1101
|
Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Sapkota GP. Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H. Cell Signal 2020; 72:109632. [PMID: 32289446 PMCID: PMC7284315 DOI: 10.1016/j.cellsig.2020.109632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/27/2022]
Abstract
The majority of mutations identified in patients with amelogenesis imperfecta have been mapped to FAM83H. As FAM83H expression is not limited to the enamel, how FAM83H contributes to amelogenesis is still largely unknown. We previously reported that members of the FAM83 family of proteins interact with and regulate the subcellular distribution of the promiscuous serine-threonine protein kinase CK1 family, through their shared N-terminal DUF1669 domains. FAM83H co-localises with CK1 isoforms to speckle-like structures in both the cytoplasm and nucleus. In this report, we show FAM83H, unlike other FAM83 proteins, interacts and colocalises with NCK1/2 tyrosine kinase adaptor proteins. This interaction is mediated by proline-rich motifs within the C-terminus of FAM83H, specifically interacting with the second and third SH3 domains of NCK1/2. Moreover, FAM83H pathogenic AI mutant proteins, which trigger C-terminal truncations of FAM83H, retain their interactions with CK1 isoforms but lose interaction with NCK1/2. These AI mutant FAM83H proteins acquire a nuclear localisation, and recruit CK1 isoforms to the nucleus where CK1 retains its kinase activity. As understanding the constituents of the FAM83H-localised speckles may hold the key to unravelling potential substrates of FAM83H-associated CK1 substrates, we employed a TurboID-based proximity labelling approach and uncovered several proteins including Iporin and BAG3 as potential constituents of the speckles.
Collapse
Affiliation(s)
- Theresa Tachie-Menson
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Ana Gázquez-Gutiérrez
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom; University of Seville, Av. Sanchez Pizjuan, s/n, 41009, Seville, Spain
| | - Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Joby Varghese
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Renata F Soares
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
1102
|
Huang X, Jiang C, Yu L, Yang A. Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites. Front Cell Dev Biol 2020; 8:195. [PMID: 32292782 PMCID: PMC7118198 DOI: 10.3389/fcell.2020.00195] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Inter-organelle membrane contact sites (MCSs) are classically defined as areas of close proximity between heterologous membranes and established by specific proteins (termed tethers). The interest on MCSs has rapidly increased in the last years, since MCSs play a crucial role in the transfer of cellular components between different organelles and have been involved in important cellular functions such as apoptosis, organelle division and biogenesis, and cell growth. Recently, an unprecedented depth and breadth in insights into the details of MCSs have been uncovered. On one hand, extensive MCSs (organelles interactome) are revealed by comprehensive analysis of organelle network with high temporal-spatial resolution at the system level. On the other hand, more and more tethers involving in MCSs are identified and further works are focusing on addressing the role of these tethers in regulating the function of MCSs at the molecular level. These enormous progresses largely depend on the powerful approaches, including several different types of microscopies and various biochemical techniques. These approaches have greatly accelerated recent advances in MCSs at the system and molecular level. In this review, we summarize the current and emerging approaches for studying MCSs, such as various microscopies, proximity-driven fluorescent signal generation and proximity-dependent biotinylation. In addition, we highlight the advantages and disadvantages of the techniques to provide a general guidance for the study of MCSs.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
1103
|
Yamamoto-Hino M, Kawaguchi K, Ono M, Furukawa K, Goto S. Lamin is essential for nuclear localization of the GPI synthesis enzyme PIG-B and GPI-anchored protein production in Drosophila. J Cell Sci 2020; 133:jcs.238527. [PMID: 32051283 PMCID: PMC7104860 DOI: 10.1242/jcs.238527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Membrane lipid biosynthesis is a complex process that occurs in various intracellular compartments. In Drosophila, phosphatidylinositol glycan-B (PIG-B), which catalyzes addition of the third mannose in glycosylphosphatidylinositol (GPI), localizes to the nuclear envelope (NE). Although this NE localization is essential for Drosophila development, the underlying molecular mechanism remains unknown. To elucidate this mechanism, we identified PIG-B-interacting proteins by performing immunoprecipitation followed by proteomic analysis. We then examined which of these proteins are required for the NE localization of PIG-B. Knockdown of Lamin Dm0, a B-type lamin, led to mislocalization of PIG-B from the NE to the endoplasmic reticulum. Lamin Dm0 associated with PIG-B at the inner nuclear membrane, a process that required the tail domain of Lamin Dm0. Furthermore, GPI moieties were distributed abnormally in the Lamin Dm0 mutant. These data indicate that Lamin Dm0 is involved in the NE localization of PIG-B and is required for proper GPI-anchor modification of proteins. Highlighted Article: Lamin plays a role in post-translational modification of plasma membrane proteins by tethering the GPI modification enzyme PIG-B to the inner nuclear membrane.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Kohei Kawaguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Hospital, Chu-o-ku, Tokyo 104-0045, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Satoshi Goto
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
1104
|
Proximity-dependent biotin labelling reveals CP190 as an EcR/Usp molecular partner. Sci Rep 2020; 10:4793. [PMID: 32179799 PMCID: PMC7075897 DOI: 10.1038/s41598-020-61514-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 11/23/2022] Open
Abstract
Proximity-dependent biotin labelling revealed undescribed participants of the ecdysone response in Drosophila. Two labelling enzymes (BioID2 and APEX2) were fused to EcR or Usp to biotin label the surrounding proteins. The EcR/Usp heterodimer was found to collaborate with nuclear pore subunits, chromatin remodelers, and architectural proteins. Many proteins identified through proximity-dependent labelling with EcR/Usp were described previously as functional components of an ecdysone response, corroborating the potency of this labelling method. A link to ecdysone response was confirmed for some newly discovered regulators by immunoprecipitation of prepupal nuclear extract with anti-EcR antibodies and functional experiments in Drosophila S2 cells. A more in-depth study was conducted to clarify the association of EcR/Usp with one of the detected proteins, CP190, a well-described cofactor of Drosophila insulators. CP190 was found to co-immunoprecipitate with the EcR subunit of EcR/Usp in a 20E-independent manner. ChIP-Seq experiments revealed only partial overlapping between CP190 and EcR bound sites in the Drosophila genome and complete absence of CP190 binding at 20E-dependent enhancers. Analysis of Hi-C data demonstrated an existence of remote interactions between 20E-dependent enhancers and CP190 sites which suggests formation of a protein complex between EcR/Usp and CP190 through the space. Our results support the previous concept that CP190 has a role in stabilization of specific chromatin loops for proper activation of transcription of genes regulated by 20E hormone.
Collapse
|
1105
|
Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity. Nat Commun 2020; 11:1388. [PMID: 32170121 PMCID: PMC7069958 DOI: 10.1038/s41467-020-15223-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors (TFs) control cell fates by precisely orchestrating gene expression. However, how individual TFs promote transcriptional diversity remains unclear. Here, we use the Hox TF Ultrabithorax (Ubx) as a model to explore how a single TF specifies multiple cell types. Using proximity-dependent Biotin IDentification in Drosophila, we identify Ubx interactomes in three embryonic tissues. We find that Ubx interacts with largely non-overlapping sets of proteins with few having tissue-specific RNA expression. Instead most interactors are active in many cell types, controlling gene expression from chromatin regulation to the initiation of translation. Genetic interaction assays in vivo confirm that they act strictly lineage- and process-specific. Thus, functional specificity of Ubx seems to play out at several regulatory levels and to result from the controlled restriction of the interaction potential by the cellular environment. Thereby, it challenges long-standing assumptions such as differential RNA expression as determinant for protein complexes. Many transcription factors regulate gene expression in a lineage- and process-specific manner, despite being expressed in several cell types. Here, the authors show that the Hox transcription factor Ubx has lineage-specific interactomes, which contribute to its cell context-dependent functions.
