1251
|
Zhang Z, Miao L, Wang L. Inflammation amplification by Versican: the first mediator. Int J Mol Sci 2012; 13:6873-6882. [PMID: 22837669 PMCID: PMC3397501 DOI: 10.3390/ijms13066873] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/03/2012] [Accepted: 05/29/2012] [Indexed: 01/25/2023] Open
Abstract
The effects of inflammation may not always benefit the individual. Its amplifying nature represents a highly regulated biological program, and the inflammatory microenvironment is its essential component. Growing evidence suggests that the ECM (extracellular matrix) is important for the early steps of inflammation. Versican, a ubiquitous component of the ECM, contributes to the formation of the inflammatory response and is highly regulated by cytokines. Certain cytokines exert their initial effects on versican to alter the homeostasis of the inflammatory milieu, and inappropriate production of versican may promote the next inflammatory response. Therefore, versican could be the first step in the amplification of the inflammatory response, and ongoing research of this molecule may help to explain the pathogenesis of inflammation.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | - Lei Miao
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, China; E-Mail:
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-21-81870970 (ext. 8011); Fax: +86-21-65334333
| |
Collapse
|
1252
|
Amalric M, Lopez S, Goudet C, Fisone G, Battaglia G, Nicoletti F, Pin JP, Acher FC. Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson's disease. Neuropharmacology 2012; 66:53-64. [PMID: 22664304 DOI: 10.1016/j.neuropharm.2012.05.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/28/2012] [Accepted: 05/21/2012] [Indexed: 12/22/2022]
Abstract
Restoring the balance between excitatory and inhibitory circuits in the basal ganglia, following the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta, represents a major challenge to treat patients affected by Parkinson's disease (PD). The imbalanced situation in favor of excitation in the disease state may also accelerate excitotoxic processes, thereby representing a potential target for neuroprotective therapies. Reducing the excitatory action of glutamate, the major excitatory neurotransmitter in the basal ganglia, should lead to symptomatic improvement for PD patients and may promote the survival of DA neurons. Recent studies have focused on the modulatory action of metabotropic glutamate (mGlu) receptors on neurodegenerative diseases including PD. Group III mGlu receptors, including subtypes 4, 7 and 8, are largely expressed in the basal ganglia. Recent studies highlight the use of selective mGlu4 receptor positive allosteric modulators (PAMs) for the treatment of PD. Here we review the effects of newly-designed group-III orthosteric agonists on neuroprotection, neurorestoration and reduction of l-DOPA induced dyskinesia in animal models of PD. The combination of orthosteric mGlu4 receptor selective agonists with PAMs may open new avenues for the symptomatic treatment of PD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- M Amalric
- Aix-Marseille University, CNRS UMR 7291, Laboratoire de Neurosciences Fonctionnelles, Case C, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | | | | | | | | | | | | | | |
Collapse
|
1253
|
Chung SJ, Armasu SM, Biernacka JM, Anderson KJ, Lesnick TG, Rider DN, Cunningham JM, Eric Ahlskog J, Frigerio R, Maraganore DM. Genomic determinants of motor and cognitive outcomes in Parkinson's disease. Parkinsonism Relat Disord 2012; 18:881-6. [PMID: 22658654 DOI: 10.1016/j.parkreldis.2012.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/29/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Little is known regarding genetic factors associated with motor or cognitive outcomes in Parkinson's disease (PD). OBJECTIVE To identify common genetic variants associated with motor and cognitive outcomes in PD. METHODS The sample consisted of 443 PD cases included in the first genome-wide association study (GWAS) of PD. Methods included telephone interview assessments of motor and cognitive outcomes, a median 9 years following the initial clinical assessments. Analyses included Cox proportional hazard models to study the association of 198,345 single nucleotide polymorphisms (SNPs) with survival free of Hoehn and Yahr stage ≥ 4 (motor outcome), and either TICS-M ≤ 27 or AD-8 ≥ 2 (cognitive outcomes). RESULTS The SNP rs10958605 in the C8orf4 gene had the smallest p value in analyses of the motor outcome (HR = 1.81; 95% CI = 1.42-2.31; p = 1.51 × 10(-6)). The SNP rs6482992 in the CLRN3 gene had the smallest p value in analyses of the cognitive outcome (HR = 2.03, 95% CI 1.47-2.79, p = 4.08 × 10(-6)). However, no SNP associations were significant after Bonferroni correction. The C8orf4 gene had small p values for both motor and cognitive outcomes, highlighting inflammation as a possible pathogenesis mechanism for progression in PD. CONCLUSIONS This study suggests that common variants in several genes may be associated with motor and cognitive outcomes in PD, with biological plausibility.
Collapse
Affiliation(s)
- Sun Ju Chung
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1254
|
A possible novel anti-inflammatory mechanism for the pharmacological prolyl hydroxylase inhibitor 3,4-dihydroxybenzoate: implications for use as a therapeutic for Parkinson's disease. PARKINSONS DISEASE 2012; 2012:364684. [PMID: 22666629 PMCID: PMC3361310 DOI: 10.1155/2012/364684] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized in part by the preferential loss of nigrostriatal dopaminergic neurons. Although the precise etiology of PD is unknown, accumulating evidence suggests that PD involves microglial activation that exerts neurotoxic effects through production of proinflammatory cytokines and increased oxidative and nitrosative stress. Thus, controlling microglial activation has been suggested as a therapeutic target for combating PD. Previously we demonstrated that pharmacological inhibition of a class of enzymes known as prolyl hydroxylases via 3,4-dihydroxybenzoate administration protected against MPTP-induced neurotoxicity, however the exact mechanisms involved were not elucidated. Here we show that this may be due to DHB's ability to inhibit microglial activation. DHB significantly attenuated LPS-mediated induction of nitric oxide synthase and pro-inflammatory cytokines in murine BV2 microglial cells in vitro in conjunction with reduced ROS production and activation of NFκB and MAPK pathways possibly due to up-regulation of HO-1 levels. HO-1 inhibition partially abrogates LPS-mediated NFκB activity and subsequent NO induction. In vivo, DHB pre-treatment suppresses microglial activation elicited by MPTP treatment. Our results suggest that DHB's neuroprotective properties could be due to its ability to dampen induction of microglial activation via induction of HO-1.
Collapse
|
1255
|
von Bernhardi R, Eugenín J. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 2012; 16:974-1031. [PMID: 22122400 DOI: 10.1089/ars.2011.4082] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a progressive neurodegeneration that appears to result from multiple pathogenic mechanisms (including protein misfolding/aggregation, involved in both amyloid β-dependent senile plaques and tau-dependent neurofibrillary tangles), metabolic and mitochondrial dysfunction, excitoxicity, calcium handling impairment, glial cell dysfunction, neuroinflammation, and oxidative stress. Oxidative stress, which could be secondary to several of the other pathophysiological mechanisms, appears to be a major determinant of the pathogenesis and progression of AD. The identification of oxidized proteins common for mild cognitive impairment and AD suggests that key oxidation pathways are triggered early and are involved in the initial progression of the neurodegenerative process. Abundant data support that oxidative stress, also considered as a main factor for aging, the major risk factor for AD, can be a common key element capable of articulating the divergent nature of the proposed pathogenic factors. Pathogenic mechanisms influence each other at different levels. Evidence suggests that it will be difficult to define a single-target therapy resulting in the arrest of progression or the improvement of AD deterioration. Since oxidative stress is present from early stages of disease, it appears as one of the main targets to be included in a clinical trial. Exploring the articulation of AD pathogenic mechanisms by oxidative stress will provide clues for better understanding the pathogenesis and progression of this dementing disorder and for the development of effective therapies to treat this disease.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
1256
|
Gordon R, Anantharam V, Kanthasamy AG, Kanthasamy A. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. J Neuroinflammation 2012; 9:82. [PMID: 22540228 PMCID: PMC3419619 DOI: 10.1186/1742-2094-9-82] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 04/27/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mechanisms of progressive dopaminergic neuronal loss in Parkinson's disease (PD) remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF) has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. METHODS In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1) were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS) model of nigral dopaminergic degeneration. RESULTS TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ), an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (si)RNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (-/-) mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the neuroinflammatory LPS model was also observed. CONCLUSIONS Collectively, these results identify proteolytic activation of PKCδ proapoptotic signaling as a key downstream effector of dopaminergic cell death induced by TNF. These findings also provide a rationale for therapeutically targeting PKCδ to mitigate progressive dopaminergic degeneration resulting from chronic neuroinflammatory processes.
