baseline function is normal, the repair process can be adaptive with few long-term consequences. When the injury is more severe, repeated, or to a kidney with underlying disease, the repair can be maladaptive and epithelial cell cycle arrest may play an important role in the development of fibrosis. Indeed, during the maladaptive repair after a renal insult, many tubular cells that are undergoing cell division spend a prolonged period in the G2/M phase of the cell cycle. These tubular cells recruit intracellular pathways leading to the synthesis and the secretion of profibrotic factors, which then act in a paracrine fashion on interstitial pericytes/fibroblasts to accelerate proliferation of these cells and production of interstitial matrix. Thus, the tubule cells assume a senescent secretory phenotype. Characteristic features of these cells may represent new biomarkers of fibrosis progression and the G2/M-arrested cells may represent a new therapeutic target to prevent, delay or arrest progression of chronic kidney disease. Here, we summarize recent advances in our understanding of the biology of the cell cycle and how cell cycle arrest links AKI to chronic kidney disease.
Collapse
Affiliation(s)
- Guillaume Canaud
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V Bonventre
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
1084
|
ZHU SHUNQIN, LIU WANHONG, KE XIAOXUE, LI JIFU, HU RENJIAN, CUI HONGJUAN, SONG GUANBIN. Artemisinin reduces cell proliferation and induces apoptosis in neuroblastoma. Oncol Rep 2014; 32:1094-100. [DOI: 10.3892/or.2014.3323] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/15/2014] [Indexed: 11/06/2022] Open
|
1085
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
1086
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
1087
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438\] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
1088
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
1089
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
1090
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438-- or] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
1091
|
Derivation of a novel G2 reporter system. Cytotechnology 2014; 68:19-24. [PMID: 24981314 DOI: 10.1007/s10616-014-9757-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 06/07/2014] [Indexed: 12/30/2022] Open
Abstract
Progression through G2 phase of the cell cycle is a technically difficult area of cell biology to study due to the lack of physical markers specific to this phase. The FUCCI system uses the biology of the cell cycle to drive fluorescence in select phases of the cell cycle. Similarly, a commercially available system has used a fluorescent analog of the Cyclin B1 protein to visualize cells from late S phase to the metaphase-anaphase transition. We have modified these systems to use the promoter and destruction box elements of Cyclin B1 to drive a cyan fluorescent protein. We demonstrate here that this is a useful tool for measuring the length of G2 phase without perturbing any aspect of cell cycle progression.
Collapse
|
1092
|
Chen L, Cheng PH, Rao XM, McMasters KM, Zhou HS. Indole-3-carbinol (I3C) increases apoptosis, represses growth of cancer cells, and enhances adenovirus-mediated oncolysis. Cancer Biol Ther 2014; 15:1256-67. [PMID: 24972095 DOI: 10.4161/cbt.29690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epidemiological studies suggest that high intake of cruciferous vegetables is associated with a lower risk of cancer. Experiments have shown that indole-3-carbinol (I3C), a naturally occurring compound derived from cruciferous vegetables, exhibits potent anticarcinogenic properties in a wide range of cancers. In this study, we showed that higher doses of I3C (≥400 μM) induced apoptotic cancer cell death and lower doses of I3C (≤200 μM) repressed cancer cell growth concurrently with suppressed expression of cyclin E and its partner CDK2. Notably, we found that pretreatment with low doses of I3C enhanced Ad-mediated oncolysis and cytotoxicity of human carcinoma cells by synergistic upregulation of apoptosis. Thus, the vegetable compound I3C as a dietary supplement may benefit cancer prevention and improve Ad oncolytic therapies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA
| | - Pei-Hsin Cheng
- Department of Pharmacology and Toxicology; University of Louisville School of Medicine; Louisville, KY USA
| | - Xiao-Mei Rao
- James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA
| | - Kelly M McMasters
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA; Department of Pharmacology and Toxicology; University of Louisville School of Medicine; Louisville, KY USA; James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA
| | - Heshan Sam Zhou
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA; James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA; Department of Microbiology and Immunology; University of Louisville School of Medicine; Louisville, KY USA
