1101
|
Sun J, Chen Q, Ma J. Notch–Sox9 Axis Mediates Hepatocyte Dedifferentiation in KrasG12V-Induced Zebrafish Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23094705. [PMID: 35563098 PMCID: PMC9103821 DOI: 10.3390/ijms23094705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the most prevalent cancers in humans. Hepatocytes normally undergo dedifferentiation after the onset of hepatocellular carcinoma, which in turn facilitates the progression of cancer. Although the process of hepatocellular carcinoma dedifferentiation is of significant research and clinical value, the cellular and molecular mechanisms underlying it are still not fully characterized. We constructed a zebrafish liver cancer model based on overexpression of the oncogene krasG12V to investigate the hepatocyte dedifferentiation in hepatocellular carcinoma. We found that, after hepatocarcinogenesis, hepatocytes dedifferentiated and the Notch signaling pathway was upregulated in this progress. Furthermore, we found that inhibition of the Notch signaling pathway or deficiency of sox9b both prevented hepatocyte dedifferentiation following hepatocellular carcinoma induction, reducing cancer metastasis and improving survival. In conclusion, we found that hepatocytes undergo dedifferentiation after hepatocarcinogenesis, a process that requires Notch signaling and likewise the activation of Sox9.
Collapse
|
1102
|
Ichikawa MK, Endo K, Itoh Y, Osada AH, Kimura Y, Ueki K, Yoshizawa K, Miyazawa K, Saitoh M. Ets family proteins regulate the EMT transcription factors Snail and ZEB in cancer cells. FEBS Open Bio 2022; 12:1353-1364. [PMID: 35451213 PMCID: PMC9249322 DOI: 10.1002/2211-5463.13415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is a crucial morphological event that occurs during epithelial tumor progression. Snail and ZEB1/2 (ZEB1 and ZEB2), known as EMT transcription factors, are key regulators of this transition. ZEB1/2 are positively correlated with EMT phenotypes and the aggressiveness of cancers. On the contrary, Snail is also correlated with the aggressiveness of cancers, but is not correlated with the expression of EMT marker proteins. Snail is induced by transforming growth factor‐β (TGF‐β), a well‐known inducer of EMT, in various cancer cells. Interestingly, Snail induction by TGF‐β is markedly enhanced by active Ras signals. Thus, cancer cells harboring an active Ras mutation exhibit a drastic induction of Snail by TGF‐β alone. Here, we found that members of the E26 transformation‐specific (Ets) transcription factor family, Ets1 and Ets2, contribute to the upregulation of both Snail and ZEB1/2. Snail induction by TGF‐β and active Ras is dramatically inhibited using siRNAs against both Ets1 and Ets2 together, but not on their own; in addition, siRNAs against both Ets1 and Ets2 also downregulate the constitutive expression of Snail and ZEB1/2 in cancer cells. Examination of several alternatively spliced variants of Ets1 revealed that p54‐Ets1, which includes exon VII, but not p42‐Ets1, which excludes exon VII, regulates the expression of the EMT transcription factors, suggesting that Ets1 is a crucial molecule for regulating Snail and ZEB1/2, and thus cancer progression is mediated through post‐translational modification of the exon VII domain.
Collapse
Affiliation(s)
- Mai Koizumi Ichikawa
- Department of Biochemistry, University of Yamanashi, Chuo-city, Yamanashi, Japan.,Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan.,Department of Oral and Maxillofacial Surgery, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | - Kaori Endo
- Department of Biochemistry, University of Yamanashi, Chuo-city, Yamanashi, Japan.,Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | - Yuka Itoh
- Department of Biochemistry, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | - Asami Hotta Osada
- Department of Oral and Maxillofacial Surgery, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | - Yujiro Kimura
- Department of Oral and Maxillofacial Surgery, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | - Koichiro Ueki
- Department of Oral and Maxillofacial Surgery, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | - Kunio Yoshizawa
- Department of Oral and Maxillofacial Surgery, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | - Masao Saitoh
- Department of Biochemistry, University of Yamanashi, Chuo-city, Yamanashi, Japan.,Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan
| |
Collapse
|
1103
|
Yang K, Li C, Liu Y, Gu X, Jiang L, Shi L. Prognostic and Immunotherapeutic Roles of KRAS in Pan-Cancer. Cells 2022; 11:cells11091427. [PMID: 35563733 PMCID: PMC9105487 DOI: 10.3390/cells11091427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS is one well-established tumor-driver gene associated with cancer initiation, development, and progression. Nonetheless, comparative studies of the relevance of KRAS across diverse tumors remain sparse. We explored the KRAS expression and prognostic values in diverse cancer types via multiple web-based bioinformatics tools, including cBioPortal, Oncomine, PrognoScan, Kaplan–Meier Plotter, etc. We found that KRAS is highly expressed in various malignancies compared to normal cohorts (BRCA, CHOL, ESCA, HNSC, LIHC, LUAD, LUSC, and STAD) and less expressed in COAD, KIRC, READ, and THCA than in normal samples. We observed the dysregulation of the DNA methylation of KRAS in cancers and discovered that numerous oncogenic and tumor-suppressive transcription factors bind the KRAS promoter region. Pan-cancer analysis also showed that a high level of KRAS is associated with poor outcomes. Additionally, KRAS is remarkably correlated with the level of immune cell infiltration and tumorigenic gene signatures. In conclusion, our findings reveal novel insights into KRAS expression and its biological functions in diverse cancer types, indicating that KRAS could serve as a prognostic biomarker and is associated with immune infiltrates.
Collapse
Affiliation(s)
- Kaixin Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (K.Y.); (C.L.); (X.G.)
| | - Chengyun Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (K.Y.); (C.L.); (X.G.)
| | - Yang Liu
- Gansu Provincial People’s Hospital, Lanzhou 730000, China;
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (K.Y.); (C.L.); (X.G.)
| | - Longchang Jiang
- Department of Vascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Correspondence: (L.J.); (L.S.); Tel.: +86-21-3880-4518 (L.J.); +86-93-1891-3592(L.S.)
| | - Lei Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (K.Y.); (C.L.); (X.G.)
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester SK10 4TG, UK
- Correspondence: (L.J.); (L.S.); Tel.: +86-21-3880-4518 (L.J.); +86-93-1891-3592(L.S.)
| |
Collapse
|
1104
|
Tan L, Qu W, Wu D, Liu M, Ai Q, Hu H, Wang Q, Chen W, Zhou H. The interferon regulatory factor 6 promotes cisplatin sensitivity in colorectal cancer. Bioengineered 2022; 13:10504-10517. [PMID: 35443865 PMCID: PMC9161955 DOI: 10.1080/21655979.2022.2062103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and causes of cancer-related mortality worldwide. Cell proliferation and tumor metastasis as well as chemoresistance are correlated with poor survival of CRC. The interferon regulatory factor 6 (IRF6) is functioned as a tumor suppressor gene in several cancers and is associated with risk of CRC. We explored the role of IRF6 in CRC in the present study. The protein expressions of IRF6 in human CRC tissues, normal para-carcinoma tissue and liver metastases from CRC were measured. Cell proliferation, chemotherapeutic sensitivity, cell apoptosis, migration and invasion including the related markers along with IRF6 expression were explored. Our results indicated that IRF6 expression in CRC and liver metastasis were lower than normal tissues, which were correlated positively with E-cadherin and negatively with Ki67 expression in CRC tissue. IRF6 promoted CRC cell sensitivity to cisplatin to suppress cell proliferation, migration and invasion as well as aggravate cell apoptosis. Our study suggested that IRF6 may enhance chemotherapeutic sensitivity of cisplatin mediated by affecting cell proliferation, migration and invasion along with apoptosis through regulating E-cadherin and Ki67, while the identified molecular mechanisms remain to be further explored.
Collapse
Affiliation(s)
- Lin Tan
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Weiming Qu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Dajun Wu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Minji Liu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Qiongjia Ai
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Hongsai Hu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Qian Wang
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Weishun Chen
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Hongbing Zhou
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| |
Collapse
|
1105
|
Hu X, Zhang J, Bu J, Yang K, Xu S, Pan M, Xiang D, Chen W. MiR-4733-5p promotes gallbladder carcinoma progression via directly targeting kruppel like factor 7. Bioengineered 2022; 13:10691-10706. [PMID: 35443866 PMCID: PMC9161844 DOI: 10.1080/21655979.2022.2065951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Gallbladder carcinoma (GBC) is highly aggressive with poor prognosis. Accumulating reports show that miRNAs play critical roles in tumor progression. Previous studies have identified several miRNAs that promoted or inhibited GBC cell proliferation and/or metastasis. Here, we used the Gene Expression Omnibus (GEO) dataset to identify dysregulated miRNAs in GBC, followed by validating the upregulation of the miR-4733-5p and downregulation of kruppel-like factor 7 (KLF7) in GBC biopsies by quantitative real-time PCR (RT-qPCR), in situ hybridization (ISH) staining, and immunohistochemistry (IHC) assays. GBC cell proliferation and invasion capacities mediated by miR-4733-5p were evaluated by a series of function assays in vitro, including CCK-8, colony formation assay, wound healing assay and transwell assay. Xenograft tumor model found that miR-4733-5p promoted GBC tumor growth in vivo. This study clarified that miR-4733-5p was upregulated in GBC and promoted GBC cell proliferation via directly binding to 3' untranslated region (UTR) of KLF, which was downregulated and prohibited the proliferation and migration of GBC cells.
