1151
|
Darbary H, Stoler DL, Anderson GR. Family cancer syndromes: inherited deficiencies in systems for the maintenance of genomic integrity. Surg Oncol Clin N Am 2009; 18:1-17, vii. [PMID: 19056039 DOI: 10.1016/j.soc.2008.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Familial cancer syndromes have revealed important fundamental features regarding how all cancers arise through destabilization of the genome, such that somatic evolution can select for the disruption of critical cellular coordinating and regulatory features. The authors examine those cellular genes and systems whose normal role is to preserve genomic integrity and relate them to the genetic foundations of heritable cancers. By examining how these cellular systems normally function, how family cancer genes are able to affect the process of tumor progression can be learned. In so doing, a clearer picture of how sporadic cancers arise is additionally gained.
Collapse
Affiliation(s)
- Huferesh Darbary
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
1152
|
Assessing Candidate Gene nsSNPs for Phenotypic Differences in Double-Strand Break Repair Using Radiation-Induced gammaH2A.X Foci. J Cancer Epidemiol 2009; 2008:387423. [PMID: 20445776 PMCID: PMC2858903 DOI: 10.1155/2008/387423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Accepted: 12/12/2008] [Indexed: 01/16/2023] Open
Abstract
Nonsynonymous SNPs (nsSNPs) in DNA repair genes may be important determinants of DNA damage and cancer risk. We applied a set of screening criteria to a large number of nsSNPs and selected a subset of SNPs that were likely candidates for phenotypic effects on DNA double-strand break repair (DSBR). In order to induce and follow DSBR, we exposed panels of cell lines to gamma irradiation and followed the formation and disappearance of γH2A.X foci over time. All panels of cell lines showed significant increases in number, intensity, and area of foci at both the 1-hour and 3-hour time points. Twenty four hours following exposure, the number of foci returned to preexposure levels in all cell lines, whereas the size and intensity of foci remained significantly elevated. We saw no significant difference in γH2A.X foci between controls and any of the panels of cell lines representing the different nsSNPs.
Collapse
|
1153
|
Clinical importance of DNA repair inhibitors in cancer therapy. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2009. [DOI: 10.1007/s12254-008-0081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
1154
|
Abstract
Upon induction of DNA double-strand breaks (DSBs), Mre11 and Rad50 proteins of the Mre11 DNA repair complex accumulate at the sites of DSBs and form discrete nuclear foci. Precision in scoring of Mre11/Rad50-containing foci depends upon detection of those foci, some of which have a fluorescence staining intensity that is too close to the fluorescence staining intensity of the remaining Mre11 and Rad50 proteins that have not been incorporated into foci. Human U-1 melanoma cells in exponential growth were irradiated with various doses of X-rays (0-12 Gy) to induce the formation of repair foci. Four hours after irradiation, cells were simultaneously labeled for Mre11 and Rad50 proteins, using a two-color immunofluorescence staining technique. Laser scanning confocal microscopy was used to collect the composite images of randomly selected cell nuclei. Intensity correlation analysis (ICA) of equally intense fluorescence signals from Mre11 and Rad50 proteins was performed to obtain the regions with correlated pixels. ICA permitted enhanced detection of low level fluorescence of Mre11/Rad50 foci ("hidden" foci) that can be barely detected upon imaging of only one protein. For example, while imaging of only one protein (either Mre11 or Rad50) in the nucleus of a 6 Gy-irradiated cell revealed 9 foci, imaging of two proteins with ICA revealed 11 foci. ICA permitted an evaluation of the dose dependence of nuclear foci in cells irradiated with various doses of X-rays, with focus formation increasing up to a dose of 6 Gy. Our data accumulated using two-color immunofluorescence staining of Mre11 and Rad50 proteins and ICA of these two target proteins provide a basis for enhanced detection and accuracy in the scoring of DNA repair foci.
Collapse
Affiliation(s)
- Bogdan I. Gerashchenko
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph R. Dynlacht
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
1155
|
Wang G, Wang S, Shen Q, Yin S, Li C, Li A, Li J, Zhou J, Liu Q. Polymorphisms in XRCC5, XRCC6, XRCC7 genes are involved in DNA double-strand breaks(DSBs) repair associated with the risk of acute myeloid leukemia(AML) in Chinese population. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1007-4376(09)60034-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
1156
|
Yoshikawa T, Kashino G, Ono K, Watanabe M. Phosphorylated H2AX foci in tumor cells have no correlation with their radiation sensitivities. JOURNAL OF RADIATION RESEARCH 2009; 50:151-160. [PMID: 19202324 DOI: 10.1269/jrr.08109] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ionizing radiation causes DNA double strand breaks (DSBs), which produce a chromosomal change with the modification of chromatin protein. The histone H2AX is phosphorylated, and phosphorylated H2AX makes a focus. The phosphorylated H2AX focus is regarded as recruiting mediators of repair factors of DNA DSBs. Although most of the initial phosphorylated H2AX foci disappear with the repair of DNA DSBs, a few foci remain, and whether these residual DSBs are correlated with radiosensitivity is not clear. Therefore, we examined the correlation between residual DSBs and cellular radiosensitivity after ionizing radiation. We found that half of the non-irradiated normal cells had a few phosphorylated H2AX foci constantly, and most of the cells irradiated with less than 1% of the colony-forming dose had phosphorylated H2AX foci even 5 days after irradiation. Some tumor cell lines had phosphorylated H2AX foci even under non-irradiated conditions. These results indicate that residual phosphorylated H2AX foci may show loss of colony-forming potential after irradiation in normal cell lines. However, results suggested that there was not a close correlation between residual foci and radiosensitivity in some tumor cell lines, which showed high expression of endogenous phosphorylated H2AX foci. Moreover, micronuclei induced by X-ray irradiation had phosphorylated H2AX foci, but phosphorylated ATM, phosphorylated DNA-PKcs, and 53BP1 foci were not co-localized. These results suggest that DNA DSBs may be not a direct cause of micronuclei generation or H2AX phosphorylation. (227 words).
Collapse
Affiliation(s)
- Tomohiro Yoshikawa
- Kyoto University Research Reactor Institute, Asashiro-nishi, Kumatori-cho, Sennangun, Osaka, Japan
| | | | | | | |
Collapse
|
1157
|
Farb JN, Morrical SW. Functional complementation of UvsX and UvsY mutations in the mediation of T4 homologous recombination. Nucleic Acids Res 2009; 37:2336-45. [PMID: 19244311 PMCID: PMC2673438 DOI: 10.1093/nar/gkp096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteriophage T4 homologous recombination events are promoted by presynaptic filaments of UvsX recombinase bound to single-stranded DNA (ssDNA). UvsY, the phage recombination mediator protein, promotes filament assembly in a concentration-dependent manner, stimulating UvsX at stoichiometric concentrations but inhibiting at higher concentrations. Recent work demonstrated that UvsX-H195Q/A mutants exhibit decreased ssDNA-binding affinity and altered enzymatic properties. Here, we show that unlike wild-type UvsX, the ssDNA-dependent ATPase activities of UvsX-H195Q/A are strongly inhibited by both low and high concentrations of UvsY protein. This inhibition is partially relieved by UvsY mutants with decreased ssDNA-binding affinity. The UvsX-H195Q mutant retains weak DNA strand exchange activity that is inhibited by wild-type UvsY, but stimulated by ssDNA-binding compromised UvsY mutants. These and other results support a mechanism in which the formation of competent presynaptic filaments requires a hand-off of ssDNA from UvsY to UvsX, with the efficiency of the hand-off controlled by the relative ssDNA-binding affinities of the two proteins. Other results suggest that UvsY acts as a nucleotide exchange factor for UvsX, enhancing filament stability by increasing the lifetime of the high-affinity, ATP-bound form of the enzyme. Our findings reveal new details of the UvsX/UvsY relationship in T4 recombination, which may have parallels in other recombinase/mediator systems.