| |
Collapse
|
1093
|
Atikukke G, Albosta P, Zhang H, Finley RL. A role for Drosophila Cyclin J in oogenesis revealed by genetic interactions with the piRNA pathway. Mech Dev 2014; 133:64-76. [PMID: 24946235 DOI: 10.1016/j.mod.2014.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022]
Abstract
Cyclin J (CycJ) is a poorly characterized member of the Cyclin superfamily of cyclin-dependent kinase regulators, many of which regulate the cell cycle or transcription. Although CycJ is conserved in metazoans its cellular function has not been identified and no mutant defects have been described. In Drosophila, CycJ transcript is present primarily in ovaries and very early embryos, suggesting a role in one or both of these tissues. The CycJ gene (CycJ) lies immediately downstream of armitage (armi), a gene involved in the Piwi-associated RNA (piRNA) pathways that are required for silencing transposons in the germline and adjacent somatic cells. Mutations in armi result in oogenesis defects but a role for CycJ in oogenesis has not been defined. Here we assessed oogenesis in CycJ mutants in the presence or absence of mutations in armi or other piRNA pathway genes. CycJ null ovaries appeared normal, indicating that CycJ is not essential for oogenesis under normal conditions. In contrast, armi null ovaries produced only two egg chambers per ovariole and the eggs had severe axis specification defects, as observed previously for armi and other piRNA pathway mutants. Surprisingly, the CycJ armi double mutant failed to produce any mature eggs. The double null ovaries generally had only one egg chamber per ovariole and the egg chambers frequently contained an overabundance of differentiated germline cells. Production of these compound egg chambers could be suppressed with CycJ transgenes but not with mutations in the checkpoint gene mnk, which suppress oogenesis defects in armi mutants. The CycJ null showed similar genetic interactions with the germline and somatic piRNA pathway gene piwi, and to a lesser extent with aubergine (aub), a member of the germline-specific piRNA pathway. The strong genetic interactions between CycJ and piRNA pathway genes reveal a role for CycJ in early oogenesis. Our results suggest that CycJ is required to regulate egg chamber production or maturation when piRNA pathways are compromised.
Collapse
Affiliation(s)
- Govindaraja Atikukke
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Paul Albosta
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Russell L Finley
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
1094
|
Heo SK, Noh EK, Yoon DJ, Jo JC, Park JH, Kim H. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity. PLoS One 2014; 9:e98859. [PMID: 24918603 PMCID: PMC4053340 DOI: 10.1371/journal.pone.0098859] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA) is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML) cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose) polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy.
Collapse
Affiliation(s)
- Sook-Kyoung Heo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Eui-Kyu Noh
- Division of Hematology and Hematological Malignancies, Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Dong-Joon Yoon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jae-Cheol Jo
- Division of Hematology and Hematological Malignancies, Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jae-Hoo Park
- Division of Hematology and Hematological Malignancies, Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Hawk Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
- Division of Hematology and Hematological Malignancies, Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
1095
|
Yamada A, Nishida H. Control of the number of cell division rounds in distinct tissues during ascidian embryogenesis. Dev Growth Differ 2014; 56:376-86. [DOI: 10.1111/dgd.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Atsuko Yamada
- Department of Biological Sciences; Graduate School of Science; Osaka University; Toyonaka Osaka Japan
- International College; Osaka University; Toyonaka Osaka Japan
| | - Hiroki Nishida
- Department of Biological Sciences; Graduate School of Science; Osaka University; Toyonaka Osaka Japan
| |
Collapse
|
1096
|
Jeong JW, Park S, Park C, Chang YC, Moon DO, Kim SO, Kim GY, Cha HJ, Kim HS, Choi YW, Kim WJ, Yoo YH, Choi YH. N-benzyl-N-methyldecan-1-amine, a phenylamine derivative isolated from garlic cloves, induces G2/M phase arrest and apoptosis in U937 human leukemia cells. Oncol Rep 2014; 32:373-81. [PMID: 24859825 DOI: 10.3892/or.2014.3215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/09/2014] [Indexed: 11/05/2022] Open
Abstract
