1201
|
Oliveira DCSG, Reinach FC. The calcium-induced switch in the troponin complex probed by fluorescent mutants of troponin I. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2937-44. [PMID: 12846826 DOI: 10.1046/j.1432-1033.2003.03659.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ca2+-induced transition in the troponin complex (Tn) regulates vertebrate striated muscle contraction. Tn was reconstituted with recombinant forms of troponin I (TnI) containing a single intrinsic 5-hydroxytryptophan (5HW). Fluorescence analysis of these mutants of TnI demonstrate that the regions in TnI that respond to Ca2+ binding to the regulatory N-domain of TnC are the inhibitory region (residues 96-116) and a neighboring region that includes position 121. Our data confirms the role of TnI as a modulator of the Ca2+ affinity of TnC; we show that point mutations and incorporation of 5HW in TnI can affect both the affinity and the cooperativity of Ca2+ binding to TnC. We also discuss the possibility that the regulatory sites in the N-terminal domain of TnC might be the high affinity Ca2+-binding sites in the troponin complex.
Collapse
|
1202
|
Singer JM, Shaw JM. Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc Natl Acad Sci U S A 2003; 100:7644-9. [PMID: 12808144 PMCID: PMC164640 DOI: 10.1073/pnas.1232343100] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionarily conserved Mdm20 protein (Mdm20p) plays an important role in tropomyosin-F-actin interactions that generate actin filaments and cables in budding yeast. However, Mdm20p is not a structural component of actin filaments or cables, and its exact function in cable stability has remained a mystery. Here, we show that cells lacking Mdm20p fail to N-terminally acetylate Tpm1p, an abundant form of tropomyosin that binds and stabilizes actin filaments and cables. The F-actin-binding activity of unacetylated Tpm1p is reduced severely relative to the acetylated form. These results are complemented by the recent report that Mdm20p copurifies with one of three acetyltransferases in yeast, the NatB complex. We present genetic evidence that Mdm20p functions cooperatively with Nat3p, the catalytic subunit of the NatB acetyltransferase. These combined results strongly suggest that Mdm20p-dependent, N-terminal acetylation of Tpm1p by the NatB complex is required for Tpm1p association with, and stabilization of, actin filaments and cables.
Collapse
Affiliation(s)
- Jason M Singer
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
1203
|
Han YS, Geiger PC, Cody MJ, Macken RL, Sieck GC. ATP consumption rate per cross bridge depends on myosin heavy chain isoform. J Appl Physiol (1985) 2003; 94:2188-96. [PMID: 12588786 DOI: 10.1152/japplphysiol.00618.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we tested the hypothesis that intrinsic differences in ATP consumption rate per cross bridge exist across rat diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. During maximum Ca(2+) activation (pCa 4.0) of single, Triton X-permeabilized Dia(m) fibers, isometric ATP consumption rate was determined by using an NADH-linked fluorometric technique. The MHC concentration in single Dia(m) fibers was determined by densitometric analysis of SDS-PAGE gels and comparison to a standard curve of known MHC concentrations. Isometric ATP consumption rate varied across Dia(m) fibers expressing different MHC isoforms, being highest in fibers expressing MHC(2X) (1.14 +/- 0.08 nmol. mm(-3). s(-1)) and/or MHC(2B) (1.33 +/- 0.08 nmol. mm(-3). s(-1)), followed by fibers expressing MHC(2A) (0.77 +/- 0.11 nmol. mm(-3). s(-1)) and MHC(Slow) (0.46 +/- 0.03 nmol. mm(-3). s(-1)). These differences in ATP consumption rate also persisted when it was normalized for MHC concentration in single Dia(m) fibers. Normalized ATP consumption rate for MHC concentration varied across Dia(m) fibers expressing different MHC isoforms, being highest in fibers expressing MHC(2X) (2.02 +/- 0.19 s(-1)) and/or MHC(2B) (2.64 +/- 0.15 s(-1)), followed by fibers expressing MHC(2A) (1.57 +/- 0.16 s(-1)) and MHC(Slow) (0.77 +/- 0.05 s(-1)). On the basis of these results, we conclude that there are intrinsic differences in ATP consumption rate per cross bridge in Dia(m) fibers expressing MHC isoforms.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Anesthesiology, Mayo Medical School, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
1204
|
Langeron O, Bouhemad B, Orliaguet G, Coriat P, Lecarpentier Y, Riou B. Effects of halogenated anaesthetics on diaphragmatic actin-myosin cross-bridge kinetics. Br J Anaesth 2003; 90:759-65. [PMID: 12765892 DOI: 10.1093/bja/aeg140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The effects of halogenated anaesthetics on cross-bridge (CB) kinetics are unclear. As halogenated anaesthetics do not markedly modify the intracellular calcium transient in the diaphragm, we used an isolated rat diaphragm preparation to assess the effects of halothane and isoflurane on CB kinetics. METHODS The effects of halothane and isoflurane (1 and 2 minimum alveolar concentration (MAC)) on rat diaphragm muscle strips were studied in vitro (Krebs-Henseleit solution, 29 degrees C, oxygen 95%/carbon dioxide 5%) in tetanus mode (50 Hz). From the force-velocity curve and using A. F. Huxley's equations, we determined the main mechanical and energetic variables and calculated CB kinetics. RESULTS At 1 and 2 MAC, isoflurane and halothane induced no significant inotropic effects. Whatever the concentrations tested, halothane and isoflurane did not significantly modify the CB number, the elementary force per CB, the attachment and detachment constants, the duration of the CB cycle and mean CB velocity. CONCLUSION In the rat diaphragm at therapeutic concentrations, halogenated anaesthetics do not significantly modify CB mechanical and kinetic properties.
Collapse
Affiliation(s)
- O Langeron
- Department of Anaesthesiology and Critical Care, Centre Hospitalier Universitaire (CHU) Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | |
Collapse
|
1205
|
Smith DA, Geeves MA. Cooperative regulation of myosin-actin interactions by a continuous flexible chain II: actin-tropomyosin-troponin and regulation by calcium. Biophys J 2003; 84:3168-80. [PMID: 12719246 PMCID: PMC1302877 DOI: 10.1016/s0006-3495(03)70041-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The model of myosin regulation by a continuous tropomyosin chain is generalized to a chain of tropomyosin-troponin units. Myosin binding to regulated actin is cooperative and initially inhibited by the chain as before. In the absence of calcium, myosin is further inhibited by the binding of troponin-I to actin, which through the whole of troponin pins the tropomyosin chain in a blocking position; myosin and TnI compete for actin and induce oppositely-directed chain kinks. The model predicts equilibrium binding curves for myosin-S1 and TnI as a function of their first-order affinities K(S1) and L(TI). Myosin is detached by the actin binding of TnI, but TnI is more efficiently detached by myosin when the kink size (typically nine to ten actin sites) spans the seven-site spacing between adjacent TnI molecules. An allosteric mechanism is used for coupling the detachment of TnI to calcium binding by TnC. With thermally activated TnI kinks (kink energy B approximately k(B)T), TnI also binds cooperatively to actin, producing cooperative detachment of myosin and biphasic myosin-calcium Hill plots, with Hill coefficients of 2 at high calcium and 4-6 at low calcium as observed in striated muscle. The theory also predicts the cooperative effects observed in the calcium loading of TnC.
Collapse
Affiliation(s)
- D A Smith
- Randall Centre, King's College London, Guy's Campus, London SE1 1UL, UK
| | | |
Collapse
|
1206
|
Abstract
The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.
Collapse
Affiliation(s)
- Pieter P de Tombe
- Department of Physiology and Biophysics, and Cardiovascular Science Program, College of Medicine, University of Illinois, 900 S. Ashland Ave, Chicago, IL 60607-7171, USA.
| |
Collapse
|
1207
|
Nongthomba U, Cummins M, Clark S, Vigoreaux JO, Sparrow JC. Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 2003; 164:209-22. [PMID: 12750333 PMCID: PMC1462538 DOI: 10.1093/genetics/164.1.209] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.
Collapse
Affiliation(s)
- Upendra Nongthomba
- Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | |
Collapse
|
1208
|
Smith DA, Maytum R, Geeves MA. Cooperative regulation of myosin-actin interactions by a continuous flexible chain I: actin-tropomyosin systems. Biophys J 2003; 84:3155-67. [PMID: 12719245 PMCID: PMC1302876 DOI: 10.1016/s0006-3495(03)70040-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We present a model for cooperative myosin binding to the regulated actin filament, where tropomyosins are treated as a weakly-confined continuous flexible chain covering myosin binding sites. Thermal fluctuations in chain orientation are initially required for myosin binding, leaving kinked regions under which subsequent myosins may bind without further distortion of the chain. Statistical mechanics predicts the fraction of sites with bound myosin-S1 as a function of their affinities. Published S1 binding curves to regulated filaments with different tropomyosin isoforms are fitted by varying the binding constant, chain persistence length nu (in actin monomers), and chain kink energy A from a single bound S1. With skeletal tropomyosin, we find an S1 actin-binding constant of 2.2 x 10(7) M(-1), A = 1.6 k(B)T and nu = 2.7. Similar persistence lengths are found with yeast tropomyosin. Larger values are found for tropomyosin-troponin in the presence of calcium (nu = 3.7) and tropomyosins from smooth muscle and fibroblasts (nu = 4.5). The relationship of these results to structural information and the rigid-unit model of McKillop and Geeves is discussed.