Collapse
Affiliation(s)
- Richard Gordon
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
1257
|
Fang F, Wirdefeldt K, Jacks A, Kamel F, Ye W, Chen H. CNS infections, sepsis and risk of Parkinson's disease. Int J Epidemiol 2012; 41:1042-9. [PMID: 22523201 DOI: 10.1093/ije/dys052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Neuroinflammation may play an important role in the aetiology of Parkinson's disease (PD); however, little is known about infections in relation to future PD risk. METHODS We conducted a register-based nested case-control study in Sweden to examine infections of the central nervous system (CNS) and sepsis in relation to PD with 18,648 patients and 93,240 matched controls. We defined the index date as the date of first recorded PD diagnosis in the Swedish Patient Register. RESULTS Overall, PD patients were more likely to have a previous hospitalization for CNS infections [odds ratio (OR) = 1.5, 95% confidence interval (CI): 1.2-1.9] or sepsis (OR = 1.6, 95% CI: 1.4-1.7) than controls, largely due to hospitalizations in the year before PD identification (CNS infections: OR = 3.0, 95% CI: 1.6-5.7; sepsis: OR = 3.5, 95% CI: 3.0-4.0). However, we found that subjects with multiple CNS infections at least 5 years before the index date had higher PD occurrence than those without CNS infections (OR = 3.3, 95% CI: 1.4-8.2), whereas the corresponding OR for sepsis was 1.4 (95% CI: 0.8-2.4). After the index date, PD patients were more likely to be hospitalized for CNS infections [hazard ratio (HR) =1.8, 95% CI: 1.2-2.7] or sepsis (HR = 2.2, 95% CI: 2.1-2.4) than controls. CONCLUSIONS This study provides preliminary evidence for an association between CNS infections, but not sepsis, and a higher future risk of PD. It also shows that PD patients were more prone to CNS infections and sepsis than controls.
Collapse
Affiliation(s)
- Fang Fang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
1258
|
Mathieu P, Roca V, Gamba C, Del Pozo A, Pitossi F. Neuroprotective effects of human umbilical cord mesenchymal stromal cells in an immunocompetent animal model of Parkinson's disease. J Neuroimmunol 2012; 246:43-50. [PMID: 22458982 DOI: 10.1016/j.jneuroim.2012.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/22/2023]
Abstract
Microglial activation in the substantia nigra (SN) is a ubiquitous feature in PD which could mediate toxic effects. Human mesenchymal stromal cells (hMSCs) possess immunomodulatory properties. We evaluated whether the transplantation of hMSCs obtained from umbilical cord had a neuroprotective effect in a not-immunosuppressed rat Parkinson's disease (PD) model. Rats receiving hMSCs in the SN displayed significant preservation in the number of dopaminergic neurons in the SN at 21 days after lesion and an improved performance in behavioral tests compared to control rats. However, no differences in any inflammatory parameter tested were found. These results suggest that grafted hMSCs exert neuroprotection but not neuromodulatory effects on degenerating dopaminergic neurons.
Collapse
Affiliation(s)
- Patricia Mathieu
- Laboratory of Regenerative and Protective Therapies of the Nervous System, Foundation Leloir Institute, IIBBA-CONICET, 435 Av Patricias Argentinas, 1405 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
1259
|
Abstract
Parkinson's disease (PD) is characterised both clinically and pathologically by features that distinguish it from other parkinsonian disorders including, for instance, multiple system atrophy and progressive supranuclear palsy. The aetiologies of PD includes both genetic and environmental influences. Several single gene causes of autosomal dominant and recessive PD have been described. Recent genome-wide association (GWA) studies have identified a number of risk alleles for PD. No specific environmental cause has been defined but several factors have been described which influence the risk for PD. Mitochondrial dysfunction, free radical mediated damage, inflammatory change and proteasomal dysfunction have been thought to play a role in PD pathogenesis. Autophagy is now recognised as an important component of the cell's mechanism for protein turnover and has relevance for PD. There is some convergence and overlap of pathogenetic pathways between environmental and genetic factors. The importance of identifying the molecular and biochemical events that lead to PD lies in the prospect that novel drug targets will emerge and that new compounds will be developed that slow the progression of the disease.
Collapse
|
1260
|
Abstract
BACKGROUND Cytokines, which are involved in immunological responses, play and important role in the development and progression of Parkinson's disease (PD). The functional polymorphisms identified in cytokine genes are thought to influence PD risk. However the findings of studies investigating the association between cytokine gene polymorphisms and PD risk are still controversial. Therefore, we conducted a meta-analysis, in order to investigate the potential associations between cytokine gene polymorphisms and PD. METHODS Studies of PD and cytokine polymorphisms were identified by searches of PubMed and PDGene. Pooled analyses were performed to assess the association between cytokine gene polymorphisms and PD. RESULTS Our results indicated a positive association of TNFα -1031 CC genotype in overall analysis(CC vs. TT: OR=3.146; 95%CI: 1.631-6.070, p=0.008; CC vs. CT+TT: OR=3.187: 95%CI: 1.657-6.128,p=0.008), and an Asian subgroup, C variant(OR=1.328; 95%CI: 1.053-1.675, p=0.034) also conveyed an increased PD risk as well as CC genotype ( CC vs. TT: OR=3.207; 95%CI: 1.614-6.373, p=0.004; CC vs. CT+TT: OR=3.238; 95%CI: 1.636-6.410, p=0.004). A decreased risk for PD was associated with IL-6-174C allele (OR=0.761; 95%CI: 0.641-0.903, p=0.008) and IL-1RA VNTR 2 allele(OR=0.641; 95%CI: 0.456-0.826 p=0.004). For the polymorphisms of IL-1β C[-511]T, IL-1α C[-889]T , TNFα G[-308]A, and IL-10 G[-1082]A no significant association was found between the gene polymorphisms and PD risk. CONCLUSIONS Our meta-analysis suggested that gene polymorphisms of TNFα -1031, IL-6-174 and IL-1RA VNTR may be associated with PD risk. However, more large well-designed studies will be necessary to validate our findings.