Epidemiological studies indicate that components of garlic (Allium sativum) have anti-proliferative effects against various types of cancer. In the present study, we investigated the effect of newly isolated phenylamine derivative N-benzyl-N-methyldecan-1-amine (NBNMA) from garlic cloves on the inhibition of the growth and apoptosis of human leukemia U937 cells and its potential anticancer mechanism. NBNMA exhibited an antiproliferative effect in U937 cells by inducing cell cycle arrest at the G2/M phase and apoptotic cell death. Western blot analyses revealed that NBNMA decreased the expression of the regulator genes of G2/M phase progression, cyclin dependent kinase (Cdk) 2 and Cdc2 and elevated the expression of the Cdk inhibitor p21WAF1/CIP1 in a p53-independent manner. In addition, NBNMA activated caspase-8 and caspase-9, initiator caspases of the extrinsic and intrinsic pathways of apoptosis, respectively, which led to activation of executioner caspase-3 along with degradation of poly(ADP-ribose) polymerase. NBNMA-induced apoptosis was observed in parallel with an increased ratio of pro-apoptotic Bax and Bad/anti-apoptotic Bcl-2 and Bcl-xL, and inhibition of inhibitor of apoptosis protein (IAP) family members XIAP and cIAP-1. Furthermore, NBNMA-treated cells displayed enhanced release of cytochrome c from the mitochondria into the cytosol concomitant with a loss of mitochondrial membrane potential and downregulation of Bid, suggesting that NBNMA-induced apoptosis occurred via the extrinsic and intrinsic apoptotic pathways with a possible link to Bid protein activity between the two pathways. These results indicate that NBNMA has promising potential to become a novel anticancer agent for the treatment of leukemia. We provide new insight into the mechanisms underlying the anticancer effect of NBNMA.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Center for Core Research Facilities, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea
| | - Sejin Park
- Department of Horticultural Bioscience, College of Natural Resource and Life Sciences, Busan National University, Miryang 627-706, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, Dongeui University, Busan 614-714, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705‑718, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Gyeongbuk 712-714, Republic of Korea
| | - Sung Ok Kim
- Team for Scientification of Korean Medical Intervention (BK21 Plus) and Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690‑756, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Seo-gu, Busan 602‑702, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Busan National University, Busan 609‑735, Republic of Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, College of Natural Resource and Life Sciences, Busan National University, Miryang 627-706, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 361-804, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan 602‑714, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614‑052, Republic of Korea
| |
Collapse
|
1097
|
Modulated expression of genes encoding estrogen metabolizing enzymes by G1-phase cyclin-dependent kinases 6 and 4 in human breast cancer cells. PLoS One 2014; 9:e97448. [PMID: 24848372 PMCID: PMC4029737 DOI: 10.1371/journal.pone.0097448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/19/2014] [Indexed: 02/06/2023] Open
Abstract
G1-phase cell cycle defects, such as alterations in cyclin D1 or cyclin-dependent kinase (cdk) levels, are seen in most tumors. For example, increased cyclin D1 and decreased cdk6 levels are seen in many human breast tumors. Overexpression of cdk6 in breast tumor cells in culture has been shown to suppress proliferation, unlike the growth stimulating effects of its close homolog, cdk4. In addition to directly affecting proliferation, alterations in cdk6 or cdk4 levels in breast tumor cells also differentially influence levels of numerous steroid metabolic enzymes (SMEs), including those involved in estrogen metabolism. Overexpression of cdk6 in tumor cell lines having low cdk6 resulted in decreased levels of mRNAs encoding aldo-keto reductase (AKR)1C1, AKR1C2 and AKR1C3, which are hydroxysteroid dehydrogenases (HSDs) involved in steroid hormone metabolism. In contrast, increasing cdk4 dramatically increased these transcript levels, especially those encoding AKR1C3, an enzyme that converts estrone to 17β-estradiol, a change that could result in a pro-estrogenic state favoring tumor growth. Effects on other estrogen metabolizing enzymes, including cytochrome P450 (CYP) 19 aromatase, 17β-HSD2, and CYP1B1 transcripts, were also observed. Interactions of cdk6 and cdk4, but not cyclin D1, with the promoter region of a cdk-regulated gene, 17β-HSD2, were detected. The results uncover a previously unsuspected link between the cell cycle and hormone metabolism and differential roles for cdk6 and cdk4 in a novel mechanism for pre-receptor control of steroid hormone action, with important implications for the origin and treatment of steroid hormone-dependent cancers.