Collapse
Affiliation(s)
- Joshua N Farb
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
1158
|
Khan MR, Rizvi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride-induced nephrotoxicity in rats: protective role of Digera muricata. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:91-99. [PMID: 19118616 DOI: 10.1016/j.jep.2008.12.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 11/05/2008] [Accepted: 12/04/2008] [Indexed: 05/27/2023]
Abstract
Digera muricata is used in renal disorders in folk medicine. Generation of reactive radicals has been implicated in carbon tetrachloride-induced nephrotoxicity, which are involved in lipid peroxidation, accumulation of dysfunctional proteins, leading to injuries in kidneys. The present study was aimed to evaluate the efficacy of Digera muricata on the kidney function in CCl(4)-induced injuries. CCl(4) treatment (5 ml/kg body wt., i.p. CCl(4):olive oil; 1:9) significantly increased the level of urine creatinine, protein, nitrite, urobilinogen, red blood cells (RBCs), leucocytes count, and levels of blood urea nitrogen (BUN). Level of proteins and DNA fragmentation %, argyrophilic nucleolar organizer regions (AgNORs) count in renal tissues was also significantly increased. Activity of antioxidant enzymes; catalase, peroxidase, superoxide dismutase and reduced glutathione (GSH) were decreased while thiobarbituric acid reactive substances (TBARSs) were increased with CCl(4) treatment. DNA ladder assay was intimately related with the DNA fragmentation assay. Telomerase activity was determined in the CCl(4)-treated renal tissue homogenate. Treatment with n-hexane (HDMP) and methanolic (MDMP) extracts of Digera muricata (200 and 250 mg/kg body wt., oral, respectively) effectively attenuated the alterations in the biochemical markers, telomerase activity was inhibited and confirms the restoration of normalcy and accredits the protective role of Digera muricata against CCl(4)-induced nephrotoxicity.
Collapse
Affiliation(s)
- Muhammad R Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 4400, Pakistan.
| | | | | | | | | |
Collapse
|
1159
|
Willems P, De Ruyck K, Van den Broecke R, Makar A, Perletti G, Thierens H, Vral A. A polymorphism in the promoter region of Ku70/XRCC6, associated with breast cancer risk and oestrogen exposure. J Cancer Res Clin Oncol 2009; 135:1159-68. [DOI: 10.1007/s00432-009-0556-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 01/26/2009] [Indexed: 01/09/2023]
|
1160
|
Hsu CF, Tseng HC, Chiu CF, Liang SY, Tsai CW, Tsai MH, Bau DT. Association between DNA double strand break gene Ku80 polymorphisms and oral cancer susceptibility. Oral Oncol 2009; 45:789-93. [PMID: 19217823 DOI: 10.1016/j.oraloncology.2008.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 11/18/2022]
Abstract
The DNA double strand break repair gene Ku80 is thought to play a major role in the caretaking of the overall genome stability. It is very possible that defective in double strand break repair capacity can lead to human carcinogenesis. Thus, the polymorphic variants of Ku80 were firstly investigated regarding their association with oral cancer susceptibility. In this hospital-based case-control study, the association of Ku80 promoter G-1401T (rs828907), promoter C-319T (rs11685387), and intron19 (rs9288518) polymorphisms with oral cancer risk in a Taiwanese population was investigated. 600 patients with oral cancer and 600 age- and gender-matched healthy controls recruited were genotyped and analyzed by PCR-RFLP method. There were significant differences between oral cancer and control groups in the distributions of their genotypes (P=0.0038) and allelic frequencies (P=0.0044) in the Ku80 promoter G-1401T polymorphism. In the other two polymorphisms, there was no difference between both groups in the distribution of either genotype or allelic frequency. There is a synergistic gene-environmental interaction between Ku80 and areca chewing. Compared with G/G genotype in Ku80 promoter G-1401T, the G/T plus T/T significantly enhanced the risk only in the areca chewers (odds ratio=1.603; 95% confidence interval=1.053-2.011), not in the non-areca chewers. In conclusion, the Ku80 promoter G-1401T is correlated with oral cancer susceptibility and this polymorphism may be a useful marker for oral cancer prevention and early detection.
Collapse
Affiliation(s)
- Chia-Fang Hsu
- Department of Terry Fox Cancer Research Lab, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
1161
|
Qin K, Zhao L, Ash RD, McDonough WF, Zhao RY. ATM-mediated Transcriptional Elevation of Prion in Response to Copper-induced Oxidative Stress. J Biol Chem 2009; 284:4582-93. [DOI: 10.1074/jbc.m808410200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
1162
|
Pruett-Miller SM, Reading DW, Porter SN, Porteus MH. Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 2009; 5:e1000376. [PMID: 19214211 PMCID: PMC2633050 DOI: 10.1371/journal.pgen.1000376] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 01/09/2009] [Indexed: 01/19/2023] Open
Abstract
Zinc finger nucleases (ZFNs) have been used successfully to create genome-specific double-strand breaks and thereby stimulate gene targeting by several thousand fold. ZFNs are chimeric proteins composed of a specific DNA-binding domain linked to a non-specific DNA-cleavage domain. By changing key residues in the recognition helix of the specific DNA-binding domain, one can alter the ZFN binding specificity and thereby change the sequence to which a ZFN pair is being targeted. For these and other reasons, ZFNs are being pursued as reagents for genome modification, including use in gene therapy. In order for ZFNs to reach their full potential, it is important to attenuate the cytotoxic effects currently associated with many ZFNs. Here, we evaluate two potential strategies for reducing toxicity by regulating protein levels. Both strategies involve creating ZFNs with shortened half-lives and then regulating protein level with small molecules. First, we destabilize ZFNs by linking a ubiquitin moiety to the N-terminus and regulate ZFN levels using a proteasome inhibitor. Second, we destabilize ZFNs by linking a modified destabilizing FKBP12 domain to the N-terminus and regulate ZFN levels by using a small molecule that blocks the destabilization effect of the N-terminal domain. We show that by regulating protein levels, we can maintain high rates of ZFN-mediated gene targeting while reducing ZFN toxicity.
Collapse
Affiliation(s)
- Shondra M. Pruett-Miller
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - David W. Reading
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shaina N. Porter
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Matthew H. Porteus
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
1163
|
Kang Y, Lee JH, Hoan NN, Sohn HM, Chang IY, You HJ. Protein phosphatase 5 regulates the function of 53BP1 after neocarzinostatin-induced DNA damage. J Biol Chem 2009; 284:9845-53. [PMID: 19176521 DOI: 10.1074/jbc.m809272200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
53BP1 (p53-binding protein 1) is a conserved nuclear protein that is phosphorylated in response to DNA damage and rapidly recruited to the site of DNA double strand breaks, demonstrating its role in the early events to DNA damage and repair of damaged DNA. In this study, we used the yeast two-hybrid system to identify proteins that interact with 53BP1. Identification and characterization of 53BP1 protein interactions may help to further elucidate the function and regulation of 53BP1. We identified protein phosphatase 5 (PP5), a serine/threonine phosphatase that has been implicated in multiple cellular function, as a 53BP1-binding protein. This interaction further confirmed that 53BP1 interacts with PP5 in PP5-overexpressing U2OS cells, after radiomimetic agent neocarzinostatin (NCS) treatment. 53BP1 dephosphorylation at Ser-25 and Ser-1778 was accelerated in PP5-overexpressing U2OS cells following NCS treatment, and its dephosphorylation was correlated with reduced phospho-53BP1 foci formation. In contrast, the overexpression of PP5 had no effect on NCS-activated BRCA1-Ser-1524 phosphorylation. Additionally, PP5 down-regulation inhibited the dephosphorylation of 53BP1 on Ser-1778 and the disappearance of phospho-53BP1 foci following NCS treatment. Moreover, non-homologous end-joining activity was reduced in PP5-overexpressing U2OS cells. These findings indicate that PP5 plays an important role in the regulation of 53BP1 phosphorylation and activity in vivo.