Collapse
Affiliation(s)
- Xiaoqiang Hu
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Junzhe Zhang
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Junfeng Bu
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Kaini Yang
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Sunwang Xu
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Mengqiao Pan
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Dongxi Xiang
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Wei Chen
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China.,Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai 200120, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| |
Collapse
|
1106
|
Wang Q, Liu Z, Zhai G, Yu X, Ke S, Shao H, Guo J. Overexpression of GATA5 Inhibits Prostate Cancer Progression by Regulating PLAGL2 via the FAK/PI3K/AKT Pathway. Cancers (Basel) 2022; 14:cancers14092074. [PMID: 35565203 PMCID: PMC9099954 DOI: 10.3390/cancers14092074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) has the highest incidence of malignant tumors and is the second-ranked tumor-causing death of men. GATA binding protein 5 (GATA5) belongs to the GATA gene family and we found that GATA5 was downregulated in PCa tissues, but the function of GATA5 in PCa remains elusive. We found overexpression GATA5 inhibited tumor proliferation, migration, invasion and the process of epithelial–mesenchymal transition (EMT), and upregulation of GATA5 promoted PCa cell apoptosis. In addition, we disclosed that GATA5 could interact with pleomorphic adenoma gene-like-2 (PLAGL2) to regulate PCa cell growth via FAK/PI3K/AKT signaling pathway. Hence, these findings suggested that GATA5 could serve as a new therapeutic target in the future. Abstract Background: Prostate cancer (PCa) is a malignancy with high incidence and the principal cause of cancer deaths in men. GATA binding protein 5 (GATA5) belongs to the GATA gene family. GATA5 has a close association with carcinogenesis, but the role of GATA5 in PCa remains poorly understood. The aim of our present study was to probe into the effect of GATA5 on PCa progression and to elucidate the involved mechanism. Methods: The expression of GATA5 was detected in both PCa samples and PCa cell lines. GATA5 overexpression, PLAGL2 knockdown, and overexpression cell models were generated, then Western blotting experiments were utilized to validate the efficiency of transfection. The effects of GATA5 on PCa cell proliferation, metastasis, apoptosis, cell cycle progression, and EMT were detected in vitro or in vivo. Furthermore, the mechanism by which GATA5 inhibits prostate cancer progression through regulating PLAGL2 via the FAK/PI3K/AKT pathway was also explored. Results: GATA5 expression was downregulated in PCa samples and cell lines. GATA5 overexpression inhibited PCa cell proliferation and metastasis but increased the rate of apoptosis. In addition, we confirmed that GATA5 inhibited prostate cancer progression, including EMT, by regulating PLAGL2 via the FAK/PI3K/AKT pathway. Conclusion: We demonstrated that GATA5, as a tumor suppressor in PCa, inhibits PCa progression by regulating PLAGL2. These results showed that the GATA5/PLAGL2/FAK/PI3K/AKT pathway may become a new therapeutic direction for the treatment of PCa.
Collapse
|
1107
|
Liu F, Chen S, Yu Y, Huang C, Chen H, Wang L, Zhang W, Wu J, Ye Y. Inhibitor of DNA binding 2 knockdown inhibits the growth and liver metastasis of colorectal cancer. Gene 2022; 819:146240. [PMID: 35114275 DOI: 10.1016/j.gene.2022.146240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Liver metastasis of colorectal cancer (CRC) remains high mortality and the mechanism is still unknown. Here we investigated the effects of inhibitor of DNA binding 2 (Id2) on growth and liver metastasis of CRC. METHODS qPCR and western blotting were used to demonstrate mRNA and protein expressions in Id2-knockdown HCT116 cells. Cell growth was observed by cell proliferation assay, colony formation assay and flow cytometry. Cell migration and invasion were observed with wound healing assay and transwell migration and invasion assay. The effects of Id2 knockdown on tumor growth and liver metastasis in vivo were evaluated respectively with subcutaneous tumor model and colorectal liver metastasis model by injecting HCT116 cells into the mesentery triangle of cecum in mice. RESULTS Id2 overexpression was found in CRC cell lines. Id2 knockdown resulted in a reduction in the proliferation, colony formation, migration and invasion of HCT116 cells. The suppression of cell proliferation was accompanied by the cell cycle arrest in the G0/G1 phase with down-regulation of Cyclin D1, Cyclin E, p-Cdk2/3, Cdk6, p-p27 and up-regulation of p21 and p27. Id2 knockdown reversed epithelial-mesenchymal transition (EMT) through increasing E-Cadherin and inhibiting N-Cadherin, Vimentin, β-catenin, Snail and Slug. Id2 was also found to inhibit CRC metastasis via MMP2, MMP9 and TIMP-1. Furthermore, Id2 knockdown suppressed CRC liver metastasis in vivo. CONCLUSION Id2 promotes CRC growth through activation of the PI3K/AKT signaling pathway, and triggers EMT to enhance CRC migration and invasion.
Collapse
Affiliation(s)
- Fang Liu
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Shuping Chen
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Yue Yu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Huijing Chen
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Ling Wang
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Wanping Zhang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Junxin Wu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China.
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China.
| |
Collapse
|
1108
|
Biswas K, Jolly MK, Ghosh A. Mean residence times of TF-TF and TF-miRNA toggle switches. J Biosci 2022. [DOI: 10.1007/s12038-022-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
1109
|
Chen S, Wang Y, Liu W, Liang Y, Wang Y, Wu Z, Xu L, Liang X, Ma C, Gao L. N-Glycosylation at Asn291 Stabilizes TIM-4 and Promotes the Metastasis of NSCLC. Front Oncol 2022; 12:730530. [PMID: 35433445 PMCID: PMC9008408 DOI: 10.3389/fonc.2022.730530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/07/2022] [Indexed: 01/30/2023] Open
Abstract
T-cell immunoglobulin domain and mucin domain 4 (TIM-4) is a transmembrane protein that promotes epithelial-mesenchymal transition (EMT), migration and invasion of non-small cell lung cancer (NSCLC) cells. Most transmembrane proteins are modified by N-glycosylation and the importance of protein N-glycosylation in cancer cell metastasis has been well appreciated. However, whether TIM-4 is modified by N-glycosylation and the role of TIM-4 N-glycosylation in NSCLC remains largely unknown. In the current study, we reported that TIM-4 was extensively N-glycosylated at Asn291. After the removal of N-glycosylation, the stability of TIM-4 protein was decreased and TIM-4 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated ERAD. Thus, the expression of TIM-4 on the cell surface was decreased, which suppressed TIM-4-mediated metastasis in NSCLC. In summary, the present study identifies TIM-4 N-glycosylation and its role in NSCLS migration, which would provide a valuable biomarker for developing drugs targeting N-glycosylation at Asn291 on TIM-4.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuzhen Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Liu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Liang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingchun Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuanchang Wu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyun Xu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Xiaohong Liang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhong Ma
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lifen Gao
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
1110
|
Mohammadi Ghahhari N, Sznurkowska MK, Hulo N, Bernasconi L, Aceto N, Picard D. Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis. Nat Commun 2022; 13:2104. [PMID: 35440541 PMCID: PMC9018728 DOI: 10.1038/s41467-022-29723-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) has been proposed to contribute to the metastatic spread of breast cancer cells. EMT-promoting transcription factors determine a continuum of different EMT states. In contrast, estrogen receptor α (ERα) helps to maintain the epithelial phenotype of breast cancer cells and its expression is crucial for effective endocrine therapies. Determining whether and how EMT-associated transcription factors such as ZEB1 modulate ERα signaling during early stages of EMT could promote the discovery of therapeutic approaches to suppress metastasis. Here we show that, shortly after induction of EMT and while cells are still epithelial, ZEB1 modulates ERα-mediated transcription induced by estrogen or cAMP signaling in breast cancer cells. Based on these findings and our ex vivo and xenograft results, we suggest that the functional interaction between ZEB1 and ERα may alter the tissue tropism of metastatic breast cancer cells towards bone. The epithelial mesenchymal transition (EMT) is important in the metastatic spread of cancer cells. Here, the authors show that the EMT transcription factor, ZEB1, can modify estrogen receptor α during EMT and facilitate the migration of breast cancer cells to the bone
Collapse
Affiliation(s)
| | - Magdalena K Sznurkowska
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zürich, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de Genève, 1211, Genève 4, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zürich, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland.
| |
Collapse
|
1111
|
Ungefroren H, Thürling I, Färber B, Kowalke T, Fischer T, De Assis LVM, Braun R, Castven D, Oster H, Konukiewitz B, Wellner UF, Lehnert H, Marquardt JU. The Quasimesenchymal Pancreatic Ductal Epithelial Cell Line PANC-1-A Useful Model to Study Clonal Heterogeneity and EMT Subtype Shifting. Cancers (Basel) 2022; 14:cancers14092057. [PMID: 35565186 PMCID: PMC9101310 DOI: 10.3390/cancers14092057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Malignant tumors often escape therapy due to clonal propagation of a subfraction of drug-resistant cancer cells. The underlying phenomenon of intratumoral heterogeneity is driven by epithelial–mesenchymal plasticity (EMP) involving the developmental programs, epithelial–mesenchymal transition (EMT), in which epithelial cells are converted to invasive mesenchymal cells, and the reverse process, mesenchymal–epithelial transition (MET), which allows for metastatic outgrowth at distant sites. For therapeutic targeting of EMP, a better understanding of this process is required; however, cellular models with which to study EMP in pancreatic ductal adenocarcinoma (PDAC) are scarce. Using single-cell clonal analysis, we have found the PDAC cell line, PANC-1, to consist of cells with different E/M phenotypes and functional attributes. Parental PANC-1 cultures could be induced in vitro to shift towards either a more mesenchymal or a more epithelial phenotype, and this bidirectional shift was controlled by the small GTPases RAC1 and RAC1b, together identifying PANC-1 cells as a useful model with which to study EMP. Abstract Intratumoral heterogeneity (ITH) is an intrinsic feature of malignant tumors that eventually allows a subfraction of resistant cancer cells to clonally evolve and cause therapy failure or relapse. ITH, cellular plasticity and tumor progression are driven by epithelial–mesenchymal transition (EMT) and the reverse process, MET. During these developmental programs, epithelial (E) cells are successively converted to invasive mesenchymal (M) cells, or back to E cells, by passing through a series of intermediate E/M states, a phenomenon termed E–M plasticity (EMP). The induction of MET has clinical potential as it can block the initial EMT stages that favor tumor cell dissemination, while its inhibition can curb metastatic outgrowth at distant sites. In pancreatic ductal adenocarcinoma (PDAC), cellular models with which to study EMP or MET induction are scarce. Here, we have generated single cell-derived clonal cultures of the quasimesenchymal PDAC-derived cell line, PANC-1, and found that these differ strongly with respect to cell morphology and EMT marker expression, allowing for their tentative classification as E, E/M or M. Interestingly, the different EMT phenotypes were found to segregate with differences in tumorigenic potential in vitro, as measured by colony forming and invasive activities, and in circadian clock function. Moreover, the individual clones the phenotypes of which remained stable upon prolonged culture also responded differently to treatment with transforming growth factor (TGF)β1 in regard to regulation of growth and individual TGFβ target genes, and to culture conditions that favour ductal-to-endocrine transdifferentiation as a more direct measure for cellular plasticity. Of note, stimulation with TGFβ1 induced a shift in parental PANC-1 cultures towards a more extreme M and invasive phenotype, while exposing the cells to a combination of the proinflammatory cytokines IFNγ, IL1β and TNFα (IIT) elicited a shift towards a more E and less invasive phenotype resembling a MET-like process. Finally, we show that the actions of TGFβ1 and IIT both converge on regulating the ratio of the small GTPase RAC1 and its splice isoform, RAC1b. Our data provide strong evidence for dynamic EMT–MET transitions and qualify this cell line as a useful model with which to study EMP.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
- Correspondence:
| | - Isabel Thürling
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Benedikt Färber
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | - Tanja Kowalke
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Tanja Fischer
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Leonardo Vinícius Monteiro De Assis
- Institute for Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (L.V.M.D.A.); (H.O.)
| | - Rüdiger Braun
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | - Darko Castven
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Henrik Oster
- Institute for Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (L.V.M.D.A.); (H.O.)
