1201
|
Guo F, Wang D, Liu Z, Lu L, Zhang W, Sun H, Zhang H, Ma J, Wu S, Li N, Jiang Y, Zhu W, Qin J, Xu P, Li D, He F. CAPER: a chromosome-assembled human proteome browsER. J Proteome Res 2013; 12:179-186. [PMID: 23256906 DOI: 10.1021/pr300831z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-throughput mass spectrometry and antibody-based experiments have begun to produce a large amount of proteomic data sets. Chromosome-based visualization of these data sets and their annotations can help effectively integrate, organize, and analyze them. Therefore, we developed a web-based, user-friendly Chromosome-Assembled human Proteome browsER (CAPER). To display proteomic data sets and related annotations comprehensively, CAPER employs two distinct visualization strategies: track-view for the sequence/site information and the correspondence between proteome, transcriptome, genome, and chromosome and heatmap-view for the qualitative and quantitative functional annotations. CAPER supports data browsing at multiple scales through Google Map-like smooth navigation, zooming, and positioning with chromosomes as the reference coordinate. Both track-view and heatmap-view can mutually switch, providing a high-quality user interface. Taken together, CAPER will greatly facilitate the complete annotation and functional interpretation of the human genome by proteomic approaches, thereby making a significant contribution to the Chromosome-Centric Human Proteome Project and even the human physiology/pathology research. CAPER can be accessed at http://www.bprc.ac.cn/CAPE .
Collapse
Affiliation(s)
- Feifei Guo
- Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1202
|
Abstract
The covalent attachment of ubiquitin to a protein is one of the most common post-translational modifications and regulates diverse eukaryotic cellular processes. Ubiquitination of MHC class I was first described in the context of viral proteins which target MHC class I for degradation in the endoplasmic reticulum and at the cell surface. Study of viral-induced MHC class I degradation has been extremely instructive in elucidating cellular pathways for degradation of membrane and secretory proteins. More recently, ubiquitination of endogenous MHC class I heavy chains which fail to achieve their native conformation and undergo endoplasmic-reticulum associated degradation has been demonstrated.In this chapter we describe methods for identification of endogenous ubiquitinated MHC class I heavy chains by MHC class I-immunoprecipitation and ubiquitin-specific immunoblot or by metabolic labeling and immunoprecipitation.
Collapse
Affiliation(s)
- Marian L Burr
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jessica M Boname
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
1203
|
Wetie AGN, Sokolowska I, Woods AG, Darie CC. Identification of Post-Translational Modifications by Mass Spectrometry. Aust J Chem 2013. [DOI: 10.1071/ch13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.
Collapse
|
1204
|
Abstract
Circadian clocks are endogenous oscillators that drive the rhythmic expression of a broad array of genes that orchestrate metabolism and physiology. Recent evidence indicates that posttranscriptional and posttranslational mechanisms play essential roles in modulating circadian gene expression, particularly for the molecular mechanism of the clock. In contrast to genetic technologies that have long been used to study circadian biology, proteomic approaches have so far been limited and, if applied at all, have used two-dimensional gel electrophoresis (2-DE). Here, we review the proteomics approaches applied to date in the circadian field, and we also discuss the exciting potential of using cutting-edge proteomics technology in circadian biology. Large-scale, quantitative protein abundance measurements will help to understand to what extent the circadian clock drives system wide rhythms of protein abundance downstream of transcription regulation.
Collapse
Affiliation(s)
- Maria S Robles
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | | |
Collapse
|
1205
|
Wilson MD, Harreman M, Svejstrup JQ. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:151-7. [PMID: 22960598 DOI: 10.1016/j.bbagrm.2012.08.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023]
Abstract
During its journey across a gene, RNA polymerase II has to contend with a number of obstacles to its progression, including nucleosomes, DNA-binding proteins, DNA damage, and sequences that are intrinsically difficult to transcribe. Not surprisingly, a large number of elongation factors have evolved to ensure that transcription stalling or arrest does not occur. If, however, the polymerase cannot be restarted, it becomes poly-ubiquitylated and degraded by the proteasome. This process is highly regulated, ensuring that only RNAPII molecules that cannot otherwise be salvaged are degraded. In this review, we describe the mechanisms and factors responsible for the last resort mechanism of transcriptional elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, South Mimms, UK
| | | | | |
Collapse
|
1206
|
Domain-specific c-Myc ubiquitylation controls c-Myc transcriptional and apoptotic activity. Proc Natl Acad Sci U S A 2012; 110:978-83. [PMID: 23277542 DOI: 10.1073/pnas.1208334110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The oncogenic transcription factor c-Myc causes transformation and tumorigenesis, but it can also induce apoptotic cell death. Although tumor suppressors are necessary for c-Myc to induce apoptosis, the pathways and mechanisms are unclear. To further understand how c-Myc switches from an oncogenic protein to an apoptotic protein, we examined the mechanism of p53-independent c-Myc-induced apoptosis. We show that the tumor suppressor protein ARF mediates this switch by inhibiting ubiquitylation of the c-Myc transcriptional domain (TD). Whereas TD ubiquitylation is critical for c-Myc canonical transcriptional activity and transformation, inhibition of ubiquitylation leads to the induction of the noncanonical c-Myc target gene, Egr1, which is essential for efficient c-Myc-induced p53-independent apoptosis. ARF inhibits the interaction of c-Myc with the E3 ubiquitin ligase Skp2. Overexpression of Skp2, which occurs in many human tumors, inhibits the recruitment of ARF to the Egr1 promoter, leading to inhibition of c-Myc-induced apoptosis. Therapeutic strategies could be developed to activate this intrinsic apoptotic activity of c-Myc to inhibit tumorigenesis.
Collapse
|
1207
|
|
1208
|
Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA. Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics 2012; 12:825-31. [PMID: 23266961 DOI: 10.1074/mcp.o112.027094] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detection of endogenous ubiquitination sites by mass spectrometry has dramatically improved with the commercialization of anti-di-glycine remnant (K-ε-GG) antibodies. Here, we describe a number of improvements to the K-ε-GG enrichment workflow, including optimized antibody and peptide input requirements, antibody cross-linking, and improved off-line fractionation prior to enrichment. This refined and practical workflow enables routine identification and quantification of ∼20,000 distinct endogenous ubiquitination sites in a single SILAC experiment using moderate amounts of protein input.