Collapse
|
1106
|
Huang JX, Coukos JS, Moellering RE. Interaction profiling methods to map protein and pathway targets of bioactive ligands. Curr Opin Chem Biol 2020; 54:76-84. [PMID: 32146330 DOI: 10.1016/j.cbpa.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
Abstract
Recent advances in -omic profiling technologies have ushered in an era where we no longer want to merely measure the presence or absence of a biomolecule of interest, but instead hope to understand its function and interactions within larger signaling networks. Here, we review several emerging proteomic technologies capable of detecting protein interaction networks in live cells and their integration to draft holistic maps of proteins that respond to diverse stimuli, including bioactive small molecules. Moreover, we provide a conceptual framework to combine so-called 'top-down' and 'bottom-up' interaction profiling methods and ensuing proteomic profiles to directly identify binding targets of small molecule ligands, as well as for unbiased discovery of proteins and pathways that may be directly bound or influenced by those first responders. The integrated, interaction-based profiling methods discussed here have the potential to provide a unique and dynamic view into cellular signaling networks for both basic and translational biological studies.
Collapse
Affiliation(s)
- Jun X Huang
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - John S Coukos
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
1107
|
Lundberg E, Borner GHH. Spatial proteomics: a powerful discovery tool for cell biology. Nat Rev Mol Cell Biol 2020; 20:285-302. [PMID: 30659282 DOI: 10.1038/s41580-018-0094-y] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein subcellular localization is tightly controlled and intimately linked to protein function in health and disease. Capturing the spatial proteome - that is, the localizations of proteins and their dynamics at the subcellular level - is therefore essential for a complete understanding of cell biology. Owing to substantial advances in microscopy, mass spectrometry and machine learning applications for data analysis, the field is now mature for proteome-wide investigations of spatial cellular regulation. Studies of the human proteome have begun to reveal a complex architecture, including single-cell variations, dynamic protein translocations, changing interaction networks and proteins localizing to multiple compartments. Furthermore, several studies have successfully harnessed the power of comparative spatial proteomics as a discovery tool to unravel disease mechanisms. We are at the beginning of an era in which spatial proteomics finally integrates with cell biology and medical research, thereby paving the way for unbiased systems-level insights into cellular processes. Here, we discuss current methods for spatial proteomics using imaging or mass spectrometry and specifically highlight global comparative applications. The aim of this Review is to survey the state of the field and also to encourage more cell biologists to apply spatial proteomics approaches.
Collapse
Affiliation(s)
- Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Genetics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany.
| |
Collapse
|
1108
|
Advances and applications of stable isotope labeling-based methods for proteome relative quantitation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
1109
|
Abstract
Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology-informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.
Collapse
Affiliation(s)
- Rebecca M Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
1110
|
Bechtel TJ, Li C, Kisty EA, Maurais AJ, Weerapana E. Profiling Cysteine Reactivity and Oxidation in the Endoplasmic Reticulum. ACS Chem Biol 2020; 15:543-553. [PMID: 31899610 DOI: 10.1021/acschembio.9b01014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) is the initial site of biogenesis of secretory pathway proteins, including proteins localized to the ER, Golgi, lysosomes, intracellular vesicles, plasma membrane, and extracellular compartments. Proteins within the secretory pathway contain a high abundance of disulfide bonds to protect against the oxidative extracellular environment. These disulfide bonds are typically formed within the ER by a variety of oxidoreductases, including members of the protein disulfide isomerase (PDI) family. Here, we establish chemoproteomic platforms to identify oxidized and reduced cysteine residues within the ER. Subcellular fractionation methods were utilized to enrich for the ER and significantly enhance the coverage of ER-localized cysteine residues. Reactive-cysteine profiling ranked ∼900 secretory pathway cysteines by reactivity with an iodoacetamide-alkyne probe, revealing functional cysteines annotated to participate in disulfide bonds, or S-palmitoylation sites within proteins. Through application of a variation of the OxICAT protocol for quantifying cysteine oxidation, the percentages of oxidation for each of ∼700 ER-localized cysteines were calculated. Lastly, perturbation of ER function, through chemical induction of ER stress, was used to investigate the effect of initiation of the unfolded protein response (UPR) on ER-localized cysteine oxidation. Together, these studies establish a platform for identifying reactive and functional cysteine residues on proteins within the secretory pathway as well as for interrogating the effects of diverse cellular stresses on ER-localized cysteine oxidation.
Collapse
Affiliation(s)
- Tyler J. Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chun Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eleni A. Kisty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Aaron J. Maurais
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
1111
|
Biswas J, Nunez L, Das S, Yoon YJ, Eliscovich C, Singer RH. Zipcode Binding Protein 1 (ZBP1; IGF2BP1): A Model for Sequence-Specific RNA Regulation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:1-10. [PMID: 32086331 DOI: 10.1101/sqb.2019.84.039396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fate of an RNA, from its localization, translation, and ultimate decay, is dictated by interactions with RNA binding proteins (RBPs). β-actin mRNA has functioned as the classic example of RNA localization in eukaryotic cells. Studies of β-actin mRNA over the past three decades have allowed understanding of how RBPs, such as ZBP1 (IGF2BP1), can control both RNA localization and translational status. Here, we summarize studies of β-actin mRNA and focus on how ZBP1 serves as a model for understanding interactions between RNA and their binding protein(s). Central to the study of RNA and RBPs were technological developments that occurred along the way. We conclude with a future outlook highlighting new technologies that may be used to address still unanswered questions about RBP-mediated regulation of mRNA during its life cycle, within the cell.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Leti Nunez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Carolina Eliscovich
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, USA
| |
Collapse
|
1112
|
Pronobis MI, Poss KD. Signals for cardiomyocyte proliferation during zebrafish heart regeneration. CURRENT OPINION IN PHYSIOLOGY 2020; 14:78-85. [PMID: 32368708 DOI: 10.1016/j.cophys.2020.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The common laboratory zebrafish can regenerate functional cardiac muscle after cataclysmic damage or loss, by activating programs that direct the division of spared cardiomyocytes. Heart regeneration is not a linear series of molecular steps and synchronized cellular progressions, but rather an imperfect, relentless process that proceeds in an advantaged competition with scarring until recovery of the lost heart function. In this review, we summarize recent advances in our understanding of signaling events that have formative roles in injury-induced cardiomyocyte proliferation in zebrafish, and we forecast advances in the field that are needed to decipher heart regeneration.
Collapse
Affiliation(s)
- Mira I Pronobis
- Regeneration Next, Duke University, Durham NC 27710 USA.,Department of Cell Biology, Duke University Medical Center, Durham NC 27710 USA
| | - Kenneth D Poss
- Regeneration Next, Duke University, Durham NC 27710 USA.,Department of Cell Biology, Duke University Medical Center, Durham NC 27710 USA
| |
Collapse
|
1113
|
Zilocchi M, Moutaoufik MT, Jessulat M, Phanse S, Aly KA, Babu M. Misconnecting the dots: altered mitochondrial protein-protein interactions and their role in neurodegenerative disorders. Expert Rev Proteomics 2020; 17:119-136. [PMID: 31986926 DOI: 10.1080/14789450.2020.1723419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Mitochondria (mt) are protein-protein interaction (PPI) hubs in the cell where mt-localized and associated proteins interact in a fashion critical for cell fitness. Altered mtPPIs are linked to neurodegenerative disorders (NDs) and drivers of pathological associations to mediate ND progression. Mapping altered mtPPIs will reveal how mt dysfunction is linked to NDs.Areas covered: This review discusses how database sources reflect on the number of mt protein or interaction predictions, and serves as an update on mtPPIs in mt dynamics and homeostasis. Emphasis is given to mRNA expression profiles for mt proteins in human tissues, cellular models relevant to NDs, and altered mtPPIs in NDs such as Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD).Expert opinion: We highlight the scarcity of biomarkers to improve diagnostic accuracy and tracking of ND progression, obstacles in recapitulating NDs using human cellular models to underpin the pathophysiological mechanisms of disease, and the shortage of mt protein interactome reference database(s) of neuronal cells. These bottlenecks are addressed by improvements in induced pluripotent stem cell creation and culturing, patient-derived 3D brain organoids to recapitulate structural arrangements of the brain, and cell sorting to elucidate mt proteome disparities between cell types.