Collapse
Affiliation(s)
- D A Smith
- Randall Centre, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|
1209
|
Mercier P, Ferguson RE, Irving M, Corrie JET, Trentham DR, Sykes BD. NMR structure of a bifunctional rhodamine labeled N-domain of troponin C complexed with the regulatory "switch" peptide from troponin I: implications for in situ fluorescence studies in muscle fibers. Biochemistry 2003; 42:4333-48. [PMID: 12693929 DOI: 10.1021/bi027041n] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of the calcium-saturated regulatory domain of skeletal troponin C (sNTnC) complexed with the switch peptide comprising residues 115-131 of troponin I (TnI), and with a bifunctional rhodamine fluorescent label attached to residues 56 (E56C) and 63 (E63C) on the C helix of sNTnC, has been determined using nuclear magnetic resonance (NMR) spectroscopy. The structure shows that the integrity of the C helix is not altered by the E(56,63)C mutations or by the presence of the bifunctional rhodamine and that the label does not interact with the hydrophobic cleft of sNTnC. Moreover, the overall fold of the protein and the position of the TnI peptide are similar to those observed previously with related cardiac NTnC complexes with residues 147-163 of cardiac TnI [Li et al. (1999) Biochemistry 38, 8289-8298] and including the drug bepridil [Wang et al. (2002) J. Biol. Chem. 277, 31124-31133]. The degree of opening of the structure is reduced as compared to that of calcium-saturated sNTnC in the absence of the switch peptide [Gagné et al. (1995) Nat. Struct. Biol. 2, 784-789]. The switch peptide is bound in a shallow and complementary hydrophobic surface cleft largely defined by helices A and B and also has key ionic interactions with sNTnC. These results show that bifunctional rhodamine probes can be attached to surface helices via suitable pairs of solvent-accessible residues that have been mutated to cysteines, without altering the conformation of the labeled domain. A set of such probes can be used to determine the orientation and motion of the target domain in the cellular environment [Corrie et al. (1999) Nature 400, 425-430; Ferguson et al. (2003) Mol. Cell 11(4), in press].
Collapse
Affiliation(s)
- Pascal Mercier
- CIHR Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
1210
|
Metzger JM, Michele DE, Rust EM, Borton AR, Westfall MV. Sarcomere thin filament regulatory isoforms. Evidence of a dominant effect of slow skeletal troponin I on cardiac contraction. J Biol Chem 2003; 278:13118-23. [PMID: 12551900 DOI: 10.1074/jbc.m212601200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thin filament proteins tropomyosin (Tm), troponin T (TnT), and troponin I (TnI) form an allosteric regulatory complex that is required for normal cardiac contraction. Multiple isoforms of TnT, Tm, and TnI are differentially expressed in both cardiac development and disease, but concurrent TnI, Tm, and TnT isoform switching has hindered assignment of cellular function to these transitions. We systematically incorporated into the adult sarcomere the embryonic/fetal isoforms of Tm, TnT, and TnI by using gene transfer. In separate experiments, greater than 90% of native TnI and 40-50% of native Tm or TnT were specifically replaced. The Ca(2+) sensitivity of tension development was markedly enhanced by TnI replacement but not by TnT or Tm isoform replacement. Titration of TnI replacement from >90% to <30% revealed a dominant functional effect of slow skeletal TnI to modulate regulation. Over this range of isoform replacement, TnI, but not Tm or TnT embryonic isoforms, influenced calcium regulation of contraction, and this identifies TnI as a potential target to modify contractile performance in normal and diseased myocardium.
Collapse
Affiliation(s)
- Joseph M Metzger
- Department of Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | |
Collapse
|
1211
|
Hughes JAI, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM, Gunning P, Weinberger RP. High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 2003; 42:25-35. [PMID: 12594734 DOI: 10.1002/glia.10174] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tropomyosin has been implicated in the control of actin filament dynamics during cell migration, morphogenesis, and cytokinesis. In order to gain insight into the role of tropomyosins in cell division, we examined their expression in developing and neoplastic brain tissue. We found that the high-molecular-weight tropomyosins are downregulated at birth, which correlates with glial cell differentiation and withdrawal of most cells from the cell cycle. Expression of these isoforms was restricted to proliferative areas in the embryonic brain and was absent from the adult, where the majority of cells are quiescent. However, they were induced under conditions where glial cells became proliferative in response to injury. During cytokinesis, these tropomyosin isoforms were associated with the contractile ring. We also investigated tropomyosin expression in neoplastic CNS tissues. Low-grade astrocytic tumors expressed high-molecular-weight tropomyosins, while highly malignant CNS tumors of diverse origin did not (P </= 0.001). Furthermore, high-molecular-weight tropomyosins were absent from the contractile ring in highly malignant astrocytoma cells. Our findings suggest a role for high-molecular-weight tropomyosins in astrocyte cytokinesis, although highly malignant CNS tumors are still able to undergo cell division in their absence. Additionally, the correlation between high-molecular-weight tropomyosin expression and tumor grade suggests that tropomyosins are potentially useful as indicators of CNS tumor grade.
Collapse
Affiliation(s)
- Julie A I Hughes
- Oncology Research Unit, Children's Hospital at Westmead, Australia
| | | | | | | | | | | | | |
Collapse
|
1212
|
Ferguson RE, Sun YB, Mercier P, Brack AS, Sykes BD, Corrie JET, Trentham DR, Irving M. In Situ Orientations of Protein Domains. Mol Cell 2003; 11:865-74. [PMID: 12718873 DOI: 10.1016/s1097-2765(03)00096-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A recently developed approach for mapping protein-domain orientations in the cellular environment was used to investigate the Ca(2+)-dependent structural changes in the tropomyosin/troponin complex on the actin filament that regulate muscle contraction. Polarized fluorescence from bifunctional rhodamine probes attached along four alpha helices of troponin C (TnC) was measured in permeabilized skeletal muscle fibers. In relaxed muscle, the N-terminal lobe of TnC is less closed than in crystal structures of the Ca(2+)-free domain, and its D helix is approximately perpendicular to the actin filament. In contrast to crystal structures of isolated TnC, the D and E helices are not collinear. On muscle activation, the N lobe orientation becomes more disordered and the average angle between the C helix and the filament changes by 32 degrees +/- 5 degrees. These results illustrate the potential of in situ measurements of helix and domain orientations for elucidating structure-function relations in native macromolecular complexes.
Collapse
Affiliation(s)
- Roisean E Ferguson
- National Institute for Medical Research, Mill Hill, London, NW7 1AA, USA
| | | | | | | | | | | | | | | |
Collapse
|
1213
|
Abstract
Both experimental evidence and theoretical models for collective effects in the working mechanism of molecular motors are reviewed at three different levels, namely: (i) interaction between the two heads of double-headed motors, particularly in processive motors like kinesin, myosin V and myosin VI, (ii) cooperative regulation of muscle thin filaments by accessory proteins and the Ca2+ level, and (iii) collective dynamic effects stemming from the mechanical coupling of molecular motors within macroscopic structures such as muscle thick filaments or axonemes. We aim to bridge the gap between structural information at the molecular level and physiological data with accompanying specific models on the one hand, and general stochastic physical models for the action of molecular motors on the other hand. An underlying assumption is that while, ultimately, the function of molecular motors will be explainable by a quantitative description of specific intramolecular dynamics and intermolecular interactions, for some coarse grained larger scale dynamic features it will be sufficient and illuminating to construct physical models that are simplified to the bare essentials.
Collapse
Affiliation(s)
- Karen C Vermeulen
- Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, The Netherlands
| | | | | |
Collapse
|
1214
|
Nyitrai M, Szent-Györgyi AG, Geeves MA. Interactions of the two heads of scallop (Argopecten irradians) heavy meromyosin with actin: influence of calcium and nucleotides. Biochem J 2003; 370:839-48. [PMID: 12441001 PMCID: PMC1223211 DOI: 10.1042/bj20021519] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 11/18/2002] [Accepted: 11/20/2002] [Indexed: 11/17/2022]
Abstract
We recently proposed a co-operative model for the influence of calcium and ADP on scallop ( Argopecten irradians ) muscle heavy meromyosin (scHMM), in which scHMM exists in two conformations (designated 'off' and 'on'), and calcium and ADP are allosteric effectors of the equilibrium between the off and on conformations [Nyitrai, Szent-Gyorgyi and Geeves (2002) Biochem. J. 365, 19-30]. Here we examine the influence of actin on scHMM. In the absence of nucleotide, both heads of scHMM bind very tightly to actin, independent of the presence of calcium. In the absence of calcium, ADP dissociates scHMM from actin completely, and little evidence of ternary complex formation can be found (actin affinity >20 microM). The off state of scHMM therefore does not interact with actin. In the presence of calcium, ADP and actin lower each other's affinity for scHMM by 30-50-fold, although both heads remain strongly attached to actin (actin affinity 0.17 microM). Detailed analysis suggests that the second head contributes far more to the overall binding energy than is the case for mammalian skeletal muscle HMM. This is consistent with a different stereochemical relationship between the two heads in scallop and mammalian HMM molecules.