Collapse
Affiliation(s)
- Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | |
Collapse
|
1209
|
Simon DN, Domaradzki T, Hofmann WA, Wilson KL. Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations. Mol Biol Cell 2012; 24:342-50. [PMID: 23243001 PMCID: PMC3564541 DOI: 10.1091/mbc.e12-07-0527] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lamin A tail domains are SUMO1 modified at K420 (nuclear localization signal) and K486 (Ig-fold). K486 modification requires Ig-fold surface residues E460 and D461 and is reduced by familial partial lipodystrophy–causing mutations G465D and K486N. These results suggest novel mechanisms of functional control over lamin A in cells. Lamin filaments are major components of the nucleoskeleton that bind LINC complexes and many nuclear membrane proteins. The tail domain of lamin A directly binds 21 known partners, including actin, emerin, and SREBP1, but how these interactions are regulated is unknown. We report small ubiquitin-like modifier 1 (SUMO1) as a major new posttranslational modification of the lamin A tail. Two SUMO1 modification sites were identified based on in vitro SUMOylation assays and studies of Cos-7 cells. One site (K420) matches the SUMO1 target consensus; the other (K486) does not. On the basis of the position of K486 on the lamin A Ig-fold, we hypothesize the SUMO1 E2 enzyme recognizes a folded structure–dependent motif that includes residues genetically linked to familial partial lipodystrophy (FPLD). Supporting this model, SUMO1-modification of the lamin A tail is reduced by two FPLD-causing mutations, G465D and K486N, and by single mutations in acidic residues E460 and D461. These results suggest a novel mode of functional control over lamin A in cells.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
1210
|
Larance M, Ahmad Y, Kirkwood KJ, Ly T, Lamond AI. Global subcellular characterization of protein degradation using quantitative proteomics. Mol Cell Proteomics 2012; 12:638-50. [PMID: 23242552 PMCID: PMC3591657 DOI: 10.1074/mcp.m112.024547] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Protein degradation provides an important regulatory mechanism used to control cell cycle progression and many other cellular pathways. To comprehensively analyze the spatial control of protein degradation in U2OS osteosarcoma cells, we have combined drug treatment and SILAC-based quantitative mass spectrometry with subcellular and protein fractionation. The resulting data set analyzed more than 74,000 peptides, corresponding to ∼5000 proteins, from nuclear, cytosolic, membrane, and cytoskeletal compartments. These data identified rapidly degraded proteasome targets, such as PRR11 and highlighted a feedback mechanism resulting in translation inhibition, induced by blocking the proteasome. We show this is mediated by activation of the unfolded protein response. We observed compartment-specific differences in protein degradation, including proteins that would not have been characterized as rapidly degraded through analysis of whole cell lysates. Bioinformatic analysis of the entire data set is presented in the Encyclopedia of Proteome Dynamics, a web-based resource, with proteins annotated for stability and subcellular distribution.
Collapse
Affiliation(s)
- Mark Larance
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
1211
|
Peters LL, Paw BH, Blanc L. The scat mouse model highlights RASA3, a GTPase activating protein, as a key regulator of vertebrate erythropoiesis and megakaryopoiesis. Small GTPases 2012; 4:47-50. [PMID: 23221813 DOI: 10.4161/sgtp.23013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although significant progress has been made in the past decades in our understanding of bone marrow failure syndromes and anemia, many pathological conditions of unknown origin remain. Mouse models have significantly contributed to our understanding of normal erythropoiesis and the pathogenesis of erythroid disorders. Recently, we identified in the scat (severe combined anemia and thrombocytopenia) mouse model a missense mutation (G125V) in the Rasa3 gene, encoding a Ras GTPase activating protein (GAP). RASA3 is lost during reticulocyte maturation through the exosomal pathway and is therefore absent in mature erythrocytes. In wild-type reticulocytes, RASA3 is bound to the plasma membrane, a prerequisite for its GAP activity, but is mislocalized to the cytosol in scat. This mislocalization leads to RASA3 loss of function and higher levels of Ras-GTP, the active form of Ras, are consistently found in scat mature red cells. Finally, RASA3 function is conserved among vertebrates, since erythropoiesis and thrombopoiesis are impaired in zebrafish in which rasa3 is knocked-down by morpholinos, and RASA3 is expressed in human erythroleukemia cells as well as in primary cells. In this commentary, we highlight the critical, conserved and non-redundant function of RASA3 in the context of vertebrate erythropoiesis and megakaryopoiesis. We notably discuss the mechanism of RASA3 downregulation and speculate on the most intriguing part of the phenotype observed in scat; the transient remission period.
Collapse
|
1212
|
Low TY, Magliozzi R, Guardavaccaro D, Heck AJR. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics. Proteomics 2012; 13:526-37. [PMID: 23019148 DOI: 10.1002/pmic.201200244] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 11/11/2022]
Abstract
Ubiquitin (Ub) is a small protein modifier that is covalently attached to the ε-amino group of lysine residues of protein substrates, generally targeting them for degradation. Due to the emergence of specific anti-diglycine (-GG) antibodies and the improvement in MS, it is now possible to identify more than 10 000 ubiquitylated sites in a single proteomics study. Besides cataloging ubiquitylated sites, it is equally important to unravel the biological relationship between ubiquitylated substrates and the ubiquitin conjugation machinery. Relevant to this, we discuss the role of affinity purification-MS (AP-MS), in characterizing E3 ligase-substrate complexes. Recently, such strategies have also been adapted to screen for binding partners of both deubiquitylating enzymes (DUBs) and ubiquitin-binding domains (UBDs). The complexity of the "ubiquitome" is further expanded by the fact that Ub itself can be ubiquitylated at any of its seven lysine residues forming polyubiquitin (polyUb), thus diversifying its lengths and topologies to suit a variety of molecular recognition processes. Therefore, applying MS to study polyUb linkages is also becoming an emerging and important area. Finally, we discuss the future of MS-based proteomics in answering important questions with respect to ubiquitylation.
Collapse
Affiliation(s)
- Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
1213
|
González B, Garrido F, Ortega R, Martínez-Júlvez M, Revilla-Guarinos A, Pérez-Pertejo Y, Velázquez-Campoy A, Sanz-Aparicio J, Pajares MA. NADP+ binding to the regulatory subunit of methionine adenosyltransferase II increases intersubunit binding affinity in the hetero-trimer. PLoS One 2012; 7:e50329. [PMID: 23189196 PMCID: PMC3506619 DOI: 10.1371/journal.pone.0050329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/18/2012] [Indexed: 12/15/2022] Open
Abstract
Mammalian methionine adenosyltransferase II (MAT II) is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP(+) with a 1:1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP(+) binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells.