Collapse
Affiliation(s)
- Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
1114
|
Nassari S, Del Olmo T, Jean S. Rabs in Signaling and Embryonic Development. Int J Mol Sci 2020; 21:E1064. [PMID: 32033485 PMCID: PMC7037298 DOI: 10.3390/ijms21031064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases play key roles in various cellular processes. They are essential, among other roles, to membrane trafficking and intracellular signaling events. Both trafficking and signaling events are crucial for proper embryonic development. Indeed, embryogenesis is a complex process in which cells respond to various signals and undergo dramatic changes in their shape, position, and function. Over the last few decades, cellular studies have highlighted the novel signaling roles played by Rab GTPases, while numerous studies have shed light on the important requirements of Rab proteins at various steps of embryonic development. In this review, we aimed to generate an overview of Rab contributions during animal embryogenesis. We first briefly summarize the involvement of Rabs in signaling events. We then extensively highlight the contribution of Rabs in shaping metazoan development and conclude with new approaches that will allow investigation of Rab functions in vivo.
Collapse
Affiliation(s)
| | | | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; (S.N.); (T.D.O.)
| |
Collapse
|
1115
|
Liu CH, Chien MJ, Chang YC, Cheng YH, Li FA, Mou KY. Combining Proximity Labeling and Cross-Linking Mass Spectrometry for Proteomic Dissection of Nuclear Envelope Interactome. J Proteome Res 2020; 19:1109-1118. [DOI: 10.1021/acs.jproteome.9b00609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cheng-Hao Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Jou Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - You-Chiun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Hsiang Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
1116
|
Padrón A, Iwasaki S, Ingolia NT. Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules. Mol Cell 2020; 75:875-887.e5. [PMID: 31442426 DOI: 10.1016/j.molcel.2019.07.030] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Diverse ribonucleoprotein complexes control mRNA processing, translation, and decay. Transcripts in these complexes localize to specific regions of the cell and can condense into non-membrane-bound structures such as stress granules. It has proven challenging to map the RNA composition of these large and dynamic structures, however. We therefore developed an RNA proximity labeling technique, APEX-seq, which uses the ascorbate peroxidase APEX2 to probe the spatial organization of the transcriptome. We show that APEX-seq can resolve the localization of RNAs within the cell and determine their enrichment or depletion near key RNA-binding proteins. Matching the spatial transcriptome, as revealed by APEX-seq, with the spatial proteome determined by APEX-mass spectrometry (APEX-MS), obtained precisely in parallel, provides new insights into the organization of translation initiation complexes on active mRNAs and unanticipated complexity in stress granule composition. Our novel technique allows a powerful and general approach to explore the spatial environment of macromolecules.
Collapse
Affiliation(s)
- Alejandro Padrón
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shintaro Iwasaki
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8561, Japan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
1117
|
Sun W, Huo Y, Mei Y, Zhou Q, Zhao S, Zhuang M. Identification of a Small Probe That Can Be Conjugated to Proteins by Proximity Labeling. ACS Chem Biol 2020; 15:39-43. [PMID: 31851491 DOI: 10.1021/acschembio.9b00842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proximity labeling has been used to study protein-protein interactions and can also be used as a protein labeling tool. We developed a novel 14-amino acid peptide substrate for the proximity-labeling enzyme PafA. The N terminus of the peptide can be modified with biotin or fluorophores, which allows various chemical moieties to be ligated to the target protein. We used PafA-mediated peptide labeling to label antibodies with a biotin tag without affecting the antigen binding capacity of the antibody. Similar strategies can be used for other types of protein labeling in the future.
Collapse
Affiliation(s)
- Weiping Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yinbo Huo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Mei
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qingtong Zhou
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
1118
|
Yin B, Mendez R, Zhao XY, Rakhit R, Hsu KL, Ewald SE. Automated Spatially Targeted Optical Microproteomics (autoSTOMP) to Determine Protein Complexity of Subcellular Structures. Anal Chem 2020; 92:2005-2010. [PMID: 31869197 DOI: 10.1021/acs.analchem.9b04396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spatially targeted optical microproteomics (STOMP) is a method to study region-specific protein complexity in primary cells and tissue samples. STOMP uses a confocal microscope to visualize structures of interest and to tag the proteins within those structures by a photodriven cross-linking reaction so that they can be affinity purified and identified by mass spectrometry (eLife 2015, 4, e09579). However, the use of a custom photo-cross-linker and the requirement for extensive user intervention during sample tagging have posed barriers to the utilization of STOMP. To address these limitations, we built automated STOMP (autoSTOMP) which uses a customizable code in SikuliX to coordinate image capture and cross-linking functions in Zeiss Zen Black with image processing in FIJI. To increase protocol accessibility, we implemented a commercially available biotin-benzophenone photo-cross-linking and purification protocol. Here we demonstrate that autoSTOMP can efficiently label, purify, and identify proteins belonging to 1-2 μm structures in primary human foreskin fibroblasts or mouse bone marrow-derived dendritic cells infected with the protozoan parasite Toxoplasma gondii (Tg). AutoSTOMP can easily be adapted to address a range of research questions using Zeiss Zen Black microscopy systems and LC-MS protocols that are standard in many research cores.
Collapse
Affiliation(s)
- Bocheng Yin
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center , University of Virginia School of Medicine , Charlottesville , Virginia 22908-0395 , United States
| | - Roberto Mendez
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4132 , United States
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center , University of Virginia School of Medicine , Charlottesville , Virginia 22908-0395 , United States
| | - Rishi Rakhit
- Mitokinin Inc , 953 Indiana Street , San Francisco , California 94107-3007 , United States
| | - Ku-Lung Hsu
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4132 , United States
| | - Sarah E Ewald
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center , University of Virginia School of Medicine , Charlottesville , Virginia 22908-0395 , United States
| |
Collapse
|
1119
|
Sung G, Lee SY, Kang MG, Kim KL, An J, Sim J, Kim S, Kim S, Ko J, Rhee HW, Park KM, Kim K. Supra-blot: an accurate and reliable assay for detecting target proteins with a synthetic host molecule–enzyme hybrid. Chem Commun (Camb) 2020; 56:1549-1552. [DOI: 10.1039/c9cc09699j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new way to detect target proteins is developed using a high-affinity host–guest interaction for a wide variety of biological samples including bacteria and mammalian cells.
Collapse
|
1120
|
Benhalevy D, Hafner M. Proximity-CLIP Provides a Snapshot of Protein-Occupied RNA Elements at Subcellular Resolution and Transcriptome-Wide Scale. Methods Mol Biol 2020; 2166:283-305. [PMID: 32710416 PMCID: PMC11265426 DOI: 10.1007/978-1-0716-0712-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The distribution of messenger RNAs (mRNAs) to specific subcellular locations has been studied for the past two decades. Technically, studies of RNA localization are lagging those related to protein localization. Here we provide a detailed protocol for Proximity-CLIP, a method recently developed by our group, that combines proximity biotinylation of proteins with photoactivatable ribonucleoside-enhanced protein-RNA cross-linking to simultaneously profile the proteome including RNA-binding proteins (RBPs) and the RBP-bound transcriptome in any given subcellular compartment. The approach is fractionation independent and also enables studying localized RNA-processing intermediates, as well as the identification of regulatory cis-acting elements on RNAs occupied by proteins in a cellular compartment-specific manner.