Collapse
|
1261
|
Sabens Liedhegner EA, Gao XH, Mieyal JJ. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation. Antioxid Redox Signal 2012; 16:543-66. [PMID: 22066468 PMCID: PMC3270051 DOI: 10.1089/ars.2011.4119] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Neurodegenerative diseases are characterized by progressive loss of neurons. A common feature is oxidative stress, which arises when reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) exceed amounts required for normal redox signaling. An imbalance in ROS/RNS alters functionality of cysteines and perturbs thiol-disulfide homeostasis. Many cysteine modifications may occur, but reversible protein mixed disulfides with glutathione (GSH) likely represents the common steady-state derivative due to cellular abundance of GSH and ready conversion of cysteine-sulfenic acid and S-nitrosocysteine precursors to S-glutathionylcysteine disulfides. Thus, S-glutathionylation acts in redox signal transduction and serves as a protective mechanism against irreversible cysteine oxidation. Reversal of protein-S-glutathionylation is catalyzed specifically by glutaredoxin which thereby plays a critical role in cellular regulation. This review highlights the role of oxidative modification of proteins, notably S-glutathionylation, and alterations in thiol homeostatic enzyme activities in neurodegenerative diseases, providing insights for therapeutic intervention. RECENT ADVANCES Recent studies show that dysregulation of redox signaling and sulfhydryl homeostasis likely contributes to onset/progression of neurodegeneration. Oxidative stress alters the thiol-disulfide status of key proteins that regulate the balance between cell survival and cell death. CRITICAL ISSUES Much of the current information about redox modification of key enzymes and signaling intermediates has been gleaned from studies focused on oxidative stress situations other than the neurodegenerative diseases. FUTURE DIRECTIONS The findings in other contexts are expected to apply to understanding neurodegenerative mechanisms. Identification of selectively glutathionylated proteins in a quantitative fashion will provide new insights about neuropathological consequences of this oxidative protein modification.
Collapse
|
1262
|
Central nervous system inflammation in disease related conditions: Mechanistic prospects. Brain Res 2012; 1446:144-55. [DOI: 10.1016/j.brainres.2012.01.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/24/2022]
|
1263
|
Khansari PS, Sperlagh B. Inflammation in neurological and psychiatric diseases. Inflammopharmacology 2012; 20:103-7. [PMID: 22361843 DOI: 10.1007/s10787-012-0124-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/02/2012] [Indexed: 01/09/2023]
Abstract
In recent years, compelling evidence suggests that inflammation plays a critical role in the pathology of a vast number of neurological diseases such as stroke, Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis as well as neuropsychiatric diseases such as major depression and schizophrenia. Despite emerging evidence in human and animal models alike, modulating inflammatory responses have yet to be proven as an effective treatment to prevent or delay the progression of these diseases. The primary focus of this special edition is to highlight some of our current findings on the complexities of targeting neuroinflammation as a novel therapy, and its role in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Parto S Khansari
- California Northstate University College of Pharmacy, Rancho Cordova, CA, USA.
| | | |
Collapse
|
1264
|
Maia S, Arlicot N, Vierron E, Bodard S, Vergote J, Guilloteau D, Chalon S. Longitudinal and parallel monitoring of neuroinflammation and neurodegeneration in a 6-hydroxydopamine rat model of Parkinson's disease. Synapse 2012; 66:573-83. [DOI: 10.1002/syn.21543] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/24/2012] [Indexed: 12/20/2022]
|
1265
|
Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology 2012; 62:2154-68. [PMID: 22361232 DOI: 10.1016/j.neuropharm.2012.01.028] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 12/19/2022]
Abstract
Idiopathic Parkinson's disease (PD) represents a complex interaction between the inherent vulnerability of the nigrostriatal dopaminergic system, a possible genetic predisposition, and exposure to environmental toxins including inflammatory triggers. Evidence now suggests that chronic neuroinflammation is consistently associated with the pathophysiology of PD. Activation of microglia and increased levels of pro-inflammatory mediators such as TNF-α, IL-1β and IL-6, reactive oxygen species and eicosanoids has been reported after post-mortem analysis of the substantia nigra from PD patients and in animal models of PD. It is hypothesised that chronically activated microglia secrete high levels of pro-inflammatory mediators which damage neurons and further activate microglia, resulting in a feed forward cycle promoting further inflammation and neurodegeneration. Moreover, nigrostriatal dopaminergic neurons are more vulnerable to pro-inflammatory and oxidative mediators than other cell types because of their low intracellular glutathione concentration. Systemic inflammation has also been suggested to contribute to neurodegeneration in PD, as lymphocyte infiltration has been observed in brains of PD patients and in animal models of PD, substantiating the current theory of a fundamental role of inflammation in neurodegeneration. We will examine the current evidence in the literature which offers insight into the premise that both central and systemic inflammation may contribute to neurodegeneration in PD. We will discuss the emerging possibility of the use of diagnostic tools such as imaging technologies for PD patients. Finally, we will present the immunomodulatory therapeutic strategies that are now under investigation and in clinical trials as potential neuroprotective drugs for PD.
Collapse
Affiliation(s)
- Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Biosciences Institute, Western Road, Cork, Ireland
| | | | | | | |
Collapse
|
1266
|
L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Deleidi M, Serapide MF, Pluchino S, Marchetti B. Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease involves cross talk between inflammatory and Wnt/β-catenin signaling pathways: functional consequences for neuroprotection and repair. J Neurosci 2012; 32:2062-85. [PMID: 22323720 PMCID: PMC3556384 DOI: 10.1523/jneurosci.5259-11.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022] Open
Abstract
In Parkinson's disease (PD), neurogenesis is impaired in the subventricular zone (SVZ) of postmortem human PD brains, in primate nonhuman and rodent models of PD. The vital role of Wingless-type MMTV integration site (Wnt)/β-catenin signaling in the modulation of neurogenesis, neuroprotection, and synaptic plasticity coupled to our recent findings uncovering an active role for inflammation and Wnt/β-catenin signaling in MPTP-induced loss and repair of nigrostriatal dopaminergic (DAergic) neurons prompted us to study the impact of neuroinflammation and the Wnt/β-catenin pathway in the response of SVZ neuroprogenitors (NPCs) in MPTP-treated mice. In vivo experiments, using bromodeoxyuridine and cell-specific markers, and ex vivo time course analyses documented an inverse correlation between the reduced proliferation of NPCs and the generation of new neuroblasts with the phase of maximal exacerbation of microglia reaction, whereas a shift in the microglia proinflammatory phenotype correlated with a progressive NPC recovery. Ex vivo and in vitro experiments using microglia-NPC coculture paradigms pointed to NADPH-oxidase (gpPHOX(91)), a major source of microglial ROS, and reactive nitrogen species as candidate inhibitors of NPC neurogenic potential via the activation of glycogen synthase 3 (pGSK-3β(Tyr216)), leading to loss of β-catenin, a chief downstream transcriptional effector. Accordingly, MPTP/MPP(+) (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) caused β-catenin downregulation and pGSK-3β(Tyr216) overexpression, whereas manipulation of Wnt/β-catenin signaling with RNA interference-mediated GSK-3β knockdown or GSK-3β antagonism reversed MPTP-induced neurogenic impairment ex vivo/in vitro or in vivo. Reciprocally, pharmacological modulation of inflammation prevented β-catenin downregulation and restored neurogenesis, suggesting the possibility to modulate this endogenous system with potential consequences for DAergic neuroprotection and self-repair.