Collapse
Affiliation(s)
- Beatriz González
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano” (CSIC), Madrid, Spain
| | - Francisco Garrido
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Rebeca Ortega
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano” (CSIC), Madrid, Spain
| | - Marta Martínez-Júlvez
- Departmento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Complejos, Unidad Asociada IQFR-BIFI, Mariano Esquillor s/n, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | | | - Yolanda Pérez-Pertejo
- Departamento de Farmacología y Toxicología (INTOXCAL), Universidad de León, Campus de Vegazana s/n, León, Spain
| | - Adrián Velázquez-Campoy
- Departmento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Complejos, Unidad Asociada IQFR-BIFI, Mariano Esquillor s/n, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
- Fundacion ARAID, Diputación General de Aragón, Zaragoza, Spain
| | - Julia Sanz-Aparicio
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano” (CSIC), Madrid, Spain
| | - María A. Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Molecular Hepatology Group, IdiPAZ, Madrid, Spain
| |
Collapse
|
1214
|
Gao T, Liu Z, Wang Y, Cheng H, Yang Q, Guo A, Ren J, Xue Y. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res 2012; 41:D445-51. [PMID: 23172288 PMCID: PMC3531133 DOI: 10.1093/nar/gks1103] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this work, we developed a family-based database of UUCD (http://uucd.biocuckoo.org) for ubiquitin and ubiquitin-like conjugation, which is one of the most important post-translational modifications responsible for regulating a variety of cellular processes, through a similar E1 (ubiquitin-activating enzyme)-E2 (ubiquitin-conjugating enzyme)-E3 (ubiquitin-protein ligase) enzyme thioester cascade. Although extensive experimental efforts have been taken, an integrative data resource is still not available. From the scientific literature, 26 E1s, 105 E2s, 1003 E3s and 148 deubiquitination enzymes (DUBs) were collected and classified into 1, 3, 19 and 7 families, respectively. To computationally characterize potential enzymes in eukaryotes, we constructed 1, 1, 15 and 6 hidden Markov model (HMM) profiles for E1s, E2s, E3s and DUBs at the family level, separately. Moreover, the ortholog searches were conducted for E3 and DUB families without HMM profiles. Then the UUCD database was developed with 738 E1s, 2937 E2s, 46 631 E3s and 6647 DUBs of 70 eukaryotic species. The detailed annotations and classifications were also provided. The online service of UUCD was implemented in PHP + MySQL + JavaScript + Perl.
Collapse
Affiliation(s)
- Tianshun Gao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
1215
|
Cabezón T, Gromova I, Gromov P, Serizawa R, Timmermans Wielenga V, Kroman N, Celis JE, Moreira JMA. Proteomic profiling of triple-negative breast carcinomas in combination with a three-tier orthogonal technology approach identifies Mage-A4 as potential therapeutic target in estrogen receptor negative breast cancer. Mol Cell Proteomics 2012; 12:381-94. [PMID: 23172894 DOI: 10.1074/mcp.m112.019786] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is a very heterogeneous disease, encompassing several intrinsic subtypes with various morphological and molecular features, natural history and response to therapy. Currently, molecular targeted therapies are available for estrogen receptor (ER)(-) and human epidermal growth factor receptor 2 (Her2)-positive breast tumors. However, a significant proportion of primary breast cancers are negative for ER, progesterone receptor (PgR), and Her2, comprising the triple negative breast cancer (TNBC) group. Women with TNBC have a poor prognosis because of the aggressive nature of these tumors and current lack of suitable targeted therapies. As a consequence, the identification of novel relevant protein targets for this group of patients is of great importance. Using a systematic two dimensional (2D) gel-based proteomic profiling strategy, applied to the analysis of fresh TNBC tissue biopsies, in combination with a three-tier orthogonal technology (two dimensional PAGE/silver staining coupled with MS, two dimensional Western blotting, and immunohistochemistry) approach, we aimed to identify targetable protein markers that were present in a significant fraction of samples and that could define therapy-amenable sub-groups of TNBCs. We present here our results, including a large cumulative database of proteins based on the analysis of 78 TNBCs, and the identification and validation of one specific protein, Mage-A4, which was expressed in a significant fraction of TNBC and Her2-positive/ER negative lesions. The high level expression of Mage-A4 in the tumors studied allowed the detection of the protein in the tumor interstitial fluids as well as in sera. The existence of immunotherapeutics approaches specifically targeting this protein, or Mage-A protein family members, and the fact that we were able to detect its presence in serum suggest novel management options for TNBC and human epidermal growth factor receptor 2 positive/estrogen receptor negative patients bearing Mage-A4 positive tumors.
Collapse
Affiliation(s)
- Teresa Cabezón
- Department of Proteomics in Cancer, Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
1216
|
Chemogenomic approach identified yeast YLR143W as diphthamide synthetase. Proc Natl Acad Sci U S A 2012; 109:19983-7. [PMID: 23169644 DOI: 10.1073/pnas.1214346109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many genes are of unknown functions in any sequenced genome. A combination of chemical and genetic perturbations has been used to investigate gene functions. Here we present a case that such "chemogenomics" information can be effectively used to identify missing genes in a defined biological pathway. In particular, we identified the previously unknown enzyme diphthamide synthetase for the last step of diphthamide biosynthesis. We found that yeast protein YLR143W is the diphthamide synthetase catalyzing the last amidation step using ammonium and ATP. Diphthamide synthetase is evolutionarily conserved in eukaryotes. The previously uncharacterized human gene ATPBD4 is the ortholog of yeast YLR143W and fully rescues the deletion of YLR143W in yeast.
Collapse
|
1217
|
Kim DS, Hahn Y. Gains of ubiquitylation sites in highly conserved proteins in the human lineage. BMC Bioinformatics 2012; 13:306. [PMID: 23157318 PMCID: PMC3561281 DOI: 10.1186/1471-2105-13-306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 11/14/2012] [Indexed: 01/03/2023] Open
Abstract
Background Post-translational modification of lysine residues of specific proteins by ubiquitin modulates the degradation, localization, and activity of these target proteins. Here, we identified gains of ubiquitylation sites in highly conserved regions of human proteins that occurred during human evolution. Results We analyzed human ubiquitylation site data and multiple alignments of orthologous mammalian proteins including those from humans, primates, other placental mammals, opossum, and platypus. In our analysis, we identified 281 ubiquitylation sites in 252 proteins that first appeared along the human lineage during primate evolution: one protein had four novel sites; four proteins had three sites each; 18 proteins had two sites each; and the remaining 229 proteins had one site each. PML, which is involved in neurodevelopment and neurodegeneration, acquired three sites, two of which have been reported to be involved in the degradation of PML. Thirteen human proteins, including ERCC2 (also known as XPD) and NBR1, gained human-specific ubiquitylated lysines after the human-chimpanzee divergence. ERCC2 has a Lys/Gln polymorphism, the derived (major) allele of which confers enhanced DNA repair capacity and reduced cancer risk compared with the ancestral (minor) allele. NBR1 and eight other proteins that are involved in the human autophagy protein interaction network gained a novel ubiquitylation site. Conclusions The gain of novel ubiquitylation sites could be involved in the evolution of protein degradation and other regulatory networks. Although gains of ubiquitylation sites do not necessarily equate to adaptive evolution, they are useful candidates for molecular functional analyses to identify novel advantageous genetic modifications and innovative phenotypes acquired during human evolution.