Collapse
Affiliation(s)
- Miklos Nyitrai
- Department of Biosciences, University of Kent at Canterbury, Canterbury, Kent CT2 7NJ, UK
| | | | | |
Collapse
|
1215
|
Maytum R, Westerdorf B, Jaquet K, Geeves MA. Differential regulation of the actomyosin interaction by skeletal and cardiac troponin isoforms. J Biol Chem 2003; 278:6696-701. [PMID: 12475978 DOI: 10.1074/jbc.m210690200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are significant isoform differences between the skeletal and cardiac troponin complexes. Studies of the regulatory properties of these proteins have previously shown only significant differences in the calcium dependence of their regulation. Using a sensitive myosin subfragment 1 (S1) binding assay we show that in the presence of calcium, thin filaments reconstituted with either skeletal or cardiac troponin produce virtually identical S1 binding curves. However in the absence of calcium the S1 binding curves differ considerably. Combined with kinetic measurements, curve fitting to the three-state thin filament regulatory model shows the main difference is that calcium produces a 4-fold change in K(T) (the closed-open equilibrium) for the skeletal system but little change in the cardiac system. The results show a significant difference in the range of regulatory effect between the cardiac and skeletal systems that we interpret as effects upon actin-troponin (Tn)I-TnC binding equilibria. As structural data show that the Ca(2+)-bound TnC structures differ, the additional counter-intuitive result here is that with respect to myosin binding the +Ca(2+) state of the two systems is similar whereas the -Ca(2+) state differs. This shows the regulatory tuning of the troponin complex produced by isoform variation is the net result of a complex series of interactions among all the troponin components.
Collapse
Affiliation(s)
- Robin Maytum
- University of Kent at Canterbury, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | | | |
Collapse
|
1216
|
Abstract
Secophalloidin (SPH) is known to activate skinned cardiac muscle in the absence of Ca(2+). We hypothesized that SPH-induced changes in cross-bridge properties underlie muscle activation. We found that force responsiveness to orthovanadate was drastically reduced in SPH activated muscles compared to Ca(2+)-activated contraction. Moreover, SPH caused approximately 30% increase in Ca(2+)-independent force in muscles where Ca(2+) sensitivity was totally destroyed by troponin I extraction with 10mM vanadate. Thus, SPH and Ca(2+) activation differ in both properties of the cross-bridge cycle and protein requirements for thin filament regulation. In addition, we tested the relationship between the activating effects SPH and EMD 57033, a Ca(2+) sensitizer that increases resting force in cardiac muscle. After maximal activation by either SPH or EMD 57033, the other compound was found to further increase force, indicating that SPH activates muscle via a novel mechanism.
Collapse
Affiliation(s)
- Anna E Bukatina
- Department of Physiology and Biophysics, Mayo Foundation, Rochester, MN 55905, USA.
| | | |
Collapse
|
1217
|
Perreault EJ, Heckman CJ, Sandercock TG. Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates. J Biomech 2003; 36:211-8. [PMID: 12547358 DOI: 10.1016/s0021-9290(02)00332-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study evaluated the accuracy of Hill-type muscle models during movement. Hill-type models are ubiquitous in biomechanical simulations. They are attractive because of their computational simplicity and close relation to commonly measured experimental variables, but there have been surprisingly few experimental validations of these models during functionally relevant conditions. Our hypothesis was that model errors during movement are largest at the low motor unit firing rates most relevant to normal movement conditions. This hypothesis was evaluated in the cat soleus muscle activated either by electrical stimulation at physiological rates or via the crossed-extension reflex (CXR) thereby obtaining normal patterns of motor unit recruitment and rate modulation. These activation paradigms were applied during continuous movements approximately matched to locomotor length changes. The resulting muscle force was modeled using a common Hill model incorporating independent activation, tetanic length-tension and tetanic force-velocity properties. Errors for this model were greatest for stimulation rates between approximately 10-20Hz. Errors were especially large for muscles activated via the CXR, where most motor units appear to fire within this range. For large muscle excursions, such as those seen during normal locomotion, the errors for naturally activated muscle typically exceeded 50%, supporting our hypothesis and indicating that the Hill model is not appropriate for these conditions. Subsequent analysis suggested that model errors were due to the common Hill model's inability to account for the coupling between muscle activation and force-velocity properties that is most prevalent at the low motor unit firing rates relevant to normal activation.
Collapse
Affiliation(s)
- Eric J Perreault
- Department of Physiology, Northwestern University Medical School, IL 60611, USA.
| | | | | |
Collapse
|
1218
|
Helmes M, Lim CC, Liao R, Bharti A, Cui L, Sawyer DB. Titin determines the Frank-Starling relation in early diastole. J Gen Physiol 2003; 121:97-110. [PMID: 12566538 PMCID: PMC2217323 DOI: 10.1085/jgp.20028652] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Titin, a giant protein spanning half the sarcomere, is responsible for passive and restoring forces in cardiac myofilaments during sarcomere elongation and compression, respectively. In addition, titin has been implicated in the length-dependent activation that occurs in the stretched sarcomere, during the transition from diastole to systole. The purpose of this study was to investigate the role of titin in the length-dependent deactivation that occurs during early diastole, when the myocyte is shortened below slack length. We developed a novel in vitro assay to assess myocyte restoring force (RF) by measuring the velocity of recoil in Triton-permeabilized, unloaded rat cardiomyocytes after rigor-induced sarcomere length (SL) contractions. We compared rigor-induced SL shortening to that following calcium-induced (pCa) contractions. The RF-SL relationship was linearly correlated, and the SL-pCa curve displayed a characteristic sigmoidal curve. The role of titin was defined by treating myocytes with a low concentration of trypsin, which we show selectively degrades titin using mass spectroscopic analysis. Trypsin treatment reduced myocyte RF as shown by a decrease in the slope of the RF-SL relationship, and this was accompanied by a downward and leftward shift of the SL-pCa curve, indicative of sensitization of the myofilaments to calcium. In addition, trypsin digestion did not alter the relationship between SL and interfilament spacing (assessed by cell width) after calcium activation. These data suggest that as the sarcomere shortens below slack length, titin-based restoring forces act to desensitize the myofilaments. Furthermore, in contrast to length-dependent activation at long SLs, length-dependent deactivation does not depend on interfilament spacing. This study demonstrates for the first time the importance of titin-based restoring force in length-dependent deactivation during the early phase of diastole.
Collapse
Affiliation(s)
- Michiel Helmes
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
1219
|
Greenfield NJ, Swapna GVT, Huang Y, Palm T, Graboski S, Montelione GT, Hitchcock-DeGregori SE. The structure of the carboxyl terminus of striated alpha-tropomyosin in solution reveals an unusual parallel arrangement of interacting alpha-helices. Biochemistry 2003; 42:614-9. [PMID: 12534273 DOI: 10.1021/bi026989e] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coiled coils are well-known as oligomerization domains, but they are also important sites of protein-protein interactions. We determined the NMR solution structure and backbone (15)N relaxation rates of a disulfide cross-linked, two-chain, 37-residue polypeptide containing the 34 C-terminal residues of striated muscle alpha-tropomyosin, TM9a(251-284). The peptide binds to the N-terminal region of TM and to the tropomyosin-binding domain of the regulatory protein, troponin T. Comparison of the NMR solution structure of TM9a(251-284) with the X-ray structure of a related peptide [Li, Y., Mui, S., Brown, J. H., Strand, J., Reshetnikova, L., Tobacman, L. S., and Cohen, C. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 7378-7383] reveals significant differences. In solution, residues 253-269 (like most of the tropomyosin molecule) form a canonical coiled coil. Residues 270-279, however, are parallel, linear helices, novel for tropomyosin. The packing between the parallel helices results from unusual interface residues that are atypical for coiled coils. Y267 has poor packing at the coiled-coil interface and a lower R(2) relaxation rate than neighboring residues, suggesting there is conformational flexibility around this residue. The last five residues are nonhelical and flexible. The exposed surface presented by the parallel helices, and the flexibility around Y267 and the ends, may facilitate binding to troponin T and formation of complexes with the N-terminus of tropomyosin and actin. We propose that unusual packing and flexibility are general features of coiled-coil domains in proteins that are involved in intermolecular interactions.