Collapse
Affiliation(s)
- Francesca L'Episcopo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Cataldo Tirolo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Nunzio Testa
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Salvatore Caniglia
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Maria C. Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Michela Deleidi
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria F. Serapide
- Department of Physiological Sciences, University of Catania, 95125 Catania, Italy
| | - Stefano Pluchino
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair and Stem Cell Initiative, University of Cambridge, Cambridge CB2 0PY, United Kingdom, and
| | - Bianca Marchetti
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School and Faculty of Pharmacy, University of Catania, 95125 Catania, Italy
| |
Collapse
|
1267
|
Sonsalla PK, Wong LY, Harris SL, Richardson JR, Khobahy I, Li W, Gadad BS, German DC. Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson's disease. Exp Neurol 2012; 234:482-7. [PMID: 22309831 DOI: 10.1016/j.expneurol.2012.01.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is characterized by a prominent degeneration of nigrostriatal dopamine (DA) neurons with an accompanying neuroinflammation. Despite clinical and preclinical studies of neuroprotective strategies for PD, there is no effective treatment for preventing or slowing the progression of neurodegeneration. The inverse correlation between caffeine consumption and risk of PD suggests that caffeine may exert neuroprotection. Whether caffeine is neuroprotective in a chronic progressive model of PD has not been evaluated nor is it known if delayed caffeine treatment can stop DA neuronal loss. We show that a chronic unilateral intra-cerebroventricular infusion of 1-methyl-4-phenylpyridinium in the rat brain for 28 days produces a progressive loss of DA and tyrosine hydroxylase in the ipsilateral striatum and a loss of DA cell bodies and microglial activation in the ipsilateral substantia nigra. Chronic caffeine consumption prevented the degeneration of DA cell bodies in the substantia nigra. Importantly, neuroprotection was still apparent when caffeine was introduced after the onset of the neurodegenerative process. These results add to the clinical relevance for adenosine receptors as a disease-modifying drug target for PD.
Collapse
Affiliation(s)
- Patricia K Sonsalla
- Department of Neurology, UMDNJ Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1268
|
Iravani MM, Sadeghian M, Leung CCM, Jenner P, Rose S. Lipopolysaccharide-induced nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic glial cell line-derived neurotrophic factor. Neurosci Lett 2012; 510:138-42. [PMID: 22281445 DOI: 10.1016/j.neulet.2012.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/27/2011] [Accepted: 01/08/2012] [Indexed: 10/14/2022]
Abstract
Reactive gliosis and inflammatory change is a key component of nigral dopaminergic cell death in Parkinson's disease (PD). Astrocyte derived glial cell line-derived neurotrophic factor (GDNF) promotes the survival and growth of dopaminergic neurones and it protects against or reverses nigral degeneration induced by 6-OHDA and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in rodents and primates. But the effect of increased levels of pro-inflammatory cytokines on the release of GDNF is unknown. This study examined the relationship between release of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and the expression of GDNF in rats following nigral lipopolysaccharide (LPS) administration. Acute nigral administration of LPS led to marked elevation of IL-1β but insignificant TNF-α tissue content and to a prominent expression of GDNF immunoreactivity in astrocytes but not microglia. The results suggest that inflammation is not only involved in neuronal loss but could promote neuronal survival through increased release of GDNF following up-regulation of IL-1β.
Collapse
Affiliation(s)
- Mahmoud M Iravani
- Neurodegenerative Disease Research Centre, Institute of Pharmaceutical Sciences, School of Biomedical Sciences, King's College London, SE1 1UL London, UK.
| | | | | | | | | |
Collapse
|
1269
|
Lewitt PA. Norepinephrine: the next therapeutics frontier for Parkinson's disease. Transl Neurodegener 2012; 1:4. [PMID: 23211006 PMCID: PMC3506997 DOI: 10.1186/2047-9158-1-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/13/2012] [Indexed: 11/16/2022] Open
Abstract
Tissue concentrations of norepinephrine (NE) are markedly decreased in various regions of the Parkinson's disease (PD) brain. As in the substantia nigra pars compacta, neuronal dropout and Lewy bodies are prominent changes affecting the locus coeruleus, which is the source of ascending NErgic projections. Despite the major roles of NE throughout the brain, there has been only minimal exploration of pharmacological intervention with NErgic neurotransmission. Cognitive operations, "freezing" of gait, tremor, dyskinesia, REM sleep regulation, and other aspects of brain function are tied into signaling by NE, and there is also evidence that it may have a role in the neurodegenerative process itself. This article reviews the reported pharmacological experience in PD therapeutics.
Collapse
Affiliation(s)
- Peter A Lewitt
- Department of Neurology, Henry Ford Hospital and Wayne State University School of Medicine, Detroit, Michigan USA.
| |
Collapse
|
1270
|
Huang CL, Lee YC, Yang YC, Kuo TY, Huang NK. Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction. Toxicol Lett 2012; 209:203-10. [PMID: 22245251 DOI: 10.1016/j.toxlet.2011.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/31/2022]
Abstract
Paraquat (PQ) was demonstrated to induce dopaminergic neuron death and is used as a Parkinson's disease (PD) mimetic; however, its mechanism remains contradictory. Alternatively, minocycline is a second-generation tetracycline and is undergoing clinical trials for treating PD with an unresolved mechanism. We thus investigated the molecular mechanism of minocycline in preventing PQ-induced cytotoxicity. In this study, minocycline was effective in preventing PQ-induced apoptotic cell death, which involves the cleavages of poly (ADP-ribose) polymerase (PARP) and caspase 3 and increased fluorescence intensity of annexin V-FITC. In addition, PQ also quickly induced alterations of unfolded protein responses (UPRs) and subsequently dysfunction of the mitochondria (such as the decrease in membrane potential and increase in membrane permeability and superoxide formation). Finally, the mechanism of minocycline in preventing PQ-induced apoptosis might be mediated by attenuating endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which respectively results in caspase-12 activation and the release of H2O2, HtrA2/Omi, and Smac/Diablo. Thus, minocycline could possibly be used to treat other neurodegenerative disorders with similar pathologic mechanisms.
Collapse
Affiliation(s)
- Chuen-Lin Huang
- Medical Research Center, Cardinal Tien Hospital, Hsintien, New Taipei City, Taiwan, ROC
| | | | | | | | | |
Collapse
|
1271
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
1272
|
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, currently affecting 1.5 million people in the US. In this review, we describe the diagnostic and pathological features of Parkinson's disease, as well as its clinical course. We then review pharmacologic treatments for the disease, with a particular focus on therapies adjunctive to levodopa and specifically the role of rasagiline. We review the four pivotal rasagiline trials, and discuss rasagiline and its use as adjunctive therapy for Parkinson's disease. Finally, we discuss potential side effects, drug interactions, and other practical aspects concerning the use of rasagiline in Parkinson's disease.
Collapse
Affiliation(s)
- Kathryn D Gaines
- Department of Neurology, Aurora Advanced Healthcare, Milwaukee, WI
| | | |
Collapse
|
1273
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
1274
|
Sardi SP, Singh P, Cheng SH, Shihabuddin LS, Schlossmacher MG. MutantGBA1Expression and Synucleinopathy Risk: First Insights from Cellular and Mouse Models. NEURODEGENER DIS 2012; 10:195-202. [DOI: 10.1159/000335038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/09/2011] [Indexed: 12/30/2022] Open
|
1275
|
Abstract
AbstractGenetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.
Collapse
|
1276
|
Tsai SY, Rothman RK, Su TP. Insights into the Sigma-1 receptor chaperone's cellular functions: a microarray report. Synapse 2012; 66:42-51. [PMID: 21905129 PMCID: PMC3705961 DOI: 10.1002/syn.20984] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/24/2011] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that Sig-1Rs are critical regulators in neuronal morphogenesis and development via the regulation of oxidative stress and mitochondrial functions. In the present study, we sought to identify pathways and genes that are affected by Sig-1R. Gene expression profiles were examined in rat hippocampal neurons that had been cultured for 18 days in vitro (DIV). The cells were transduced with AAV siRNA targeting Sig-1R on DIV 10 for 7 days, followed by gene expression analysis using a rat genome cDNA array. The gene array results indicated that Sig-1R knockdown hampered cellular functions including steroid biogenesis, protein ubiquitination, actin cytoskeleton network, and Nrf-2 mediated oxidative stress. Many of the cellular components important for actin polymerization and synapse plasticity, including F-actin capping protein and neurofilaments, were significantly changed in AAV-siSig-1R neurons. Further, cytochrome c was reduced in AAV-Sig-1R neurons whereas free-radical generating enzymes including cytochrome p450 and cytochrome b-245 were increased. The microarray results also suggest that Sig-1Rs may regulate genes that are involved in the pathogenesis of many CNS diseases including Alzheimer's disease and Parkinson's disease. These data further confirmed that Sig-1Rs play critical roles in the CNS and thus these findings may aid in future development of therapeutic treatments targeting neurodegenerative disorders.