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
| | - Ulrich Friedrich Wellner
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| |
Collapse
|
1112
|
Foo J, Basanta D, Rockne RC, Strelez C, Shah C, Ghaffarian K, Mumenthaler SM, Mitchell K, Lathia JD, Frankhouser D, Branciamore S, Kuo YH, Marcucci G, Vander Velde R, Marusyk A, Huang S, Hari K, Jolly MK, Hatzikirou H, Poels KE, Spilker ME, Shtylla B, Robertson-Tessi M, Anderson ARA. Roadmap on plasticity and epigenetics in cancer. Phys Biol 2022; 19:10.1088/1478-3975/ac4ee2. [PMID: 35078159 PMCID: PMC9190291 DOI: 10.1088/1478-3975/ac4ee2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?
Collapse
Affiliation(s)
- Jasmine Foo
- School of Mathematics, University of Minnesota, Twin Cities, MN 55455, United States of America
| | - David Basanta
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Curran Shah
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kimya Ghaffarian
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kelly Mitchell
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America
- Case Comprehensive Cancer Center, Cleveland, OH 44106, United States of America
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - David Frankhouser
- Department of Population Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Ya-Huei Kuo
- Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Robert Vander Velde
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, United States of America
- Department of Molecular Biology, University of South Florida Health, Tampa, FL 33612, United States of America
| | - Andriy Marusyk
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, United States of America
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, United States of America
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Haralampos Hatzikirou
- Mathematics Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
- Centre for Information Services and High Performance Computing, TU Dresden, 01062, Dresden, Germany
| | - Kamrine E Poels
- Early Clinical Development, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Mary E Spilker
- Medicine Design, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Blerta Shtylla
- Early Clinical Development, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| |
Collapse
|
1113
|
Zhang Y, Cao N, Gao J, Liang J, Liang Y, Xie Y, Zhou S, Tang X. ASIC1a stimulates the resistance of human hepatocellular carcinoma by promoting EMT via the AKT/GSK3β/Snail pathway driven by TGFβ/Smad signals. J Cell Mol Med 2022; 26:2777-2792. [PMID: 35426224 PMCID: PMC9097844 DOI: 10.1111/jcmm.17288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.
Collapse
Affiliation(s)
- Yinci Zhang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Niandie Cao
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Jiafeng Gao
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Jiaojiao Liang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Yong Liang
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
- Huai’an Hospital Affiliated of Xuzhou Medical College and Huai’an Second Hospital Huai’an China
| | - Yinghai Xie
- Medcial School Anhui University of Science & Technology Huainan China
- First Affiliated Hospital Anhui University of Science & Technology Huainan China
| | - Shuping Zhou
- Medcial School Anhui University of Science & Technology Huainan China
- First Affiliated Hospital Anhui University of Science & Technology Huainan China
| | - Xiaolong Tang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| |
Collapse
|
1114
|
Zhan Z, Yuan N, You X, Meng K, Sha R, Wang Z, Peng Q, Xie Z, Chen R, Feng Y. Exclusion of NUMB Exon12 Controls Cancer Cell Migration through Regulation of Notch1-SMAD3 Crosstalk. Int J Mol Sci 2022; 23:ijms23084363. [PMID: 35457181 PMCID: PMC9027642 DOI: 10.3390/ijms23084363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
NUMB is an endocytic adaptor protein that contains four isoforms (p65, p66, p71 and p72) due to alternative splicing regulation. Here, we show that NUMB exon12 (E12)-skipping isoforms p65/p66 promote epithelial to mesenchymal transition (EMT) and cancer cell migration in vitro, and facilitate cancer metastasis in mice, whereas E12-included p71/p72 isoforms attenuate these effects. Mechanistically, p65/p66 isoforms significantly increase the sorting of Notch1 through early endosomes (EEs) for enhanced Notch1 activity. In contrast, p71/p72 isoforms act as negative regulators of Notch1 by ubiquitylating the Notch1 intracellular domain (N1ICD) and promoting its degradation. Moreover, we observed that the interaction between N1ICD and SMAD3 is important for their own stabilization, and for NUMB-mediated EMT response and cell migration. Either N1ICD or SMAD3 overexpression could significantly recuse the migration reduction seen in the p65/p66 knockdown, and Notch1 or SMAD3 knockdown rescued the migration advantage seen in the overexpression of p66. Taken all together, our study provides mechanistic insights into the opposite regulation of Notch1-SMAD3 crosstalk by NUMB isoforms and identifies them as critical regulators of EMT and cancer cell migration.
Collapse
Affiliation(s)
- Zheng Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Xue You
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
| | - Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Ruijiao Chen
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
- Correspondence: (R.C.); (Y.F.); Tel.: +86-21-5492-0965 (Y.F.)
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
- Correspondence: (R.C.); (Y.F.); Tel.: +86-21-5492-0965 (Y.F.)
| |
Collapse
|
1115
|
Zheng Y, Han X, Wang T. Role of H2A.Z.1 in epithelial-mesenchymal transition and radiation resistance of lung adenocarcinoma in vitro. Biochem Biophys Res Commun 2022; 611:118-125. [PMID: 35525100 DOI: 10.1016/j.bbrc.2022.03.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
Abstract
Radiation resistance reduces patient survival and is an important challenge in treating lung adenocarcinoma (LUAD). Previous studies have shown that histone H2A variants can affect the radiosensitivity of tumors; however, the main role of histone H2A variants in LUAD remains unclear. Using the TCGA database, we found that histone H2A variant H2A.Z.1 is positively associated with the progression and poor prognosis of LUAD. Colony formation, scratch wound-healing, and transwell assays as well as Western blot were performed to assess the role of H2A.Z.1 in vitro. Results suggested that H2A.Z.1 promoted cell migration and invasion, epithelial-mesenchymal transition, stemness, and radiation resistance in LUAD cells. Targeting H2A.Z.1 in combination with radiation therapy could be a potential therapeutic approach for radiation resistant LUAD.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Respiratory and Critical Care, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangming Han
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ting Wang
- Department of Respiratory and Critical Care, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
1116
|
Tu Z, Ouyang Q, Long X, Wu L, Li J, Zhu X, Huang K. Protein Disulfide-Isomerase A3 Is a Robust Prognostic Biomarker for Cancers and Predicts the Immunotherapy Response Effectively. Front Immunol 2022; 13:837512. [PMID: 35401558 PMCID: PMC8989738 DOI: 10.3389/fimmu.2022.837512] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
Background Protein disulfide isomerase A3 (PDIA3) is a member of the protein disulfide isomerase (PDI) family that participates in protein folding through its protein disulfide isomerase function. It has been reported to regulate the progression of several cancers, but its function in cancer immunotherapy is unknown. Methods The RNA-seq data of cancer and normal tissues were downloaded from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. The Cbioportal dataset was used to explore the genomic alteration information of PDIA3 in pan-cancer. Human Protein Atlas (HPA) and ComPPI websites were employed to mine the protein information of PDIA3, and western blot assay was performed to monitor the upregulated PDIA3 expression in clinical GBM samples. The univariate Cox regression and the Kaplan–Meier method were utilized to appraise the prognostic role of PDIA3 in pan-cancer. Gene Set Enrichment Analysis (GSEA) was applied to search the associated cancer hallmarks with PDIA3 expression. TIMER2.0 was the main platform to investigate the immune cell infiltrations related to PDIA3 in pan-cancer. The associations between PDIA3 and immunotherapy biomarkers were performed by Spearman correlation analysis. The immunoblot was used to quantify the PDIA3 expression levels, and the proliferative and invasive ability of glioma cells was determined by colony formation and transwell assays. Findings PDIA3 is overexpressed in most cancer types and exhibits prognosis predictive ability in various cancers, and it is especially expressed in the malignant cells and monocytes/macrophages. In addition, PDIA3 is significantly correlated with immune-activated hallmarks, cancer immune cell infiltrations, and immunoregulators, and the most interesting finding is that PDIA3 could significantly predict anti-PDL1 therapy response. Besides, specific inhibitors that correlated with PDIA3 expression in different cancer types were also screened by using Connectivity Map (CMap). Finally, knockdown of PDIA3 significantly weakened the proliferative and invasive ability of glioma cells. Interpretation The results revealed that PDIA3 acts as a robust tumor biomarker. Its function in protein disulfide linkage regulation could influence protein synthesis, degradation, and secretion, and then shapes the tumor microenvironment, which might be further applied to develop novel anticancer inhibitors.
Collapse
Affiliation(s)
- Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China.,JXHC Key Laboratory of Neurological Medicine, Nanchang, China
| | - Qin Ouyang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China.,JXHC Key Laboratory of Neurological Medicine, Nanchang, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China.,JXHC Key Laboratory of Neurological Medicine, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China.,JXHC Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
1117
|
Wei T, Liu H, Zhu H, Chen W, Wu T, Bai Y, Zhang X, Miao Y, Wang F, Cai Y, Jin J. Two distinct males absent on the first (MOF)-containing histone acetyltransferases are involved in the epithelial-mesenchymal transition in different ways in human cells. Cell Mol Life Sci 2022; 79:238. [PMID: 35416545 PMCID: PMC11073432 DOI: 10.1007/s00018-022-04258-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Human males absent on the first (MOF), a histone acetyltransferase (HAT), forms male-specific lethal (MSL) and non-specific lethal (NSL), two multiprotein HATs, in cells. MSL was originally discovered in dosage compensation study in Drosophila that can specifically acetylate H4K16, while NSL can simultaneously catalyze the H4 at K5, K8, and K16 sites. However, comparative studies of the two HATs in regulating specific biological functions are rarely reported. Here, we present evidence to argue that MSL and NSL function in different ways in the epithelial-to-mesenchymal transition (EMT) process. At first, CRISPR/Cas9-mediated MSL1 (a key subunit of the MSL)-knockout (KO) and NSL3 (a key subunit of the NSL)-KO cells seem to prefer to grow in clusters. Interestingly, the former promotes cell survival and clonal formation, while the latter has the opposite effect on it. Cell staining revealed that MSL1-KO leads to multipolarized spindles, while NSL3-KO causes more lumen-like cells. Furthermore, in Transwell experiments, silencing of MSL1 promotes cell invasion in 293 T, MCF-7, and MDA-MB-231 cells. In contrast, the inhibitory effects on cell invasion are observed in the same NSL3-silenced cells. Consistent with this, mesenchymal biomarkers, like N-cadherin, vimentin, and snail, are negatively correlated with the expression level of MSL1; however, a positive relationship between these proteins and NSL3 in cells has been found. Further studies have clarified that MSL1, but not NSL3, can specifically bind to the E-box-containing Snail promoter region and thereby negatively regulate Snail transactivation. Also, silencing of MSL1 promotes the lung metastasis of B16F10 melanoma cells in mice. Finally, ChIP-Seq analysis indicated that the NSL may be mainly involved in phosphoinositide-mediated signaling pathways. Taken together, the MOF-containing MSL and NSL HATs may regulate the EMT process in different ways in order to respond to different stimuli.
