1251
|
Chou WY, Chou WI, Pai TW, Lin SC, Jiang TY, Tang CY, Chang MDT. Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules. Bioinformatics 2010; 26:1022-8. [DOI: 10.1093/bioinformatics/btq084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
1252
|
Arantes V, Saddler JN. Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. BIOTECHNOLOGY FOR BIOFUELS 2010; 3:4. [PMID: 20178562 PMCID: PMC2844368 DOI: 10.1186/1754-6834-3-4] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/23/2010] [Indexed: 05/02/2023]
Abstract
The efficient enzymatic saccharification of cellulose at low cellulase (protein) loadings continues to be a challenge for commercialization of a process for bioconversion of lignocellulose to ethanol. Currently, effective pretreatment followed by high enzyme loading is needed to overcome several substrate and enzyme factors that limit rapid and complete hydrolysis of the cellulosic fraction of biomass substrates. One of the major barriers faced by cellulase enzymes is their limited access to much of the cellulose that is buried within the highly ordered and tightly packed fibrillar architecture of the cellulose microfibrils. Rather than a sequential 'shaving' or 'planing' of the cellulose fibrils from the outside, it has been suggested that these inaccessible regions are disrupted or loosened by non-hydrolytic proteins, thereby increasing the cellulose surface area and making it more accessible to the cellulase enzyme complex. This initial stage in enzymatic saccharification of cellulose has been termed amorphogenesis. In this review, we describe the various amorphogenesis-inducing agents that have been suggested, and their possible role in enhancing the enzymatic hydrolysis of cellulose.
Collapse
Affiliation(s)
- Valdeir Arantes
- Forestry Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC, V6T 1Z4, Canada
| | - Jack N Saddler
- Forestry Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC, V6T 1Z4, Canada
| |
Collapse
|
1253
|
Tsukimoto K, Takada R, Araki Y, Suzuki K, Karita S, Wakagi T, Shoun H, Watanabe T, Fushinobu S. Recognition of cellooligosaccharides by a family 28 carbohydrate-binding module. FEBS Lett 2010; 584:1205-11. [DOI: 10.1016/j.febslet.2010.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/28/2022]
|
1254
|
Cheng Y, Li M, Wang S, Peng H, Reid S, Ni N, Fang H, Xu W, Wang B. Carbohydrate biomarkers for future disease detection and treatment. Sci China Chem 2010; 53:3-20. [PMID: 32214994 PMCID: PMC7089153 DOI: 10.1007/s11426-010-0021-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/09/2009] [Indexed: 12/28/2022]
Abstract
Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein functions, and developmental states. Carbohydrate "binders" that can specifically recognize a carbohydrate biomarker can be used for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. Examples are arranged based on disease categories including (1) infectious diseases, (2) cancer, (3) inflammation and immune responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases, though some issues cross therapeutic boundaries.
Collapse
Affiliation(s)
- YunFeng Cheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - MinYong Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - ShaoRu Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - HanJing Peng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Suazette Reid
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - NanTing Ni
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - WenFang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - BingHe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
1255
|
Anderson CT, Carroll A, Akhmetova L, Somerville C. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. PLANT PHYSIOLOGY 2010; 152:787-96. [PMID: 19965966 PMCID: PMC2815888 DOI: 10.1104/pp.109.150128] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/01/2009] [Indexed: 05/17/2023]
Abstract
Cellulose forms the major load-bearing network of the plant cell wall, which simultaneously protects the cell and directs its growth. Although the process of cellulose synthesis has been observed, little is known about the behavior of cellulose in the wall after synthesis. Using Pontamine Fast Scarlet 4B, a dye that fluoresces preferentially in the presence of cellulose and has excitation and emission wavelengths suitable for confocal microscopy, we imaged the architecture and dynamics of cellulose in the cell walls of expanding root cells. We found that cellulose exists in Arabidopsis (Arabidopsis thaliana) cell walls in large fibrillar bundles that vary in orientation. During anisotropic wall expansion in wild-type plants, we observed that these cellulose bundles rotate in a transverse to longitudinal direction. We also found that cellulose organization is significantly altered in mutants lacking either a cellulose synthase subunit or two xyloglucan xylosyltransferase isoforms. Our results support a model in which cellulose is deposited transversely to accommodate longitudinal cell expansion and reoriented during expansion to generate a cell wall that is fortified against strain from any direction.