Collapse
Affiliation(s)
- Norma J Greenfield
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| | | | | | | | | | | | | |
Collapse
|
1220
|
Abstract
Glomerular podocytes are highly specialized cells with a complex cytoarchitecture. Their most prominent features are interdigitated foot processes with filtration slits in between. These are bridged by the slit diaphragm, which plays a major role in establishing the selective permeability of the glomerular filtration barrier. Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases. New technical approaches have led to a considerable increase in our understanding of podocyte biology including protein inventory, composition and arrangement of the cytoskeleton, receptor equipment, and signaling pathways involved in the control of ultrafiltration. Moreover, disturbances of podocyte architecture resulting in the retraction of foot processes and proteinuria appear to be a common theme in the progression of acquired glomerular disease. In hereditary nephrotic syndromes identified over the last 2 years, all mutated gene products were localized in podocytes. This review integrates our recent physiological and molecular understanding of the role of podocytes during the maintenance and failure of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Hermann Pavenstädt
- Division of Nephrology, Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
1221
|
Stehle R, Krüger M, Pfitzer G. Does cross-bridge activation determine the time course of myofibrillar relaxation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:469-79; discussion 479. [PMID: 15098692 DOI: 10.1007/978-1-4419-9029-7_43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability of force-generating cross-bridges to activate the thin filament in cardiac muscle was tested by studying the effects of initial force and [MgADP] on force relaxation kinetics in subcellular myofibrillar bundles prepared from left ventricles of the guinea pig. Relaxation was initiated by rapidly reducing the [Ca(2+)] from pCa 4.5 to 7.5. Initiating relaxation from lower force levels during pre-steady-state force development did not significantly accelerate the kinetics of the force decay compared to relaxations initiated from steady-state force development. This suggests that the force-generating cross-bridges which become formed during maximally Ca(2+)-activated steady-state contractions do not maintain thin filament activation for significant enough times after Ca(2+)-removal to exert a rate-limiting influence on force relaxation kinetics. Adding 2 mM MgADP to solutions slowed down relaxation kinetics approximately 4-fold. To differentiate whether these slower kinetics result from either (1) MgADP favoring accumulation of cross-bridges during the preceding contraction in a state of activating capability or (2) slow-down of cross-bridge turnover by the presence of the product MgADP during relaxation, the [MgADP] was either increased or removed at the time of Ca(2+)-removal. The addition of 2 mM MgADP to activating solutions (subsequent relaxation in the absence of MgADP) slowed-down the kinetics of the initial, slow, linear force decay following Ca(2+)-removal approximately 1.5-fold, suggesting that the high [MgADP] during contraction favors formation of cross-bridges which contribute in rate-limiting early relaxation kinetics by transiently sustaining thin filament activation. On the other hand, the addition of 2 mM MgADP to the relaxing solution (preceding Ca(2+)-activation in absence of MgADP) slowed-down the kinetics of the initial force decay approximately 3-fold, more similar to the kinetics observed in the continuous presence of 2 mM MgADP both before and after Ca(2+)-removal. This suggest that, despite some influence of cross-bridge activation, the main effect of MgADP on relaxation kinetics results from product inhibition of cross-bridge turnover. In summary, whereas under certain conditions (high [MgADP]) cross-bridge activation of the thin filament can weakly take part in rate-limiting relaxation kinetics induced by complete Ca(2+)-removal, cross-bridge activation does not influence relaxation kinetics under more physiologically normal conditions.
Collapse
Affiliation(s)
- Robert Stehle
- Institute of Physiology, University of Cologne, Robert-Koch-Str. 39, D-50931 Köln, Germany
| | | | | |
Collapse
|
1222
|
Westerblad H, Allen DG. Cellular mechanisms of skeletal muscle fatigue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:563-70; discussion 571. [PMID: 15098699 DOI: 10.1007/978-1-4419-9029-7_50] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Instituet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
1223
|
Solaro RJ. The Special Structure and Function of Troponin I in Regulation of Cardiac Contraction and Relaxation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:389-401; discussion 401-2. [PMID: 15098685 DOI: 10.1007/978-1-4419-9029-7_36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In this chapter I review evidence for a pivotal role of the sarcomeric thin filament protein, troponin I, in cardiac muscle activation and its modulation by covalent modifications, sarcomere length, and intracellular pH. This evidence demonstrates that the cardiac variant of troponin I (cTnI), which is the only isoform expressed in the adult myocardium, has unique structure and function that are specialized for extrinsic and intrinsic control of cardiac contraction and relaxation.
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics (M/C 901), University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
1224
|
Gordon AM, Rivera AJ, Wang CK, Regnier M. Cooperative Activation of Skeletal and Cardiac Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:371-8; discussion 378-9. [PMID: 15098683 DOI: 10.1007/978-1-4419-9029-7_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
1225
|
Davis JP, Rall JA, Reiser PJ, Smillie LB, Tikunova SB. Engineering competitive magnesium binding into the first EF-hand of skeletal troponin C. J Biol Chem 2002; 277:49716-26. [PMID: 12397067 DOI: 10.1074/jbc.m208488200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The goal of this study was to examine the mechanism of magnesium binding to the regulatory domain of skeletal troponin C (TnC). The fluorescence of Trp(29), immediately preceding the first calcium-binding loop in TnC(F29W), was unchanged by addition of magnesium, but increased upon calcium binding with an affinity of 3.3 microm. However, the calcium-dependent increase in TnC(F29W) fluorescence could be reversed by addition of magnesium, with a calculated competitive magnesium affinity of 2.2 mm. When a Z acid pair was introduced into the first EF-hand of TnC(F29W), the fluorescence of G34DTnC(F29W) increased upon addition of magnesium or calcium with affinities of 295 and 1.9 microm, respectively. Addition of 3 mm magnesium decreased the calcium sensitivity of TnC(F29W) and G34DTnC(F29W) approximately 2- and 6-fold, respectively. Exchange of G34DTnC(F29W) into skinned psoas muscle fibers decreased fiber calcium sensitivity approximately 1.7-fold compared with TnC(F29W) at 1 mm [magnesium](free) and approximately 3.2-fold at 3 mm [magnesium](free). Thus, incorporation of a Z acid pair into the first EF-hand allows it to bind magnesium with high affinity. Furthermore, the data suggests that the second EF-hand, but not the first, of TnC is responsible for the competitive magnesium binding to the regulatory domain.
Collapse
Affiliation(s)
- Jonathan P Davis
- Departments of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
1226
|
Martyn DA, Chase PB, Regnier M, Gordon AM. A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers. Biophys J 2002; 83:3425-34. [PMID: 12496109 PMCID: PMC1302417 DOI: 10.1016/s0006-3495(02)75342-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The contribution of thick and thin filaments to skeletal muscle fiber compliance has been shown to be significant. If similar to the compliance of cycling cross-bridges, myofilament compliance could explain the difference in time course of stiffness and force during the rise of tension in a tetanus as well as the difference in Ca(2+) sensitivity of force and stiffness and more rapid phase 2 tension recovery (r) at low Ca(2+) activation. To characterize the contribution of myofilament compliance to sarcomere compliance and isometric force kinetics, the Ca(2+)-activation dependence of sarcomere compliance in single glycerinated rabbit psoas fibers, in the presence of ATP (5.0 mM), was measured using rapid length steps. At steady sarcomere length, the dependence of sarcomere compliance on the level of Ca(2+)-activated force was similar in form to that observed for fibers in rigor where force was varied by changing length. Additionally, the ratio of stiffness/force was elevated at lower force (low [Ca(2+)]) and r was faster, compared with maximum activation. A simple series mechanical model of myofilament and cross-bridge compliance in which only strong cross-bridge binding was activation dependent was used to describe the data. The model fit the data and predicted that the observed activation dependence of r can be explained if myofilament compliance contributes 60-70% of the total fiber compliance, with no requirement that actomyosin kinetics be [Ca(2+)] dependent or that cooperative interactions contribute to strong cross-bridge binding.
Collapse
Affiliation(s)
- D A Martyn
- Department of Bioengineering, Box 357962, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
1227
|
|
1228
|
Abstract
The pumping action of the heart varies considerably on a beat-to-beat basis and is ultimately determined by the extent of ventricular myocyte shortening during systole. The use of isolated myocardial preparations has provided new insights about the subcellular factors that modulate power output of the ventricles.
Collapse
Affiliation(s)
- Kerry S McDonald
- Department of Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
1229
|
Greenfield NJ, Palm T, Hitchcock-DeGregori SE. Structure and interactions of the carboxyl terminus of striated muscle alpha-tropomyosin: it is important to be flexible. Biophys J 2002; 83:2754-66. [PMID: 12414708 PMCID: PMC1302360 DOI: 10.1016/s0006-3495(02)75285-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Tropomyosin (TM) binds to and regulates the actin filament. We used circular dichroism and heteronuclear NMR to investigate the secondary structure and interactions of the C terminus of striated muscle alpha-TM, a major functional determinant, using a model peptide, TM9a(251-284). The (1)H(alpha) and (13)C(alpha) chemical shift displacements show that residues 252 to 277 are alpha-helical but residues 278 to 284 are nonhelical and mobile. The (1)H(N) and (13)C' displacements suggest that residues 257 to 269 form a coiled coil. Formation of an "overlap" binary complex with a 33-residue N-terminal chimeric peptide containing residues 1 to 14 of alpha-TM perturbs the (1)H(N) and (15)N resonances of residues 274 to 284. Addition of a fragment of troponin T, TnT(70-170), to the binary complex perturbs most of the (1)H(N)-(15)N cross-peaks. In addition, there are many new cross-peaks, showing that the binding is asymmetric. Q263, in a proposed troponin T binding site, shows two sets of side-chain (15)N-(1)H cross-peaks, indicating conformational flexibility. The conformational equilibrium of the side chain changes upon formation of the binary and ternary complexes. Replacing Q263 with leucine greatly increases the stability of TM9a(251-284) and reduces its ability to form the binary and ternary complexes, showing that conformational flexibility is crucial for the binding functions of the C terminus.