Collapse
Affiliation(s)
- Tao Wei
- School of Life Sciences, Jilin University, Changchun, 130012, China
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Hongsen Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Huihui Zhu
- School of Life Sciences, Jilin University, Changchun, 130012, China
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Wenqi Chen
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tingting Wu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yuerong Bai
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xueyan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yujuan Miao
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fei Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, 130012, China.
- National Engineering Laboratory for AIDS Vaccine, The Ministry of Education, Jilin University, Changchun, 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, 130012, China.
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun, 130012, China.
- National Engineering Laboratory for AIDS Vaccine, The Ministry of Education, Jilin University, Changchun, 130012, China.
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
1118
|
Zhang B, Zhou J. CircSEC24A (hsa_circ_0003528) interference suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells via miR-421/MMP3 axis. Bioengineered 2022; 13:9049-9062. [PMID: 35400271 PMCID: PMC9161912 DOI: 10.1080/21655979.2022.2057761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence indicates that circular RNAs (circRNAs) function as conclusive modulators in diverse tumors, including in hepatocellular carcinoma (HCC). Nonetheless, knowledge of the latent mechanisms involving circRNAs in HCC development is insufficient. circSEC24A (hsa_circ_0003528) was discovered by microarray analysis of patients with HCC. Binding sites between circSEC24A, miR-421, miR-421 and matrix metalloproteinase 3 (MMP3) were predicted using online bioinformatics tools. Interactions involving miRNA and target genes or circRNAs were verified by luciferase reporter-gene and RNA pull-down assays. Two HCC cell lines (HCCLM3 and Hep3B) and normal THLE-2 liver cells were used for in vitro experiments. miRNA and mRNA expression levels were detected by RT-qPCR, and protein expression was measured by western blotting. Cell proliferation was evaluated using Cell Counting Kit 8 (CCK-8) assays along with colony formation assays. Cell invasion and migration were determined using the Transwell and wound healing migration assays. A xenograft model was used to evaluate the role of circSEC24A in vivo. circSEC24A expression was significantly upregulated in HCCLM3 and Hep3B cells. Silencing circSEC24A mitigated the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells, which was abrogated by downregulation of miR-421. Meanwhile, MMP3 could bind to miR-421 to decrease the functional effects of miR-421 and induce tumor metastasis. Knockdown of cicSEC24A suppressed tumor growth in vivo. circSEC24A interference suppressed HCC cell EMT by sponging miR-421, further regulating MMP3, and inhibiting tumor growth in vivo. Therefore, circSEC24A could represent a potential target for HCC patient treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Basic Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jian Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, the First Affiliated Hospital of ChengDu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
1119
|
Jiang Y, Zhang Z, Wang X, Feng Z, Hong B, Yu D, Wang Y. A Novel Prognostic Factor TIPE2 in Bladder Cancer. Pathol Oncol Res 2022; 28:1610282. [PMID: 35388275 PMCID: PMC8978781 DOI: 10.3389/pore.2022.1610282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022]
Abstract
Objective: We sought to identify tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2/TNFAIP8L2) expression in bladder cancer and its relationship to clinicopathological findings and prognosis. Methods: Immunohistochemical (IHC) staining for TIPE2 was performed on 110 archived radical cystectomy specimens. Ten high-power fields were randomly selected from each specimen to observe and record the percentage of immunoreactive cells of TIPE2 in tumor cells (grade 0–4) and the corresponding immunostaining intensity (grade 0–3). The expression score of TIPE2 was obtained by multiplying the results of the above two scores, which ranged from 0 to 12 points. The cut-off point of the sum of the scores were defined as follows: 0–3 scores were defined as negative expression (-); >3 scores were classified as positive expression, < 7, low expression, ≥7, high expression. Results: In 110 cases, TIPE2 was stained in various degrees in bladder cancer tissues, and expressed in both nucleus and cytoplasm. 4.5% (5/110) showed negative expression, 40.9% (45/110) showed low expression, and 54.5% (60/110) showed high expression. TIPE2 expression was negatively correlated with lymph node metastasis (p = 0.004) and disease progression (p = 0.021). Survival curves were plotted to show that patients with high TIPE2 expression had a progression-free survival curve above those with negative/low TIPE2 expression (p = 0.027). In multivariate Cox proportional hazard regression analysis, TIPE2 was a protective factor for progression-free survival in bladder urothelial carcinoma (p = 0.031), pT stage (p = 0.016) was a risk factor for progression-free survival, and age was a risk factor for overall survival (p = 0.020). Conclusion: TIPE2 may be a new biomarker to predict the disease progression and prognosis of patients with urothelial carcinoma of the bladder.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiqiang Zhang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian Wang
- Department of Pathology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhong Feng
- Department of Pathology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dexin Yu
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
1120
|
Luo Q, Du R, Liu W, Huang G, Dong Z, Li X. PI3K/Akt/mTOR Signaling Pathway: Role in Esophageal Squamous Cell Carcinoma, Regulatory Mechanisms and Opportunities for Targeted Therapy. Front Oncol 2022; 12:852383. [PMID: 35392233 PMCID: PMC8980269 DOI: 10.3389/fonc.2022.852383] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), is the most common type of esophageal cancer worldwide, mainly occurring in the Asian esophageal cancer belt, including northern China, Iran, and parts of Africa. Phosphatidlinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway is one of the most important cellular signaling pathways, which plays a crucial role in the regulation of cell growth, differentiation, migration, metabolism and proliferation. In addition, mutations in some molecules of PI3K/Akt/mTOR pathway are closely associated with survival and prognosis in ESCC patients. A large number of studies have found that there are many molecules in ESCC that can regulate the PI3K/Akt/mTOR pathway. Overexpression of these molecules often causes aberrant activation of PI3K/Akt/mTOR pathway. Currently, several effective PI3K/Akt/mTOR pathway inhibitors have been developed, which can play anticancer roles either alone or in combination with other inhibitors. This review mainly introduces the general situation of ESCC, the composition and function of PI3K/Akt/mTOR pathway, and regulatory factors that interact with PI3K/Akt/mTOR signaling pathway. Meanwhile, mutations and inhibitors of PI3K/Akt/mTOR pathway in ESCC are also elucidated.
Collapse
Affiliation(s)
- Qian Luo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Guojing Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
1121
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
1122
|
Cancer: More than a geneticist’s Pandora’s box. J Biosci 2022. [DOI: 10.1007/s12038-022-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
1123
|
Co-treatment with vactosertib, a novel, orally bioavailable activin receptor-like kinase 5 inhibitor, suppresses radiotherapy-induced epithelial-to-mesenchymal transition, cancer cell stemness, and lung metastasis of breast cancer. Radiol Oncol 2022; 56:185-197. [PMID: 35390248 PMCID: PMC9122287 DOI: 10.2478/raon-2022-0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acquired metastasis and invasion of cancer cells during radiotherapy are in part due to induction of epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) properties, which are mediated by TGF-β signaling. Here we evaluated the anti-metastatic therapeutic potential of vactosertib, an orally bioavailable TGF-β type I receptor (activin receptor-like kinase 5, ALK5) inhibitor, via suppression of radiation-induced EMT and CSC properties, oxidative stress generation, and breast to lung metastasis in a breast cancer mouse model and breast cancer cell lines. MATERIALS AND METHODS Co-treatment of vactosertib with radiation was investigated in the 4T1-Luc allografted BALB/c syngeneic mouse model and in 4T1-Luc and MDA-MB-231 cells. The anti-metastatic therapeutic potential of vactosertib in breast cancer was investigated using fluorescence immunohistochemistry, real-time quantitative reverse transcription-polymerase chain reaction, western blotting, wound healing assay, mammosphere formation assay, and lung metastasis analysis in vitro and in vivo. RESULTS Radiation induced TGF-β signaling, EMT markers (Vimentin, Fibronectin, Snail, Slug, Twist, and N-cadherin), CSC properties (expression of pluripotent stem cell regulators, mammosphere forming ability), reactive oxygen species markers (NOX4, 4-HNE), and motility of breast cancer cells in vitro and in vivo. Vactosertib attenuated the radiation-induced EMT and CSC properties by inhibiting ROS stress in breast cancer. Moreover, vactosertib combined with radiation showed a significant anti-metastatic effect with suppression of breast to lung metastasis in vivo. CONCLUSIONS These results indicate that inhibition of TGF-β signaling with vactosertib in breast cancer patients undergoing radiotherapy would be an attractive strategy for the prevention of cancer metastasis and recurrence.
Collapse
|
1124
|
Quantum dots based in-vitro co-culture cancer model for identification of rare cancer cell heterogeneity. Sci Rep 2022; 12:5868. [PMID: 35393460 PMCID: PMC8991261 DOI: 10.1038/s41598-022-09702-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer cell heterogeneity (CCH) is crucial in understanding cancer progression and metastasis. The CCH is one of the stumbling blocks in modern medicine's therapeutics and diagnostics . An in-vitro model of co-culture systems of MCF-7, HeLa, HEK-293, with THP-1 cells showed the occurrence of EpCAM positive (EpCAM+) and EpCAM negative (EpCAM−) heterogenetic cancer cell types labeled with the Quantum Dot antibody conjugates (QDAb). This in-vitro model study could provide insights into the role of rare cancer cells manifestation and their heterogeneity in metastatic progression and risk for severe infections in these patients. We successfully report the presence of CCH based on the fluorescence ratios of the co-cultured cancer cells when treated with the QDAb. These short-term mimic co-cultures give a compelling and quite associated model for assessing early treatment responses in various cancers.
Collapse
|
1125
|
miR-1266-3p Suppresses Epithelial-Mesenchymal Transition in Colon Cancer by Targeting P4HA3. Anal Cell Pathol (Amst) 2022; 2022:1542117. [PMID: 35433237 PMCID: PMC9010195 DOI: 10.1155/2022/1542117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have been conducted to demonstrate that miRNA is strongly related to colon cancer progression. Nevertheless, there are few studies regarding the function for miR-1266-3p in colon cancer, and the molecular mechanism remains poorly know. Our study was designed to examine the level of miR-1266-3p expression among the colon cancer tissue and cell and to study the role and regulatory mechanism for miR-1266-3p among colon cancer's malignant biologic behavior. First, we found that miR-1266-3p expression was distinctly lower in colonic carcinoma tissues and cells than in nontumor ones, and the prognosis of low miR-1266-3p patients was distinctly worse than that of high miR-1266-3p patients. Second, we predicted that the target gene of miR-1266-3p was prolyl 4-hydroxylase subunit alpha 3 (P4HA3) through bioinformatics, and the targeting relationship between the two was verified by a dual luciferase assay report. Furthermore, miR-1266-3p inhibited the growth and metastasis of colon cancer in vitro as well as in vivo, and this effect could be alleviated by overexpressing P4HA3. Even more importantly, our study demonstrated that miR-1266-3p inhibited epithelial-mesenchymal transition (EMT) by targeting P4HA3. In conclusion, miR-1266-3p could inhibit growth, metastasis, and EMT in colon cancer by targeting P4HA3. Our discoveries might offer a novel target for colon cancer diagnosis and treatment.