Collapse
Affiliation(s)
- Yoonsung Kang
- Departments of Pharmacology, Bio-materials, Orthopedic Surgery, and Anatomy, Chosun University, 375 Seosuk-dong, Gwangju 501-759, Korea
| | | | | | | | | | | |
Collapse
|
1164
|
Pooley KA, Baynes C, Driver KE, Tyrer J, Azzato EM, Pharoah PDP, Easton DF, Ponder BAJ, Dunning AM. Common single-nucleotide polymorphisms in DNA double-strand break repair genes and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2009; 17:3482-9. [PMID: 19064565 DOI: 10.1158/1055-9965.epi-08-0594] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The proteins involved in homologous recombination are instrumental in the error-free repair of dsDNA breakages, and common germ-line variations in these genes are, therefore, potential candidates for involvement in breast cancer development and progression. We carried out a search for common, low-penetrance susceptibility alleles by tagging the common variation in 13 genes in this pathway in a two-stage case-control study. We genotyped 100 single-nucleotide polymorphisms (SNP), tagging the 655 common SNPs in these genes, in up to 4,470 cases and 4,560 controls from the SEARCH study. None of these tagging SNPs was associated with breast cancer risk, with the exception of XRCC2 rs3218536, R188H, which showed some evidence of a protective association for the rare allele [per allele odds ratio, 0.89; 95% confidence intervals (95% CI), 0.80-0.99; P trend = 0.03]. Further analyses showed that this effect was confined to a risk of progesterone receptor positive tumors (per rare allele odds ratio, 0.78; 95% CI, 0.66-0.91; P trend = 0.002). Several other SNPs also showed receptor status-specific susceptibility and evidence of roles in long-term survival, with the rare allele of BRIP1 rs2191249 showing evidence of association with a poorer prognosis (hazard ratio per minor allele, 1.20; 95% CI, 1.07-1.36; P trend = 0.002). In summary, there was little evidence of breast cancer susceptibility with any of the SNPs studied, but larger studies would be needed to confirm subgroup effects.
Collapse
Affiliation(s)
- Karen A Pooley
- Cancer Research UK Genetic Epidemiology Unit, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
1165
|
Noguchi E, Ansbach AB, Noguchi C, Russell P. Assays used to study the DNA replication checkpoint in fission yeast. Methods Mol Biol 2009; 521:493-507. [PMID: 19563125 DOI: 10.1007/978-1-60327-815-7_28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The DNA replication checkpoint, also known as the intra-S or S-phase checkpoint, plays a central role in ensuring the accuracy of DNA replication. When replication is impeded by DNA damage or other conditions, this checkpoint delays cell cycle progression and coordinates resumption of replication with DNA repair pathways. One of its critical functions is to stabilize stalled replication forks in a replication-competent state, presumably by maintaining proper assembly of replisome components and preserving DNA structures. Here we describe a series of assays used to study the replication checkpoint. These assays allow us to investigate the specific functions of proteins involved in the replication checkpoint in fission yeast.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
1166
|
Kinoshita E, van der Linden E, Sanchez H, Wyman C. RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function? Chromosome Res 2009; 17:277-88. [PMID: 19308707 PMCID: PMC4494100 DOI: 10.1007/s10577-008-9018-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The protein complex including Mre11, Rad50, and Nbs1 (MRN) functions in DNA double-strand break repair to recognize and process DNA ends as well as signal for cell cycle arrest. Amino acid sequence similarity and overall architecture make Rad50 a member of the structural maintenance of chromosome (SMC) protein family. Like SMC proteins, Rad50 function depends on ATP binding and hydrolysis. All current evidence indicates that ATP binding and hydrolysis cause architectural rearrangements in SMC protein complexes that are important for their functions in organizing DNA. In the case of the MRN complex, the functional significance of ATP binding and hydrolysis are not yet defined. Here we review the data on the ATP-dependent activities of MRN and their possible mechanistic significance. We present some speculation on the role of ATP for function of the MRN complex based on the similarities and differences in the molecular architecture of the Rad50-containing complexes and the SMC complexes condensin and cohesin.
Collapse
Affiliation(s)
- Eri Kinoshita
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Eddy van der Linden
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Humberto Sanchez
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Box 2040, 3000 CA Rotterdam, The Netherlands. Department of Radiation Oncology, Erasmus University Medical Center, Box 2040, 3000 CA Rotterdam, The Netherlands. Department of Cell Biology and Genetics, Erasmus MC, PO Box 2040, 3000 DR Rotterdam, The Netherlands
| |
Collapse
|
1167
|
Yang GY, Taboada S, Liao J. Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 2009; 512:119-156. [PMID: 19347276 DOI: 10.1007/978-1-60327-530-9_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) is a free radical that is involved in the inflammatory process and carcinogenesis. There are four nitric oxide synthase enzymes involved in NO production: induced nitric oxide synthase (iNOS), endothelial NO synthase (eNOS), neural NO synthase (nNOS), and mitochondrial NOS. iNOS is an inducible and key enzyme in the inflamed tissue. Recent literatures indicate that NO as well as iNOS and eNOS can modulate cancer-related events including nitro-oxidative stress, apoptosis, cell cycle, angio-genesis, invasion, and metastasis. This chapter focuses on linking NO/iNOS/eNOS to inflammation and carcinogenesis from experimental evidence to potential targets on cancer prevention and treatment.
Collapse
Affiliation(s)
- Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
1168
|
Graves JA, Metukuri M, Scott D, Rothermund K, Prochownik EV. Regulation of reactive oxygen species homeostasis by peroxiredoxins and c-Myc. J Biol Chem 2008; 284:6520-9. [PMID: 19098005 DOI: 10.1074/jbc.m807564200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins (Prxs) are highly conserved proteins found in most organisms, where they function primarily to scavenge reactive oxygen species (ROS). Loss of the most ubiquitous member of the family, Prx1, is associated with the accumulation of oxidatively damaged DNA and a tumor-prone phenotype. Prx1 interacts with the transcriptional regulatory domain of the c-Myc oncoprotein and suppresses its transforming activity. The DNA damage in tissues of prx1-/- mice is associated in some cases with only modest increases in total ROS levels. However, these cells show dramatic increases in nuclear ROS and reduced levels of cytoplasmic ROS, which explains their mutational susceptibility. In the current work, we have investigated whether changes in other ROS scavengers might account for the observed ROS redistribution pattern in prx1-/- cells. We show approximately 5-fold increases in Prx5 levels in prx1-/- embryo fibroblasts relative to prx1+/+ cells. Moreover, Prx5 levels normalize when Prx1 expression is restored. Prx5 levels also appear to be highly dependent on c-Myc, and chromatin immunoprecipitation experiments showed differential occupancy of c-Myc and Prx1 complexes at E-box elements in the prx5 gene proximal promoter. This study represents a heretofore unreported mechanism for the c-Myc-dependent regulation of one Prx family member by another and identifies a novel means by which cells reestablish ROS homeostasis when one of these family members is compromised.
Collapse
Affiliation(s)
- J Anthony Graves
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Pittsburgh, and University of Pittsburgh Medical Center, Department of Microbiology and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
1169
|
Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 2008; 457:57-62. [PMID: 19092802 PMCID: PMC2854499 DOI: 10.1038/nature07668] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/27/2008] [Indexed: 12/20/2022]
Abstract
DNA double-stranded breaks present a serious challenge for eukaryotic cells. The inability to repair breaks leads to genomic instability, carcinogenesis and cell death. During the double-strand break response, mammalian chromatin undergoes reorganization demarcated by H2A.X Ser 139 phosphorylation (gamma-H2A.X). However, the regulation of gamma-H2A.X phosphorylation and its precise role in chromatin remodelling during the repair process remain unclear. Here we report a new regulatory mechanism mediated by WSTF (Williams-Beuren syndrome transcription factor, also known as BAZ1B)-a component of the WICH complex (WSTF-ISWI ATP-dependent chromatin-remodelling complex). We show that WSTF has intrinsic tyrosine kinase activity by means of a domain that shares no sequence homology to any known kinase fold. We show that WSTF phosphorylates Tyr 142 of H2A.X, and that WSTF activity has an important role in regulating several events that are critical for the DNA damage response. Our work demonstrates a new mechanism that regulates the DNA damage response and expands our knowledge of domains that contain intrinsic tyrosine kinase activity.