Collapse
Affiliation(s)
- Daniel Benhalevy
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
1121
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
1122
|
V'kovski P, Steiner S, Thiel V. Proximity Labeling for the Identification of Coronavirus-Host Protein Interactions. Methods Mol Biol 2020; 2203:187-204. [PMID: 32833213 DOI: 10.1007/978-1-0716-0900-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biotin-based proximity labeling circumvents major pitfalls of classical biochemical approaches to identify protein-protein interactions. It consists of enzyme-catalyzed biotin tags ubiquitously apposed on proteins located in close proximity of the labeling enzyme, followed by affinity purification and identification of biotinylated proteins by mass spectrometry. Here we outline the methods by which the molecular microenvironment of the coronavirus replicase/transcriptase complex (RTC), i.e., proteins located within a close perimeter of the RTC, can be determined by different proximity labeling approaches using BirAR118G (BioID), TurboID, and APEX2. These factors represent a molecular signature of coronavirus RTCs and likely contribute to the viral life cycle, thereby constituting attractive targets for the development of antiviral intervention strategies.
Collapse
Affiliation(s)
- Philip V'kovski
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvio Steiner
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology IVI, Bern, Switzerland. .,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
1123
|
Ugur E, Bartoschek MD, Leonhardt H. Locus-Specific Chromatin Proteome Revealed by Mass Spectrometry-Based CasID. Methods Mol Biol 2020; 2175:109-121. [PMID: 32681487 DOI: 10.1007/978-1-0716-0763-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biotin proximity labeling has largely extended the toolbox of mass spectrometry-based interactomics. To date, BirA, engineered BirA variants, or other biotinylating enzymes have been widely applied to characterize protein interactions. By implementing chromatin purification-based methods the genome-wide interactome of proteins can be defined. However, acquiring a high-resolution interactome of a single genomic locus preferably by multiplexed measurements of several distinct genomic loci in parallel remains challenging. We recently developed CasID, a novel approach where the catalytically inactive Cas9 (dCas9) is coupled to the promiscuous biotin ligase BirA (BirA∗). With CasID, first the local proteome at repetitive telomeric, major satellite, and minor satellite regions was determined. With more efficient biotin ligases and sensitive mass spectrometry, others have successfully identified the chromatin composition at even smaller genomic, non-repetitive regions of a few hundred base pairs in length. Here, we summarize the most recent developments towards interactomics at a single genomic locus and provide a step-by-step protocol based on the CasID approach.
Collapse
Affiliation(s)
- Enes Ugur
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael D Bartoschek
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
1124
|
McCutcheon DC, Lee G, Carlos A, Montgomery JE, Moellering RE. Photoproximity Profiling of Protein-Protein Interactions in Cells. J Am Chem Soc 2019; 142:146-153. [PMID: 31820968 DOI: 10.1021/jacs.9b06528] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a novel photoproximity protein interaction (PhotoPPI) profiling method to map protein-protein interactions in vitro and in live cells. This approach utilizes a bioorthogonal, multifunctional chemical probe that can be targeted to a genetically encoded protein of interest (POI) through a modular SNAP-Tag/benzylguanine covalent interaction. A first generation photoproximity probe, PP1, responds to 365 nm light to simultaneously cleave a central nitroveratryl linker and a peripheral diazirine group, resulting in diffusion of a highly reactive carbene nucleophile away from the POI. We demonstrate facile probe loading, and subsequent interaction- and light-dependent proximal labeling of a model protein-protein interaction (PPI) in vitro. Integration of the PhotoPPI workflow with quantitative LC-MS/MS enabled unbiased interaction mapping for the redox regulated sensor protein, KEAP1, for the first time in live cells. We validated known and novel interactions between KEAP1 and the proteins PGAM5 and HK2, among others, under basal cellular conditions. By contrast, comparison of PhotoPPI profiles in cells experiencing metabolic or redox stress confirmed that KEAP1 sheds many basal interactions and becomes associated with known lysosomal trafficking and proteolytic proteins like SQSTM1, CTSD, and LGMN. Together, these data establish PhotoPPI as a method capable of tracking the dynamic subcellular and protein interaction "social network" of a redox-sensitive protein in cells with high temporal resolution.
Collapse
|
1125
|
Directed evolution improves the catalytic efficiency of TEV protease. Nat Methods 2019; 17:167-174. [PMID: 31819267 PMCID: PMC7004888 DOI: 10.1038/s41592-019-0665-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/25/2019] [Indexed: 11/08/2022]
Abstract
Tobacco etch virus protease (TEV) is one of the most widely used proteases in biotechnology because of its exquisite sequence specificity. A limitation, however, is its slow catalytic rate. We developed a generalizable yeast-based platform for directed evolution of protease catalytic properties. Protease activity is read out via proteolytic release of a membrane-anchored transcription factor, and we temporally regulate access to TEV's cleavage substrate using a photosensory LOV domain. By gradually decreasing light exposure time, we enriched faster variants of TEV over multiple rounds of selection. Our TEV-S153N mutant (uTEV1Δ), when incorporated into the calcium integrator FLARE, improved the signal/background ratio by 27-fold, and enabled recording of neuronal activity in culture with 60-s temporal resolution. Given the widespread use of TEV in biotechnology, both our evolved TEV mutants and the directed-evolution platform used to generate them could be beneficial across a wide range of applications.
Collapse
|
1126
|
Nguyen TMT, Kim J, Doan TT, Lee MW, Lee M. APEX Proximity Labeling as a Versatile Tool for Biological Research. Biochemistry 2019; 59:260-269. [PMID: 31718172 DOI: 10.1021/acs.biochem.9b00791] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most proteins are specifically localized in membrane-encapsulated organelles or non-membrane-bound compartments. The subcellular localization of proteins facilitates their functions and integration into functional networks; therefore, protein localization is tightly regulated in diverse biological contexts. However, protein localization has been mainly analyzed through immunohistochemistry or the fractionation of subcellular compartments, each of which has major drawbacks. Immunohistochemistry can examine only a handful of proteins at a time, and fractionation inevitably relies on the lysis of cells, which disrupts native cellular conditions. Recently, an engineered ascorbate peroxidase (APEX)-based proximity labeling technique combined with mass spectrometry was developed, which allows for temporally and spatially resolved proteomic mapping. In the presence of H2O2, engineered APEX oxidizes biotin-phenols into biotin-phenoxyl radicals, and these short-lived radicals biotinylate electron-rich amino acids within a radius of several nanometers. Biotinylated proteins are subsequently enriched by streptavidin and identified by mass spectrometry. This permits the sensitive and efficient labeling of proximal proteins around locally expressed APEX. Through the targeted expression of APEX in the subcellular region of interest, proteomic profiling of submitochondrial spaces, the outer mitochondrial membrane, the endoplasmic reticulum (ER)-mitochondrial contact, and the ER membrane has been performed. Furthermore, this method has been modified to define interaction networks in the vicinity of target proteins and has also been applied to analyze the spatial transcriptome. In this Perspective, we provide an outline of this newly developed technique and discuss its potential applications to address diverse biological questions.