Collapse
Affiliation(s)
- Shang-Yi Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
1277
|
Donev RM, Howell OW. Polymorphisms in neuropsychiatric and neuroinflammatory disorders and the role of next generation sequencing in early diagnosis and treatment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 89:85-116. [PMID: 23046883 DOI: 10.1016/b978-0-12-394287-6.00004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A number of polymorphisms have been implicated in different neuropsychiatric and neurological disorders. Polymorphisms in neurological disorders with a central immune component are well described, mainly due to their role in increasing neurodegeneration. For example, the role of polymorphisms in Alzheimer's disease in accumulation of amyloid plaques is now well established. In contrast, polymorphisms resulting in or affecting psychiatric disorders are less well studied and frequently are not replicated by meta-analysis. Furthermore, even if a significant association has been confirmed, the role of the identified polymorphism in causing and/or augmenting the disorder is often difficult to rationalize. Here, we review polymorphisms found associated with different neuroinflammatory and neuropsychiatric disorders and discuss the role of next generation sequencing in early diagnosis and treatment and as a tool in studying their functional consequences.
Collapse
Affiliation(s)
- Rossen M Donev
- Institute of Life Science, College of Medicine, Swansea University, Swansea, UK.
| | | |
Collapse
|
1278
|
Moshahid Khan M, Raza SS, Javed H, Ahmad A, Khan A, Islam F, Safhi MM, Islam F. Rutin Protects Dopaminergic Neurons from Oxidative Stress in an Animal Model of Parkinson’s Disease. Neurotox Res 2011; 22:1-15. [DOI: 10.1007/s12640-011-9295-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 11/26/2011] [Accepted: 11/29/2011] [Indexed: 11/28/2022]
|
1279
|
α-Synuclein potentiates interleukin-1β-induced CXCL10 expression in human A172 astrocytoma cells. Neurosci Lett 2011; 507:133-6. [PMID: 22178859 DOI: 10.1016/j.neulet.2011.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 02/01/2023]
Abstract
Neuroinflammation and neuronal degeneration observed in Parkinson's disease (PD) has been attributed in part to glial-mediated events. Increased expression of proinflammatory cytokines and abnormal accumulation of the neuronal protein, α-synuclein in the brain are also characteristic of PD. While increasing evidence suggests that astrocytes contribute to neuroinflammation and dopaminergic neuronal degeneration associated with PD, there remains much to learn about these astroglial-mediated events. Therefore, we investigated the in vitro effects of interleukin-1β (IL-1β) and α-synuclein on astroglial expression of interferon-γ inducible protein-10 (CXCL10), a proinflammatory and neurotoxic chemokine. IL-1β-induced CXCL10 protein expression was potentiated by co-exposure to α-synuclein. α-Synuclein did not significantly affect IL-1β-induced CXCL10 mRNA expression, but did mediate increased CXCL10 mRNA stability, which may explain, in part, the increased levels of secreted CXCL10 protein. Future investigations are warranted to more fully define the mechanism by which α-synuclein enhances IL-1β-induced astroglial CXCL10 expression. These findings highlight the importance of α-synuclein in modulating inflammatory events in astroglia. These events may be particularly relevant to the pathology of CNS disorders involving α-synuclein accumulation, including PD and HIV-1 associated dementia.
Collapse
|
1280
|
Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One 2011; 6:e28032. [PMID: 22145021 PMCID: PMC3228722 DOI: 10.1371/journal.pone.0028032] [Citation(s) in RCA: 641] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/30/2011] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha–synuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and suggests potential therapeutic targets in PD subjects. Trial Registration Clinicaltrials.govNCT01155492
Collapse
|
1281
|
Hurley MJ, Dexter DT. Voltage-gated calcium channels and Parkinson's disease. Pharmacol Ther 2011; 133:324-33. [PMID: 22133841 DOI: 10.1016/j.pharmthera.2011.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 12/27/2022]
Abstract
A complex interaction of environmental, genetic and epigenetic factors combine with ageing to cause the most prevalent of movement disorders Parkinson's disease. Current pharmacological treatments only tackle the symptoms and do not stop progression of the disease or reverse the neurodegenerative process. While some incidences of Parkinson's disease arise through heritable genetic defects, the cause of the majority of cases remains unknown. Likewise, why some neuronal populations are more susceptible to neurodegeneration than others is not clear, but as the molecular pathways responsible for the process of cell death are unravelled, it is increasingly apparent that disrupted cellular energy metabolism plays a central role. Precise control of cellular calcium concentrations is crucial for maintenance of energy homeostasis. Recently, differential cellular expression of neuronal voltage-gated calcium channel (Ca(V)) isoforms has been implicated in the susceptibility of vulnerable neurons to neurodegeneration in Parkinson's disease. Ca(V) channels are also involved in the synaptic plasticity response to the denervation that occurs in Parkinson's disease and following chronic treatment with anti-parkinsonian drugs. This review will examine the putative role neuronal Ca(V) channels have in the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Michael J Hurley
- Centre for Neuroscience, Department of Medicine, Imperial College, London W12 ONN, United Kingdom.
| | | |
Collapse
|
1282
|
Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson's disease. Front Neurol 2011; 2:68. [PMID: 22125548 PMCID: PMC3221408 DOI: 10.3389/fneur.2011.00068] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/21/2011] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available.
Collapse
Affiliation(s)
- Stacey E Seidl
- Department of Biological Sciences, DePaul University Chicago, IL, USA
| | | |
Collapse
|
1283
|
Andrews JA, Neises KD. Cells, biomarkers, and post-traumatic stress disorder: evidence for peripheral involvement in a central disease. J Neurochem 2011; 120:26-36. [PMID: 22017326 DOI: 10.1111/j.1471-4159.2011.07545.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a complicated CNS syndrome. Looking beyond the CNS, recent studies suggest that peripheral blood mononuclear cells could cause and/or exacerbate PTSD. This review summarizes the literature, describes associations between circulating peripheral blood cells and PTSD, proposes a novel mechanism, and analyzes several biomarkers that appear to associate with PTSD symptoms. Several experimental animal models have shown that peripheral blood mononuclear cell activity can cause hippocampal volume loss and PTSD-like symptoms. Data from these models suggest that a traumatic event and/or traumatic events can trigger peripheral cells to migrate, mediate inflammation, and decrease neurogenesis, potentially leading to CNS volume loss. Biomarkers that associate with PTSD symptoms have the potential to differentiate PTSD from traumatic brain injury, but more work needs to be done. Research examining the mechanism of how traumatic events are linked to peripheral blood mononuclear cell functions and biomarkers may offer improved diagnoses and treatments for PTSD patients.