Collapse
|
1256
|
Hejazi M, Fettke J, Kötting O, Zeeman SC, Steup M. The Laforin-like dual-specificity phosphatase SEX4 from Arabidopsis hydrolyzes both C6- and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans. PLANT PHYSIOLOGY 2010; 152:711-22. [PMID: 20018599 PMCID: PMC2815871 DOI: 10.1104/pp.109.149914] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/11/2009] [Indexed: 05/18/2023]
Abstract
The biochemical function of the Laforin-like dual-specific phosphatase AtSEX4 (EC 3.1.3.48) has been studied. Crystalline maltodextrins representing the A- or the B-type allomorph were prephosphorylated using recombinant glucan, water dikinase (StGWD) or the successive action of both plastidial dikinases (StGWD and AtPWD). AtSEX4 hydrolyzed carbon 6-phosphate esters from both the prephosphorylated A- and B-type allomorphs and the kinetic constants are similar. The phosphatase also acted on prelabeled carbon-3 esters from both crystalline maltodextrins. Similarly, native starch granules prelabeled in either the carbon-6 or carbon-3 position were also dephosphorylated by AtSEX4. The phosphatase did also hydrolyze phosphate esters of both prephosphorylated maltodextrins when the (phospho)glucans had been solubilized by heat treatment. Submillimolar concentrations of nonphosphorylated maltodextrins inhibited AtSEX4 provided they possessed a minimum of length and had been solubilized. As opposed to the soluble phosphomaltodextrins, the AtSEX4-mediated dephosphorylation of the insoluble substrates was incomplete and at least 50% of the phosphate esters were retained in the pelletable (phospho)glucans. The partial dephosphorylation of the insoluble glucans also strongly reduced the release of nonphosphorylated chains into solution. Presumably, this effect reflects fast structural changes that following dephosphorylation occur near the surface of the maltodextrin particles. A model is proposed defining distinct stages within the phosphorylation/dephosphorylation-dependent transition of alpha-glucans from the insoluble to the soluble state.
Collapse
|
1257
|
Umemoto Y, Araki T. Cell wall regeneration in Bangia atropurpurea (Rhodophyta) protoplasts observed using a mannan-specific carbohydrate-binding module. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:24-31. [PMID: 19466498 DOI: 10.1007/s10126-009-9196-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 04/03/2009] [Indexed: 05/27/2023]
Abstract
The cell wall of the red alga Bangia atropurpurea is composed of three unique polysaccharides (beta-1,4-mannan, beta-1,3-xylan, and porphyran), similar to that in Porphyra. In this study, we visualized beta-mannan in the regenerating cell walls of B. atropurpurea protoplasts by using a fusion protein of a carbohydrate-binding module (CBM) and green fluorescent protein (GFP). A mannan-binding family 27 CBM (CBM27) of beta-1,4-mannanase (Man5C) from Vibrio sp. strain MA-138 was fused to GFP, and the resultant fusion protein (GFP-CBM27) was expressed in Escherichia coli. Native affinity gel electrophoresis revealed that GFP-CBM27 maintained its binding ability to soluble beta-mannans, while normal GFP could not bind to beta-mannans. Protoplasts were isolated from the fronds of B. atropurpurea by using three kinds of bacterial enzymes. The GFP-CBM27 was mixed with protoplasts from different growth stages, and the process of cell wall regeneration was observed by fluorescence microscopy. Some protoplasts began to excrete beta-mannan at certain areas of their cell surface after 12 h of culture. As the protoplast culture progressed, beta-mannans were spread on their entire cell surfaces. The percentages of protoplasts bound to GFP-CBM27 were 3%, 12%, 17%, 29%, and 25% after 12, 24, 36, 48, and 60 h of culture, respectively. Although GFP-CBM27 bound to cells at the initial growth stages, its binding to the mature fronds was not confirmed definitely. This is the first report on the visualization of beta-mannan in regenerating algal cell walls by using a fluorescence-labeled CBM.