Collapse
Affiliation(s)
- Norma J Greenfield
- University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA.
| | | | | |
Collapse
|
1230
|
Van Dijk J, Knight AE, Molloy JE, Chaussepied P. Characterization of three regulatory states of the striated muscle thin filament. J Mol Biol 2002; 323:475-89. [PMID: 12381303 DOI: 10.1016/s0022-2836(02)00697-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The troponin-tropomyosin-linked regulation of striated muscle contraction occurs through allosteric control by both Ca(2+) and myosin. The thin filament fluctuates between two extreme states: the inactive "off" state and the active "on" state. Intermediate states have been proposed from structural studies and transient kinetic measurements. However, in contrast to the well-characterised, on and off states, the mechanochemical properties of the intermediate states are much less well understood because of the instability of those states. In the present study, we have characterized a myosin-induced intermediate that is stabilized by cross-linking myosin motor domains (S1) to actin filaments (with a maximum of one S1 molecule for 50 actin monomers). A single S1 molecule is known to interact with two adjacent actin monomers. A detailed analysis revealed that thin filaments containing S1 molecules cross-linked to just one actin monomer (actin(1)-S1 complexes) are regulated with a 79% inhibition of the ATPase in the absence of Ca(2+). In contrast, filaments containing S1 molecules cross-linked at two positions, to two adjacent actin monomers (actin(2)-S1 complexes) totally lose their regulation in a highly cooperative manner. This loss of regulation was due both to an enhancement of the ATPase activity without calcium and an inhibition of the ATPase with calcium. Filaments containing actin(2)-S1 complexes, with significant ATPase activity in the absence of calcium (about 50%), did not move on a myosin-coated surface unless calcium was present. This partial uncoupling between the ATPase activity and in vitro motility in the absence of calcium demonstrates that the mechanical steps require actin-myosin contacts, which take place only in the on state and not in the off or intermediate states. These data provide new insights concerning the difference in cooperativity of Ca(2+) regulation that exists between the biochemical and mechanical cycles of the actin-myosin motor.
Collapse
|
1231
|
Luo Y, Li B, Yang G, Gergely J, Tao T. Cross-linking between the regulatory regions of troponin-I and troponin-C abolishes the inhibitory function of troponin. Biochemistry 2002; 41:12891-8. [PMID: 12379133 DOI: 10.1021/bi020396m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We reported previously that both residues 48 and 82 on opposite sides of troponin-C's (TnC's) N-terminal regulatory hydrophobic cleft photo-cross-linked to Met121 of troponin-I (TnI) [Luo, Y., Leszyk, J., Qian, Y., Gergely, J., and Tao, T. (1999) Biochemistry 38, 6678-6688]. Here we report that the Ca2+-absent inhibitory activity of troponin (Tn) was progressively lost as the extent of photo-cross-linking increased. To extend these studies, we constructed a mutant TnI with a single cysteine at residue 121 (TnI121). In Tn complexes containing TnI121 and mutant TnCs with a single cysteine at positions 12, 48, 82, 98, or 125 (TnC12, TnC48 etc.), TnI121 formed disulfide cross-links primarily with TnC48 and TnC82 when Ca2+ was present, and with only TnC48 when Ca2+ was absent. These results indicate that TnI Met121 is situated within the N-domain hydrophobic cleft of TnC in the presence of Ca2+, and that it moves out of the cleft upon Ca2+ removal but remains within the vicinity of TnC. Activity assays revealed that the Met121 to Cys mutation in TnI121 reduced the Ca2+-present activation of Tn, indicating that Met121 is important in hydrophobic interactions between this TnI region and TnC's N-domain cleft. The formation of a disulfide cross-link between TnI121 and TnC48 or TnC82 abolished the Ca2+-absent inhibitory activity of Tn, indicating that the movement of the Met121 region of TnI out of TnC's N-domain cleft is essential for the occurrence of further events in the inhibitory process of skeletal muscle contraction. On the basis of these and other results, a simple mechanism for Ca2+ regulation of skeletal muscle contraction is presented and discussed.
Collapse
Affiliation(s)
- Yin Luo
- Muscle and Motility Group, Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | | | | | |
Collapse
|
1232
|
Paulucci AA, Hicks L, Machado A, Miranda MTM, Kay CM, Farah CS. Specific sequences determine the stability and cooperativity of folding of the C-terminal half of tropomyosin. J Biol Chem 2002; 277:39574-84. [PMID: 12167616 DOI: 10.1074/jbc.m204749200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomyosin is a flexible 410 A coiled-coil protein in which the relative stabilities of specific regions may be important for its proper function in the control of muscle contraction. In addition, tropomyosin can be used as a simple model of natural occurrence to understand the inter- and intramolecular interactions that govern the stability of coiled-coils. We have produced eight recombinant tropomyosin fragments (Tm(143-284(5OHW),) Tm(189-284(5OHW)), Tm(189-284), Tm(220-284(5OHW)), Tm(220-284), Tm(143-235), Tm(167-260), and Tm(143-260)) and one synthetic peptide (Ac-Tm(215-235)) to investigate the relative conformational stability of different regions derived from the C-terminal region of the protein, which is known to interact with the troponin complex. Analytical ultracentrifugation experiments show that the fragments that include the last 24 residues of the molecule (Tm(143-284(5OHW)), Tm(189-284(5OHW)), Tm(220-284(5OHW)), Tm(220-284)) are completely dimerized at 10 microm dimer (50 mm phosphate, 100 mm NaCl, 1.0 mm dithiothreitol, and 0.5 mm EDTA, 10 degrees C), whereas fragments that lack the native C terminus (Tm(143-235),Tm(167-260), and Tm(143-260)) are in a monomer-dimer equilibrium under these conditions. The presence of trifluoroethanol resulted in a reduction in the [theta](222)/[theta](208) circular dichroism ratio in all of the fragments and induced stable trimer formation only in those containing residues 261-284. Urea denaturation monitored by circular dichroism and fluorescence revealed that residues 261-284 of tropomyosin are very important for the stability of the C-terminal half of the molecule as a whole. Furthermore, the absence of this region greatly increases the cooperativity of urea-induced unfolding. Temperature and urea denaturation experiments show that Tm(143-235) is less stable than other fragments of the same size. We have identified a number of factors that may contribute to this particular instability, including an interhelix repulsion between g and e' positions of the heptad repeat, a charged residue at the hydrophobic coiled-coil interface, and a greater fraction of beta-branched residues located at d positions.
Collapse
Affiliation(s)
- Adriana A Paulucci
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo CP 26.077, CEP 05599-970 São Paulo, São Paulo 05508900, Brazil
| | | | | | | | | | | |
Collapse
|
1233
|
Huang M, Burkhoff D, Schachat F, Brandt PW. Fluorescence changes on contractile activation in TnC(DANZ) labeled skinned rabbit psoas fibers. J Muscle Res Cell Motil 2002; 22:635-46. [PMID: 12222824 DOI: 10.1023/a:1016381627438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The increase in fluorescence of dansylaziridine (DANZ) labeled troponin C (TnC(DANZ) substituted into skinned rabbit psoas fibers was determined as a function of the pCa. The fluorescence data are expressed as the ratio of two wavelength bands, one that sees the fluorescence of TnC(DANZ), and one that sees background fluorescence and scatter. The percent TnC replaced with TnC(DANZ) was varied between 10 and 50% and, the fibers were randomly stretched, at the start of each experiment, between 10 and 50%. A large ratio increase accompanies increase in [Ca2+]. The pCa/force data are best fit by the Hill equation but the pCa/ratio data are best fit by a model in which Ca2+ binds in two phases. The position of the force curve on the pCa axis varies little between fibers, in contrast to that of the ratio or A-fluorescence curve. In accord with previous reports the delta-fluorescence can be left of the force on the pCa axis (type I) or superimpose in part on the force (type II). Not described previously, we find curves in which the second phase of the ratio cross-over the pCa/force curve. This type III relationship is found only in fibers less than 3 weeks postmuscle harvest. We propose that the first, relatively invariant, phase of the biphasic pCa/ratio curve accompanies Ca2+ binding to either of the two low affinity sites on TnC(DANZ) as it does for TnC in solution. The second, highly cooperative, phase of the ratio curve that accompanies muscle contraction and enhanced Ca2+ binding is initiated when sufficient Ca2+ is bound to overcome inhibitory systems. Loose coupling between the initial Ca2+ binding and the cooperative switch point may account for much of the variation in the shape and position of the pCa/ratio curve. There is evidence that, in the overlap zone, weakly attached myosin cross-bridges enhance cooperation between the regulatory units of the thin filaments.