Collapse
Affiliation(s)
- Andrew Xiao
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1170
|
Zhang M, Huang WY, Andreotti G, Gao YT, Rashid A, Chen J, Sakoda LC, Shen MC, Wang BS, Chanock S, Hsing AW. Variants of DNA repair genes and the risk of biliary tract cancers and stones: a population-based study in China. Cancer Epidemiol Biomarkers Prev 2008; 17:2123-7. [PMID: 18708406 DOI: 10.1158/1055-9965.epi-07-2735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biliary tract cancers, which encompass tumors of the gallbladder, extrahepatic ducts, and ampulla of Vater, are relatively rare tumors with a high fatality rate. Other than a close link with gallstones, the etiology of biliary tract cancers is poorly understood. We conducted a population-based case-control study in Shanghai, China, to examine whether genetic variants in several DNA repair genes are associated with biliary tract cancers or biliary stones. Genomic DNA from 410 patients with biliary tract cancers (236 gallbladder, 127 bile duct, and 47 ampulla of Vater), 891 patients with biliary stones, and 786 healthy subjects randomly selected from the Shanghai population were genotyped for putative functional single nucleotide polymorphisms in four DNA repair genes (MGMT, RAD23B, CCNH, and XRCC3). Of the five single nucleotide polymorphisms examined, only one (MGMT EX5-25C>T, rs12917) was associated with biliary tract cancer. Independent of gallstones, subjects carrying the CT genotype of the MGMT EX5-25C>T marker had a significantly reduced risk of gallbladder cancer [odds ratio (OR), 0.63; 95% confidence interval (95% CI), 0.41-0.97; P = 0.02] and nonsignificant reduced risks of bile duct (OR, 0.61; 95% CI, 0.35-1.06) and ampulla of Vater (OR, 0.85; 95% CI, 0.39-1.87) cancers. However, this marker was not associated with biliary stones, and the other markers examined were not significantly associated with either biliary tract cancers or stones. Findings from this population-based study in Shanghai suggest that MGMT gene variants may alter susceptibility to biliary tract cancer, particularly gallbladder cancer. Confirmation in future studies, however, is required.
Collapse
|
1171
|
Li L, Wang H, Yang ES, Arteaga CL, Xia F. Erlotinib attenuates homologous recombinational repair of chromosomal breaks in human breast cancer cells. Cancer Res 2008; 68:9141-6. [PMID: 19010885 DOI: 10.1158/0008-5472.can-08-1127] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) family has been implicated in several cancers, including breast, and its members have become the target of novel cancer therapies. In this report, we show a novel link between erlotinib, a potent EGFR inhibitor, DNA damage, and homology-directed recombinational repair (HDR) in human breast cancer cells. Erlotinib suppresses HDR. This is not secondary to erlotinib-mediated changes in cell cycle and is associated with increased gamma-H2AX foci, which is an in situ marker of chromosomal double-strand breaks. Both Rad51 and BRCA1 are essential components of the HDR machinery. Consistent with decreased HDR in erlotinib-treated cells, erlotinib also attenuates DNA damage-induced Rad51 foci and results in cytoplasmic retention of BRCA1. As BRCA1 is a shuttling protein and its nuclear function of promoting HDR is controlled by its subcellular localization, we further show that targeted translocation of BRCA1 to the cytoplasm enhances erlotinib sensitivity. These findings suggest a novel mechanism of action of erlotinib through its effects on the BRCA1/HDR pathway. Furthermore, BRCA1/HDR status may be an innovative avenue to enhance the sensitivity of cancer cells to erlotinib.
Collapse
Affiliation(s)
- Liping Li
- Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
1172
|
Demidova AR, Aau MY, Zhuang L, Yu Q. Dual regulation of Cdc25A by Chk1 and p53-ATF3 in DNA replication checkpoint control. J Biol Chem 2008; 284:4132-9. [PMID: 19060337 DOI: 10.1074/jbc.m808118200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells respond to DNA damage and stalled replication forks by activating signaling pathways that promote cell cycle arrest and DNA repair. A systematic screening of the protein kinase small interfering RNA library reveals that Chk1 and ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) are the main kinases responsible for intra-S-phase checkpoint upon topoisomerase I inhibitor camptothecin-induced DNA damage. It is well known that ATR-Chk1-mediated protein degradation of Cdc25A protein phosphatase is a crucial mechanism conferring this checkpoint activation. Here we describe another mechanism underlying Cdc25A down-regulation in response to DNA damage that occurs at the transcriptional level. We show that activation of tumor suppressor p53 by DNA damage results in inhibition of Cdc25A transcription as a result of activation of transcriptional repressor ATF3 that directly binds to the Cdc25A promoter. In cells deficient in both Chk1 and p53, Cdc25A down-regulation upon camptothecin-induced DNA damage is completely abolished, leading to severe defects in cell cycle checkpoints and remarkable cell death in mitosis. Our findings reveal two independent mechanisms acting in concert in regulation of Cdc25A in DNA damage response. Although Chk1 affects Cdc25A via rapid phosphorylation and protein turnover, inhibition of Cdc25A transcription by p53-ATF3 is required for the maintenance of cell cycle arrest.
Collapse
Affiliation(s)
- Anastasia R Demidova
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138672.
| | | | | | | |
Collapse
|
1173
|
Gładkowska-Dura M, Dzierzanowska-Fangrat K, Dura WT, van Krieken JHJM, Chrzanowska KH, van Dongen JJM, Langerak AW. Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. J Pathol 2008; 216:337-44. [PMID: 18788073 DOI: 10.1002/path.2418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by microcephaly, immunodeficiency, radiation hypersensitivity, chromosomal instability and increased incidence of malignancies. In Poland 105 NBS cases showing mutations in the NBS gene (nibrin, NBN), have been diagnosed, approximately 53% of which have developed cancer, mainly (>90%) lymphoid malignancies. This study is based upon the largest reported group of NBS-associated lymphomas. The predominant lymphoma types found in these 14 NBS children were diffuse large B cell lymphoma (DLBCL) and T cell lymphoblastic lymphoma (T-LBL/ALL), all showing monoclonal Ig/TCR rearrangements. The spectrum of NBS lymphomas is completely different from sporadic paediatric lymphomas and lymphomas in other immunodeficient patients. Morphological and molecular analysis of consecutive lymphoproliferations in six NBS patients revealed two cases of true secondary lymphoma. Furthermore, 9/13 NBS patients with lymphomas analysed by split-signal FISH showed breaks in the Ig or TCR loci, several of which likely represent chromosome aberrations. The combined data would fit a model in which an NBN gene defect results in a higher frequency of DNA misrejoining during double-strand break (DSB) repair, thereby contributing to an increased likelihood of lymphoma formation in NBS patients.