Collapse
|
1098
|
Jorda R, Navrátilová J, Hušková Z, Schütznerová E, Cankař P, Strnad M, Kryštof V. Arylazopyrazole AAP1742 Inhibits CDKs and Induces Apoptosis in Multiple Myeloma Cells via Mcl-1 Downregulation. Chem Biol Drug Des 2014; 84:402-8. [DOI: 10.1111/cbdd.12330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/04/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Žlutý kopec 7 656 53 Brno Czech Republic
| | - Jana Navrátilová
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Zlata Hušková
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Eva Schütznerová
- Department of Organic Chemistry; Faculty of Science; Palacký University; 17. listopadu 1192/12 77146 Olomouc Czech Republic
| | - Petr Cankař
- Department of Organic Chemistry; Faculty of Science; Palacký University; 17. listopadu 1192/12 77146 Olomouc Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| |
Collapse
|
1099
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:360438. [PMID: 24999379 PMCID: PMC4066722 DOI: 10.1155/2014/360438] [Citation(s) in RCA: 3477] [Impact Index Per Article: 316.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
1100
|
Jha AK, Wang Y, Hercyk BS, Shin HS, Chen R, Yang M. The role for CYCLIN A1;2/TARDY ASYNCHRONOUS MEIOSIS in differentiated cells in Arabidopsis. PLANT MOLECULAR BIOLOGY 2014; 85:81-94. [PMID: 24430502 DOI: 10.1007/s11103-013-0170-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/24/2013] [Indexed: 05/10/2023]
Abstract
The Arabidopsis A1-type cyclin, CYCA1;2, also named TARDY ASYNCHRONOUS MEIOSIS (TAM), is known for its positive role in meiotic cell cycle progression, but its function in other cells has not been characterized. This paper reports the role of CYCA1;2/TAM in differentiated cells in vegetative organs. The pattern of CYCA1;2/TAM expression was investigated by promoter and protein fusions using the β-glucuronidase and the green fluorescent protein, respectively. The relevance of the promoter region used in these gene fusion constructs was verified by the effective complementation of the phenotype of the diploid null allele, tam-2 2C by a genomic fragment containing the wild-type coding region of CYCA1;2/TAM and the promoter region. CYCA1;2/TAM expression was found primarily in non-proliferating cells such as guard cells, trichomes, and mesophyll cells, and in vascular tissue. In two types of overexpression lines, one containing the CYCA1;2/TAM transgene driven by the ARABIDOPSIS SKP1-LIKE1 (ASK1) promoter and the other CYCA1;2/TAM-GFP driven by the cauliflower mosaic virus 35S promoter, the largest differences between the transgene transcript levels were approximately 72- and 45-folds, respectively, but the TAM-GFP signal levels in the mesophyll and stomata in the 35S:TAM-GFP lines only differ slightly. Furthermore, the GFP signals in the mesophyll and stomata in the TAM:TAM-GFP and 35S:TAM-GFP lines were all at similarly low levels. These results indicate that the CYCA1;2/TAM protein is likely maintained at low levels in these cells through post-transcriptional regulation. Loss of function in CYCA1;2/TAM resulted in increases in the nuclear size in both trichomes and guard cells. Surprisingly, overexpression of CYCA1;2/TAM led to similar increases. The large increases in trichome nuclear size likely reflected ploidy increases while the moderate increases in guard cell nuclear size did not justify for a ploidy increase. These nuclear size increases were not clearly correlated with trichome branch number increases and guard cell size increases, respectively. These results suggest that cellular homeostasis of the CYCA1;2/TAM protein is linked to the control of nuclear sizes in trichomes and guard cells.
Collapse
Affiliation(s)
- Ajay K Jha
- 301 Physical Science, Department of Botany, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | | | | | | | | |
Collapse
|