Collapse
Affiliation(s)
- Dong Seon Kim
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, 156-756, Korea.
| | | |
Collapse
|
1218
|
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 2012; 12:343-55. [PMID: 23161513 DOI: 10.1074/mcp.m112.022806] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.
Collapse
|
1219
|
Matyskiela ME, Martin A. Design principles of a universal protein degradation machine. J Mol Biol 2012; 425:199-213. [PMID: 23147216 DOI: 10.1016/j.jmb.2012.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/26/2012] [Accepted: 11/01/2012] [Indexed: 11/20/2022]
Abstract
The 26S proteasome is a 2.5-MDa, 32-subunit ATP-dependent protease that is responsible for the degradation of ubiquitinated protein targets in all eukaryotic cells. This proteolytic machine consists of a barrel-shaped peptidase capped by a large regulatory particle, which contains a heterohexameric AAA+ unfoldase as well as several structural modules of previously unknown function. Recent electron microscopy (EM) studies have allowed major breakthroughs in understanding the architecture of the regulatory particle, revealing that the additional modules provide a structural framework to position critical, ubiquitin-interacting subunits and thus allow the 26S proteasome to function as a universal degradation machine for a wide variety of protein substrates. The EM studies have also uncovered surprising asymmetries in the spatial arrangement of proteasome subunits, yet the functional significance of these architectural features remains unclear. This review will summarize the recent findings on 26S proteasome structure and discuss the mechanistic implications for substrate binding, deubiquitination, unfolding, and degradation.
Collapse
Affiliation(s)
- Mary E Matyskiela
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
1220
|
Loedige I, Gaidatzis D, Sack R, Meister G, Filipowicz W. The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function. Nucleic Acids Res 2012; 41:518-32. [PMID: 23125361 PMCID: PMC3592402 DOI: 10.1093/nar/gks1032] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
TRIM-NHL proteins are conserved regulators of development and differentiation but their molecular function has remained largely elusive. Here, we report an as yet unrecognized activity for the mammalian TRIM-NHL protein TRIM71 as a repressor of mRNAs. We show that TRIM71 is associated with mRNAs and that it promotes translational repression and mRNA decay. We have identified Rbl1 and Rbl2, two transcription factors whose down-regulation is important for stem cell function, as TRIM71 targets in mouse embryonic stem cells. Furthermore, one of the defining features of TRIM-NHL proteins, the NHL domain, is necessary and sufficient to target TRIM71 to RNA, while the RING domain that confers ubiquitin ligase activity is dispensable for repression. Our results reveal strong similarities between TRIM71 and Drosophila BRAT, the best-studied TRIM-NHL protein and a well-documented translational repressor, suggesting that BRAT and TRIM71 are part of a family of mRNA repressors regulating proliferation and differentiation.
Collapse
Affiliation(s)
- Inga Loedige
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
1221
|
Narendra D, Walker JE, Youle R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 2012; 4:4/11/a011338. [PMID: 23125018 DOI: 10.1101/cshperspect.a011338] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in Parkin or PINK1 are the most common cause of recessive familial parkinsonism. Recent studies suggest that PINK1 and Parkin form a mitochondria quality control pathway that identifies dysfunctional mitochondria, isolates them from the mitochondrial network, and promotes their degradation by autophagy. In this pathway the mitochondrial kinase PINK1 senses mitochondrial fidelity and recruits Parkin selectively to mitochondria that lose membrane potential. Parkin, an E3 ligase, subsequently ubiquitinates outer mitochondrial membrane proteins, notably the mitofusins and Miro, and induces autophagic elimination of the impaired organelles. Here we review the recent rapid progress in understanding the molecular mechanisms of PINK1- and Parkin-mediated mitophagy and the identification of Parkin substrates suggesting how mitochondrial fission and trafficking are involved. We also discuss how defects in mitophagy may be linked to Parkinson's disease.
Collapse
Affiliation(s)
- Derek Narendra
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
1222
|
Han KJ, Foster DG, Zhang NY, Kanisha K, Dzieciatkowska M, Sclafani RA, Hansen KC, Peng J, Liu CW. Ubiquitin-specific protease 9x deubiquitinates and stabilizes the spinal muscular atrophy protein-survival motor neuron. J Biol Chem 2012; 287:43741-52. [PMID: 23112048 DOI: 10.1074/jbc.m112.372318] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic disorder of infant mortality, is caused by low levels of survival motor neuron (SMN) protein. Currently it is not clear how the SMN protein levels are regulated at the post-transcriptional level. In this report, we find that Usp9x, a deubiquitinating enzyme, stably associates with the SMN complex via directly interacting with SMN. Usp9x deubiquitinates SMN that is mostly mono- and di-ubiquitinated. Knockdown of Usp9x promotes SMN degradation and reduces the protein levels of SMN and the SMN complex in cultured mammalian cells. Interestingly, Usp9x does not deubiquitinate nuclear SMNΔ7, the main protein product of the SMN2 gene, which is polyubiquitinated and rapidly degraded by the proteasome. Together, our results indicate that SMN and SMNΔ7 are differently ubiquitinated; Usp9x plays an important role in stabilizing SMN and the SMN complex, likely via antagonizing Ub-dependent SMN degradation.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1223
|
Differential ubiquitination and proteasome regulation of Ca(V)2.2 N-type channel splice isoforms. J Neurosci 2012; 32:10365-9. [PMID: 22836269 DOI: 10.1523/jneurosci.0851-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ca(V)2.2 (N-type) calcium channels control the entry of calcium into neurons to regulate essential functions but most notably presynaptic transmitter release. Ca(V)2.2 channel expression levels are precisely controlled, but we know little of the cellular mechanisms involved. The ubiquitin proteasome system (UPS) is known to regulate expression of many synaptic proteins, including presynaptic elements, to optimize synaptic efficiency. However, we have limited information about ubiquitination of Ca(V)2 channels. Here we show that Ca(V)2.2 proteins are ubiquitinated, and that elements in the proximal C terminus of Ca(V)2.2 encoded by exon 37b of the mouse Cacna1b gene predispose cloned and native channels to downregulation by the UPS. Ca(V)2.2 channels containing e37b are expressed throughout the mammalian nervous system, but in some cells, notably nociceptors, sometimes e37a--not e37b--is selected during alternative splicing of Ca(V)2.2 pre-mRNA. By a combination of biochemical and functional analyses we show e37b promotes a form of ubiquitination that is coupled to reduced Ca(V)2.2 current density and increased sensitivity to the UPS. Cell-specific alternative splicing of e37a in nociceptors reduces Ca(V)2.2 channel ubiquitination and sensitivity to the UPS, suggesting a role in pain processing.