Collapse
Affiliation(s)
- Thanh My Thi Nguyen
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Thi Tram Doan
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| |
Collapse
|
1127
|
Schmitt K, Valerius O. yRACK1/Asc1 proxiOMICs-Towards Illuminating Ships Passing in the Night. Cells 2019; 8:cells8111384. [PMID: 31689955 PMCID: PMC6912217 DOI: 10.3390/cells8111384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Diverse signals and stress factors regulate the activity and homeostasis of ribosomes in all cells. The Saccharomyces cerevisiae protein Asc1/yRACK1 occupies an exposed site at the head region of the 40S ribosomal subunit (hr40S) and represents a central hub for signaling pathways. Asc1 strongly affects protein phosphorylation and is involved in quality control pathways induced by translation elongation arrest. Therefore, it is important to understand the dynamics of protein formations in the Asc1 microenvironment at the hr40S. We made use of the in vivo protein-proximity labeling technique Biotin IDentification (BioID). Unbiased proxiOMICs from two adjacent perspectives identified nucleocytoplasmic shuttling mRNA-binding proteins, the deubiquitinase complex Ubp3-Bre5, as well as the ubiquitin E3 ligase Hel2 as neighbors of Asc1. We observed Asc1-dependency of hr40S localization of mRNA-binding proteins and the Ubp3 co-factor Bre5. Hel2 and Ubp3-Bre5 are described to balance the mono-ubiquitination of Rps3 (uS3) during ribosome quality control. Here, we show that the absence of Asc1 resulted in massive exposure and accessibility of the C-terminal tail of its ribosomal neighbor Rps3 (uS3). Asc1 and some of its direct neighbors together might form a ribosomal decision tree that is tightly connected to close-by signaling modules.
Collapse
Affiliation(s)
- Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany.
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
1128
|
Schmidt FI. From atoms to physiology: what it takes to really understand inflammasomes. J Physiol 2019; 597:5335-5348. [PMID: 31490557 DOI: 10.1113/jp277027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Rapid inflammatory responses to cytosolic threats are mediated by inflammasomes - large macromolecular signalling complexes that control the activation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18, as well as cell death by pyroptosis. Different inflammasome sensors are activated by diverse direct and indirect signals, and subsequently nucleate the polymerization of the adaptor molecule ASC to form signalling platforms macroscopically observed as ASC specks. Caspase-1 is autocatalytically activated at these sites and subsequently matures pro-inflammatory cytokines and the pore-forming effector molecule gasdermin D. While most molecules and basic assembly principles have been deduced from reductionist experimental systems, we still lack fundamental information on the structure and regulation of these complexes in their physiological environment and in the interplay with other signalling pathways. In this review, novel experimental approaches are proposed, including some that rely on nanobodies and single domain antibodies, to understand inflammasome assembly and regulation in the context of the relevant tissues or cells.
Collapse
|
1129
|
Santin YG. Uncovering the In Vivo Proxisome Using Proximity‐Tagging Methods. Bioessays 2019; 41:e1900131. [DOI: 10.1002/bies.201900131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/04/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yoann G. Santin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université – CNRS UMR7255 31 Chemin Joseph Aiguier, CS70071, 13402 Marseille Cedex 09 France
| |
Collapse
|
1130
|
Stevens LM, Zhang Y, Volnov Y, Chen G, Stein DS. Isolation of secreted proteins from Drosophila ovaries and embryos through in vivo BirA-mediated biotinylation. PLoS One 2019; 14:e0219878. [PMID: 31658274 PMCID: PMC6816556 DOI: 10.1371/journal.pone.0219878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
The extraordinarily strong non-covalent interaction between biotin and avidin (kD = 10-14-10-16) has permitted this interaction to be used in a wide variety of experimental contexts. The Biotin Acceptor Peptide (BAP), a 15 amino acid motif that can be biotinylated by the E. coli BirA protein, has been fused to proteins-of-interest, making them substrates for in vivo biotinylation. Here we report on the construction and characterization of a modified BirA bearing signals for secretion and endoplasmic reticulum (ER) retention, for use in experimental contexts requiring biotinylation of secreted proteins. When expressed in the Drosophila female germline or ovarian follicle cells under Gal4-mediated transcriptional control, the modified BirA protein could be detected and shown to be enzymatically active in ovaries and progeny embryos. Surprisingly, however, it was not efficiently retained in the ER, and instead appeared to be secreted. To determine whether this secreted protein, now designated secBirA, could biotinylate secreted proteins, we generated BAP-tagged versions of two secreted Drosophila proteins, Torsolike (Tsl) and Gastrulation Defective (GD), which are normally expressed maternally and participate in embryonic pattern formation. Both Tsl-BAP and GD-BAP were shown to exhibit normal patterning activity. Co-expression of Tsl-BAP together with secBirA in ovarian follicle cells resulted in its biotinylation, which permitted its isolation from both ovaries and progeny embryos using Avidin-coupled affinity matrix. In contrast, co-expression with secBirA in the female germline did not result in detectable biotinylation of GD-BAP, possibly because the C-terminal location of the BAP tag made it inaccessible to BirA in vivo. Our results indicate that secBirA directs biotinylation of proteins bound for secretion in vivo, providing access to powerful experimental approaches for secreted proteins-of-interest. However, efficient biotinylation of target proteins may vary depending upon the location of the BAP tag or other structural features of the protein.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yuan Zhang
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yuri Volnov
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Geng Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - David S. Stein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
1131
|
Valerius O, Asif AR, Beißbarth T, Bohrer R, Dihazi H, Feussner K, Jahn O, Majcherczyk A, Schmidt B, Schmitt K, Urlaub H, Lenz C. Mapping Cellular Microenvironments: Proximity Labeling and Complexome Profiling (Seventh Symposium of the Göttingen Proteomics Forum). Cells 2019; 8:cells8101192. [PMID: 31581721 PMCID: PMC6830108 DOI: 10.3390/cells8101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
Mass spectrometry-based proteomics methods are finding increasing use in structural biology research. Beyond simple interaction networks, information about stable protein-protein complexes or spatially proximal proteins helps to elucidate the biological functions of proteins in a wider cellular context. To shed light on new developments in this field, the Göttingen Proteomics Forum organized a one-day symposium focused on complexome profiling and proximity labeling, two emerging technologies that are gaining significant attention in biomolecular research. The symposium was held in Göttingen, Germany on 23 May, 2019, as part of a series of regular symposia organized by the Göttingen Proteomics Forum.
Collapse
Affiliation(s)
- Oliver Valerius
- Institute for Microbiology and Genetics, Georg August University, 37077 Göttingen, Germany.
| | - Abdul R Asif
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Rainer Bohrer
- Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen, 37077 Göttingen, Germany.
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, 37073 Göttingen, Germany.
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Andrzej Majcherczyk
- Büsgen Institute, Section Molecular Wood Biotechnology and Technical Mycology, Georg August University, 37077 Göttingen, Germany.
| | - Bernhard Schmidt
- Institute for Biochemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, Georg August University, 37077 Göttingen, Germany.
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- DFG Collaborative Research Centre SFB1190 "Compartmental Gates and Contact Sites in Cells", 37075 Göttingen, Germany.
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- DFG Collaborative Research Centre SFB1190 "Compartmental Gates and Contact Sites in Cells", 37075 Göttingen, Germany.