Collapse
Affiliation(s)
- M Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
1234
|
Pieples K, Arteaga G, Solaro RJ, Grupp I, Lorenz JN, Boivin GP, Jagatheesan G, Labitzke E, DeTombe PP, Konhilas JP, Irving TC, Wieczorek DF. Tropomyosin 3 expression leads to hypercontractility and attenuates myofilament length-dependent Ca(2+) activation. Am J Physiol Heart Circ Physiol 2002; 283:H1344-53. [PMID: 12234784 DOI: 10.1152/ajpheart.00351.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tropomyosin (TM), an integral component of the thin filament, is encoded by three striated muscle isoforms: alpha-TM, beta-TM, and TPM 3. Although the alpha-TM and beta-TM isoforms are well characterized, less is known about the function of the TPM 3 isoform, which is predominantly found in the slow-twitch musculature of mammals. To determine its functional significance, we ectopically expressed this isoform in the hearts of transgenic mice. We generated six transgenic mouse lines that produce varying levels of TPM 3 message with ectopic TPM 3 protein accounting for 40-60% of the total striated muscle tropomyosin. The transgenic mice have normal life spans and exhibit no morphological abnormalities in their sarcomeres or hearts. However, there are significant functional alterations in cardiac performance. Physiological assessment of these mice by using closed-chest analyses and a work-performing model reveals a hyperdynamic effect on systolic and diastolic function. Analysis of detergent-extracted fiber bundles demonstrates a decreased sensitivity to Ca(2+) in force generation and a decrease in length-dependent Ca(2+) activation with no detectable change in interfilament spacing as determined by using X-ray diffraction. Our data are the first to demonstrate that TM isoforms can affect sarcomeric performance by decreasing sensitivity to Ca(2+) and influencing the length-dependent Ca(2+) activation.
Collapse
Affiliation(s)
- Kathy Pieples
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Ohio 45267-0529, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1235
|
Tesi C, Piroddi N, Colomo F, Poggesi C. Relaxation kinetics following sudden Ca(2+) reduction in single myofibrils from skeletal muscle. Biophys J 2002; 83:2142-51. [PMID: 12324431 PMCID: PMC1302302 DOI: 10.1016/s0006-3495(02)73974-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To investigate the roles of cross-bridge dissociation and cross-bridge-induced thin filament activation in the time course of muscle relaxation, we initiated force relaxation in single myofibrils from skeletal muscles by rapidly (approximately 10 ms) switching from high to low [Ca(2+)] solutions. Full force decay from maximal activation occurs in two phases: a slow one followed by a rapid one. The latter is initiated by sarcomere "give" and dominated by inter-sarcomere dynamics (see the companion paper, Stehle, R., M. Krueger, and G. Pfitzer. 2002. Biophys. J. 83:2152-2161), while the former occurs under nearly isometric conditions and is sensitive to mechanical perturbations. Decreasing the Ca(2+)-activated force preceding the start of relaxation does not increase the rate of the slow isometric phase, suggesting that cycling force-generating cross-bridges do not significantly sustain activation during relaxation. This conclusion is strengthened by the finding that the rate of isometric relaxation from maximum force to any given Ca(2+)-activated force level is similar to that of Ca(2+)-activation from rest to that given force. It is likely, therefore, that the slow rate of force decay in full relaxation simply reflects the rate at which cross-bridges leave force-generating states. Because increasing [P(i)] accelerates relaxation while increasing [MgADP] slows relaxation, both forward and backward transitions of cross-bridges from force-generating to non-force-generating states contribute to muscle relaxation.
Collapse
Affiliation(s)
- Chiara Tesi
- Dipartimento di Scienze Fisiologiche, Università di Firenze, Italy
| | | | | | | |
Collapse
|
1236
|
Brown LJ, Sale KL, Hills R, Rouviere C, Song L, Zhang X, Fajer PG. Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance. Proc Natl Acad Sci U S A 2002; 99:12765-70. [PMID: 12239350 PMCID: PMC130534 DOI: 10.1073/pnas.202477399] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-directed spin labeling EPR (SDSL-EPR) was used to determine the structure of the inhibitory region of TnI in the intact cardiac troponin ternary complex. Maeda and collaborators have modeled the inhibitory region of TnI (skeletal 96-112: the structural motif that communicates the Ca(2+) signal to actin) as a kinked alpha-helix [Vassylyev, D., Takeda, S., Wakatsuki, S., Maeda, K. & Maeda, Y. (1998) Proc. Natl. Acad. Sci. USA 95, 4847-4852), whereas Trewhella and collaborators have proposed the same region to be a flexible beta-hairpin [Tung, C. S., Wall, M. E., Gallagher, S. C. & Trewhella, J. (2000) Protein Sci. 9, 1312-1326]. To distinguish between the two models, residues 129-145 of cardiac TnI were mutated sequentially to cysteines and labeled with the extrinsic spin probe, MTSSL. Sequence-dependent solvent accessibility was measured as a change in power saturation of the spin probe in the presence of the relaxation agent. In the ternary complex, the 129-137 region followed a pattern characteristic of a regular 3.6 residues/turn alpha-helix. The following region, residues 138-145, showed no regular pattern in solvent accessibility. Measurements of 4 intradomain distances within the inhibitory sequence, using dipolar EPR, were consistent with an alpha-helical structure. The difference in side-chain mobility between the ternary (C.I.T) and binary (C.I) complexes revealed a region of interaction of TnT located at the N-terminal end of the inhibitory sequence, residues 130-135. The above findings for the troponin complex in solution do not support either of the computational models of the binary complex; however, they are in very good agreement with a preliminary report of the x-ray structure of the cardiac ternary complex [Takeda, S. Yamashita, A., Maeda, K. & Maeda, Y. (2002) Biophys. J. 82, 832].
Collapse
Affiliation(s)
- Louise J Brown
- National High Magnetic Field Laboratory, Institute of Molecular Biophysics, and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | | | | | | | | | | | | |
Collapse
|
1237
|
Dargis R, Pearlstone JR, Barrette-Ng I, Edwards H, Smillie LB. Single mutation (A162H) in human cardiac troponin I corrects acid pH sensitivity of Ca2+-regulated actomyosin S1 ATPase. J Biol Chem 2002; 277:34662-5. [PMID: 12151382 DOI: 10.1074/jbc.c200419200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to skeletal muscle, the efficiency of the contractile apparatus of cardiac tissue has long been known to be severely compromised by acid pH as in the ischemia of myocardial infarction and other cardiac myopathies. Recent reports (Westfall, M. V., and Metzger, J. M. (2001) News Physiol. Sci. 16, 278-281; Li, G., Martin, A. F., and Solaro, R. J. (2001) J. Mol. Cell. Cardiol. 33, 1309-1320) have indicated that the reduced Ca(2+) sensitivity of cardiac contractility at low pH (<or=pH 6.5) is attributable to structural difference(s) in the cardiac and skeletal inhibitory components (TnIs) of their troponins. Here, using a reconstituted Ca(2+)-regulated human cardiac troponin-tropomyosin actomyosin S1 ATPase assay, we report that a single TnI mutation, A162H, restores Ca(2+) sensitivity at pH 6.5 to that at pH 7.0. Levels of inhibition (pCa 7.0), activation (pCa 4.0), and cooperativity of ATPase activity were minimally affected. Two other mutations (Q155R and E164V) also previously suggested by us (Pearlstone, J. R., Sykes, B. D., and Smillie, L. B. (1997) Biochemistry 36, 7601-7606) and involving charged residues showed no such effects. With fast skeletal muscle troponin, a single TnI H130A mutation reduced Ca(2+) sensitivity at pH 6.5 to levels approaching the cardiac system at pH 6.5. These observations provide structural insight into long-standing physiological and clinical phenomena and are of potential relevance to therapeutic treatments of heart disease by gene transfer, stem cell, and cell transplantation approaches.
Collapse
Affiliation(s)
- Roland Dargis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
1238
|
LaMadrid MA, Chase PB, Gordon AM. Motility assays of calcium regulation of actin filaments. Results Probl Cell Differ 2002; 36:133-48. [PMID: 11892277 DOI: 10.1007/978-3-540-46558-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M A LaMadrid
- Dept. of Physiology and Biophysics, Dept. of Radiology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
1239
|
Vandenboom R, Hannon JD, Sieck GC. Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation. J Physiol 2002; 543:555-66. [PMID: 12205189 PMCID: PMC2290518 DOI: 10.1113/jphysiol.2002.022673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We tested the hypothesis that force-velocity history modulates thin filament activation, as assessed by the rate of force redevelopment after shortening (+dF/dt(R)). The influence of isotonic force on +dF/dt(R) was assessed by imposing uniform amplitude (2.55 to 2.15 microm sarcomere(-1)) but different speed releases to intact frog muscle fibres during fused tetani. Each release consisted of a contiguous ramp- and step-change in length. Ramp speed was changed from release to release to vary fibre shortening speed from 1.00 (2.76 +/- 0.11 microm half-sarcomere(-1) s(-1)) to 0.30 of maximum unloaded shortening velocity (V(u)), thereby modulating isotonic force from 0 to 0.34 F(o), respectively. The step zeroed force and allowed the fibre to shorten unloaded for a brief period of time prior to force redevelopment. Although peak force redevelopment after different releases was similar, +dF/dt(R) increased by 81 +/- 6 % (P < 0.05) as fibre shortening speed was reduced from 1.00 V(u). The +dF/dt(R) after different releases was strongly correlated with the preceding isotonic force (r = 0.99, P < 0.001). Results from additional experiments showed that the slope of slack test plots produced by systematically increasing the step size that followed each ramp were similar. Thus, isotonic force did not influence V(u) (mean: 2.84 +/- 0.10 microm half-sarcomere(-1) s(-1), P < 0.05). We conclude that isotonic force modulates +dF/dt(R) independent of change in V(u), an outcome consistent with a cooperative influence of attached cross-bridges on thin filament activation that increases cross-bridge attachment rate without alteration to cross-bridge detachment rate.