Collapse
Affiliation(s)
- Yoshiaki Umemoto
- Laboratory for the Utilization of Aquatic Bioresources, Department of Life Science, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| | | |
Collapse
|
1258
|
Vasur J, Kawai R, Jonsson KHM, Widmalm G, Engström Å, Frank M, Andersson E, Hansson H, Forsberg Z, Igarashi K, Samejima M, Sandgren M, Ståhlberg J. Synthesis of Cyclic β-Glucan Using Laminarinase 16A Glycosynthase Mutant from the Basidiomycete Phanerochaete chrysosporium. J Am Chem Soc 2010; 132:1724-30. [DOI: 10.1021/ja909129b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jonas Vasur
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Rie Kawai
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - K. Hanna M. Jonsson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Göran Widmalm
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Åke Engström
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Martin Frank
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Evalena Andersson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Henrik Hansson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Zarah Forsberg
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Kiyohiko Igarashi
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Masahiro Samejima
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Mats Sandgren
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| | - Jerry Ståhlberg
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-754 21 Uppsala, Sweden, Department of Biomaterials Sciences, Graduate School for Agricultural and Life Sciences, The University of Tokyo, Japan, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Molecular Structural Analysis, German Cancer Research Center, INF 280,
| |
Collapse
|
1259
|
Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF. Identification of Amino Acids Responsible for Processivity in a Family 1 Carbohydrate-Binding Module from a Fungal Cellulase. J Phys Chem B 2010; 114:1447-53. [DOI: 10.1021/jp908810a] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - James F. Matthews
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Yannick J. Bomble
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Lintao Bu
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - William S. Adney
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael E. Himmel
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Mark R. Nimlos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael F. Crowley
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| |
Collapse
|
1260
|
Verjans P, Dornez E, Segers M, Van Campenhout S, Bernaerts K, Beliën T, Delcour JA, Courtin CM. Truncated derivatives of a multidomain thermophilic glycosyl hydrolase family 10 xylanase from Thermotoga maritima reveal structure related activity profiles and substrate hydrolysis patterns. J Biotechnol 2010; 145:160-7. [DOI: 10.1016/j.jbiotec.2009.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/16/2009] [Accepted: 10/21/2009] [Indexed: 11/30/2022]
|
1261
|
Fontes CMGA, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 2010; 79:655-81. [PMID: 20373916 DOI: 10.1146/annurev-biochem-091208-085603] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellulosomes can be described as one of nature's most elaborate and highly efficient nanomachines. These cell bound multienzyme complexes orchestrate the deconstruction of cellulose and hemicellulose, two of the most abundant polymers on Earth, and thus play a major role in carbon turnover. Integration of cellulosomal components occurs via highly ordered protein:protein interactions between cohesins and dockerins, whose specificity allows the incorporation of cellulases and hemicellulases onto a molecular scaffold. Cellulosome assembly promotes the exploitation of enzyme synergism because of spatial proximity and enzyme-substrate targeting. Recent structural and functional studies have revealed how cohesin-dockerin interactions mediate both cellulosome assembly and cell-surface attachment, while retaining the spatial flexibility required to optimize the catalytic synergy within the enzyme complex. These emerging advances in our knowledge of cellulosome function are reviewed here.
Collapse
Affiliation(s)
- Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal.
| | | |
Collapse
|
1262
|
Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009; 284:36186-36190. [PMID: 19858200 PMCID: PMC2794734 DOI: 10.1074/jbc.m109.034611] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/13/2009] [Indexed: 11/06/2022] Open
Abstract
Fungal cellobiohydrolases act at liquid-solid interfaces. They have the ability to hydrolyze cellulose chains of a crystalline substrate because of their two-domain structure, i.e. cellulose-binding domain and catalytic domain, and unique active site architecture. However, the details of the action of the two domains on crystalline cellulose are still unclear. Here, we present real time observations of Trichoderma reesei (Tr) cellobiohydrolase I (Cel7A) molecules sliding on crystalline cellulose, obtained with a high speed atomic force microscope. The average velocity of the sliding movement on crystalline cellulose was 3.5 nm/s, and interestingly, the catalytic domain without the cellulose-binding domain moved with a velocity similar to that of the intact TrCel7A enzyme. However, no sliding of a catalytically inactive enzyme (mutant E212Q) or a variant lacking tryptophan at the entrance of the active site tunnel (mutant W40A) could be detected. This indicates that, besides the hydrolysis of glycosidic bonds, the loading of a cellulose chain into the active site tunnel is also essential for the enzyme movement.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
| | - Anu Koivula
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | - Masahisa Wada
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | - Masahiro Samejima
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
1263
|
Petkun S, Jindou S, Shimon LJW, Rosenheck S, Bayer EA, Lamed R, Frolow F. Structure of a family 3b' carbohydrate-binding module from the Cel9V glycoside hydrolase from Clostridium thermocellum: structural diversity and implications for carbohydrate binding. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2009; 66:33-43. [PMID: 20057047 DOI: 10.1107/s0907444909043030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/19/2009] [Indexed: 11/10/2022]
Abstract
Family 3 carbohydrate-binding modules (CBM3s) are associated with both cellulosomal scaffoldins and family 9 glycoside hydrolases (GH9s), which are multi-modular enzymes that act on cellulosic substrates. CBM3s bind cellulose. X-ray crystal structures of these modules have established an accepted cellulose-binding mechanism based on stacking interactions between the sugar rings of cellulose and a planar array of aromatic residues located on the CBM3 surface. These planar-strip residues are generally highly conserved, although some CBM3 sequences lack one or more of these residues. In particular, CBM3b' from Clostridium thermocellum Cel9V exhibits such sequence changes and fails to bind cellulosic substrates. A crystallographic investigation of CBM3b' has been initiated in order to understand the structural reason(s) for this inability. CBM3b' crystallized in space group C222(1) (diffraction was obtained to 2.0 A resolution in-house) with three independent molecules in the asymmetric unit and in space group P4(1)2(1)2 (diffraction was obtained to 1.79 A resolution in-house and to 1.30 A resolution at a synchrotron) with one molecule in the asymmetric unit. The molecular structure of Cel9V CBM3b' revealed that in addition to the loss of several cellulose-binding residues in the planar strip, changes in the backbone create a surface 'hump' which could interfere with the formation of cellulose-protein surface interactions and thus prevent binding to crystalline cellulose.