Collapse
|
1224
|
A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products. Biochem J 2012; 446:191-201. [PMID: 22657538 DOI: 10.1042/bj20120545] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing evidence showing that prostate cancer cells have perturbed cholesterol homoeostasis, accumulating cholesterol to promote cell growth. Consequently, cholesterol-lowering drugs such as statins are being evaluated in prostate cancer treatment. Furthermore, natural products such as betulin (from birch tree bark) and tocotrienol (a minor form of vitamin E) have been shown to lower cholesterol levels. Using these drugs and oxysterols, we have determined which aspects of cholesterol homoeostasis should be targeted in prostate cancer, e.g. cellular cholesterol levels are increased by the transcription factor SREBP-2 (sterol-regulatory-element-binding protein isoform 2), whereas LXR (liver X receptor) promotes cholesterol efflux. Whereas betulin exerted non-specific effects on cell viability, tocotrienols produced a strong direct correlation between SREBP-2 activity and cell viability. Mechanistically, tocotrienols lowered SREBP-2 activity by degrading mature SREBP-2 independently of the proteasome. In contrast, no correlation was seen between LXR activity and cell viability, implying that SREBP-2 is a better target than LXR for prostate cancer treatment. Lastly, androgen-dependent and -independent LNCaP cells were both sensitive to tocotrienols. Overall, this suggests that tocotrienols and other drugs targeting the SREBP-2 pathway are a potential therapeutic option for prostate cancer.
Collapse
|
1225
|
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 2012; 11:783-98. [PMID: 23103054 DOI: 10.1016/j.stem.2012.09.011] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/13/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022]
Abstract
Although transcriptional regulation of stem cell pluripotency and differentiation has been extensively studied, only a small number of studies have addressed the roles for posttranslational modifications in these processes. A key mechanism of posttranslational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Here, using shotgun proteomics, we map the ubiquitinated protein landscape during embryonic stem cell (ESC) differentiation and induced pluripotency. Moreover, using UPS-targeted RNAi screens, we identify additional regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme Psmd14 and the E3 ligase Fbxw7, and characterize their importance in ESC pluripotency and cellular reprogramming. This global characterization of the UPS as a key regulator of stem cell pluripotency opens the way for future studies that focus on specific UPS enzymes or ubiquitinated substrates.
Collapse
|
1226
|
A critical appraisal of quantitative studies of protein degradation in the framework of cellular proteostasis. Biochem Res Int 2012; 2012:823597. [PMID: 23119163 PMCID: PMC3483835 DOI: 10.1155/2012/823597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/18/2012] [Indexed: 11/21/2022] Open
Abstract
Protein homeostasis, proteostasis, is essential to understand cell function. Protein degradation is a crucial component of the proteostatic mechanisms of the cell. Experiments on protein degradation are nowadays present in many investigations in the field of molecular and cell biology. In the present paper, we focus on the different experimental approaches to study protein degradation and present a critical appraisal of the results derived from steady-state and kinetic experiments using detection of unlabelled and labelled protein methodologies with a proteostatic perspective. This perspective allows pinpointing the limitations in interpretation of results and the need of further experiments and/or controls to establish “definitive evidence” for the role of protein degradation in the proteostasis of a given protein or the entire proteome. We also provide a spreadsheet for simple calculations of mRNA and protein decays for mimicking different experimental conditions and a checklist for the analysis of experiments dealing with protein degradation studies that may be useful for researchers interested in the area of protein turnover.
Collapse
|
1227
|
Fimia GM, Corazzari M, Antonioli M, Piacentini M. Ambra1 at the crossroad between autophagy and cell death. Oncogene 2012; 32:3311-8. [DOI: 10.1038/onc.2012.455] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 12/12/2022]
|
1228
|
Nusinow DP, Kiezun A, O'Connell DJ, Chick JM, Yue Y, Maas RL, Gygi SP, Sunyaev SR. Network-based inference from complex proteomic mixtures using SNIPE. Bioinformatics 2012; 28:3115-22. [PMID: 23060611 DOI: 10.1093/bioinformatics/bts594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
MOTIVATION Proteomics presents the opportunity to provide novel insights about the global biochemical state of a tissue. However, a significant problem with current methods is that shotgun proteomics has limited success at detecting many low abundance proteins, such as transcription factors from complex mixtures of cells and tissues. The ability to assay for these proteins in the context of the entire proteome would be useful in many areas of experimental biology. RESULTS We used network-based inference in an approach named SNIPE (Software for Network Inference of Proteomics Experiments) that selectively highlights proteins that are more likely to be active but are otherwise undetectable in a shotgun proteomic sample. SNIPE integrates spectral counts from paired case-control samples over a network neighbourhood and assesses the statistical likelihood of enrichment by a permutation test. As an initial application, SNIPE was able to select several proteins required for early murine tooth development. Multiple lines of additional experimental evidence confirm that SNIPE can uncover previously unreported transcription factors in this system. We conclude that SNIPE can enhance the utility of shotgun proteomics data to facilitate the study of poorly detected proteins in complex mixtures. AVAILABILITY AND IMPLEMENTATION An implementation for the R statistical computing environment named snipeR has been made freely available at http://genetics.bwh.harvard.edu/snipe/. CONTACT ssunyaev@rics.bwh.harvard.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David P Nusinow
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
1229
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
1230
|
Beltrao P, Albanèse V, Kenner LR, Swaney DL, Burlingame A, Villén J, Lim WA, Fraser JS, Frydman J, Krogan NJ. Systematic functional prioritization of protein posttranslational modifications. Cell 2012; 150:413-25. [PMID: 22817900 DOI: 10.1016/j.cell.2012.05.036] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 03/21/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation, acetylation, and ubiquitination sites from 11 eukaryotic species, including 2,500 newly identified ubiquitylation sites for Saccharomyces cerevisiae. We developed methods to prioritize the functional relevance of these PTMs by predicting those that likely participate in cross-regulatory events, regulate domain activity, or mediate protein-protein interactions. PTM conservation within domain families identifies regulatory "hot spots" that overlap with functionally important regions, a concept that we experimentally validated on the HSP70 domain family. Finally, our analysis of the evolution of PTM regulation highlights potential routes for neutral drift in regulatory interactions and suggests that only a fraction of modification sites are likely to have a significant biological role.
Collapse
Affiliation(s)
- Pedro Beltrao
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1231
|
Pan Y, Xu H, Liu R, Jia L. Induction of cell senescence by targeting to Cullin-RING Ligases (CRLs) for effective cancer therapy. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:273-281. [PMID: 23097743 PMCID: PMC3476791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 09/17/2012] [Indexed: 06/01/2023]
Abstract
Cullin-RING ligases (CRLs) are the biggest family of multiunit ubiquitin E3 ligases, controlling many biological processes by promoting the degradation of a broad spectrum of proteins associated with cell cycle, signal transduction and cell growth. The dysfunction of CRLs causes a lot of diseases including cancer, which meanwhile offers us a promising approach to cancer therapy by targeting to CRLs. Recent studies have demonstrated that genetic or pharmaceutical inactivation of CRLs often leads to cancer cell death by activating multiple cell-killing pathways including senescence, an emerging anticancer mechanism of therapeutic agents. Here, we summarize the induction of cellular senescence and its mechanism of action, triggered by targeting to specific subunits of CRLs via multiple approaches including siRNA silencing, genetic knockout as well as small molecule inhibitor, exhibiting anticancer effect in vitro and in vivo.