| |
Collapse
|
1132
|
Swinnen G, Goossens A, Colinas M. Metabolic editing: small measures, great impact. Curr Opin Biotechnol 2019; 59:16-23. [DOI: 10.1016/j.copbio.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
|
1133
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
1134
|
Dronc-independent basal executioner caspase activity sustains Drosophila imaginal tissue growth. Proc Natl Acad Sci U S A 2019; 116:20539-20544. [PMID: 31548372 PMCID: PMC6789915 DOI: 10.1073/pnas.1904647116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Caspase is the enzyme involved in cell death, and its activation via the apoptosome is thought to represent irreversible cellular destruction. Furthermore, accumulating evidence suggests increasingly diverse functions of caspase beyond apoptosis. Here, using Drosophila wing as a model, we reveal that the specific executioner caspases, Dcp-1 and Decay, promote, rather than suppress by inducing apoptosis, tissue growth. These executioner caspases act independently of initiator caspase Dronc and apoptosis. We further show that the caspase-mediated cleavage of Acinus is important for sustaining tissue growth. Our research highlights the importance of executioner caspase-mediated basal proteolytic cleavage of substrates during tissue growth, and the findings hint at the original function of caspase—not apoptosis, but basal proteolytic cleavages for cell vigor. Caspase is best known as an enzyme involved in programmed cell death, which is conserved among multicellular organisms. In addition to its role in cell death, caspase is emerging as an indispensable enzyme in a wide range of cellular functions, which have recently been termed caspase-dependent nonlethal cellular processes (CDPs). In this study, we examined the involvement of cell death signaling in tissue-size determination using Drosophila wing as a model. We found that the Drosophila executioner caspases Dcp-1 and Decay, but not Drice, promoted wing growth independently of apoptosis. Most of the reports on CDPs argue the importance of the spatiotemporal regulation of the initiator caspase, Dronc; however, this sublethal caspase function was independent of Dronc, suggesting a more diverse array of CDP regulatory mechanisms. Tagging of TurboID, an improved promiscuous biotin ligase that biotinylates neighboring proteins, to the C terminus of caspases revealed the differences among the neighbors of executioner caspases. Furthermore, we found that the cleavage of Acinus, a substrate of the executioner caspase, was important in promoting wing growth. These results demonstrate the importance of executioner caspase-mediated basal proteolytic cleavage of substrates in sustaining tissue growth. Given the existence of caspase-like DEVDase activity in a unicellular alga, our results likely highlight the original function of caspase—not cell death, but basal proteolytic cleavages for cell vigor.
Collapse
|
1135
|
Mangé A, Coyaud E, Desmetz C, Laurent E, Béganton B, Coopman P, Raught B, Solassol J. FKBP4 connects mTORC2 and PI3K to activate the PDK1/Akt-dependent cell proliferation signaling in breast cancer. Am J Cancer Res 2019; 9:7003-7015. [PMID: 31660083 PMCID: PMC6815969 DOI: 10.7150/thno.35561] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose: Among the FKBP family members, FKBP4 has been described to have a potential role in tumorigenesis, and as a putative tissue marker. We previously showed that FKBP4, an HSP90-associated co-chaperone, can elicit immune response as a tumor-specific antigen, and are overexpressed in breast cancer. Experimental design: In this study, we examined how loss of FKBP4 affect breast cancer progression and exploited protein interactomics to gain mechanistic insight into this process. Results: We found that FKBP4 expression is associated with breast cancer progression and prognosis, especially of ER-negative breast cancer. Furthermore, FKBP4 depletion specifically reduces cell growth and proliferation of triple negative breast cancer cell model and xenograft tumor model. Using specific protein interactome strategy by BirA proximity-dependent biotin identification, we demonstrated that FKBP4 is a novel PI3K-Akt-mTOR proximal interacting protein. Conclusion: Our results suggest that FKBP4 interacts with PI3K and can enhance Akt activation through PDK1 and mTORC2.
Collapse
|
1136
|
Mair A, Xu SL, Branon TC, Ting AY, Bergmann DC. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 2019; 8:e47864. [PMID: 31535972 PMCID: PMC6791687 DOI: 10.7554/elife.47864] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022] Open
Abstract
Defining specific protein interactions and spatially or temporally restricted local proteomes improves our understanding of all cellular processes, but obtaining such data is challenging, especially for rare proteins, cell types, or events. Proximity labeling enables discovery of protein neighborhoods defining functional complexes and/or organellar protein compositions. Recent technological improvements, namely two highly active biotin ligase variants (TurboID and miniTurbo), allowed us to address two challenging questions in plants: (1) what are in vivo partners of a low abundant key developmental transcription factor and (2) what is the nuclear proteome of a rare cell type? Proteins identified with FAMA-TurboID include known interactors of this stomatal transcription factor and novel proteins that could facilitate its activator and repressor functions. Directing TurboID to stomatal nuclei enabled purification of cell type- and subcellular compartment-specific proteins. Broad tests of TurboID and miniTurbo in Arabidopsis and Nicotiana benthamiana and versatile vectors enable customization by plant researchers.
Collapse
Affiliation(s)
- Andrea Mair
- Department of BiologyStanford UniversityStanfordUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Shou-Ling Xu
- Department of Plant BiologyCarnegie Institution for ScienceStanfordUnited States
| | - Tess C Branon
- Department of BiologyStanford UniversityStanfordUnited States
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Department of GeneticsStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
| | - Alice Y Ting
- Department of BiologyStanford UniversityStanfordUnited States
- Department of GeneticsStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Dominique C Bergmann
- Department of BiologyStanford UniversityStanfordUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
1137
|
James C, Müller M, Goldberg MW, Lenz C, Urlaub H, Kehlenbach RH. Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane. J Biol Chem 2019; 294:16241-16254. [PMID: 31519755 DOI: 10.1074/jbc.ra118.007283] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/05/2019] [Indexed: 11/06/2022] Open
Abstract
Vesicle-associated membrane protein-associated protein B (VAPB) is a tail-anchored protein that is present at several contact sites of the endoplasmic reticulum (ER). We now show by immunoelectron microscopy that VAPB also localizes to the inner nuclear membrane (INM). Using a modified enhanced ascorbate peroxidase 2 (APEX2) approach with rapamycin-dependent targeting of the peroxidase to a protein of interest, we searched for proteins that are in close proximity to VAPB, particularly at the INM. In combination with stable isotope labeling with amino acids in cell culture (SILAC), we confirmed many well-known interaction partners at the level of the ER with a clear distinction between specific and nonspecific hits. Furthermore, we identified emerin, TMEM43, and ELYS as potential interaction partners of VAPB at the INM and the nuclear pore complex, respectively.
Collapse
Affiliation(s)
- Christina James
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center for Molecular Biosciences (GZMB), Georg August University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Marret Müller
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center for Molecular Biosciences (GZMB), Georg August University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Martin W Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Christof Lenz
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center for Molecular Biosciences (GZMB), Georg August University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| |
Collapse
|
1138
|
Hashimoto Y, Greco TM, Cristea IM. Contribution of Mass Spectrometry-Based Proteomics to Discoveries in Developmental Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:143-154. [PMID: 31347046 DOI: 10.1007/978-3-030-15950-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding multicellular organism development from a molecular perspective is no small feat, yet this level of comprehension affords clinician-scientists the ability to identify root causes and mechanisms of congenital diseases. Inarguably, the maturation of molecular biology tools has significantly contributed to the identification of genetic loci that underlie normal and aberrant developmental programs. In combination with cell biology approaches, these tools have begun to elucidate the spatiotemporal expression and function of developmentally-regulated proteins. The emergence of quantitative mass spectrometry (MS) for biological applications has accelerated the pace at which these proteins can be functionally characterized, driving the construction of an increasingly detailed systems biology picture of developmental processes. Here, we review the quantitative MS-based proteomic technologies that have contributed significantly to understanding the role of proteome regulation in developmental processes. We provide a brief overview of these methodologies, focusing on their ability to provide precise and accurate proteome measurements. We then highlight the use of discovery-based and targeted mass spectrometry approaches in model systems to study cellular differentiation states, tissue phenotypes, and spatiotemporal subcellular organization. We also discuss the current application and future perspectives of MS proteomics to study PTM coordination and the role of protein complexes during development.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
1139
|
Chen Y, Leng M, Gao Y, Zhan D, Choi JM, Song L, Li K, Xia X, Zhang C, Liu M, Ji S, Jain A, Saltzman AB, Malovannaya A, Qin J, Jung SY, Wang Y. A Cross-Linking-Aided Immunoprecipitation/Mass Spectrometry Workflow Reveals Extensive Intracellular Trafficking in Time-Resolved, Signal-Dependent Epidermal Growth Factor Receptor Proteome. J Proteome Res 2019; 18:3715-3730. [PMID: 31442056 DOI: 10.1021/acs.jproteome.9b00427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ligand binding to the cell surface receptors initiates signaling cascades that are commonly transduced through a protein-protein interaction (PPI) network to activate a plethora of response pathways. However, tools to capture the membrane PPI network are lacking. Here, we describe a cross-linking-aided mass spectrometry workflow for isolation and identification of signal-dependent epidermal growth factor receptor (EGFR) proteome. We performed protein cross-linking in cell culture at various time points following EGF treatment, followed by immunoprecipitation of endogenous EGFR and analysis of the associated proteins by quantitative mass spectrometry. We identified 140 proteins with high confidence during a 2 h time course by data-dependent acquisition and further validated the results by parallel reaction monitoring. A large proportion of proteins in the EGFR proteome function in endocytosis and intracellular protein transport. The EGFR proteome was highly dynamic with distinct temporal behavior; 10 proteins that appeared in all time points constitute the core proteome. Functional characterization showed that loss of the FYVE domain-containing proteins altered the EGFR intracellular distribution but had a minor effect on EGFR proteome or signaling. Thus, our results suggest that the EGFR proteome include functional regulators that influence EGFR signaling and bystanders that are captured as the components of endocytic vesicles. The high-resolution spatiotemporal information of these molecules facilitates the delineation of many pathways that could determine the strength and duration of the signaling, as well as the location and destination of the receptor.