Collapse
Affiliation(s)
- M Gładkowska-Dura
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
1174
|
Pontano LL, Aggarwal P, Barbash O, Brown EJ, Bassing CH, Diehl JA. Genotoxic stress-induced cyclin D1 phosphorylation and proteolysis are required for genomic stability. Mol Cell Biol 2008; 28:7245-58. [PMID: 18809569 PMCID: PMC2593367 DOI: 10.1128/mcb.01085-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 07/28/2008] [Accepted: 09/14/2008] [Indexed: 01/31/2023] Open
Abstract
While mitogenic induction of cyclin D1 contributes to cell cycle progression, ubiquitin-mediated proteolysis buffers this accumulation and prevents aberrant proliferation. Because the failure to degrade cyclin D1 during S-phase triggers DNA rereplication, we have investigated cellular regulation of cyclin D1 following genotoxic stress. These data reveal that expression of cyclin D1 alleles refractory to phosphorylation- and ubiquitin-mediated degradation increase the frequency of chromatid breaks following DNA damage. Double-strand break-dependent cyclin D1 degradation requires ATM and GSK3beta, which in turn mediate cyclin D1 phosphorylation. Phosphorylated cyclin D1 is targeted for proteasomal degradation after ubiquitylation by SCF(Fbx4-alphaBcrystallin). Loss of Fbx4-dependent degradation triggers radio-resistant DNA synthesis, thereby sensitizing cells to S-phase-specific chemotherapeutic intervention. These data suggest that failure to degrade cyclin D1 compromises the intra-S-phase checkpoint and suggest that cyclin D1 degradation is a vital cellular response necessary to prevent genomic instability following genotoxic insult.
Collapse
Affiliation(s)
- Laura L Pontano
- Department of Cancer Biology, The Abramson Family Cancer Research Institute, 454 BRB II/III, Philadelphia, PA 19104-6140, USA
| | | | | | | | | | | |
Collapse
|
1175
|
Sikdar N, Banerjee S, Zhang H, Smith S, Myung K. Spt2p defines a new transcription-dependent gross chromosomal rearrangement pathway. PLoS Genet 2008; 4:e1000290. [PMID: 19057669 PMCID: PMC2585797 DOI: 10.1371/journal.pgen.1000290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 11/03/2008] [Indexed: 01/18/2023] Open
Abstract
Large numbers of gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. High mobility group 1 (HMG1) protein is a non-histone DNA-binding protein and is highly expressed in different types of tumors. The high expression of HMG1 could alter DNA structure resulting in GCRs. Spt2p is a non-histone DNA binding protein in Saccharomyces cerevisiae and shares homology with mammalian HMG1 protein. We found that Spt2p overexpression enhances GCRs dependent on proteins for transcription elongation and polyadenylation. Excess Spt2p increases the number of cells in S phase and the amount of single-stranded DNA (ssDNA) that might be susceptible to cause DNA damage and GCR. Consistently, RNase H expression, which reduces levels of ssDNA, decreased GCRs in cells expressing high level of Spt2p. Lastly, high transcription in the chromosome V, the location at which GCR is monitored, also enhanced GCR formation. We propose a new pathway for GCR where DNA intermediates formed during transcription can lead to genomic instability.
Collapse
Affiliation(s)
- Nilabja Sikdar
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Soma Banerjee
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Han Zhang
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
1176
|
Gravel S, Chapman JR, Magill C, Jackson SP. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 2008; 22:2767-72. [PMID: 18923075 DOI: 10.1101/gad.503108] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A key cellular response to DNA double-strand breaks (DSBs) is 5'-to-3' DSB resection by nucleases to generate regions of ssDNA that then trigger cell cycle checkpoint signaling and DSB repair by homologous recombination (HR). Here, we reveal that in the absence of exonuclease Exo1 activity, deletion or mutation of the Saccharomyces cerevisiae RecQ-family helicase, Sgs1, causes pronounced hypersensitivity to DSB-inducing agents. Moreover, we establish that this reflects severely compromised DSB resection, deficient DNA damage signaling, and strongly impaired HR-mediated repair. Furthermore, we show that the mammalian Sgs1 ortholog, BLM--whose deficiency causes cancer predisposition and infertility in people--also functions in parallel with Exo1 to promote DSB resection, DSB signaling and resistance to DSB-generating agents. Collectively, these data establish evolutionarily conserved roles for the BLM and Sgs1 helicases in DSB processing, signaling, and repair.
Collapse
Affiliation(s)
- Serge Gravel
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | | | |
Collapse
|
1177
|
DNA repair after DNA fragmentation in mouse small intestinal epithelial cells. Cell Tissue Res 2008; 335:371-82. [DOI: 10.1007/s00441-008-0727-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/22/2008] [Indexed: 12/28/2022]
|
1178
|
Batta K, Yokokawa M, Takeyasu K, Kundu TK. Human transcriptional coactivator PC4 stimulates DNA end joining and activates DSB repair activity. J Mol Biol 2008; 385:788-99. [PMID: 19038270 DOI: 10.1016/j.jmb.2008.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/25/2008] [Accepted: 11/03/2008] [Indexed: 12/01/2022]
Abstract
Human transcriptional coactivator PC4 is a highly abundant nuclear protein that is involved in diverse cellular processes ranging from transcription to chromatin organization. Earlier, we have shown that PC4, a positive activator of p53, overexpresses upon genotoxic insult in a p53-dependent manner. In the present study, we show that PC4 stimulates ligase-mediated DNA end joining irrespective of the source of DNA ligase. Pull-down assays reveal that PC4 helps in the association of DNA ends through its C-terminal domain. In vitro nonhomologous end-joining assays with cell-free extracts show that PC4 enhances the joining of noncomplementary DNA ends. Interestingly, we found that PC4 activates double-strand break (DSB) repair activity through stimulation of DSB rejoining in vivo. Together, these findings demonstrate PC4 as an activator of nonhomologous end joining and DSB repair activity.
Collapse
Affiliation(s)
- Kiran Batta
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, PO Bangalore 560064, India
| | | | | | | |
Collapse
|
1179
|
Kiuru A, Lindholm C, Heinävaara S, Ilus T, Jokinen P, Haapasalo H, Salminen T, Christensen HC, Feychting M, Johansen C, Lönn S, Malmer B, Schoemaker MJ, Swerdlow AJ, Auvinen A. XRCC1 and XRCC3 variants and risk of glioma and meningioma. J Neurooncol 2008; 88:135-42. [PMID: 18330515 DOI: 10.1007/s11060-008-9556-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/18/2008] [Indexed: 11/26/2022]
Abstract
Several single nucleotide polymorphisms (SNPs) affecting DNA repair capacity and modifying cancer susceptibility have been described. We evaluated the association of SNPs Arg194Trp, Arg280His, and Arg399Gln in the X-ray cross-complementing group 1 (XRCC1) and Thr241Met in the X-ray cross-complementing group 3 (XRCC3) DNA repair genes with the risk of brain tumors. The Caucasian study population consisted of 701 glioma (including 320 glioblastoma) cases, 524 meningioma cases, and 1,560 controls in a prospective population-based case-control study conducted in Denmark, Finland, Sweden, and the UK. The studied SNPs were not significantly associated with the risk of brain tumors. The highest odds ratios (ORs) for the associations were observed between the homozygous variant genotype XRCC1 Gln399Gln and the risk of glioma (OR = 1.32; 95% confidence interval, CI, 0.97-1.81), glioblastoma (OR = 1.48; 95% CI, 0.98-2.24), and meningioma (OR = 1.34; 95% CI, 0.96-1.86). However, in pair-wise comparisons a few SNP combinations were associated with the risk of brain tumors: Among others, carriers of both homozygous variant genotypes, i.e., XRCC1 Gln399Gln and XRCC3 Met241Met, were associated with a three-fold increased risk of glioma (OR = 3.18; 95% CI, 1.26-8.04) and meningioma (OR = 2.99; 95% CI, 1.16-7.72). In conclusion, no significant association with brain tumors was found for any of the polymorphisms, when examined one by one. Our results indicated possible associations between combinations of XRCC1 and XRCC3 SNPs and the risk of brain tumors.