Collapse
Affiliation(s)
- Svetlana Petkun
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
1264
|
Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, Couloux A, Darrasse A, Gouzy J, Jacques MA, Lauber E, Manceau C, Mangenot S, Poussier S, Segurens B, Szurek B, Verdier V, Arlat M, Rott P. The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics 2009; 10:616. [PMID: 20017926 PMCID: PMC2810307 DOI: 10.1186/1471-2164-10-616] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/17/2009] [Indexed: 01/21/2023] Open
Abstract
Background The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences. Results The complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens. Conclusion The two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed.
Collapse
Affiliation(s)
- Isabelle Pieretti
- CIRAD, UMR 385 BGPI, Campus international de Baillarguet, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1265
|
Matamá T, Araújo R, Gübitz GM, Casal M, Cavaco-Paulo A. Functionalization of cellulose acetate fibers with engineered cutinases. Biotechnol Prog 2009; 26:636-43. [DOI: 10.1002/btpr.364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
1266
|
Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pagès S, de Philip P. Modulation of cellulosome composition in Clostridium cellulolyticum
: Adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 2009; 10:541-54. [DOI: 10.1002/pmic.200900311] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
1267
|
Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Appl Microbiol Biotechnol 2009; 86:1125-34. [DOI: 10.1007/s00253-009-2350-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 11/26/2022]
|
1268
|
Cheng YM, Hsieh FC, Meng M. Functional analysis of conserved aromatic amino acids in the discoidin domain of Paenibacillus beta-1,3-glucanase. Microb Cell Fact 2009; 8:62. [PMID: 19930717 PMCID: PMC2789033 DOI: 10.1186/1475-2859-8-62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 11/25/2009] [Indexed: 02/01/2023] Open
Abstract
The 190-kDa Paenibacillus beta-1,3-glucanase (LamA) contains a catalytic module of the glycoside hydrolase family 16 (GH16) and several auxiliary domains. Of these, a discoidin domain (DS domain), present in both eukaryotic and prokaryotic proteins with a wide variety of functions, exists at the carboxyl-terminus. To better understand the bacterial DS domain in terms of its structure and function, this domain alone was expressed in Escherichia coli and characterized. The results indicate that the DS domain binds various polysaccharides and enhances the biological activity of the GH16 module on composite substrates. We also investigated the importance of several conserved aromatic residues in the domain's stability and substrate-binding affinity. Both were affected by mutations of these residues; however, the effect on protein stability was more notable. In particular, the forces contributed by a sandwiched triad (W1688, R1756, and W1729) were critical for the presumable beta-sandwich fold.
Collapse
Affiliation(s)
- Yueh-Mei Cheng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung, 40227, Taiwan.
| | | | | |
Collapse
|
1269
|
Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 2009; 85:1241-9. [DOI: 10.1007/s00253-009-2331-y] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
|
1270
|
Bu L, Beckham GT, Crowley MF, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR. The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B 2009; 113:10994-1002. [PMID: 19594145 DOI: 10.1021/jp904003z] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Ibeta polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 A, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.