Collapse
Affiliation(s)
- Rene Vandenboom
- Departments of Anesthesiology and Physiology and Biophysics, Mayo Medical School, Rochester, MN 55905, USA
| | | | | |
Collapse
|
1240
|
Wang X, Li MX, Sykes BD. Structure of the regulatory N-domain of human cardiac troponin C in complex with human cardiac troponin I147-163 and bepridil. J Biol Chem 2002; 277:31124-33. [PMID: 12060657 DOI: 10.1074/jbc.m203896200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac troponin C (cTnC) is the Ca(2+)-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of heart failure. Ca(2+) binding to the regulatory domain of cTnC (cNTnC) induces little structural change but sets the stage for cTnI binding. A large "closed" to "open" conformational transition occurs in the regulatory domain upon binding cTnI(147-163) or bepridil. This raises the question of whether cTnI(147-163) and bepridil compete for cNTnC.Ca(2+). In this work, we used two-dimensional (1)H,(15)N-heteronuclear single quantum coherence (HSQC) NMR spectroscopy to examine the binding of bepridil to cNTnC.Ca(2+) in the absence and presence of cTnI(147-163) and of cTnI(147-163) to cNTnC.Ca(2+) in the absence and presence of bepridil. The results show that bepridil and cTnI(147-163) bind cNTnC.Ca(2+) simultaneously but with negative cooperativity. The affinity of cTnI(147-163) for cNTnC.Ca(2+) is reduced approximately 3.5-fold by bepridil and vice versa. Using multinuclear and multidimensional NMR spectroscopy, we have determined the structure of the cNTnC.Ca(2+).cTnI(147-163).bepridil ternary complex. The structure reveals a binding site for cTnI(147-163) primarily located on the A/B interhelical interface and a binding site for bepridil in the hydrophobic pocket of cNTnC.Ca(2+). In the structure, the N terminus of the peptide clashes with part of the bepridil molecule, which explains the negative cooperativity between cTnI(147-163) and bepridil for cNTnC.Ca(2+). This structure provides insights into the features that are important for the design of cTnC-specific cardiotonic drugs, which may be used to modulate the Ca(2+) sensitivity of the myofilaments in heart muscle contraction.
Collapse
Affiliation(s)
- Xu Wang
- Canadian Institutes for Health Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
1241
|
Maytum R, Geeves MA, Lehrer SS. A modulatory role for the troponin T tail domain in thin filament regulation. J Biol Chem 2002; 277:29774-80. [PMID: 12045197 DOI: 10.1074/jbc.m201761200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In striated muscle the force generating acto-myosin interaction is sterically regulated by the thin filament proteins tropomyosin and troponin (Tn), with the position of tropomyosin modulated by calcium binding to troponin. Troponin itself consists of three subunits, TnI, TnC, and TnT, widely characterized as being responsible for separate aspects of the regulatory process. TnI, the inhibitory unit is released from actin upon calcium binding to TnC, while TnT performs a structural role forming a globular head region with the regulatory TnI- TnC complex with a tail anchoring it within the thin filament. We have examined the properties of TnT and the TnT(1) tail fragment (residues 1-158) upon reconstituted actin-tropomyosin filaments. Their regulatory effects have been characterized in both myosin S1 ATPase and S1 kinetic and equilibrium binding experiments. We show that both inhibit the actin-tropomyosin-activated S1 ATPase with TnT(1) producing a greater inhibitory effect. The S1 binding data show that this inhibition is not caused by the formation of the blocked B-state but by significant stabilization of the closed C-state with a 10-fold reduction in the C- to M-state equilibrium, K(T), for TnT(1). This suggests TnT has a modulatory as well as structural role, providing an explanation for its large number of alternative isoforms.
Collapse
Affiliation(s)
- Robin Maytum
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, United Kingdom.
| | | | | |
Collapse
|
1242
|
Tobacman LS, Nihli M, Butters C, Heller M, Hatch V, Craig R, Lehman W, Homsher E. The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity. J Biol Chem 2002; 277:27636-42. [PMID: 12011043 DOI: 10.1074/jbc.m201768200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cardiac and skeletal muscles tropomyosin binds to the actin outer domain in the absence of Ca(2+), and in this position tropomyosin inhibits muscle contraction by interfering sterically with myosin-actin binding. The globular domain of troponin is believed to produce this B-state of the thin filament (Lehman, W., Hatch, V., Korman, V. L., Rosol, M., Thomas, L. T., Maytum, R., Geeves, M. A., Van Eyk, J. E., Tobacman, L. S., and Craig, R. (2000) J. Mol. Biol. 302, 593-606) via troponin I-actin interactions that constrain the tropomyosin. The present study shows that the B-state can be promoted independently by the elongated tail region of troponin (the NH(2) terminus (TnT-(1-153)) of cardiac troponin T). In the absence of the troponin globular domain, TnT-(1-153) markedly inhibited both myosin S1-actin-tropomyosin MgATPase activity and (at low S1 concentrations) myosin S1-ADP binding to the thin filament. Similarly, TnT-(1-153) increased the concentration of heavy meromyosin required to support in vitro sliding of thin filaments. Electron microscopy and three-dimensional reconstruction of thin filaments containing TnT-(1-153) and either cardiac or skeletal muscle tropomyosin showed that tropomyosin was in the B-state in the complete absence of troponin I. All of these results indicate that portions of the troponin tail domain, and not only troponin I, contribute to the positioning of tropomyosin on the actin outer domain, thereby inhibiting muscle contraction in the absence of Ca(2+).
Collapse
Affiliation(s)
- Larry S Tobacman
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1243
|
Costa ML, Escaleira RC, Rodrigues VB, Manasfi M, Mermelstein CS. Some distinctive features of zebrafish myogenesis based on unexpected distributions of the muscle cytoskeletal proteins actin, myosin, desmin, alpha-actinin, troponin and titin. Mech Dev 2002; 116:95-104. [PMID: 12128209 DOI: 10.1016/s0925-4773(02)00149-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The current myofibrillogenesis model is based mostly on in vitro cell cultures and on avian and mammalian embryos in situ. We followed the expression of actin, myosin, desmin, alpha-actinin, titin, and troponin using immunofluorescence microscopy of zebrafish (Danio rerio) embryos. We could see young mononucleated myoblasts with sharp striations. The striations were positive for all the sarcomeric proteins. Desmin distribution during muscle maturation changes from dispersed aggregates to a perinuclear concentration to striated afterwards. We could not observe desmin-positive, myofibrillar-proteins-negative cells, and we could not find any non-striated distribution of sarcomeric proteins, such as stress fiber-like structures. Some steps, like fusion before striation, seem to be different in the zebrafish when compared with the previously described myogenesis sequences.
Collapse
Affiliation(s)
- Manoel L Costa
- Laboratório de Diferenciação Muscular e Citoesqueleto, Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
1244
|
Bukatina AE, Morozov VN, Gusev NB, Sieck GC. Mechano-chemical effects of Ca(2+) in cross-linked troponin-C films. FEBS Lett 2002; 524:107-10. [PMID: 12135750 DOI: 10.1016/s0014-5793(02)03013-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Changes in troponin C (TnC) conformation upon Ca(2+) binding forms the basis for regulatory and structural functions of TnC molecules. In the present study, Ca(2+)-induced conformational changes in TnC were observed by mechanical measurements. TnC films were prepared by drying or electrospraying TnC solutions, cross-linked with glutaraldehyde, and isometric tension and stiffness measured as a function of pCa. An increase in Ca(2+) from a pCa of 9 to 4 induced large-scale mechanical changes in the TnC films causing several percent shrinkage of the unloaded films. This shrinkage could be partially assigned to Ca(2+) binding to the Ca(2+)/Mg(2+) sites of TnC.