Collapse
Affiliation(s)
- Anne Kiuru
- Department of Research and Environmental Surveillance, STUK-Radiation and Nuclear Safety Authority, Box 14, 00881 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1180
|
Koike M, Sugasawa J, Yasuda M, Koike A. Tissue-specific DNA-PK-dependent H2AX phosphorylation and γ-H2AX elimination after X-irradiation in vivo. Biochem Biophys Res Commun 2008; 376:52-5. [DOI: 10.1016/j.bbrc.2008.08.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/18/2008] [Indexed: 11/25/2022]
|
1181
|
Greubel C, Hable V, Drexler GA, Hauptner A, Dietzel S, Strickfaden H, Baur I, Krücken R, Cremer T, Dollinger G, Friedl AA. Competition effect in DNA damage response. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:423-429. [PMID: 18648839 DOI: 10.1007/s00411-008-0182-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 06/28/2008] [Indexed: 05/26/2023]
Abstract
We have built an ion-microbeam for studies of the nuclear topography and kinetics of double-strand break repair at the single cell level. Here, we show that a first and a second, delayed single ion exposure at different nuclear sites led to comparable accumulations of phospho-ATM, gamma-H2AX and Mdc1 at both earlier (e) and later (l) microirradiated sites. In contrast, accumulations of 53BP1 and the recombination protein Rad51 were strongly reduced at l-sites. This apparent competition effect is accompanied by a reduced amount of 53BP1 in undamaged areas of the irradiated nuclei. We suggest that a critically limited pool size combined with strong binding at irradiated sites leads to the exhaustion of unbound factors freely roaming the nuclear space. The undersupply of these factors at l-sites requires in addition a long-lasting binding at e-sites or a weaker binding at l-sites. The observed effects suggest that DNA damage response at individual nuclear sites depends on the time course of damage load. This may have implications for therapeutic radiation treatments.
Collapse
|
1182
|
Takahashi A, Yamakawa N, Kirita T, Omori K, Ishioka N, Furusawa Y, Mori E, Ohnishi K, Ohnishi T. DNA damage recognition proteins localize along heavy ion induced tracks in the cell nucleus. JOURNAL OF RADIATION RESEARCH 2008; 49:645-652. [PMID: 18987440 DOI: 10.1269/jrr.08007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To identify the repair dynamics involved in high linear energy transfer (LET) radiation-induced DNA damage, phospho-H2AX (gammaH2AX) foci formation was analyzed after cellular exposure to iron ions (Fe-ions, 500 MeV u(-1), 200 KeV microm(-1)). The foci located at DNA damage sites were visualized using immunocytochemical methods. Since H2AX is phosphorylated at sites of radiation-induced double strand breaks (DSB), gammaH2AX foci were used to detect or illuminate tracks formed by DSB after exposure to various doses of ionizing radiation. Additional DSB-recognition proteins such as ATM phospho-serine 1981, DNA-PKcs phospho-threonine 2609, NBS1 phospho-serine 343 and CHK2 phospho-threonine 68 all co-localized with gammaH2AX at high LET radiation induced DSB. In addition, Fe-ion induced foci remained for longer times than X-radiation induced foci. These findings suggest that Fe-ion induced damage is repaired more slowly than X-radiation induced damage, possibly because Fe-ion induced damage or lesions are more complex or extensive. Antibodies for all these phosphorylated DNA DSB recognition proteins appear to be very effective for the detection and localization of DSB.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, School of Medicine, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1183
|
Durkin SS, Guo X, Fryrear KA, Mihaylova VT, Gupta SK, Belgnaoui SM, Haoudi A, Kupfer GM, Semmes OJ. HTLV-1 Tax oncoprotein subverts the cellular DNA damage response via binding to DNA-dependent protein kinase. J Biol Chem 2008; 283:36311-20. [PMID: 18957425 PMCID: PMC2605996 DOI: 10.1074/jbc.m804931200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax.Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and gammaH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response.
Collapse
Affiliation(s)
- Sarah S Durkin
- Department of Microbiology and Molecular Cell Biology, Center for Biomedical Proteomics, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1184
|
Martin SA, Ouchi T. Cellular commitment to reentry into the cell cycle after stalled DNA is determined by site-specific phosphorylation of Chk1 and PTEN. Mol Cancer Ther 2008; 7:2509-16. [PMID: 18723495 DOI: 10.1158/1535-7163.mct-08-0199] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we show that depletion of Chk1 by small interfering RNA (siRNA) results in failure of reentry to the cell cycle after DNA replication has been stalled by exposure to hydroxyurea (HU). Casein kinase II (CKII) is degraded in these cells in a proteasome-dependent manner, resulting in decreased phosphorylation and PTEN levels. We show that phosphorylation of Chk1 at Ser(317) but not at Ser(345) is required for phosphorylation of PTEN at Thr(383) by CKII, making cell cycle reentry after HU treatment possible. Like Chk1 depletion, loss of PTEN due to siRNA is followed by inability to return to the cell cycle following HU. In Chk1-siRNA cells, reintroduction of wild-type PTEN but not PTEN T383A restores the ability of the cell to reenter the G(2)-M phase of the cell cycle after stalled DNA replication. We conclude that, in response to stalled DNA replication, Chk1 is phosphorylated at Ser(317) by ATR resulting in stabilization of CKII, which in turn leads to phosphorylation of PTEN at Thr(383).
Collapse
Affiliation(s)
- Sarah A Martin
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York University, New York, NY, USA
| | | |
Collapse
|
1185
|
Yata K, Esashi F. Dual role of CDKs in DNA repair: to be, or not to be. DNA Repair (Amst) 2008; 8:6-18. [PMID: 18832049 DOI: 10.1016/j.dnarep.2008.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2008] [Indexed: 11/30/2022]
Abstract
The maintenance of genome integrity is essential for the regulation of cell proliferation and differentiation. DNA must be accurately duplicated and segregated to daughter cells at cell division, a process that is primarily regulated by cyclin-dependent kinases (CDKs). During cell growth, however, it is inevitable that DNA breaks will occur due to endogenous and exogenous stresses. Interestingly, there is increasing evidence that the catalytic activities of CDKs play critical roles in the DNA damage response, especially in the case of damage repaired by the homologous recombination (HR) pathway. In this review, we outline current knowledge of CDK regulation and its roles both in the unperturbed cell cycle and in DNA damage responses, and discuss the physiological roles of CDKs in HR repair.
Collapse
Affiliation(s)
- Keiko Yata
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
1186
|
Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability. Proc Natl Acad Sci U S A 2008; 105:16165-70. [PMID: 18845680 DOI: 10.1073/pnas.0803145105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteasome activator PA200 enhances proteasome-mediated cleavage after acidic residues in vitro; however, its role within cells is not known. Here, we show that, in response to ionizing radiation, PA200 forms hybrid proteasomes with 19S caps and 20S core proteasomes that accumulate on chromatin, leading to an increase in proteolytic activity. Unlike many other proteins that respond to DNA damage, the response of PA200 appears to be independent of Ataxia Telangiectasia Mutated and p53, but dependent on DNA-dependent protein kinase activity. Nonetheless, PA200 is critical because PA200-knockdown cells show genomic instability and reduced survival after exposure to ionizing radiation. This phenotype is reproduced by specific inhibition of postglutamyl activity of proteasomes, but combined treatment with PA200 siRNA and postglutamyl inhibitor does not show additive effects on survival. Together, these data suggest a unique role for PA200 in genomic stability that is likely mediated through its ability to enhance postglutamyl cleavage by proteasomes.