Collapse
Affiliation(s)
- Yongfu Pan
- Department of Immunology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Hua Xu
- Department of Immunology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Rujiao Liu
- Department of Immunology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Lijun Jia
- Department of Immunology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Biotherapy Research Center of Fudan UniversityShanghai 200032, China
| |
Collapse
|
1232
|
Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat Cell Biol 2012; 14:1089-98. [DOI: 10.1038/ncb2579] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/13/2012] [Indexed: 02/07/2023]
|
1233
|
Oudshoorn D, Versteeg GA, Kikkert M. Regulation of the innate immune system by ubiquitin and ubiquitin-like modifiers. Cytokine Growth Factor Rev 2012; 23:273-82. [PMID: 22964110 PMCID: PMC7172403 DOI: 10.1016/j.cytogfr.2012.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022]
Abstract
Detection of invading pathogens by pattern recognition receptors (PRRs) is crucial for the activation of the innate immune response. These sensors signal through intertwining signaling cascades which result in the expression of pro-inflammatory cytokines and type I interferons. Conjugation, or binding, of ubiquitin and ubiquitin-like modifiers (UBLs) to a plethora of immune signaling molecules forms a common theme in innate immune regulation. Numerous E3 ligases and deubiquitylating enzymes (DUBs) actively modify signaling components in order to achieve a balanced activation of the innate immune system. This review will discuss how this balance is achieved and which questions remain regarding innate immune regulation by ubiquitin and UBLs.
Collapse
Affiliation(s)
- Diede Oudshoorn
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
1234
|
Harper JW, Tan MKM. Understanding cullin-RING E3 biology through proteomics-based substrate identification. Mol Cell Proteomics 2012; 11:1541-50. [PMID: 22962057 DOI: 10.1074/mcp.r112.021154] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein turnover through the ubiquitin-proteasome pathway controls numerous developmental decisions and biochemical processes in eukaryotes. Central to protein ubiquitylation are ubiquitin ligases, which provide specificity in targeted ubiquitylation. With more than 600 ubiquitin ligases encoded by the human genome, many of which remain to be studied, considerable effort is being placed on the development of methods for identifying substrates of specific ubiquitin ligases. In this review, we describe proteomic technologies for the identification of ubiquitin ligase targets, with a particular focus on members of the cullin-RING E3 class of ubiquitin ligases, which use F-box proteins as substrate specific adaptor proteins. Various proteomic methods are described and are compared with genetic approaches that are available. The continued development of such methods is likely to have a substantial impact on the ubiquitin-proteasome field.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
1235
|
Clague M, Liu H, Urbé S. Governance of Endocytic Trafficking and Signaling by Reversible Ubiquitylation. Dev Cell 2012; 23:457-67. [DOI: 10.1016/j.devcel.2012.08.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/27/2012] [Accepted: 08/21/2012] [Indexed: 12/17/2022]
|
1236
|
Guerra DD, Callis J. Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. PLANT PHYSIOLOGY 2012; 160:56-64. [PMID: 22730427 PMCID: PMC3440229 DOI: 10.1104/pp.112.199869] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
1237
|
Kelley DR, Estelle M. Ubiquitin-mediated control of plant hormone signaling. PLANT PHYSIOLOGY 2012; 160:47-55. [PMID: 22723083 PMCID: PMC3440220 DOI: 10.1104/pp.112.200527] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/21/2012] [Indexed: 05/18/2023]
|
1238
|
Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers. PLANT PHYSIOLOGY 2012; 160:2-14. [PMID: 22693286 PMCID: PMC3440198 DOI: 10.1104/pp.112.200667] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/09/2012] [Indexed: 05/18/2023]
Affiliation(s)
- Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
1239
|
Centore RC, Yazinski SA, Tse A, Zou L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol Cell 2012; 46:625-35. [PMID: 22681887 DOI: 10.1016/j.molcel.2012.05.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
PCNA is a key component of DNA replication and repair machineries. DNA damage-induced PCNA ubiquitylation serves as a molecular mark to orchestrate postreplication repair. Here, we have identified and characterized Spartan, a protein that specifically recognizes ubiquitylated PCNA and plays an important role in cellular resistance to UV radiation. In vitro, Spartan engages ubiquitylated PCNA via both a PIP box and a UBZ domain. In cells, Spartan is recruited to sites of UV damage in a manner dependent upon the PIP box, the UBZ domain, and PCNA ubiquitylation. Furthermore, Spartan colocalizes and interacts with Rad18, the E3 ubiquitin ligase that modifies PCNA. Surprisingly, while Spartan is recruited by ubiquitylated PCNA, knockdown of Spartan compromised chromatin association of Rad18, monoubiquitylation of PCNA, and localization of Pol η to UV damage. Thus, as a "reader" of ubiquitylated PCNA, Spartan promotes an unexpected feed-forward loop to enhance PCNA ubiquitylation and translesion DNA synthesis.
Collapse
Affiliation(s)
- Richard C Centore
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
1240
|
Thomson JM, Bowles V, Choi JW, Basu U, Meng Y, Stothard P, Moore S. The identification of candidate genes and SNP markers for classical bovine spongiform encephalopathy susceptibility. Prion 2012; 6:461-9. [PMID: 22918267 DOI: 10.4161/pri.21866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Classical bovine spongiform encephalopathy is a transmissible prion disease that is fatal to cattle and is a human health risk due to its association with a strain of Creutzfeldt-Jakob disease (vCJD). Mutations to the coding region of the prion gene (PRNP) have been associated with susceptibility to transmissible spongiform encephalopathies in mammals including bovines and humans. Additional loci such as the retinoic acid receptor beta (RARB) and stathmin like 2 (STMN2) have also been associated with disease risk. The objective of this study was to refine previously identified regions associated with BSE susceptibility and to identify positional candidate genes and genetic variation that may be involved with the progression of classical BSE. The samples included 739 samples of either BSE infected animals (522 animals) or non-infected controls (207 animals). These were tested using a custom SNP array designed to narrow previously identified regions of importance in bovine genome. Thirty one single nucleotide polymorphisms were identified at p < 0.05 and a minor allele frequency greater than 5%. The chromosomal regions identified and the positional and functional candidate genes and regulatory elements identified within these regions warrant further research.