Collapse
Affiliation(s)
- Anna E Bukatina
- Department of Anesthesiology, Mayo Foundation, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
1245
|
Abbate F, Bruton JD, De Haan A, Westerblad H. Prolonged force increase following a high-frequency burst is not due to a sustained elevation of [Ca2+]i. Am J Physiol Cell Physiol 2002; 283:C42-7. [PMID: 12055071 DOI: 10.1152/ajpcell.00416.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A brief high-frequency burst of action potentials results in a sustained force increase in skeletal muscle. The present study investigates whether this force potentiation is the result of a sustained increase of the free myoplasmic [Ca2+] ([Ca2+]i). Single fibers from mouse flexor brevis muscles were stimulated with three impulses at 150 Hz (triplet) at the start of a 350-ms tetanus or in the middle of a 700-ms tetanus; the stimulation frequency of the rest of the tetanus ranged from 20 to 60 Hz. After the triplet, force was significantly (P < 0.05) increased between 17 and 20% when the triplet was given at the start of the tetanus and between 5 and 18% when the triplet was given in the middle (n = 7). However, during this potentiation, [Ca2+]i was not consistently increased. Hence, the increased force following a high-frequency burst is likely due to changes in the myofibrillar properties.
Collapse
Affiliation(s)
- F Abbate
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
1246
|
Nyitrai M, Szent-Györgyi AG, Geeves MA. A kinetic model of the co-operative binding of calcium and ADP to scallop (Argopecten irradians) heavy meromyosin. Biochem J 2002; 365:19-30. [PMID: 12071838 PMCID: PMC1222655 DOI: 10.1042/bj20020099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Analysis of the kinetics of ATP and ADP binding to scallop (Argopecten irradians) heavy meromyosin (HMM) showed that the only calcium-dependent process is the rate of ADP release. At physiological ionic strength calcium accelerated ADP release about 20-fold. Notably in the absence of calcium only one ADP bound HMM, with an affinity of 0.5-1 microM. The second nucleotide site remained unoccupied at up to 50 microM ADP yet could bind ATP rapidly. The calcium dependence of ADP-release rates showed that calcium binds co-operatively to scallop HMM with an affinity of 0.78 microM and a Hill coefficient of 1.9. Detailed interpretation of the data suggests that HMM exists in equilibrium between the on and off states and that calcium and ADP modulate the equilibrium between the two states. The on state is favoured in the presence of calcium and in the absence of both calcium and nucleotide. The off state is favoured by ADP (or ADP * P(i)) in the absence of calcium. A detailed co-operative model of the interaction of ADP and calcium with HMM is presented.
Collapse
Affiliation(s)
- Miklós Nyitrai
- Department of Biosciences, University of Kent at Canterbury, Canterbury, Kent, CT2 7NJ, UK
| | | | | |
Collapse
|
1247
|
Lindhout DA, Li MX, Schieve D, Sykes BD. Effects of T142 phosphorylation and mutation R145G on the interaction of the inhibitory region of human cardiac troponin I with the C-domain of human cardiac troponin C. Biochemistry 2002; 41:7267-74. [PMID: 12044157 DOI: 10.1021/bi020100c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac troponin I (cTnI) is the inhibitory component of the troponin complex, and its interaction with cardiac troponin C (cTnC) plays a critical role in transmitting the Ca(2+) signal to the other myofilament proteins in heart muscle contraction. The switch between contraction and relaxation involves a movement of the inhibitory region of cTnI (cIp) from cTnC to actin-tropomyosin. This region of cTnI is prone to missense mutations in heart disease, and a specific mutation, R145G, has been associated with familial hypertrophic cardiomyopathy. It also contains the unique cardiac PKC phosphorylation site at residue T142. To determine the structural consequences of the mutation R145G and the T142 phosphorylation on the interaction of cIp with cTnC, we have utilized 2D [(1)H, (15)N]-HSQC NMR spectroscopy to monitor the binding of native cIp, cIp-R (R145G), and cIp-P (phosphorylated T142), respectively, to the Ca(2+)-saturated C-domain of cTnC (cCTnC.2Ca(2+)). We also report a strategy for cloning, expression, and purification of cTnI peptide, and both synthetic and recombinant peptides are used in this study. NMR chemical shift mapping indicates that the binding epitope of cIp on cCTnC.2Ca(2+) is not greatly affected, but the affinity is reduced by approximately 14-fold by the T142 phosphorylation and approximately 4-fold by the mutation R145G, respectively. This suggests that these modifications of cIp have an adverse effect on the binding of cIp to cCTnC.2Ca(2+). These perturbations may correlate with the impairment or loss of cTnI function in heart muscle contraction.
Collapse
Affiliation(s)
- Darrin A Lindhout
- CIHR Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
1248
|
Wang Y, Kerrick WGL. The off rate of Ca(2+) from troponin C is regulated by force-generating cross bridges in skeletal muscle. J Appl Physiol (1985) 2002; 92:2409-18. [PMID: 12015355 DOI: 10.1152/japplphysiol.00376.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of dissociation of force-generating cross bridges on intracellular Ca(2+), pCa-force, and pCa-ATPase relationships were investigated in mouse skeletal muscle. Mechanical length perturbations were used to dissociate force-generating cross bridges in either intact or skinned fibers. In intact muscle, an impulse stretch or release, a continuous length vibration, a nonoverlap stretch, or an unloaded shortening during a twitch caused a transient increase in intracellular Ca(2+) compared with that in isometric controls and resulted in deactivation of the muscle. In skinned fibers, sinusoidal length vibrations shifted pCa-force and pCa-actomyosin ATPase rate relationships to higher Ca(2+) concentrations and caused actomyosin ATPase rate to decrease at submaximal Ca(2+) and increase at maximal Ca(2+) activation. These results suggest that dissociation of force-generating cross bridges during a twitch causes the off rate of Ca(2+) from troponin C to increase (a decrease in the Ca(2+) affinity of troponin C), thus decreasing the Ca(2+) sensitivity and resulting in the deactivation of the muscle. The results also suggest that the Fenn effect only exists at maximal but not submaximal force-activating Ca(2+) concentrations.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | |
Collapse
|
1249
|
Tikunova SB, Rall JA, Davis JP. Effect of hydrophobic residue substitutions with glutamine on Ca(2+) binding and exchange with the N-domain of troponin C. Biochemistry 2002; 41:6697-705. [PMID: 12022873 DOI: 10.1021/bi011763h] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Troponin C (TnC) is an EF-hand Ca(2+) binding protein that regulates skeletal muscle contraction. The mechanisms that control the Ca(2+) binding properties of TnC and other EF-hand proteins are not completely understood. We individually substituted 27 Phe, Ile, Leu, Val, and Met residues with polar Gln to examine the role of hydrophobic residues in Ca(2+) binding and exchange with the N-domain of a fluorescent TnC(F29W). The global N-terminal Ca(2+) affinities of the TnC(F29W) mutants varied approximately 2340-fold, while Ca(2+) association and dissociation rates varied less than 70-fold and more than 45-fold, respectively. Greater than 2-fold increases in Ca(2+) affinities were obtained primarily by slowing of Ca(2+) dissociation rates, while greater than 2-fold decreases in Ca(2+) affinities were obtained by slowing of Ca(2+) association rates and speeding of Ca(2+) dissociation rates. No correlation was found between the Ca(2+) binding properties of the TnC(F29W) mutants and the solvent accessibility of the hydrophobic amino acids in the apo state, Ca(2+) bound state, or the difference between the two states. However, the effects of these hydrophobic mutations on Ca(2+) binding were contextual possibly because of side chain interactions within the apo and Ca(2+) bound states of the N-domain. These results demonstrate that a single hydrophobic residue, which does not directly ligate Ca(2+), can play a crucial role in controlling Ca(2+) binding and exchange within a coupled and functional EF-hand system.
Collapse
Affiliation(s)
- Svetlana B Tikunova
- Department of Molecular and Cellular Biochemistry and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
1250
|
Michele DE, Coutu P, Metzger JM. Divergent abnormal muscle relaxation by hypertrophic cardiomyopathy and nemaline myopathy mutant tropomyosins. Physiol Genomics 2002; 9:103-11. [PMID: 12006676 DOI: 10.1152/physiolgenomics.00099.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in tropomyosin (Tm) have been linked to distinct inherited diseases of cardiac and skeletal muscle, hypertrophic cardiomyopathy (HCM), and nemaline myopathy (NM). How HCM and NM mutations in nearly identical Tm proteins produce the vastly divergent clinical phenotypes of heightened, prolonged cardiac muscle contraction in HCM and skeletal muscle weakness in NM is currently unknown. We report here a direct comparison of the effects of HCM (A63V) and NM (M9R) mutant Tm on membrane-intact myocyte contractile function as assessed by adenoviral gene transfer to fully differentiated cardiac muscle cells. Wild-type, and mutant HCM, and mutant NM proteins were expressed at similar levels in myocytes and incorporated into sarcomeres. Interestingly, HCM mutant Tm produced significantly longer contractions by slowing relaxation, whereas NM mutant Tm produced the opposite effect of accelerated muscle relaxation. We propose slowed relaxation caused by HCM mutant Tm can directly contribute to diastolic dysfunction seen in HCM even without secondary cardiac remodeling. Conversely, hastening of relaxation by NM mutant Tm may shift the force-frequency relationship in skeletal muscle and contribute to muscle weakness seen in NM. Together, these results implicate divergent, abnormal "turning off" of muscle contraction as a cellular basis for the differential pathogenesis of mutant Tm-associated HCM and NM.
Collapse
Affiliation(s)
- Daniel E Michele
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | | | |
Collapse
|