Collapse
|
1187
|
Samanta S, Chatterjee M, Ghosh B, Rajkumar M, Rana A, Chatterjee M. Vanadium and 1, 25 (OH)2 vitamin D3 combination in inhibitions of 1,2, dimethylhydrazine-induced rat colon carcinogenesis. Biochim Biophys Acta Gen Subj 2008; 1780:1106-14. [DOI: 10.1016/j.bbagen.2008.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
|
1188
|
Willems P, Claes K, Baeyens A, Vandersickel V, Werbrouck J, De Ruyck K, Poppe B, Van den Broecke R, Makar A, Marras E, Perletti G, Thierens H, Vral A. Polymorphisms in nonhomologous end-joining genes associated with breast cancer risk and chromosomal radiosensitivity. Genes Chromosomes Cancer 2008; 47:137-48. [PMID: 18000863 DOI: 10.1002/gcc.20515] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
As enhanced chromosomal radiosensitivity (CRS) results from non- or misrepaired double strand breaks (DSBs) and is a hallmark for breast cancer and single nucleotide polymorphisms (SNPs) in DSB repair genes, such as non homologous end-joining (NHEJ) genes, could be involved in CRS and genetic predisposition to breast cancer. In this study, we investigated the association of five SNPs in three different NHEJ genes with breast cancer in a population-based case-control setting. The total patient population composed of a selected group of patients with a family history of the disease and an unselected group, consisting mainly of sporadic cases. SNP analysis showed that the c.2099-2408G>A SNP (XRCC5Ku80) [corrected] has a significant, positive odds ratio (OR) of 2.81 (95% confidence interval (CI): 1.30-6.05) for the heterozygous (He) and homozygous variant (HV) genotypes in the selected patient group. For the c.-1310 C>G SNP (XRCC6Ku70)[corrected] a significant OR of 1.85 (95%CI: 1.01-3.41) was found for the He genotype in the unselected patient group. On the contrary, the HV genotype of c.1781G>T (XRCC6Ku70) [corrected] displays a significant, negative OR of 0.43 (95%CI: 0.18-0.99) in the total patient population. The He+HV genotypes of the c.2099-2408G>A SNP (XRCC5Ku80) [corrected] also showed high and significant ORs in the group of "radiosensitive," familial breast cancer patients. In conclusion, our results provide preliminary evidence that the variant allele of c.-1310C>G (XRCC6Ku70) [corrected]and c.2099-2408G>A (XRCC5Ku80) [corrected] are risk alleles for breast cancer as well as CRS. The HV genotype of c.1781G>T (XRCC6Ku70) [corrected] on the contrary, seems to protect against breast cancer and ionizing radiation induced micronuclei.
Collapse
Affiliation(s)
- Petra Willems
- Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1189
|
Rusin P, Olszewski J, Morawiec-Bajda A, Przybylowska K, Kaczmarczyk D, Golinska A, Majsterek I. Role of impaired DNA repair in genotoxic susceptibility of patients with head and neck cancer. Cell Biol Toxicol 2008; 25:489-97. [PMID: 18787964 DOI: 10.1007/s10565-008-9103-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
Abstract
DNA repair is critical for genotoxic susceptibility and cancer development. Forty-seven patients with head and neck squamous cell carcinoma (HNSCC) and 38 healthy controls were enrolled in this study. Among the patients, 16 subjects had metastasis of HNSCC. The extent of DNA damage, including oxidative lesions, and efficiency of repair after genotoxic treatment with hydrogen peroxide were examined using the alkaline comet assay. HNSCC cells were sensitive to genotoxic treatment and displayed impaired DNA repair. In particular, lesions caused by hydrogen peroxide were repaired less effectively in cancer cells from patients with metastasis than in cells from healthy controls. We suggest that impaired DNA repair might play a role in genotoxic susceptibility of patients with head and neck cancer. Finally, as a consequence of this finding we have shown that treatment with DNA-reactive drugs could be considered as an effective therapy strategy for head and neck cancer.
Collapse
Affiliation(s)
- Pawel Rusin
- Department of Molecular Genetics, University of Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
1190
|
Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J, Lobrich M, Rodemann HP. Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Ther 2008; 7:1772-81. [PMID: 18644989 DOI: 10.1158/1535-7163.mct-07-2200] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have already reported that epidermal growth factor receptor/phosphatidylinositol 3-kinase/AKT signaling is an important pathway in regulating radiation sensitivity and DNA double-strand break (DNA-dsb) repair of human tumor cells. In the present study, we investigated the effect of AKT1 on DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and DNA-dsb repair in irradiated non-small cell lung cancer cell lines A549 and H460. Treatment of cells with the specific AKT pathway inhibitor API-59 CJ-OH (API; 1-5 micromol/L) reduced clonogenic survival between 40% and 85% and enhanced radiation sensitivity of both cell lines significantly. As indicated by fluorescence-activated cell sorting analysis (sub-G(1) cells) and poly(ADP-ribose) polymerase cleavage, API treatment or transfection with AKT1-small interfering RNA (siRNA) induced apoptosis of H460 but not of A549 cells. However, in either apoptosis-resistant A549 or apoptosis-sensitive H460 cells, API and/or AKT1-siRNA did not enhance poly(ADP-ribose) polymerase cleavage and apoptosis following irradiation. Pretreatment of cells with API or transfection with AKT1-siRNA strongly inhibited radiation-induced phosphorylation of DNA-PKcs at T2609 and S2056 as well as repair of DNA-dsb as measured by the gamma-H2AX foci assay. Coimmunoprecipitation experiments showed a complex formation of activated AKT and DNA-PKcs, supporting the assumption that AKT plays an important regulatory role in the activation of DNA-PKcs in irradiated cells. Thus, targeting of AKT enhances radiation sensitivity of lung cancer cell lines A549 and H460 most likely through specific inhibition of DNA-PKcs-dependent DNA-dsb repair but not through enhancement of radiation-induced apoptosis.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Eberhard-Karls University Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1191
|
de Campos-Nebel M, Larripa I, González-Cid M. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells. Mutat Res 2008; 646:8-16. [PMID: 18812179 DOI: 10.1016/j.mrfmmm.2008.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 07/30/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by gammaH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB in mammalian cells.
Collapse
Affiliation(s)
- Marcelo de Campos-Nebel
- Departamento de Genética, Instituto de Investigaciones Hematológicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | |
Collapse
|
1192
|
Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 2008; 36:5678-94. [PMID: 18772227 PMCID: PMC2553572 DOI: 10.1093/nar/gkn550] [Citation(s) in RCA: 932] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA double-strand breaks (DSBs) are extremely dangerous lesions with severe consequences for cell survival and the maintenance of genomic stability. In higher eukaryotic cells, DSBs in chromatin promptly initiate the phosphorylation of the histone H2A variant, H2AX, at Serine 139 to generate γ-H2AX. This phosphorylation event requires the activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs, ATM, and ATR, and serves as a landing pad for the accumulation and retention of the central components of the signaling cascade initiated by DNA damage. Regions in chromatin with γ-H2AX are conveniently detected by immunofluorescence microscopy and serve as beacons of DSBs. This has allowed the development of an assay that has proved particularly useful in the molecular analysis of the processing of DSBs. Here, we first review the role of γ-H2AX in DNA damage response in the context of chromatin and discuss subsequently the use of this modification as a surrogate marker for mechanistic studies of DSB induction and processing. We conclude with a critical analysis of the strengths and weaknesses of the approach and present some interesting applications of the resulting methodology.