Collapse
Affiliation(s)
- James A Andrews
- Naval Health Research Center, San Diego, California 92106-3521, USA.
| | | |
Collapse
|
1284
|
Gavioli EC, Romão PRT. NOP Receptor Ligands as Potential Agents for Inflammatory and Autoimmune Diseases. JOURNAL OF AMINO ACIDS 2011; 2011:836569. [PMID: 22312472 PMCID: PMC3268226 DOI: 10.4061/2011/836569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/31/2011] [Accepted: 09/24/2011] [Indexed: 12/29/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a seventeen-amino acid peptide that is the endogenous ligand of a G-protein-coupled receptor (NOP). Various immune cells express the precursor protein and secrete N/OFQ as well as display binding sites for this peptide. The functional capacity of NOP receptor was demonstrated in vitro and in vivo studies by the ability of N/OFQ to induce chemotaxis of immune cells, to regulate the expression of cytokines and other inflammatory mediators, and to control cellular and humoral immunity. In this context, N/OFQ could modulate the outcome of some inflammatory diseases, such as sepsis and autoimmune pathologies by mechanisms not clearly elucidated yet. In fact, human body fluid revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's diagnose. Preclinical studies pointed to the blockade of NOP receptor signaling as successful in treating these experimental conditions. Further preclinical and clinical studies are required to investigate the potential of NOP ligands in treating inflammatory diseases.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Laboratório de Farmacologia Comportamental, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | | |
Collapse
|
1285
|
Chung YC, Bok E, Huh SH, Park JY, Yoon SH, Kim SR, Kim YS, Maeng S, Park SH, Jin BK. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:6508-17. [PMID: 22079984 DOI: 10.4049/jimmunol.1102435] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons. Conversely, treatment with nonselective cannabinoid receptor agonists (WIN55,212-2 and HU210) led to increased survival of DA neurons in the SN, their fibers and dopamine levels in the striatum, and improved motor function. This neuroprotection by cannabinoids was accompanied by suppression of NADPH oxidase reactive oxygen species production and reduced expression of proinflammatory cytokines from activated microglia. Interestingly, cannabinoids protected DA neurons against 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia, but not in neuron-enriched mesencephalic cultures devoid of microglia. The observed neuroprotection and inhibition of microglial activation were reversed upon treatment with CB(1) receptor selective antagonists AM251 and/or SR14,716A, confirming the involvement of the CB(1) receptor. The present in vivo and in vitro findings clearly indicate that the CB(1) receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress. Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson's disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage.
Collapse
Affiliation(s)
- Young C Chung
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1286
|
Jellinger KA. Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts. Mov Disord 2011; 27:8-30. [PMID: 22081500 DOI: 10.1002/mds.23795] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD), one of the most frequent neurodegenerative disorders, is no longer considered a complex motor disorder characterized by extrapyramidal symptoms, but a progressive multisystem or-more correctly-multiorgan disease with variegated neurological and nonmotor deficiencies. It is morphologically featured not only by the degeneration of the dopaminergic nigrostriatal system, responsible for the core motor deficits, but by multifocal involvement of the central, peripheral and autonomic nervous system and other organs associated with widespread occurrence of Lewy bodies and dystrophic Lewy neurites. This results from deposition of abnormal α-synuclein (αSyn), the major protein marker of PD, and other synucleinopathies. Recent research has improved both the clinical and neuropathological diagnostic criteria of PD; it has further provided insights into the development and staging of αSyn and Lewy pathologies and has been useful in understanding the pathogenesis of PD. However, many challenges remain, for example, the role of Lewy bodies and the neurobiology of axons in the course of neurodegeneration, the relation between αSyn, Lewy pathology, and clinical deficits, as well as the interaction between αSyn and other pathologic proteins. Although genetic and experimental models have contributed to exploring the causes, pathomechanisms, and treatment options of PD, there is still a lack of an optimal animal model, and the etiology of this devastating disease is far from being elucidated.
Collapse
|
1287
|
Rees K, Stowe R, Patel S, Ives N, Breen K, Clarke CE, Ben-Shlomo Y. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson's disease: evidence from observational studies. Cochrane Database Syst Rev 2011:CD008454. [PMID: 22071848 DOI: 10.1002/14651858.cd008454.pub2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neuroinflammation may play a key role in the neurodegeneration associated with Parkinson's disease (PD). Non-steroidal anti-inflammatory drugs (NSAIDs) may be beneficial in the primary and secondary prevention of PD. OBJECTIVES 1) Do NSAIDs prevent the onset of PD?2) Are NSAIDs neuroprotective in PD - do they slow the progression of disease once PD is established?3) What are the adverse effects of taking NSAIDs in PD? SEARCH METHODS We searched electronic databases, including trial registers, complemented with handsearching of conference proceedings and citation searching on key articles. All searching was updated in May 2011. We contacted authors to provide additional information where necessary. SELECTION CRITERIA For the primary prevention review, we sought primary prevention trials and observational studies (cohort and case-control studies). Participants were free of PD when exposure to NSAIDs was assessed. For the secondary prevention review, we sought clinical trials in patients with a well-defined definition of PD. Two people independently selected studies for inclusion using predetermined criteria. DATA COLLECTION AND ANALYSIS Two review authors abstracted data from the source papers and assessed methodological quality independently. No studies met the inclusion criteria for the secondary prevention review. For the primary prevention review only observational studies were found. We combined data where appropriate using the inverse variance method. We assessed methodological quality using the Newcastle Ottawa Scales and by examining the period of exposure assessed prior to PD onset (or the index date in controls). MAIN RESULTS Fourteen observational studies met the inclusion criteria for the primary prevention review (five cohort, nine case-control studies). Exposure to any NSAIDs or aspirin had no effect on the risk of developing PD. Exposure to non-aspirin NSAIDs reduced the risk of developing PD by 13% (effect estimate 0.87 (95% CI 0.73 to 1.04 - random-effects model), but this did not reach statistical significance. We found similar results for the most robust studies. Ibuprofen in isolation was examined in four studies and was associated with a 27% reduction in risk (effect estimate 0.73, 95% CI 0.63 to 0.85). There was a lack of information on adverse effects. AUTHORS' CONCLUSIONS There is currently no evidence for the use of NSAIDs in the secondary prevention of PD. Non-aspirin NSAIDs, particularly ibuprofen, may reduce the risk of developing PD. However, little is known of the effects of other individual drugs and at present no recommendations can be made regarding their use in primary prevention.
Collapse
Affiliation(s)
- Karen Rees
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | | | | | | | | | |
Collapse
|
1288
|
Hill-Burns EM, Factor SA, Zabetian CP, Thomson G, Payami H. Evidence for more than one Parkinson's disease-associated variant within the HLA region. PLoS One 2011; 6:e27109. [PMID: 22096524 PMCID: PMC3212531 DOI: 10.1371/journal.pone.0027109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/10/2011] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) was recently found to be associated with HLA in a genome-wide association study (GWAS). Follow-up GWAS's replicated the PD-HLA association but their top hits differ. Do the different hits tag the same locus or is there more than one PD-associated variant within HLA? We show that the top GWAS hits are not correlated with each other (0.00≤r(2)≤0.15). Using our GWAS (2000 cases, 1986 controls) we conducted step-wise conditional analysis on 107 SNPs with P<10(-3) for PD-association; 103 dropped-out, four remained significant. Each SNP, when conditioned on the other three, yielded P(SNP1) = 5×10(-4), P(SNP2) = 5×10(-4), P(SNP3) = 4×10(-3) and P(SNP4) = 0.025. The four SNPs were not correlated (0.01≤r(2)≤0.20). Haplotype analysis (excluding rare SNP2) revealed increasing PD risk with increasing risk alleles from OR = 1.27, P = 5×10(-3) for one risk allele to OR = 1.65, P = 4×10(-8) for three. Using additional 843 cases and 856 controls we replicated the independent effects of SNP1 (P(conditioned-on-SNP4) = 0.04) and SNP4 (P(conditioned-on-SNP1) = 0.04); SNP2 and SNP3 could not be replicated. In pooled GWAS and replication, SNP1 had OR(conditioned-on-SNP4) = 1.23, P(conditioned-on-SNP4) = 6×10(-7); SNP4 had OR(conditioned-on-SNP1) = 1.18, P(conditioned-on-SNP1) = 3×10(-3); and the haplotype with both risk alleles had OR = 1.48, P = 2×10(-12). Genotypic OR increased with the number of risk alleles an individual possessed up to OR = 1.94, P = 2×10(-11) for individuals who were homozygous for the risk allele at both SNP1 and SNP4. SNP1 is a variant in HLA-DRA and is associated with HLA-DRA, DRB5 and DQA2 gene expression. SNP4 is correlated (r(2) = 0.95) with variants that are associated with HLA-DQA2 expression, and with the top HLA SNP from the IPDGC GWAS (r(2) = 0.60). Our findings suggest more than one PD-HLA association; either different alleles of the same gene, or separate loci.