Collapse
Affiliation(s)
- Yue Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Mei Leng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Yankun Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Dongdong Zhan
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai 200241 , China
| | - Jong Min Choi
- Advanced Technology Core, Baylor College of Medicine, Houston, Texas77030, United States
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Kai Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Chunchao Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Shuhui Ji
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Antrix Jain
- Advanced Technology Core, Baylor College of Medicine, Houston, Texas77030, United States
| | - Alexander B Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States,Advanced Technology Core, Baylor College of Medicine, Houston, Texas77030, United States,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas77030, United States,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China.,The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai 200241 , China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| |
Collapse
|
1140
|
Volpatti JR, Al-Maawali A, Smith L, Al-Hashim A, Brill JA, Dowling JJ. The expanding spectrum of neurological disorders of phosphoinositide metabolism. Dis Model Mech 2019; 12:12/8/dmm038174. [PMID: 31413155 PMCID: PMC6737944 DOI: 10.1242/dmm.038174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides (PIPs) are a ubiquitous group of seven low-abundance phospholipids that play a crucial role in defining localized membrane properties and that regulate myriad cellular processes, including cytoskeletal remodeling, cell signaling cascades, ion channel activity and membrane traffic. PIP homeostasis is tightly regulated by numerous inositol kinases and phosphatases, which phosphorylate and dephosphorylate distinct PIP species. The importance of these phospholipids, and of the enzymes that regulate them, is increasingly being recognized, with the identification of human neurological disorders that are caused by mutations in PIP-modulating enzymes. Genetic disorders of PIP metabolism include forms of epilepsy, neurodegenerative disease, brain malformation syndromes, peripheral neuropathy and congenital myopathy. In this Review, we provide an overview of PIP function and regulation, delineate the disorders associated with mutations in genes that modulate or utilize PIPs, and discuss what is understood about gene function and disease pathogenesis as established through animal models of these diseases. Summary: This Review highlights the intersection between phosphoinositides and the enzymes that regulate their metabolism, which together are crucial regulators of myriad cellular processes and neurological disorders.
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Almundher Al-Maawali
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Lindsay Smith
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aqeela Al-Hashim
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Neuroscience, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
1141
|
Boulgakov AA, Ellington AD, Marcotte EM. Bringing Microscopy-By-Sequencing into View. Trends Biotechnol 2019; 38:154-162. [PMID: 31416630 DOI: 10.1016/j.tibtech.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023]
Abstract
The spatial distribution of molecules and cells is fundamental to understanding biological systems. Traditionally, microscopies based on electromagnetic waves such as visible light have been used to localize cellular components by direct visualization. However, these techniques suffer from limitations of transmissibility and throughput. Complementary to optical approaches, biochemical techniques such as crosslinking can colocalize molecules without suffering the same limitations. However, biochemical approaches are often unable to combine individual colocalizations into a map across entire cells or tissues. Microscopy-by-sequencing techniques aim to biochemically colocalize DNA-barcoded molecules and, by tracking their thus unique identities, reconcile all colocalizations into a global spatial map. Here, we review this new field and discuss its enormous potential to answer a broad spectrum of questions.
Collapse
Affiliation(s)
- Alexander A Boulgakov
- Center for Systems and Synthetic Biology, Institute of Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, Institute of Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute of Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
1142
|
Zhou Y, Wang G, Wang P, Li Z, Yue T, Wang J, Zou P. Expanding APEX2 Substrates for Proximity‐Dependent Labeling of Nucleic Acids and Proteins in Living Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Zhou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Gang Wang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Pengchong Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- School of Life Sciences Tsinghua University Beijing 100084 China
| | - Zeyao Li
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- Peking-Tsinghua-NIBS Joint Graduate Program Tsinghua University Beijing 100084 China
| | - Tieqiang Yue
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Jianbin Wang
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- School of Life Sciences Tsinghua University Beijing 100084 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
| |
Collapse
|
1143
|
Zhou Y, Wang G, Wang P, Li Z, Yue T, Wang J, Zou P. Expanding APEX2 Substrates for Proximity‐Dependent Labeling of Nucleic Acids and Proteins in Living Cells. Angew Chem Int Ed Engl 2019; 58:11763-11767. [DOI: 10.1002/anie.201905949] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/24/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Ying Zhou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Gang Wang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Pengchong Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- School of Life Sciences Tsinghua University Beijing 100084 China
| | - Zeyao Li
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- Peking-Tsinghua-NIBS Joint Graduate Program Tsinghua University Beijing 100084 China
| | - Tieqiang Yue
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Jianbin Wang
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- School of Life Sciences Tsinghua University Beijing 100084 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
| |
Collapse
|
1144
|
Zhang Y, Song G, Lal NK, Nagalakshmi U, Li Y, Zheng W, Huang PJ, Branon TC, Ting AY, Walley JW, Dinesh-Kumar SP. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat Commun 2019; 10:3252. [PMID: 31324801 PMCID: PMC6642208 DOI: 10.1038/s41467-019-11202-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) immune receptors play a critical role in defence against pathogens in plants and animals. However, we know very little about NLR-interacting proteins and the mechanisms that regulate NLR levels. Here, we used proximity labeling (PL) to identify the proteome proximal to N, which is an NLR that confers resistance to Tobacco mosaic virus (TMV). Evaluation of different PL methods indicated that TurboID-based PL provides more efficient levels of biotinylation than BioID and BioID2 in plants. TurboID-based PL of N followed by quantitative proteomic analysis and genetic screening revealed multiple regulators of N-mediated immunity. Interestingly, a putative E3 ubiquitin ligase, UBR7, directly interacts with the TIR domain of N. UBR7 downregulation leads to an increased amount of N protein and enhanced TMV resistance. TMV-p50 effector disrupts the N-UBR7 interaction and relieves negative regulation of N. These findings demonstrate the utility of TurboID-based PL in plants and the N-interacting proteins we identified enhance our understanding of the mechanisms underlying NLR regulation.
Collapse
Affiliation(s)
- Yongliang Zhang
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA.