Collapse
Affiliation(s)
- Andrea Kinner
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
1193
|
Gosálvez Berenguer J, Caballero Peregrín P, López-Fernández C, Fernández J, Núñez Calonge R. Fragmentación del ADN espermático. Rev Int Androl 2008. [DOI: 10.1016/s1698-031x(08)76145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
1194
|
Heterogeneous nuclear ribonucleoprotein G, nitric oxide, and oral carcinogenesis. Nitric Oxide 2008; 19:125-32. [DOI: 10.1016/j.niox.2008.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/12/2008] [Accepted: 04/16/2008] [Indexed: 11/23/2022]
|
1195
|
Tomita M, Morohoshi F, Matsumoto Y, Otsuka K, Sakai K. Role of DNA double-strand break repair genes in cell proliferation under low dose-rate irradiation conditions. JOURNAL OF RADIATION RESEARCH 2008; 49:557-564. [PMID: 18797158 DOI: 10.1269/jrr.08036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Radiation-induced DNA double-stand breaks (DSBs) lead to numerous biological effects. To elucidate the molecular mechanisms involved in cellular responses to low dose and low dose-rate radiation, it is informative to clarify the roles of DSB repair related genes. In higher vertebrate cells, there are at least two major DSB repair pathways, namely non-homologous end-joining (NHEJ) and homologous recombination (HR). Here, it is shown that in chicken DT40 cells irradiated with gamma-rays at a low dose-rate (2.4 cGy/day), the growth delay in NHEJ-related KU70- and PRKDC (encoding DNA-PKcs)-defective cells were remarkably higher than in cells defective for the HR-related RAD51B and RAD54 genes. DNA-PKcs- defective human M059J cells also showed an obvious growth delay when compared to control M059K cells. RAD54(-/-)KU70(-/-) cells demonstrated their highest degree of growth delay after an X-irradiation with a high dose-rate of 0.9 Gy/min. However they showed a lower degree of growth delay than that seen in KU70(-/-) and PRKDC(-/-/-) cells exposed to low dose-rate irradiation. These findings indicate that cellular responses to low dose-rate radiation are remarkably different from those to high dose-rate radiation. The fact that both DT40 and mammalian NHEJ-defective cells were highly sensitive to low dose-rate radiation, provide a foundation for the concept that NHEJ-related factors may be useful as molecular markers to predict the sensitivity of humans to low dose-rate radiation.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
1196
|
Abstract
DEAD box proteins are a family of putative RNA helicases associated with all aspects of cellular metabolism involving the modification of RNA secondary structure. DDX1 is a member of the DEAD box protein family that is overexpressed in a subset of retinoblastoma and neuroblastoma cell lines and tumors. DDX1 is found primarily in the nucleus, where it forms two to four large aggregates called DDX1 bodies. Here, we report a rapid redistribution of DDX1 in cells exposed to ionizing radiation, resulting in the formation of numerous foci that colocalize with gamma-H2AX and phosphorylated ATM foci at sites of DNA double-strand breaks (DSBs). The formation of DDX1 ionizing-radiation-induced foci (IRIF) is dependent on ATM, which was shown to phosphorylate DDX1 both in vitro and in vivo. The treatment of cells with RNase H prevented the formation of DDX1 IRIF, suggesting that DDX1 is recruited to sites of DNA damage containing RNA-DNA structures. We have shown that DDX1 has RNase activity toward single-stranded RNA, as well as ADP-dependent RNA-DNA- and RNA-RNA-unwinding activities. We propose that DDX1 plays an RNA clearance role at DSB sites, thereby facilitating the template-guided repair of transcriptionally active regions of the genome.
Collapse
|
1197
|
Ganapathipillai SS, Medová M, Aebersold DM, Manley PW, Berthou S, Streit B, Blank-Liss W, Greiner RH, Rothen-Rutishauser B, Zimmer Y. Coupling of mutated Met variants to DNA repair via Abl and Rad51. Cancer Res 2008; 68:5769-77. [PMID: 18632630 DOI: 10.1158/0008-5472.can-08-1269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal activation of DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems is a compelling likelihood with significant implications in both cancer biology and treatment. Here, we show that due to a potential substrate switch, mutated variants of the receptor for hepatocyte growth factor Met, but not the wild-type form of the receptor, directly couple to the Abl tyrosine kinase and the Rad51 recombinase, two key signaling elements of homologous recombination-based DNA repair. Treatment of cells that express the mutated receptor variants with the Met inhibitor SU11274 leads, in a mutant-dependent manner, to a reduction of tyrosine phosphorylated levels of Abl and Rad51, impairs radiation-induced nuclear translocation of Rad51, and acts as a radiosensitizer together with the p53 inhibitor pifithrin-alpha by increasing cellular double-strand DNA break levels following exposure to ionizing radiation. Finally, we propose that in order to overcome a mutation-dependent resistance to SU11274, this aberrant molecular axis may alternatively be targeted with the Abl inhibitor, nilotinib.
Collapse
|
1198
|
Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z. Reduced efficiency and increased mutagenicity of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase eta. DNA Repair (Amst) 2008; 7:1636-46. [PMID: 18634905 DOI: 10.1016/j.dnarep.2008.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 06/05/2008] [Accepted: 06/12/2008] [Indexed: 01/06/2023]
Abstract
Xeroderma pigmentosum variant (XPV) patients carry germ-line mutations in DNA polymerase eta (poleta), a major translesion DNA synthesis (TLS) polymerase, and exhibit severe sunlight sensitivity and high predisposition to skin cancer. Using a quantitative TLS assay system based on gapped plasmids we analyzed TLS across a site-specific TT CPD (thymine-thymine cyclobutane pyrimidine dimer) or TT 6-4 PP (thymine-thymine 6-4 photoproduct) in three pairs of poleta-proficient and deficient human cells. TLS across the TT CPD lesion was reduced by 2.6-4.4-fold in cells lacking poleta, and exhibited a strong 6-17-fold increase in mutation frequency at the TT CPD. All targeted mutations (74%) in poleta-deficient cells were opposite the 3'T of the CPD, however, a significant fraction (23%) were semi-targeted to the nearest nucleotides flanking the CPD. Deletions and insertions were observed at a low frequency, which increased in the absence of poleta, consistent with the formation of double strand breaks due to defective TLS. TLS across TT 6-4 PP was about twofold lower than across CPD, and was marginally reduced in poleta-deficient cells. TLS across TT 6-4 PP was highly mutagenic (27-63%), with multiple mutations types, and no significant difference between cells with or without poleta. Approximately 50% of the mutations formed were semi-targeted, of which 84-93% were due to the insertion of an A opposite the template G 5' to the 6-4 PP. These results, which are consistent with the UV hyper-mutability of XPV cells, highlight the critical role of poleta in error-free TLS across CPD in human cells, and suggest a potential involvement, although minor, of poleta in TLS across 6-4 PP under some conditions.
Collapse
Affiliation(s)
- Ayal Hendel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
1199
|
Hara T, Omura-Minamisawa M, Kang Y, Cheng C, Inoue T. Flavopiridol Potentiates the Cytotoxic Effects of Radiation in Radioresistant Tumor Cells in Which p53 is Mutated or Bcl-2 is Overexpressed. Int J Radiat Oncol Biol Phys 2008; 71:1485-95. [DOI: 10.1016/j.ijrobp.2008.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 10/21/2022]
|
1200
|
Negroni A, Stronati L, Grollino MG, Barattini P, Gumiero D, Danesi DT. Radioresistance in a tumour cell line correlates with radiation inducible Ku 70/80 end-binding activity. Int J Radiat Biol 2008; 84:265-76. [PMID: 18386192 DOI: 10.1080/09553000801953318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The aims of the present study were to better understand the role of Ku 80, which is involved in double-strand break repair in mammalian cells in the mechanism of radiation resistance and to verify the possibility of increasing cell radiosensitivity by targeted inhibition of Ku autoantigen 80 (Ku 80). MATERIALS AND METHODS Western blot and electrophoretic mobility shift assay (EMSA) were performed on the human bladder carcinoma cell line RT112 (radioresistant) and on the human colorectal carcinoma cell line SW48 (radiosensitive) to assess the expression levels of DNA-dependent protein kinase (DNA-PK) components and the DNA-binding activity of the Ku 70/80 heterodimer after exposure to radiation, respectively. Ku 80 silencing was carried out with the use of small interfering RNA (siRNA). RESULTS Greater differences in the DNA-binding activity of Ku 70/80 and Ku 80 phosphorylation level were observed in RT112 as compared to SW48 after X-ray treatment. There is no correlation between Ku expression and DNA-binding activity at lower doses. A significant increase in nuclear Ku 80 expression was observed one hour after the exposure, only at the higher doses, while the DNA-PK catalytic subunits (DNA-PKcs) and Ku 70 levels did not change significantly. Inhibition of Ku 80 expression by siRNA induced radiosensitivity in the RT112 cell line. CONCLUSIONS Our data demonstrate that in a bladder tumour cell line up-regulation of Ku end-binding activity without any marked change in Ku expression underlie radiation resistance.
Collapse
Affiliation(s)
- Anna Negroni
- Section of Toxicology and Biomedical Sciences, ENEA-National Agency for New Technology, Energy and Environment, Rome, Italy.
| | | | | | | | | | | |
Collapse
|