Collapse
Affiliation(s)
- Erin M. Hill-Burns
- New York State Department of Health Wadsworth Center, Albany, New York, United States of America
| | - Stewart A. Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cyrus P. Zabetian
- Veteran's Affairs Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Haydeh Payami
- New York State Department of Health Wadsworth Center, Albany, New York, United States of America
| |
Collapse
|
1289
|
van Dijk KD, Berendse HW, Drukarch B, Fratantoni SA, Pham TV, Piersma SR, Huisman E, Brevé JJP, Groenewegen HJ, Jimenez CR, van de Berg WDJ. The proteome of the locus ceruleus in Parkinson's disease: relevance to pathogenesis. Brain Pathol 2011; 22:485-98. [PMID: 21988495 DOI: 10.1111/j.1750-3639.2011.00540.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The locus ceruleus is among the earliest affected brain regions in Parkinson's disease (PD) showing Lewy body pathology and neuronal loss. To improve our understanding of the pathogenesis of PD, we performed the first proteomic analysis ever of post-mortem locus ceruleus tissue of six pathologically confirmed PD patients, and six age- and gender-matched non-neurological controls. In total 2495 proteins were identified, of which 87 proteins were differentially expressed in the locus ceruleus of PD patients compared with controls. The majority of these differentially expressed proteins are known to be involved in processes that have been implicated in the pathogenesis of PD previously, including mitochondrial dysfunction, oxidative stress, protein misfolding, cytoskeleton dysregulation and inflammation. Several individual proteins were identified that have hitherto not been associated with PD, such as regucalcin, which plays a role in maintaining intracellular calcium homeostasis, and isoform 1 of kinectin, which is involved in transport of cellular components along microtubules. In addition, pathway analysis suggests a pathogenetic role for aminoacyl-tRNA-biosynthesis. These findings indicate that the proteome of the locus ceruleus of PD patients and non-neurological controls provides data that are relevant to the pathogenesis of PD, reflecting both known and potentially novel pathogenetic pathways.
Collapse
Affiliation(s)
- Karin D van Dijk
- Department of Anatomy and Neurosciences, Section Functional Neuroanatomy, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1290
|
Zhang S, Wang XJ, Tian LP, Pan J, Lu GQ, Zhang YJ, Ding JQ, Chen SD. CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson's disease. J Neuroinflammation 2011; 8:154. [PMID: 22053982 PMCID: PMC3226566 DOI: 10.1186/1742-2094-8-154] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 11/06/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that microglial activation may participate in the aetiology and pathogenesis of Parkinson's disease (PD). CD200-CD200R signalling has been shown to be critical for restraining microglial activation. We have previously shown that expression of CD200R in monocyte-derived macrophages, induced by various stimuli, is impaired in PD patients, implying an intrinsic abnormality of CD200-CD200R signalling in PD brain. Thus, further in vivo evidence is needed to elucidate the role of malfunction of CD200-CD200R signalling in the pathogenesis of PD. METHODS 6-hydroxydopamine (6-OHDA)-lesioned rats were used as an animal model of PD. CD200R-blocking antibody (BAb) was injected into striatum to block the engagement of CD200 and CD200R. The animals were divided into three groups, which were treated with 6-OHDA/Veh (PBS), 6-OHDA/CAb (isotype control antibody) or 6-OHDA/BAb, respectively. Rotational tests and immunohistochemistry were employed to evaluate motor deficits and dopaminergic neurodegeneration in animals from each group. HPLC analysis was used to measure monoamine levels in striatum. Morphological analysis and quantification of CD11b- (or MHC II-) immunoreactive cells were performed to investigate microglial activation and possible neuroinflammation in the substantia nigra (SN). Finally, ELISA was employed to assay protein levels of proinflammatory cytokines. RESULTS Compared with 6-OHDA/CAb or 6-OHDA/Veh groups, rats treated with 6-OHDA/BAb showed a significant increase in counts of contralateral rotation and a significant decrease in TH-immunoreactive (TH-ir) neurons in SN. A marked decrease in monoamine levels was also detected in 6-OHDA/BAb-treated rats, in comparison to 6-OHDA/Veh-treated ones. Furthermore, remarkably increased activation of microglia as well as up-regulation of proinflammatory cytokines was found concomitant with dopaminergic neurodegeneration in 6-OHDA/BAb-treated rats. CONCLUSIONS This study shows that deficits in the CD200-CD200R system exacerbate microglial activation and dopaminergic neurodegeneration in a 6-OHDA-induced rat model of PD. Our results suggest that dysfunction of CD200-CD200R signalling may be involved in the aetiopathogenesis of PD.
Collapse
Affiliation(s)
- Shi Zhang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
1291
|
Tsai SJ, Chao CY, Yin MC. Preventive and therapeutic effects of caffeic acid against inflammatory injury in striatum of MPTP-treated mice. Eur J Pharmacol 2011; 670:441-7. [DOI: 10.1016/j.ejphar.2011.09.171] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
1292
|
Abstract
Microglia - resident myeloid-lineage cells in the brain and the spinal cord parenchyma - function in the maintenance of normal tissue homeostasis. Microglia also act as sentinels of infection and injury, and participate in both innate and adaptive immune responses in the central nervous system. Microglia can become activated and/or dysregulated in the context of neurodegenerative disease and cancer, and thereby contribute to disease severity. Here, we discuss recent studies that provide new insights into the origin and phenotypes of microglia in health and disease.