Collapse
Affiliation(s)
- Jennifer M Thomson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | | | | | | | | | | | | |
Collapse
|
1241
|
Abstract
In the life sciences, a new paradigm is emerging that places networks of interacting molecules between genotype and phenotype. These networks are dynamically modulated by a multitude of factors, and the properties emerging from the network as a whole determine observable phenotypes. This paradigm is usually referred to as systems biology, network biology, or integrative biology. Mass spectrometry (MS)-based proteomics is a central life science technology that has realized great progress toward the identification, quantification, and characterization of the proteins that constitute a proteome. Here, we review how MS-based proteomics has been applied to network biology to identify the nodes and edges of biological networks, to detect and quantify perturbation-induced network changes, and to correlate dynamic network rewiring with the cellular phenotype. We discuss future directions for MS-based proteomics within the network biology paradigm.
Collapse
Affiliation(s)
- Ariel Bensimon
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH 8093, Switzerland.
| | | | | |
Collapse
|
1242
|
Geng H, Liu Q, Xue C, David LL, Beer TM, Thomas GV, Dai MS, Qian DZ. HIF1α protein stability is increased by acetylation at lysine 709. J Biol Chem 2012; 287:35496-35505. [PMID: 22908229 DOI: 10.1074/jbc.m112.400697] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine acetylation regulates protein stability and function. p300 is a component of the HIF-1 transcriptional complex and positively regulates the transactivation of HIF-1. Here, we show a novel molecular mechanism by which p300 facilitates HIF-1 activity. p300 increases HIF-1α (HIF1α) protein acetylation and stability. The regulation can be opposed by HDAC1, but not by HDAC3, and is abrogated by disrupting HIF1α-p300 interaction. Mechanistically, p300 specifically acetylates HIF1α at Lys-709, which increases the protein stability and decreases polyubiquitination in both normoxia and hypoxia. Compared with the wild-type protein, a HIF1α K709A mutant protein is more stable, less polyubiquitinated, and less dependent on p300. Overexpression of the HIF1α wild-type or K709A mutant in cancer cells lacking the endogenous HIF1α shows that the K709A mutant is transcriptionally more active toward the HIF-1 reporter and some endogenous target genes. Cancer cells containing the K709A mutant are less sensitive to hypoxia-induced growth arrest than the cells containing the HIF1α wild-type. Taken together, these data demonstrate a novel biological consequence upon HIF1α-p300 interaction, in which HIF1α can be stabilized by p300 via Lys-709 acetylation.
Collapse
Affiliation(s)
- Hao Geng
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Qiong Liu
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Changhui Xue
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Larry L David
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Tomasz M Beer
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - George V Thomas
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Mu-Shui Dai
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - David Z Qian
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239.
| |
Collapse
|
1243
|
Na CH, Jones DR, Yang Y, Wang X, Xu Y, Peng J. Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J Proteome Res 2012; 11:4722-32. [PMID: 22871113 DOI: 10.1021/pr300536k] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein ubiquitination is an essential post-translational modification regulating neurodevelopment, synaptic plasticity, learning, and memory, and its dysregulation contributes to the pathogenesis of neurological diseases. Here we report a systematic analysis of ubiquitinated proteome (ubiquitome) in rat brain using a newly developed monoclonal antibody that recognizes the diglycine tag on lysine residues in trypsinized peptides (K-GG peptides). Initial antibody specificity analysis showed that the antibody can distinguish K-GG peptides from linear GG peptides or pseudo K-GG peptides derived from iodoacetamide. To evaluate the false discovery rate of K-GG peptide matches during database search, we introduced a null experiment using bacterial lysate that contains no such peptides. The brain ubiquitome was then analyzed by this antibody enrichment with or without strong cation exchange (SCX) prefractionation. During SCX chromatography, although the vast majority of K-GG peptides were detected in the fractions containing at least three positive charged peptides, specific K-GG peptides with two positive charges (e.g., protein N-terminal acetylated and C-terminal non-K/R peptides) were also identified in early fractions. The reliability of C-terminal K-GG peptides was also extensively investigated. Finally, we collected a data set of 1786 K-GG sites on 2064 peptides in 921 proteins and estimated their abundance by spectral counting. The study reveals a wide range of ubiquitination events on key components in presynaptic region (e.g., Bassoon, NSF, SNAP25, synapsin, synaptotagmin, and syntaxin) and postsynaptic density (e.g., PSD-95, GKAP, CaMKII, as well as receptors for NMDA, AMPA, GABA, serotonin, and acetylcholine). We also determined ubiquitination sites on amyloid precursor protein and alpha synuclein that are thought to be causative agents in Alzhermer's and Parkinson's disorders, respectively. As K-GG peptides can also be produced from Nedd8 or ISG15 modified proteins, we quantified these proteins in the brain and found that their levels are less than 2% of ubiquitin. Together, this study demonstrates that a large number of neuronal proteins are modified by ubiquitination and provides a feasible method for profiling the ubiquitome in the brain.
Collapse
Affiliation(s)
- Chan Hyun Na
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
1244
|
Xu P, Tan H, Duong DM, Yang Y, Kupsco J, Moberg KH, Li H, Jin P, Peng J. Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications. J Proteome Res 2012; 11:4403-12. [PMID: 22830426 DOI: 10.1021/pr300613c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster is a common animal model for genetics studies, and quantitative proteomics studies of the fly are emerging. Here, we present in detail the development of a procedure to incorporate stable isotope-labeled amino acids into the fly proteome. In the method of stable isotope labeling with amino acids in Drosophila melanogaster (SILAC fly), flies were fed with SILAC-labeled yeast grown with modified media, enabling near complete labeling in a single generation. Biological variation in the proteome among individual flies was evaluated in a series of null experiments. We further applied the SILAC fly method to profile proteins from a model of fragile X syndrome, the most common cause of inherited mental retardation in human. The analysis identified a number of altered proteins in the disease model, including actin-binding protein profilin and microtubulin-associated protein futsch. The change of both proteins was validated by immunoblotting analysis. Moreover, we extended the SILAC fly strategy to study the dynamics of protein ubiquitination during the fly life span (from day 1 to day 30), by measuring the level of ubiquitin along with two major polyubiquitin chains (K48 and K63 linkages). The results show that the abundance of protein ubiquitination and the two major linkages do not change significantly within the measured age range. Together, the data demonstrate the application of the SILAC principle in D. melanogaster, facilitating the integration of powerful fly genomics with emerging proteomics.