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Neeraj K Lal
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yuanyuan Li
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Wenjie Zheng
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Pin-Jui Huang
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Tess C Branon
- Departments of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alice Y Ting
- Departments of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
1145
|
Mannix KM, Starble RM, Kaufman RS, Cooley L. Proximity labeling reveals novel interactomes in live Drosophila tissue. Development 2019; 146:dev.176644. [PMID: 31208963 DOI: 10.1242/dev.176644] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Gametogenesis is dependent on intercellular communication facilitated by stable intercellular bridges connecting developing germ cells. During Drosophila oogenesis, intercellular bridges (referred to as ring canals; RCs) have a dynamic actin cytoskeleton that drives their expansion to a diameter of 10 μm. Although multiple proteins have been identified as components of RCs, we lack a basic understanding of how RC proteins interact together to form and regulate the RC cytoskeleton. Thus, here, we optimized a procedure for proximity-dependent biotinylation in live tissue using the APEX enzyme to interrogate the RC interactome. APEX was fused to four different RC components (RC-APEX baits) and 55 unique high-confidence prey were identified. The RC-APEX baits produced almost entirely distinct interactomes that included both known RC proteins and uncharacterized proteins. A proximity ligation assay was used to validate close-proximity interactions between the RC-APEX baits and their respective prey. Furthermore, an RNA interference screen revealed functional roles for several high-confidence prey genes in RC biology. These findings highlight the utility of enzyme-catalyzed proximity labeling for protein interactome analysis in live tissue and expand our understanding of RC biology.
Collapse
Affiliation(s)
- Katelynn M Mannix
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rebecca M Starble
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ronit S Kaufman
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA .,Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
1146
|
Béganton B, Solassol I, Mangé A, Solassol J. Protein interactions study through proximity-labeling. Expert Rev Proteomics 2019; 16:717-726. [PMID: 31269821 DOI: 10.1080/14789450.2019.1638769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The proteome is a dynamic system in which protein-protein interactions play a crucial part in shaping the cell phenotype. However, given the current limitations of available technologies to describe the dynamic nature of these interactions, the identification of protein-protein interactions has long been a major challenge in proteomics. In recent years, the development of BioID and APEX, two proximity-tagging technologies, have opened-up new perspectives and have already started to change our conception of protein-protein interactions, and more generally, of the proteome. With a broad range of application encompassing health, these new technologies are currently setting milestones crucial to understand fine cellular mechanisms. Area covered: In this article, we describe both the recent and the more conventional available tools to study protein-protein interactions, compare the advantages and the limitations of these techniques, and discuss the recent advancements led by the proximity tagging techniques to refine our conception of the proteome. Expert opinion: The recent development of proximity labeling techniques emphasizes the growing importance of such technologies to decipher cellular mechanism. Although several challenges still need to be addressed, many fields can benefit from these tools and notably the detection of new therapeutic targets for patient care.
Collapse
Affiliation(s)
- Benoît Béganton
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France.,Department of Pathology and onco-biology, CHU Montpellier , Montpellier , France
| | - Isabelle Solassol
- Translational Research Unit, Montpellier Cancer Institute , Montpellier , France
| | - Alain Mangé
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France
| | - Jérôme Solassol
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France.,Department of Pathology and onco-biology, CHU Montpellier , Montpellier , France
| |
Collapse
|
1147
|
Gillingham AK, Bertram J, Begum F, Munro S. In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. eLife 2019; 8:45916. [PMID: 31294692 PMCID: PMC6639074 DOI: 10.7554/elife.45916] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.
Collapse
Affiliation(s)
| | - Jessie Bertram
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
1148
|
McClellan D, Casey MJ, Bareyan D, Lucente H, Ours C, Velinder M, Singer J, Lone MD, Sun W, Coria Y, Mason CC, Engel ME. Growth Factor Independence 1B-Mediated Transcriptional Repression and Lineage Allocation Require Lysine-Specific Demethylase 1-Dependent Recruitment of the BHC Complex. Mol Cell Biol 2019; 39:e00020-19. [PMID: 30988160 PMCID: PMC6580704 DOI: 10.1128/mcb.00020-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Growth factor independence 1B (GFI1B) coordinates assembly of transcriptional repressor complexes comprised of corepressors and histone-modifying enzymes to control gene expression programs governing lineage allocation in hematopoiesis. Enforced expression of GFI1B in K562 erythroleukemia cells favors erythroid over megakaryocytic differentiation, providing a platform to define molecular determinants of binary fate decisions triggered by GFI1B. We deployed proteome-wide proximity labeling to identify factors whose inclusion in GFI1B complexes depends upon GFI1B's obligate effector, lysine-specific demethylase 1 (LSD1). We show that GFI1B preferentially recruits core and putative elements of the BRAF-histone deacetylase (HDAC) (BHC) chromatin-remodeling complex (LSD1, RCOR1, HMG20A, HMG20B, HDAC1, HDAC2, PHF21A, GSE1, ZMYM2, and ZNF217) in an LSD1-dependent manner to control acquisition of erythroid traits by K562 cells. Among these elements, depletion of both HMG20A and HMG20B or of GSE1 blocks GFI1B-mediated erythroid differentiation, phenocopying impaired differentiation brought on by LSD1 depletion or disruption of GFI1B-LSD1 binding. These findings demonstrate the central role of the GFI1B-LSD1 interaction as a determinant of BHC complex recruitment to enable cell fate decisions driven by GFI1B.
Collapse
Affiliation(s)
- David McClellan
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mattie J Casey
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diana Bareyan
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Helena Lucente
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher Ours
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Matthew Velinder
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Singer
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mehraju Din Lone
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Wenxiang Sun
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yunuen Coria
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Clinton C Mason
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Michael E Engel
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
- Center for Investigational Therapeutics, Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Nuclear Control of Cell Growth and Differentiation Program, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
1149
|
Hedl TJ, San Gil R, Cheng F, Rayner SL, Davidson JM, De Luca A, Villalva MD, Ecroyd H, Walker AK, Lee A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front Neurosci 2019; 13:548. [PMID: 31244593 PMCID: PMC6579929 DOI: 10.3389/fnins.2019.00548] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases. Proteomics methods are being increasingly applied to better understand disease-related mechanisms and to identify biomarkers of disease, using model systems as well as human samples. Proteomics-based approaches offer unbiased, high-throughput, and quantitative results with numerous applications for investigating proteins of interest. Here, we review recent advances in the understanding of ALS and FTD pathophysiology obtained using proteomics approaches, and we assess technical and experimental limitations. We compare findings from various mass spectrometry (MS) approaches including quantitative proteomics methods such as stable isotope labeling by amino acids in cell culture (SILAC) and tandem mass tagging (TMT) to approaches such as label-free quantitation (LFQ) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) in studies of ALS and FTD. Similarly, we describe disease-related protein-protein interaction (PPI) studies using approaches including immunoprecipitation mass spectrometry (IP-MS) and proximity-dependent biotin identification (BioID) and discuss future application of new techniques including proximity-dependent ascorbic acid peroxidase labeling (APEX), and biotinylation by antibody recognition (BAR). Furthermore, we explore the use of MS to detect post-translational modifications (PTMs), such as ubiquitination and phosphorylation, of disease-relevant proteins in ALS and FTD. We also discuss upstream technologies that enable enrichment of proteins of interest, highlighting the contributions of new techniques to isolate disease-relevant protein inclusions including flow cytometric analysis of inclusions and trafficking (FloIT). These recently developed approaches, as well as related advances yet to be applied to studies of these neurodegenerative diseases, offer numerous opportunities for discovery of potential therapeutic targets and biomarkers for ALS and FTD.
Collapse
Affiliation(s)
- Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
1150
|
Abstract
Cell division is a highly regulated and carefully orchestrated process. Understanding the mechanisms that promote proper cell division is an important step toward unraveling important questions in cell biology and human health. Early studies seeking to dissect the mechanisms of cell division used classical genetics approaches to identify genes involved in mitosis and deployed biochemical approaches to isolate and identify proteins critical for cell division. These studies underscored that post-translational modifications and cyclin-kinase complexes play roles at the heart of the cell division program. Modern approaches for examining the mechanisms of cell division, including the use of high-throughput methods to study the effects of RNAi, cDNA, and chemical libraries, have evolved to encompass a larger biological and chemical space. Here, we outline some of the classical studies that established a foundation for the field and provide an overview of recent approaches that have advanced the study of cell division.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 .,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|