Collapse
|
1126
|
Wang Z, Yang L, Huang Z, Li X, Xiao J, Qu Y, Huang L, Wang Y. Identification of Prognosis Biomarkers for High-Grade Serous Ovarian Cancer Based on Stemness. Front Genet 2022; 13:861954. [PMID: 35360863 PMCID: PMC8964092 DOI: 10.3389/fgene.2022.861954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
In this paper, high-grade serous ovarian cancer (HGSOC) is studied, which is the most common histological subtype of ovarian cancer. We use a new analytical procedure to combine the bulk RNA-Seq sample for ovarian cancer, mRNA expression-based stemness index (mRNAsi), and single-cell data for ovarian cancer. Through integrating bulk RNA-Seq sample of cancer samples from TCGA, UCSC Xena and single-cell RNA-Seq (scRNA-Seq) data of HGSOC from GEO, and performing a series of computational analyses on them, we identify stemness markers and survival-related markers, explore stem cell populations in ovarian cancer, and provide potential treatment recommendation. As a result, 171 key genes for capturing stem cell characteristics are screened and one vital cancer stem cell subpopulation is identified. Through further analysis of these key genes and cancer stem cell subpopulation, more critical genes can be obtained as LCP2, FCGR3A, COL1A1, COL1A2, MT-CYB, CCT5, and PAPPA, are closely associated with ovarian cancer. So these genes have the potential to be used as prognostic biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Zhihang Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lili Yang
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Juan Xiao
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yinwei Qu
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yan Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.,College of Artificial Intelligence, Jilin University, Changchun, China
| |
Collapse
|
1127
|
Xu Y, Wang X, Liu L, Wang J, Wu J, Sun C. Role of macrophages in tumor progression and therapy (Review). Int J Oncol 2022; 60:57. [PMID: 35362544 PMCID: PMC8997338 DOI: 10.3892/ijo.2022.5347] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The number and phenotype of macrophages are closely related to tumor growth and prognosis. Macrophages are recruited to (and polarized at) the tumor site thereby promoting tumor growth, stimulating tumor angiogenesis, facilitating tumor cell migration, and creating a favorable environment for subsequent colonization by (and survival of) tumor cells. These phenomena contribute to the formation of an immunosuppressive tumor microenvironment (TME) and therefore speed up tumor cell proliferation and metastasis and reduce the efficacy of antitumor factors and therapies. The ability of macrophages to remodel the TME through interactions with other cells and corresponding changes in their number, activity, and phenotype during conventional therapies, as well as the association between these changes and drug resistance, make tumor-associated macrophages a new target for antitumor therapies. In this review, advantages and limitations of the existing antitumor strategies targeting macrophages in Traditional Chinese and Western medicine were analyzed, starting with the effect of macrophages on tumors and their interactions with other cells and then the role of macrophages in conventional treatments was explored. Possible directions of future developments in this field from an all-around multitarget standpoint were also examined.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
1128
|
Jiang J, Li J, Zhou X, Zhao X, Huang B, Qin Y. Exosomes Regulate the Epithelial-Mesenchymal Transition in Cancer. Front Oncol 2022; 12:864980. [PMID: 35359397 PMCID: PMC8964004 DOI: 10.3389/fonc.2022.864980] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are important mediators of intercellular communication and participate in complex biological processes by transferring a variety of bioactive molecules between cells. Epithelial–mesenchymal transition (EMT) is a process in which the cell phenotype changes from epithelioid to mesenchymal-like. EMT is also an important process for cancer cells by which they acquire invasive and metastatic capabilities, which aggravates the degree of tumor malignancy. Numerous studies have demonstrated that exosomes encapsulate various components, such as microRNAs and proteins, and transfer information between tumor cells or between tumor cells and the tumor microenvironment, thereby regulating the EMT process. Exosomes can also be used for cancer diagnosis and treatment or as a drug delivery platform. Thus, they can be used as a therapeutic tool to control the occurrence of EMT and affect cancer progression. In this review, we summarize the latest research advancements in the regulation of the EMT process in tumor cells by the contents of exosomes. Furthermore, we discuss the potential and challenges of using exosomes as a tool for cancer treatment.
Collapse
Affiliation(s)
- Jingwen Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiayu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
1129
|
Guo Y, Ren Y, Dong X, Kan X, Zheng C. An Overview of Hepatocellular Carcinoma After Insufficient Radiofrequency Ablation. J Hepatocell Carcinoma 2022; 9:343-355. [PMID: 35502292 PMCID: PMC9056053 DOI: 10.2147/jhc.s358539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Radiofrequency ablation (RFA) is a commonly used treatment for hepatocellular carcinoma (HCC), however, various complex conditions in clinical practice may lead to insufficient radiofrequency ablation (IRFA), allowing residual HCC to survive. In clinical practice and laboratory models, IRFA plays an important role in rapid tumor progression. Therefore, targeting the residual HCC and avoiding IRFA were worthwhile methods. A deeper understanding of IRFA is required; IRFA contributes to the improvement of proliferative activity, migration rates, and invasive capacity, and this may be due to the involvement of multiple complex processes or proteins, including epithelial mesenchymal transitions (EMTs), cancer stem cells (CSCs), autophagy, heat shock proteins (HSPs), changes of non-tumor cells and extracellular matrix, altered immune microenvironment, hypoxia-inducible factors (HIFs), growth factors, epigenetic alterations, and metabolic reprogramming. We focus on the processes of the above mechanisms and possible therapeutic approach, with a review of the literature. Additionally, we recapitulated the construction methods of various experimental models of IRFA (in vivo and in vitro).
Collapse
Affiliation(s)
- Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
- Correspondence: Chuansheng Zheng, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China, Tel/Fax +86-27-85726290, Email
| |
Collapse
|
1130
|
Phenotypic plasticity during metastatic colonization. Trends Cell Biol 2022; 32:854-867. [DOI: 10.1016/j.tcb.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
|
1131
|
Shahverdi M, Hajiasgharzadeh K, Sorkhabi AD, Jafarlou M, Shojaee M, Jalili Tabrizi N, Alizadeh N, Santarpia M, Brunetti O, Safarpour H, Silvestris N, Baradaran B. The regulatory role of autophagy-related miRNAs in lung cancer drug resistance. Biomed Pharmacother 2022; 148:112735. [DOI: 10.1016/j.biopha.2022.112735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
|
1132
|
Huang Y, Yu Z, Zheng M, Yang X, Huang H, Zhao L. Methylation‑associated inactivation of JPH3 and its effect on prognosis and cell biological function in HCC. Mol Med Rep 2022; 25:124. [PMID: 35169860 PMCID: PMC8864618 DOI: 10.3892/mmr.2022.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, researchers have found that epigenetics plays an important role in the occurrence and development of hepatocellular carcinoma (HCC). DNA methylation is involved in the proliferation and metastasis of HCC. However, the junctophilin 3 (JPH3) level and the potential regulatory mechanism of its DNA methylation in HCC remain uncertain. In the present study, 73 HCC samples were enrolled to analyze the expression of JPH3. Reverse‑transcription quantitative PCR, western blotting and immunohistochemistry were used to detect the expression of JPH3 in HCC. Kaplan‑Meier method and Cox regression analysis were applied to evaluate the prognostic impact of JPH3 on HCC patients. DNA methylation‑specific PCR and bisulfite Sanger sequencing were used to detect the degree of DNA methylation of JPH3 in HCC. The demethylation drug 5‑Aza‑2'‑deoxycytidine (5‑Aza) was used to reduce the DNA methylation of JPH3. The role of JPH3 in the malignant biological behavior of HCC by promoting epithelial‑mesenchymal transition (EMT) was confirmed by functional cell experiments. The results showed that JPH3 exhibited low levels in HCC tissues and cell lines. HCC patients with low expression of JPH3 had poor survival outcomes. JPH3 had higher DNA methylation levels in HCC tissues and cell lines. When the demethylation drug 5‑Aza was used to reduce the degree of methylation of JPH3, its protein expression level was significantly increased and it significantly inhibited the malignant biological behavior of HCC cells. Additionally, effective increase in the expression of JPH3 through gene regulation technology also inhibited the proliferation, invasion and migration of HCC cells. After altering the DNA methylation level of JPH3, the EMT of HCC cells was also affected. Therefore, our study demonstrated the inactivation of JPH3 by promoter methylation and its function as a tumor suppressor in HCC. JPH3 may serve as a biomarker for early diagnosis and as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yi Huang
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhou Yu
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Min Zheng
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaohong Yang
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Honglan Huang
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Lijin Zhao
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
1133
|
Li T, Song R, Sun F, Saeed M, Guo X, Ye J, Chen F, Hou B, Zhu Q, Wang Y, Xie C, Tang L, Xu Z, Xu H, Yu H. Bioinspired magnetic nanocomplexes amplifying STING activation of tumor-associated macrophages to potentiate cancer immunotherapy. NANO TODAY 2022; 43:101400. [DOI: 10.1016/j.nantod.2022.101400] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
1134
|
Li C, Li R, Hu X, Zhou G, Jiang G. Tumor-promoting mechanisms of macrophage-derived extracellular vesicles-enclosed microRNA-660 in breast cancer progression. Breast Cancer Res Treat 2022; 192:353-368. [PMID: 35084622 DOI: 10.1007/s10549-021-06433-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Breast cancer metastasis is the main cause of cancer-related death in women worldwide. Current therapies have remarkably improved the prognosis of breast cancer patients but still fail to manage metastatic breast cancer. Here, the present study was set to explore the role of microRNA (miR)-660 from tumor-associated macrophages (TAMs) in breast cancer, particularly in metastasis. MATERIALS AND METHODS We collected breast cancer tissues and isolated their polarized macrophages as well as extracellular vesicles (EVs), in which we measured the expression of miR-660, Kelch-like Protein 21 (KLHL21), and nuclear factor-κB (NF-κB) p65. Breast cancer cells were transfected with miR-660 mimic, miR-660 inhibitor, and sh-KLHL21 and then the cells were co-cultured with EVs or TAMs followed by detection of invasion and migration. Finally, mouse model of breast cancer was established to detect the effect of miR-660 or KLHL21 on metastasis by measuring the lymph node metastasis (LNM) foci in femur and lung. RESULTS KLHL21 was poorly expressed, whereas miR-660 was highly expressed in breast cancer tissues and cells. Of note, low KLHL21 expression or high miR-660 expression was related to poor overall survival. EVs-contained miR-660 was identified to bind to KLHL21, reducing the binding between KLHL21 and inhibitor kappa B kinase β (IKKβ) to activate the NF-κB p65 signaling pathway. Interestingly, EV-loaded miR-660 from TAMs could be internalized by breast cancer cells. Moreover, silencing of KLHL21 increased the number of lung LNM foci in vivo, while EVs-contained miR-660 promoted cancerous cell invasion and migration. DISCUSSION Taken altogether, our work shows that TAMs-EVs-shuttled miR-660 promotes breast cancer progression through KLHL21-mediated IKKβ/NF-κB p65 axis.