Collapse
|
1293
|
Drouin-Ouellet J, Gibrat C, Bousquet M, Calon F, Kriz J, Cicchetti F. The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. J Neuroinflammation 2011; 8:137. [PMID: 21989292 PMCID: PMC3203853 DOI: 10.1186/1742-2094-8-137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/11/2011] [Indexed: 12/23/2022] Open
Abstract
Background Mounting evidence supports a significant role of inflammation in Parkinson's disease (PD) pathophysiology, with several inflammatory pathways being suggested as playing a role in the dopaminergic degeneration seen in humans and animal models of the disease. These include tumor necrosis factor, prostaglandins and oxidative-related stress components. However, the role of innate immunity has not been established in PD. Methods Based on the fact that the myeloid differentiation primary response gene (88) (MyD88) is the most common adaptor protein implicated in toll-like receptor (TLR) signaling, critical in the innate immune response, we undertook a study to investigate the potential contribution of this specific pathway to MPTP-induced brain dopaminergic degeneration using MyD88 knock out mice (MyD88-/-), following our observations that the MyD88-dependent pathway was critical for MPTP dopaminergic toxicity in the enteric nervous system. Post-mortem analyses assessing nigrostriatal dopaminergic degeneration and inflammation were performed using HPLC, western blots, autoradiography and immunofluorescence. Results Our results demonstrate that MyD88-/- mice are as vulnerable to MPTP-induced dopamine and DOPAC striatal depletion as wild type mice. Furthermore, MyD88-/- mice show similar striatal dopamine transporter and tyrosine hydroxylase loss, as well as dopaminergic cell loss in the substantia nigra pars compacta in response to MPTP. To evaluate the extent of the inflammatory response created by the MPTP regimen utilized, we further performed bioluminescence imaging using TLR2-luc/gfp transgenic mice and microglial density analysis, which revealed a modest brain microglial response following MPTP. This was accompanied by a significant astrocytic reaction in the striatum, which was of similar magnitude both in wild type and MyD88-/- mice. Conclusions Our results suggest that subacute MPTP-induced dopaminergic degeneration observed in the central nervous system is MyD88-independent, in contrast to our recent observations that this pathway, in the same cohort of animals, is critical in the loss of dopaminergic neurons in the enteric nervous system.
Collapse
Affiliation(s)
- Janelle Drouin-Ouellet
- Axe Neurosciences, Centre de Recherche du CHUL (CHUQ), T2-50, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
1294
|
Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson's disease model. Neuroscience 2011; 194:250-61. [DOI: 10.1016/j.neuroscience.2011.07.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 12/13/2022]
|
1295
|
Karlstetter M, Lippe E, Walczak Y, Moehle C, Aslanidis A, Mirza M, Langmann T. Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation 2011; 8:125. [PMID: 21958395 PMCID: PMC3192695 DOI: 10.1186/1742-2094-8-125] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/29/2011] [Indexed: 11/28/2022] Open
Abstract
Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
1296
|
Kedmi M, Bar-Shira A, Gurevich T, Giladi N, Orr-Urtreger A. Decreased expression of B cell related genes in leukocytes of women with Parkinson's disease. Mol Neurodegener 2011; 6:66. [PMID: 21943286 PMCID: PMC3189133 DOI: 10.1186/1750-1326-6-66] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022] Open
Abstract
Background Parkinson's disease (PD) is a complex disorder caused by genetic, environmental and age-related factors, and it is more prevalent in men. We aimed to identify differentially expressed genes in peripheral blood leukocytes (PBLs) that might be involved in PD pathogenesis. Transcriptomes of 30 female PD-patients and 29 age- and sex-matched controls were profiled using GeneChip Human Exon 1.0 ST Arrays. Samples were from unrelated Ashkenazi individuals, non-carriers of LRRK2 G2019S or GBA founder mutations. Results Differential expression was detected in 115 genes (206 exons), with over-representation of immune response annotations. Thirty genes were related to B cell functions, including the uniquely B cell-expressed IGHM and IGHD, the B cell surface molecules CD19, CD22 and CD79A, and the B cell gene regulator, PAX5. Quantitative-RT-PCR confirmation of these 6 genes in 79 individuals demonstrated decreased expression, mainly in women patients, independent of PD-pharmacotherapy status. Conclusions Our results suggest that the down regulation of genes related to B cell activity reflect the involvement of these cells in PD in Ashkenazi individuals and represents a molecular aspect of gender-specificity in PD.
Collapse
Affiliation(s)
- Merav Kedmi
- Genetic Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 64239, Israel.
| | | | | | | | | |
Collapse
|
1297
|
Niwa F, Kuriyama N, Nakagawa M, Imanishi J. Effects of peripheral lymphocyte subpopulations and the clinical correlation with Parkinson's disease. Geriatr Gerontol Int 2011; 12:102-7. [PMID: 21929737 DOI: 10.1111/j.1447-0594.2011.00740.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To understand the characteristics of peripheral immunity in patients with Parkinson's disease (PD), we investigated the natural killer (NK) cell activity and lymphocyte subpopulations including regulatory T (Treg) cells and type 17 helper T (Th17) cells. METHODS Peripheral blood was collected from 29 PD patients (mean age 70.4 years) and 30 healthy controls (mean age 68.9 years). NK cell activity was measured by a calcein acetoxymethyl ester release assay using NK-sensitive K562 cells, peripheral NK cells and lymphocytes subsets were analyzed using flow cytometry techniques. RESULTS Comparison of the two groups demonstrated that the percentage of NK cells increased and that of helper T cells, particularly type 1 (Th1), decreased in patients with PD. There was no evidence of Th1/Th2 or Treg/Th17 cell predominance in PD. Moreover, the increase of NK cells and the decrease of Th1 cells correlated with Unified Parkinson's Disease Rating Scale scores and the heart-to-mediastinum ratios based on myocardial (123) I-metaiodobenzylguanidine uptake, both of which represent disease severity in patients with PD. CONCLUSION Our investigation indicates that a certain proportion of NK cells and other lymphocytes in the peripheral blood of patients with PD and their association with disease severity may reflect the effect of innate immunity in patients with PD in addition to the effect of dopaminergic-related agents.
Collapse
Affiliation(s)
- Fumitoshi Niwa
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | |
Collapse
|
1298
|
Bousquet M, Calon F, Cicchetti F. Impact of ω-3 fatty acids in Parkinson's disease. Ageing Res Rev 2011; 10:453-63. [PMID: 21414422 DOI: 10.1016/j.arr.2011.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 01/29/2023]
Abstract
Current epidemiological, preclinical and clinical data suggest that omega-3 polyunsaturated fatty acids (n-3 PUFAs) may constitute therapeutic strategy for several disorders of the central nervous system, including Parkinson's disease (PD). PD is a neurodegenerative disorder primarily characterized by motor symptoms but which also includes several other pathological features such as autonomic system failures, mood disorders, and cognitive deficits. Current pharmacological options for the disease are limited to symptom management and their long-term use leads to important side effects. In this review, we discuss the evidence for the effects of n-3 PUFAs in PD both from an epidemiological perspective as well as in light of data gathered on various pathological features of the disease. Effects of n-3 PUFAs on the dopaminergic system, α-synucleinopathy, their possible mechanisms of action as well as their therapeutic potential for PD patients are also reviewed. n-3 PUFAs are inexpensive, readily transferable to the clinical setting and their use could represent a neuroprotective strategy or a disease-modifying option to delay the appearance of symptoms. It could also be beneficial as a symptomatologic treatment or serve as an add-on therapy to current pharmacological approaches. Review of the current literature as well as the undertaking of future clinical trials will shed light on these possibilities.
Collapse
|
1299
|
Abstract
Parkinson's disease (PD) is a neurological movement disorder primarily resulting from damage to the nigrostriatal dopaminergic pathway. To elucidate the pathogenesis, mechanisms of cell death, and to evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. The primary objectives of this article are twofold: First, to assist new investigators who are contemplating embarking on PD research to navigate through the available animal models. Emphasis will be placed on common neurotoxic murine models in which toxic molecules are used to lesion the nigrostriatal dopaminergic system. And second, to provide an overview of basic technical requirements for assessing the pathology, structure, and function of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Kim Tieu
- Department of Neurology in the Center for Translational Neuromedicine, University of Rochester, Rochester, New York 14625, USA.
| |
Collapse
|
1300
|
Hritcu L, Ciobica A, Stefan M, Mihasan M, Palamiuc L, Nabeshima T. Spatial memory deficits and oxidative stress damage following exposure to lipopolysaccharide in a rodent model of Parkinson's disease. Neurosci Res 2011; 71:35-43. [DOI: 10.1016/j.neures.2011.05.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|