Collapse
Affiliation(s)
- Ping Xu
- Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1245
|
Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012; 13:508-23. [PMID: 22820888 DOI: 10.1038/nrm3394] [Citation(s) in RCA: 522] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitylation is one of the most abundant and versatile post-translational modifications (PTMs) in cells. Its versatility arises from the ability of ubiquitin to form eight structurally and functionally distinct polymers, in which ubiquitin moieties are linked via one of seven Lys residues or the amino terminus. Whereas the roles of Lys48- and Lys63-linked polyubiquitin in protein degradation and cellular signalling are well characterized, the functions of the remaining six 'atypical' ubiquitin chain types (linked via Lys6, Lys11, Lys27, Lys29, Lys33 and Met1) are less well defined. Recent developments provide insights into the mechanisms of ubiquitin chain assembly, recognition and hydrolysis and allow detailed analysis of the functions of atypical ubiquitin chains. The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
1246
|
Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 2012; 43:1049-60. [PMID: 22821265 DOI: 10.1007/s00726-012-1286-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
Abstract
Ubiquitin signaling plays an essential role in controlling cellular processes in eukaryotes, and the impairment of ubiquitin regulation contributes to the pathogenesis of a wide range of human diseases. During the last decade, mass spectrometry-based proteomics has emerged as an indispensable approach for identifying the ubiquitinated proteome (ubiquitinome), ubiquitin modification sites, the linkages of complex ubiquitin chains, as well as the interactome of ubiquitin enzymes. In particular, implementation of quantitative strategies allows the detection of dynamic changes in the ubiquitinome, enhancing the ability to differentiate between function-relevant protein targets and false positives arising from biological and experimental variations. The profiling of total cell lysate and the ubiquitinated proteome in the same sets of samples has become a powerful tool, revealing a subset of substrates that are modulated by specific physiological and pathological conditions, such as gene mutations in ubiquitin signaling. This strategy is equally useful for dissecting the pathways of ubiquitin-like proteins.
Collapse
|
1247
|
Analysing signalling networks by mass spectrometry. Amino Acids 2012; 43:1061-74. [PMID: 22821269 DOI: 10.1007/s00726-012-1293-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 04/03/2012] [Indexed: 12/31/2022]
Abstract
Sequence analysis of the human genome and the association of genetic aberrations with diseases have provided a rough framework whereby the impact of individual genotypes can be assessed. To fully understand the effect of individual and co-occurring genetic aberrations, as well as their individual and collected contribution to the development of diseases, it is critical to analyse the matching proteome and to determine how the organisation, expression level and function of protein networks are affected. Sensitive mass spectrometric platforms in combination with innovative workflows allow qualitative and quantitative analyses of the cellular as well as the extracellular proteome. Importantly, in addition to specifically identifying the content of the proteome, several aspects of the proteomic organisation can be analysed including protein complexes, protein modifications, enzymatic activities and subcellular/organelle localisation. Together, these measurements will provide novel insight into the biological effect of disease-causing mutations ultimately coupling genotype and phenotype.
Collapse
|
1248
|
van Wijk SJL, Fiskin E, Putyrski M, Pampaloni F, Hou J, Wild P, Kensche T, Grecco HE, Bastiaens P, Dikic I. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol Cell 2012; 47:797-809. [PMID: 22819327 DOI: 10.1016/j.molcel.2012.06.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/02/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Ubiquitin chains modify a major subset of the proteome, but detection of ubiquitin signaling dynamics and localization is limited due to a lack of appropriate tools. Here, we employ ubiquitin-binding domain (UBD)-based fluorescent sensors to monitor linear and K63-linked chains in vitro and in vivo. We utilize the UBD in NEMO and ABIN (UBAN) for detection of linear chains, and RAP80 ubiquitin-interacting motif (UIM) and TAB2 Npl4 zinc finger (NZF) domains to detect K63 chains. Linear and K63 sensors decorated the ubiquitin coat surrounding cytosolic Salmonella during bacterial autophagy, whereas K63 sensors selectively monitored Parkin-induced mitophagy and DNA damage responses in fixed and living cells. In addition, linear and K63 sensors could be used to monitor endogenous signaling pathways, as demonstrated by their ability to differentially interfere with TNF- and IL-1-induced NF-κB pathway. We propose that UBD-based biosensors could serve as prototypes to track and trace other chain types and ubiquitin-like signals in vivo.
Collapse
Affiliation(s)
- Sjoerd J L van Wijk
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1249
|
Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 2012; 11:1578-85. [PMID: 22790023 PMCID: PMC3518112 DOI: 10.1074/mcp.m112.017905] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications of proteins increase the complexity of the cellular proteome and enable rapid regulation of protein functions in response to environmental changes. Protein ubiquitylation is a central regulatory posttranslational modification that controls numerous biological processes including proteasomal degradation of proteins, DNA damage repair and innate immune responses. Here we combine high-resolution mass spectrometry with single-step immunoenrichment of di-glycine modified peptides for mapping of endogenous putative ubiquitylation sites in murine tissues. We identify more than 20,000 unique ubiquitylation sites on proteins involved in diverse biological processes. Our data reveals that ubiquitylation regulates core signaling pathways common for each of the studied tissues. In addition, we discover that ubiquitylation regulates tissue-specific signaling networks. Many tissue-specific ubiquitylation sites were obtained from brain highlighting the complexity and unique physiology of this organ. We further demonstrate that different di-glycine-lysine-specific monoclonal antibodies exhibit sequence preferences, and that their complementary use increases the depth of ubiquitylation site analysis, thereby providing a more unbiased view of protein ubiquitylation.
Collapse
Affiliation(s)
- Sebastian A Wagner
- Department of Proteomics, The NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1250
|
Strategies to Identify Recognition Signals and Targets of SUMOylation. Biochem Res Int 2012; 2012:875148. [PMID: 22811915 PMCID: PMC3395311 DOI: 10.1155/2012/875148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/12/2012] [Indexed: 12/16/2022] Open
Abstract
SUMOylation contributes to the regulation of many essential cellular factors. Diverse techniques have been used to explore the functional consequences of protein SUMOylation. Most approaches consider the identification of sequences on substrates, adaptors, or receptors regulating the SUMO conjugation, recognition, or deconjugation. The large majority of the studied SUMOylated proteins contain the sequence [IVL]KxE. SUMOylated proteins are recognized by at least 3 types of hydrophobic SUMO-interacting motifs (SIMs) that contribute to coordinate SUMO-dependent functions. Typically, SIMs are constituted by a hydrophobic core flanked by one or two clusters of negatively charged amino acid residues. Multiple SIMs can integrate SUMO binding domains (SBDs), optimizing binding, and control over SUMO-dependent processes. Here, we present a survey of the methodologies used to study SUMO-regulated functions and provide guidelines for the identification of cis and trans sequences controlling SUMOylation. Furthermore, an integrative analysis of known and putative SUMO substrates illustrates an updated landscape of several SUMO-regulated events. The strategies and analysis presented here should contribute to the understanding of SUMO-controlled functions and provide rational approach to identify biomarkers or choose possible targets for intervention in processes where SUMOylation plays a critical role.
Collapse
|