Collapse
Affiliation(s)
- Changchun Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215000, Jiangsu Province, People's Republic of China
| | - Ruiqing Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xingchi Hu
- Department of Thyroid and Breast Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224001, People's Republic of China
| | - Guangjun Zhou
- Department of Thyroid and Breast Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224001, People's Republic of China
| | - Guoqing Jiang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
1135
|
Wang P, Chen W, Zhang Y, Zhong Q, Li Z, Wang Y. MicroRNA-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis to prevent the epithelial-mesenchymal transition. Mol Biol Rep 2022; 49:2711-2721. [PMID: 35059968 DOI: 10.1007/s11033-021-07080-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Breast cancer is one of the most common malignant and highly heterogeneous tumors in women. MicroRNAs (miRNAs), such as miR-1246, play important roles in various types of malignant cancers, including triple-negative breast cancer (TNBC). However, the biological role of miR-1246 in TNBC has not yet been fully elucidated. In this study, we studied the role of miR-1246 in the occurrence and development of TNBC and its mechanism of action. METHODS Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays were performed to observe the effects of miR-1246 on TNBC cell proliferation, migration, and invasion, respectively. The expression of epithelial-mesenchymal transition (EMT) markers was detected by western blotting. Dual luciferase reporter assays were performed to determine whether DYRK1A is a novel target of miR-1246. In addition, an immunoprecipitation experiment was performed to verify the binding of DYRK1A to PGRN. Rescue experiments were performed to determine whether DYRK1A is a novel target of miR-1246 and whether miR-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis to prevent the epithelial-mesenchymal transition. RESULTS Our results show that miR‑1246 suppresses the proliferation, migration, and invasion of TNBC cells, DYRK1A is a novel target of miR-1246 and Importin-8 mediated miR-1246 nuclear translocation. MiR‑1246 plays a suppressive role in the regulation of the EMT of TNBC cells by targeting DYRK1A. DYRK1A mediates the metastasis of triple-negative breast cancer via activation of the EMT. We identified PGRN as a novel DYRK1A-interacting protein. Overexpression of PGRN and DYRK1A promoted cell proliferation and migration of TNBC, but this effect was reversed by co-expression of miR-1246 mimics.DYRK1A and PGRN act together to regulate the occurrence and development of breast cancer through miR-1246. CONCLUSION MiR-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis and preventing the epithelial-mesenchymal transition. The MiR-1246/DYRK1A/PGRN axis regulates TNBC progression, suggesting that MiR-1246 could be promising therapeutic targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Pan Wang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Wenju Chen
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Yaqiong Zhang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Qianyi Zhong
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Zhaoyun Li
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Yichao Wang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China.
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
1136
|
Sadhukhan S, Mishra PK. A multi-layered hybrid model for cancer cell invasion. Med Biol Eng Comput 2022; 60:1075-1098. [DOI: 10.1007/s11517-022-02514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022]
|
1137
|
Guan Y, Xu F, Tian J, Wang Y, Guo N, Wan Z, He M, Gao M, Gao K, Chong T. Prognostic value of circulating tumor cells and immune-inflammatory cells in patients with renal cell carcinoma. Urol Oncol 2022; 40:167.e21-167.e32. [PMID: 35216891 DOI: 10.1016/j.urolonc.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The relationships among circulating tumor cells (CTCs), inflammatory cells, and platelets in patients with renal cell carcinoma (RCC) are not transparent. We evaluated the correlations among CTCs, blood inflammatory cells, and platelets in patients with RCC and their prognostic value for metastasis-free survival. METHODS CTC and typical tumor cell chip data were collected and analyzed by the GEO database. The baseline data, survival data, CTCs data, and blood test results were statistically analyzed. RESULTS Bioinformatics analysis showed that the function of the differentially expressed genes between CTCs and normal tumor cells mainly involved platelets and immune inflammation. A total of 82 patients whose follow-up time was 3 to 68 months were included in the analysis. Clinical data of the patients confirmed that there is a correlation between platelets and mesenchymal CTCs. Simultaneously, there was a correlation between immune inflammatory cells and platelets. The univariate Cox proportional hazards model indicated that staging, mesenchymal CTCs, and the monocyte-to-neutrophil ratio (MNR) had prognostic value. The multivariate Cox proportional hazards model indicated that staging and the MNR had prognostic value and high accuracy. CONCLUSIONS Bioinformatics analysis showed that CTCs were related to platelets and immune-inflammatory cells. Furthermore, the clinical data confirmed that platelets were correlated with mesenchymal CTCs and immune-inflammatory cells in the blood. By using mesenchymal CTCs, the MNR, or staging respectively, it is possible to predict the risk of postoperative metastasis in RCC patients. As a compound prognostic factor, staging, and the MNR can provide more convenient and accurate condition monitoring.
Collapse
Affiliation(s)
- Yibing Guan
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China; School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Fangshi Xu
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China; School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Juanhua Tian
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China; School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yiyuan Wang
- Department of Stomatology, the Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Ni Guo
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China
| | - Ziyan Wan
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China; School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Minxin He
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China; School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Mei Gao
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China
| | - Ke Gao
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China; School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Tie Chong
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaan Xi Province, China.
| |
Collapse
|
1138
|
Li HN, Zhang HM, Li XR, Wang J, Xu T, Li SY, Dong ML, Wang G, Cui XQ, Yang X, Wu YL, Liao XH, Du YY. MiR-205-5p/GGCT Attenuates Growth and Metastasis of Papillary Thyroid Cancer by Regulating CD44. Endocrinology 2022; 163:6537106. [PMID: 35213720 PMCID: PMC8944316 DOI: 10.1210/endocr/bqac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/23/2022]
Abstract
Papillary thyroid cancer (PTC) remains the most common endocrine malignancy, despite marked achieves in recent decades, and the mechanisms underlying the pathogenesis and progression for PTC are incompletely elucidated. Accumulating evidence show that γ-glutamylcyclotransferase (GGCT), an enzyme participating in glutathione homeostasis and is elevated in multiple types of tumors, represents an attractive therapeutic target. Using bioinformatics, immunohistochemistry, qRT-PCR, and Western blot assays, we found that GGCT expression was upregulated in PTC and correlated with more aggressive clinicopathological characteristics and worse prognosis. GGCT knockdown inhibited the growth and metastasis ability of PTC cells both in vitro and in vivo and reduced the expression of mesenchymal markers (N-cadherin, CD44, MMP2, and MMP9) while increasing epithelial marker (E-cadherin) in PTC cells. We confirmed binding of microRNA-205-5p (miR-205-5p) on the 3'-UTR regions of GGCT by dual-luciferase reporter assay and RNA-RNA pull-down assay. Delivery of miR-205-5p reversed the pro-malignant capacity of GGCT both in vitro and in vivo. Lastly, we found that GGCT interacted with and stabilized CD44 in PTC cells by co-immunoprecipitation and immunohistochemistry assays. Our findings illustrate a novel signaling pathway, miR-205-5p/GGCT/CD44, that involves in the carcinogenesis and progression of PTC. Development of miR-205-mimics or GGCT inhibitors as potential therapeutics for PTC may have remarkable applications.
Collapse
Affiliation(s)
- Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Hui-Min Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Jun Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Department of Obstetrics and Gynecology, Cancer Biology research center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Meng-Lu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xiao-Qing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Yong-Lin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xing-Hua Liao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
- Correspondence: Xing-Hua Liao, Ph.D., College of Life Science and Health, Wuhan University of Science and Technology, People’s Republic of China.
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Correspondence: Ya-Ying Du, M.D., Ph.D., Surgeon of Department of Thyroid and Breast Surgery, Tongji Hospital, Deputy Dean for Clinical Affairs, Laboratory of Thyroid and Breast Surgery, People’s Republic of China.
| |
Collapse
|
1139
|
Liu K, Gao X, Kang B, Liu Y, Wang D, Wang Y. The Role of Tumor Stem Cell Exosomes in Cancer Invasion and Metastasis. Front Oncol 2022; 12:836548. [PMID: 35350566 PMCID: PMC8958025 DOI: 10.3389/fonc.2022.836548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are lipid membrane bilayer-encapsulated vesicles secreted by cells into the extracellular space. They carry abundant inclusions (such as nucleic acids, proteins, and lipids) that play pivotal roles in intercellular communication. Tumor stem cells are capable of self-renewal and are crucial for survival, proliferation, drug resistance, metastasis, and recurrence of tumors. The miRNAs (microRNAs) in exosomes have various functions, such as participating in inflammatory response, cell migration, proliferation, apoptosis, autophagy, and epithelial-mesenchymal transition. Tumor stem cells secrete exosomes that act as important messengers involved in various tumor processes and several studies provide increasing evidence supporting the importance of these exosomes in tumor recurrence and metastasis. This review primarily focuses on the production and secretion of exosomes from tumors and tumor stem cells and their effects on cancer progression. Cancer stem cancer derived exosome play an important massager in the tumor microenvironment. It also emphasizes on the study of tumor stem cell exosomes in the light of cancer metastasis and recurrence aiming to provide valuable insights and novel perspectives, which could be beneficial for developing effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xin Gao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Baoqiang Kang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dingding Wang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| |
Collapse
|
1140
|
Sun Z, Su Z, Zhou Z, Wang S, Wang Z, Tong X, Li C, Wang Y, Chen X, Lei Z, Zhang HT. RNA demethylase ALKBH5 inhibits TGF-β-induced EMT by regulating TGF-β/SMAD signaling in non-small cell lung cancer. FASEB J 2022; 36:e22283. [PMID: 35344216 DOI: 10.1096/fj.202200005rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/26/2023]
Abstract
AlkB homolog 5 (ALKBH5) has been revealed as a key RNA N6 -methyladenosine (m6 A) demethylase that is implicated in development and diseases. However, the function of ALKBH5 in TGF-β-induced epithelial-mesenchymal transition (EMT) and tumor metastasis of non-small-cell lung cancer (NSCLC) remains unknown. Here, we firstly show that ALKBH5 expression is significantly reduced in metastatic NSCLC. ALKBH5 overexpression inhibits TGF-β-induced EMT and invasion of NSCLC cells, whereas ALKBH5 knockdown promotes the corresponding phenotypes. ALKBH5 overexpression suppresses TGF-β-stimulated NSCLC cell metastasis in vivo. ALKBH5 overexpression decreases the expression and mRNA stability of TGFβR2 and SMAD3 but increases those of SMAD6, while ALKBH5 knockdown causes the opposite results. Importantly, ALKBH5 overexpression or knockdown leads respectively to an attenuated or augmented phosphorylation of SMAD3, an indispensable downstream effector that activates TGF-β/SMAD signaling. Moreover, m6 A-binding proteins YTHDF1/3 promotes TGFβR2 and SMAD3 expression, and YTHDF2 inhibits SMAD6 expression. YTHDF1/2/3 facilitates TGF-β-stimulated EMT and invasion of NSCLC cells. Mechanistically, ALKBH5 affects TGFβR2, SMAD3 and SMAD6 expression and mRNA stability by erasing m6 A modification in NSCLC cells. ALKBH5 weakens YTHDF1/3-mediated TGFβR2 and SMAD3 mRNA stabilization, and abolishes YTHDF2-mediated SMAD6 mRNA degradation, supporting the notion that ALKBH5 inhibits TGF-β-induced EMT and invasion of NSCLC cells via YTHD1/2/3-mediated mechanism. Taken together, our findings highlight an important role of ALKBH5 in regulating TGF-β/SMAD signaling, and establish a mechanistic interaction of ALKBH5 with TGFβR2/SMAD3/SMAD6 for controlling TGF-β-induced EMT in NSCLCs.
Collapse
Affiliation(s)
- Zelong Sun
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhiyue Su
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengyu Zhou
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengjie Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Zhao Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xin Tong
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuxin Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoyan Chen
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| |
Collapse
|
1141
|
miR-4731-5p Enhances Apoptosis and Alleviates Epithelial-Mesenchymal Transition through Targeting RPLP0 in Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3793318. [PMID: 35342398 PMCID: PMC8947863 DOI: 10.1155/2022/3793318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/07/2023]
Abstract
Background/Aim. MircoRNA-4731-5p (miR-4731-5p) is a new miRNA involved in different human cancers, but its function has not been clarified in non-small-cell lung cancer (NSCLC). The present study attended to resolve the role of miR-4731-5p in NSCLC. Materials and Methods. The expression level of miR-4731-5p or ribosomal protein large P0 (RPLP0) and NSCLC clinicopathologic characteristics were analyzed. The binding between miR-4731-5p and RPLP0 was confirmed by TargetScan prediction and luciferase reporter experiment. Also, the probable role of miR-4731-5p in NSCLC via RPLP0 was elaborated by the MTT, western blotting, immunofluorescence, transwell, flow cytometry, and TUNEL assays. Moreover, in vivo verification was conducted in xenografted nude mice. Results. The level of miR-4731-5p was notably declined in vivo and in vitro, which was involved in the prognosis of lung cancer patients. The miR-4731-5p mimic could remarkably restrain cell viability, invasion, and the translational expression level of vimentin and e-cadherin, with promoted cell apoptosis in NSCLC, which were notably reversed by RPLP0 overexpression. Conclusion. miR-4731-5p/RPLP0 axis might be an underlying therapeutic target for NSCLC.
Collapse
|
1142
|
Liu K, Cheng L, Zhu K, Wang J, Shu Q. The cancer/testis antigen HORMAD1 mediates epithelial-mesenchymal transition to promote tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway in lung cancer. Cell Death Dis 2022; 8:136. [PMID: 35347116 PMCID: PMC8960869 DOI: 10.1038/s41420-022-00946-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 01/03/2023]
Abstract
The cancer/testis antigen HORMAD1 is a mechanical regulator that modulates DNA homologous recombination repair and mismatch repair in multiple cancers. However, the role and underlying regulatory mechanisms of HORMAD1 in lung cancer progression remain unknown. Here, we show that HORMAD1 is upregulated in lung adenocarcinoma tissues compared with adjacent normal tissues and that aberrant HORMAD1 expression predicts poor prognosis. We further demonstrate that HORMAD1 promotes the proliferation, migration and invasion of lung cancer cells both in vitro and in vivo by inducing epithelial-mesenchymal transition (EMT). Subsequent mechanistic investigations revealed that HORMAD1 activates the Wnt/β-catenin pathway by increasing the phosphorylation level of AKT at Ser473 and that of GSK-3β at Ser9 in lung cancer cells, which decreases the phosphorylation level of β-catenin at Ser33/37/Thr41, enhances the cytoplasmic and nuclear accumulation of β-catenin and its transcriptional activity, consequently promoting EMT and lung cancer growth and metastasis. Our results provide new insights into the functional role and regulatory mechanism of HORMAD1 in lung cancer progression and identify HORMAD1 as a promising prognostic biomarker and therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Kang Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Li Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhu Wang
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China. .,Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
1143
|
The Expression, Prognostic Value, and Immunological Correlation of MCEMP1 and its Potential Role in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8167496. [PMID: 35378772 PMCID: PMC8976619 DOI: 10.1155/2022/8167496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022]
Abstract
Purpose Gastric cancer (GC) is a lethal cancer with a poor 5-year relative survival, which requires a new research perspective. Our study aims to explore the biological impact of the mast cell-expressed membrane protein 1 (MCEMP1) in GC, which includes its expression and potential biological functions. Methods The expression of MCEMP1 was assessed through public databases. The GO, KEGG, and GESA analyses were conducted to explore the biofunction of MCEMP1. And ssGSEA was used to analyze the infiltration of the immune cells for MCEMP1. The proliferation, migration, and invasion of GC cells were analyzed through CCK8, colony-forming, wound healing, Transwell, and Western blot assay. Results The expression of MCEMP1 was higher in GC tissues. Further, we found a close relationship between MCEMP1 and poorer prognosis of gastric cancer by prognostic analysis. The functional analysis showed that MCEMP1 is involved in immune, inflammation, and metabolism-related pathways. The ssGSEA analysis indicated MCEMP1 mRNA expression was associated with immune infiltration of multiple immune cells. In cellular experiments, the invasion and metastasis of gastric cancer cells could be promoted by regulating the rise of MCEMP1 expression. Western blot analysis showed that regulation of MCEMP1 expression can affect EMT-related protein expression and that NF-κB expression is involved in this process. Conclusion MCEMP1 shows a potential value for the prognosis in GC. And, abnormal expression of MCEMP1 in GC is correlated with tumor immune cell infiltration. In in vitro experiments, MCEMP1 can affect the proliferation, migration, and invasion of GC cells by regulating EMT, in which TLR4/NOD2/NF-κB was involved.
Collapse
|
1144
|
Dong C, Wu K, Gu S, Wang W, Xie S, Zhou Y. PTBP3 mediates TGF-β-induced EMT and metastasis of lung adenocarcinoma. Cell Cycle 2022; 21:1406-1421. [PMID: 35323096 PMCID: PMC9345618 DOI: 10.1080/15384101.2022.2052530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is associated with a poor prognosis due to early metastasis to distant organs. TGF-β potently induces epithelial-to-mesenchymal transition (EMT) and promotes invasion and metastasis of cancers. However, the mechanisms underlying this alteration are largely unknown. PTBP3 plays a critical role in RNA splicing and transcriptional regulation. Although accumulating evidence has revealed that PTBP3 exhibits a pro-oncogenic role in several cancers, whether and how PTBP3 mediates TGF-β-induced EMT and metastasis in LUAD remains unknown. The expression levels and prognostic value of PTBP3 were analyzed in human LUAD tissues and matched normal tissues. siRNAs and lentivirus-mediated vectors were used to transfect LUAD cell lines. Various in vitro experiments including western blot, qRT-PCR, a luciferase reporter assay, chromatin immunoprecipitation (ChIP), transwell migration and invasion assay and in vivo metastasis experiment were performed to determine the roles of PTBP3 in TGF-β-induced EMT and metastasis. PTBP3 expression was significantly upregulated in patients with LUAD, and high expression of PTBP3 indicated a poor prognosis. Intriguingly, we found that PTBP3 expression level in LUAD cell lines was significantly increased by exogenous TGF-β1 in a Smad-dependent manner. Mechanistically, p-Smad3 was recruited to the PTBP3 promoter and activated its transcription. In turn, PTBP3 knockdown abolished TGF-β1-mediated EMT through the inhibition of Smad2/3 expression. Furthermore, PTBP3 overexpression increased lung and liver metastasis of LUAD cells in vivo. PTBP3 is indispensable to TGF-β-induced EMT and metastasis of LUAD cells and is a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiliang Xie
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
1145
|
Yang L, Liu S, Yang L, Xu B, Wang M, Kong X, Song Z. miR‑217‑5p suppresses epithelial‑mesenchymal transition and the NF‑κB signaling pathway in breast cancer via targeting of metadherin. Oncol Lett 2022; 23:162. [PMID: 35399330 PMCID: PMC8987938 DOI: 10.3892/ol.2022.13282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been associated with a number of human malignancies, including breast cancer (BC). However, the expression, biological function and fundamental underlying mechanism of miR-217-5p in BC remain unclear. Therefore, in the present study, the expression levels of miR-217-5p and metadherin (MTDH) were examined in BC tissues and BC cell lines using reverse transcription-quantitative PCR. Cell Counting Kit-8 assays, cell proliferation, wound healing assays, Transwell assays and western blotting were used to examine the effects of miR-217-5p on cell proliferation, migration, the epithelial-mesenchymal transition (EMT) and NF-κB signaling pathway expression. The direct relationship between miR-217-5p and MTDH was assessed using a dual-luciferase reporter assay. The results demonstrated that significantly reduced expression levels of miR-217-5p but significantly increased mRNA expression levels of MTDH were observed in BC tissues from 35 patients with BC compared with non-tumor breast tissues. Furthermore, BC cell lines SK-BR3 and BT549 expressed miR-217-5p at markedly lower levels and MTDH at markedly higher levels compared with the breast epithelial MCF10A cell line. miR-217-5p overexpression significantly inhibited cell proliferation, invasion and migration and suppressed the EMT in BC cells. miR-217-5p overexpression also inhibited the NF-κB signaling pathway by markedly decreasing p65 mRNA and protein expression levels but significantly increasing IκBα expression levels. Furthermore, miR-217-5p knockdown markedly increased MTDH mRNA and protein expression levels. The expression levels of miR-217-5p were negatively correlated with those of MTDH in BC tissues. These results suggested that restoration of MTDH expression levels could potentially attenuate the inhibitory effects of miR-217-5p overexpression on BC cell proliferation. Therefore, in conclusion miR-217-5p overexpression may inhibit cell migration, invasion, the EMT and NF-κB signaling pathway in BC via targeting of MTDH. miR-217-5p may serve as an important potential target in BC therapy.
Collapse
Affiliation(s)
- Lixian Yang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuo Liu
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Liu Yang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Bin Xu
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meiqi Wang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiangshun Kong
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Zhenchuan Song
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
1146
|
Liu W, Zhang J, Xie T, Huang X, Wang B, Tian Y, Yuan Y. C1QTNF6 is a Prognostic Biomarker and Related to Immune Infiltration and Drug Sensitivity: A Pan-Cancer Analysis. Front Pharmacol 2022; 13:855485. [PMID: 35401204 PMCID: PMC8985594 DOI: 10.3389/fphar.2022.855485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Background: The discovery of reliable cancer biomarkers could tune a diagnosis and improve the way patients are treated. However, many cancers lack robust biomarkers. C1QTNF6 has been preliminarily elucidated for its role in some tumors. However, no pan-cancer analysis has been performed to comprehensively explore the value of C1QTNF6. Methods: Data from the TCGA database, GTEx database stored in the USUC Xena were used for analyzing the profiles of C1QTNF6 expression in normal and tumor tissues in pan-cancer. Subsequently, the gene alteration rates of C1QTNF6 were acquired on the online web cBioportal. With the aid of the TCGA data, the association between C1QTNF6 mRNA expression and copy number alterations (CNA) and methylation was determined. Survival analyses of C1QTNF6 were carried out. Moreover, the tumor biological and immunological characteristics of C1QTNF6 were clarified in the forms of the correlation between C1QTNF6 expression and hallmark Pathway scores in MsigDB database, immune cell infiltration, immune-related genes. We conducted a GSEA of C1QTNF6 to illustrate its potential biological functions. In addition, GDSC2 data with 198 drugs were adopted to explore drug sensitivity with the change of C1QTNF6 expression. Result:C1QTNF6 was overexpressed in many types of cancer, Survival analysis showed that C1QTNF6 independently served as a prognostic indicator for poor survival in many tumors. Besides, we also identified a positive correlation between C1QTNF6 and cancer hallmark pathway score, tumor microenvironment related pathways score (TMEp score), and immune characteristic. In terms of drug sensitivity analysis, we found higher expression level of C1QTNF6 predicts a high IC50 value for most of 198 drugs which predicts drug resistance. Conclusions: Our study provides a new biological marker for pan-cancer, which is beneficial to the diagnosis and treatment of cancer, which bring a new therapeutic target for tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yawei Yuan
- *Correspondence: Yawei Yuan, ; Yunhong Tian,
| |
Collapse
|
1147
|
Identification of a Twelve Epithelial-Mesenchymal Transition-Related lncRNA Prognostic Signature in Kidney Clear Cell Carcinoma. DISEASE MARKERS 2022; 2022:8131007. [PMID: 35371341 PMCID: PMC8967576 DOI: 10.1155/2022/8131007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) plays a vital role in tumor metastasis and drug resistance. It has been reported that EMT is regulated by several long noncoding RNAs (lncRNAs). We aimed to identify EMT-related lncRNAs and develop an EMT-related lncRNA prognostic signature in kidney renal clear cell carcinoma (KIRC). Materials and Methods In total, 530 ccRCC patients with 611 transcriptome profiles were included in this study. We first identified differentially expressed EMT-related lncRNAs. Then, all the samples with transcriptional data and clinical survival information were randomly split into training/test sets at a ratio of 1 : 1. Accordingly, we further developed a twelve differentially expressed EMT-related lncRNA prognostic signature in the training set. Following this, risk analysis, survival analysis, subgroup analysis, and the construction of the ROC curves were applied to verify the efficacy of the signature in the training set, test set, and all patients. Besides, we further investigated the differential immune infiltration, immune checkpoint expression, and immune-related functions between high-risk patients. Finally, we explored the different drug responses to targeted therapy (sunitinib and sorafenib) and immunotherapy (anti-PD1 and anti-CTLA4). Results A twelve differentially expressed EMT-related lncRNA prognostic signature performed superior in predicting the overall survival of KIRC patients. High-risk patients were observed with a significantly higher immune checkpoint expression and showed better responses to the targeted therapy and immunotherapy. Conclusions Our study demonstrates that the twelve differentially expressed EMT-related lncRNA prognostic signature could act as an efficient prognostic indicator for KIRC, which also contributes to the decision-making of the further treatment.
Collapse
|
1148
|
Apigenin Suppresses the Warburg Effect and Stem-like Properties in SOSP-9607 Cells by Inactivating the PI3K/Akt/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3983637. [PMID: 35310040 PMCID: PMC8926538 DOI: 10.1155/2022/3983637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is a prevalent primary malignant bone tumor that commonly occurs in children and adolescents. Apigenin (4′,5,7-trihydroxyflavone) is one of the most researched phenolic compounds that exhibits antitumor effects in several cancers. The aim of the current study was to investigate the effect and underlying mechanisms of apigenin on OS. To address this, OS cells (SOSP-9607) were treated with different concentrations of apigenin. The proliferation, migration, invasion, stem-like properties, and Warburg effect of apigenin-treated OS cells were evaluated. Apigenin was found to suppress the proliferation of SOSP-9607 cells and inhibit epithelial-mesenchymal transition, as indicated by decreased number of migrated and invaded cells, decreased protein expression of vimentin, and increased protein expression of E-cadherin. Additionally, apigenin suppressed tumorsphere formation and reduced the proportion of SOSP-9607 cells with positive expression of the stem cell-related markers Nanog and OCT-4. Apigenin inhibited the Warburg effect in SOSP-9607 cells, as demonstrated by decreased glucose and lactic acid levels, increased citrate and ATP levels, and downregulation of GLUT1, HK1, and LDHA, which are metabolism-related enzymes related to the Warburg effect. Moreover, apigenin inhibited the phosphorylation of PI3K, Akt, and mTOR in SOSP-9607 cells. Collectively, these results indicate that apigenin suppresses the Warburg effect and stem-like properties in SOSP-9607 cells, which may be mediated by PI3K/Akt/mTOR signaling, thus, providing a novel strategy for OS treatment.
Collapse
|
1149
|
Shi WK, Li YH, Bai XS, Lin GL. The Cell Cycle-Associated Protein CDKN2A May Promotes Colorectal Cancer Cell Metastasis by Inducing Epithelial-Mesenchymal Transition. Front Oncol 2022; 12:834235. [PMID: 35311137 PMCID: PMC8929760 DOI: 10.3389/fonc.2022.834235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy, and recurrence and metastasis contribute considerably to its high mortality. It is well known that the epithelial-mesenchymal transition (EMT) accelerates the rate of cancer cell dissemination and migration, thus promoting cancer metastasis. Targeted therapy is a common modality for cancer treatment, and it can play a role in inhibiting cancer progression. In this study, bioinformatics was used to search for genes associated with the prognosis of CRC. First, differential analysis was performed on colon and rectal cancer samples to obtain 2,840 and 3,177 differentially expressed genes (DEGs), respectively. A Venn diagram was then used to identify 262 overlapping genes from the two groups of DEGs and EMT-related genes. The overlapping genes were subjected to batch survival analysis and batch expression analysis successively, and nine genes were obtained whose high expression in CRC led to a poor prognosis. The least absolute shrinkage and selection operator (LASSO) prognostic model was then constructed to obtain the risk score formula. A nomogram was constructed to seek prognostic independent factors to obtain CDKN2A. Finally, CCK-8 assay, flow cytometry and western blotting assays were performed to analyze the cellular biological function of CDKN2A. The results showed that knockdown of CDKN2A expression inhibited HT-29 cell proliferation, promoted apoptosis and cell cycle progression, and affected the EMT process in CRC.
Collapse
Affiliation(s)
- Wei-Kun Shi
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun-Hao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xue-Shan Bai
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Le Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
1150
|
Harryman WL, Marr KD, Nagle RB, Cress AE. Integrins and Epithelial-Mesenchymal Cooperation in the Tumor Microenvironment of Muscle-Invasive Lethal Cancers. Front Cell Dev Biol 2022; 10:837585. [PMID: 35300411 PMCID: PMC8921537 DOI: 10.3389/fcell.2022.837585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Muscle-invasive lethal carcinomas traverse into and through this specialized biophysical and growth factor enriched microenvironment. We will highlight cancers that originate in organs surrounded by smooth muscle, which presents a barrier to dissemination, including prostate, bladder, esophageal, gastric, and colorectal cancers. We propose that the heterogeneity of cell-cell and cell-ECM adhesion receptors is an important driver of aggressive tumor networks with functional consequences for progression. Phenotype heterogeneity of the tumor provides a biophysical advantage for tumor network invasion through the tensile muscle and survival of the tumor network. We hypothesize that a functional epithelial-mesenchymal cooperation (EMC)exists within the tumor invasive network to facilitate tumor escape from the primary organ, invasion and traversing of muscle, and navigation to metastatic sites. Cooperation between specific epithelial cells within the tumor and stromal (mesenchymal) cells interacting with the tumor is illustrated using the examples of laminin-binding adhesion molecules—especially integrins—and their response to growth and inflammatory factors in the tumor microenvironment. The cooperation between cell-cell (E-cadherin, CDH1) and cell-ECM (α6 integrin, CD49f) expression and growth factor receptors is highlighted within poorly differentiated human tumors associated with aggressive disease. Cancer-associated fibroblasts are examined for their role in the tumor microenvironment in generating and organizing various growth factors. Cellular structural proteins are potential utility markers for future spatial profiling studies. We also examine the special characteristics of the smooth muscle microenvironment and how invasion by a primary tumor can alter this environment and contribute to tumor escape via cooperation between epithelial and stromal cells. This cooperative state allows the heterogenous tumor clusters to be shaped by various growth factors, co-opt or evade immune system response, adapt from hypoxic to normoxic conditions, adjust to varying energy sources, and survive radiation and chemotherapeutic interventions. Understanding the epithelial-mesenchymal cooperation in early tumor invasive networks holds potential for both identifying early biomarkers of the aggressive transition and identification of novel agents to prevent the epithelial-mesenchymal cooperation phenotype. Epithelial-mesenchymal cooperation is likely to unveil new tumor subtypes to aid in selection of appropriate therapeutic strategies.
Collapse
Affiliation(s)
- William L Harryman
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Kendra D Marr
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States.,Medical Scientist Training Program, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ray B Nagle
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anne E Cress
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Cellular and Molecular Medicine and Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|