Collapse
Affiliation(s)
- Lintao Bu
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1271
|
Cocinero E, Stanca-Kaposta E, Dethlefsen M, Liu B, Gamblin D, Davis B, Simons J. Hydration of Sugars in the Gas Phase: Regioselectivity and Conformational Choice inN-Acetyl Glucosamine and Glucose. Chemistry 2009; 15:13427-34. [DOI: 10.1002/chem.200901830] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
1272
|
Biochemical and domain analyses of FSUAxe6B, a modular acetyl xylan esterase, identify a unique carbohydrate binding module in Fibrobacter succinogenes S85. J Bacteriol 2009; 192:483-93. [PMID: 19897648 DOI: 10.1128/jb.00935-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetyl xylan esterase (EC 3.1.1.72) is a member of a set of enzymes required to depolymerize hemicellulose, especially xylan that is composed of a main chain of beta-1,4-linked xylopyranoside residues decorated with acetyl side groups. Fibrobacter succinogenes S85 Axe6B (FSUAxe6B) is an acetyl xylan esterase encoded in the genome of this rumen bacterium. The enzyme is a modular protein comprised of an esterase domain, a carbohydrate-binding module, and a region of unknown function. Sequences that are homologous to the region of unknown function are paralogously distributed, thus far, only in F. succinogenes. Therefore, the sequences were designated Fibrobacter succinogenes-specific paralogous module 1 (FPm-1). The FPm-1s are associated with at least 24 polypeptides in the genome of F. succinogenes S85. A bioinformatics search showed that most of the FPm-1-appended polypeptides are putative carbohydrate-active enzymes, suggesting a potential role in carbohydrate metabolism. Truncational analysis of FSUAxe6B, together with catalytic and substrate binding studies, has allowed us to delineate the functional modules in the polypeptide. The N-terminal half of FSUAxe6B harbors the activity that cleaves side chain acetyl groups from xylan-like substrates, and the binding of insoluble xylan was determined to originate from FPm-1. Site-directed mutagenesis studies of highly conserved active-site residues in the esterase domain suggested that the esterase activity is derived from a tetrad composed of Ser(44), His(273), Glu(194), and Asp(270), with both Glu(194) and Asp(270) functioning as helper acids, instead of a single carboxylate residue proposed to initiate catalysis.
Collapse
|
1273
|
van Dyk JS, Sakka M, Sakka K, Pletschke BI. The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
1274
|
Correia MÃA, Pires VM, Gilbert HJ, Bolam DN, Fernandes VÃO, Alves VD, Prates JA, Ferreira LM, Fontes CM. Family 6 carbohydrate-binding modules display multiple β1,3-linked glucan-specific binding interfaces. FEMS Microbiol Lett 2009; 300:48-57. [DOI: 10.1111/j.1574-6968.2009.01764.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
1275
|
Abbott DW, Ficko-Blean E, van Bueren AL, Rogowski A, Cartmell A, Coutinho PM, Henrissat B, Gilbert HJ, Boraston AB. Analysis of the Structural and Functional Diversity of Plant Cell Wall Specific Family 6 Carbohydrate Binding Modules. Biochemistry 2009; 48:10395-404. [DOI: 10.1021/bi9013424] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Wade Abbott
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada
| | - Elizabeth Ficko-Blean
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada
| | - Alicia Lammerts van Bueren
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada
| | - Artur Rogowski
- School of Biomedical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Alan Cartmell
- School of Biomedical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Pedro M. Coutinho
- Laboratoire d’Architecture et de Fonction des macromolécules Biologiques, IBSM, CNRS Marseille and University Aix-Marseille I & II, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Bernard Henrissat
- Laboratoire d’Architecture et de Fonction des macromolécules Biologiques, IBSM, CNRS Marseille and University Aix-Marseille I & II, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Harry J. Gilbert
- School of Biomedical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
1276
|
Gentry MS, Dixon JE, Worby CA. Lafora disease: insights into neurodegeneration from plant metabolism. Trends Biochem Sci 2009; 34:628-39. [PMID: 19818631 DOI: 10.1016/j.tibs.2009.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 12/30/2022]
Abstract
Reversible phosphorylation modulates nearly every step of glycogenesis and glycogenolysis. Multiple metabolic disorders are the result of defective enzymes that control these phosphorylation events, enzymes that were identified biochemically before the advent of the molecular biology era. Lafora disease is a metabolic disorder resulting in accumulation of water-insoluble glucan in the cytoplasm, and manifests as a debilitating neurodegeneration that ends with the death of the patient. Unlike most metabolic disorders, the link between Lafora disease and metabolism has not been defined in almost 100 years. The results of recent studies with mammalian cells, mouse models, eukaryotic algae, and plants have begun to define the molecular mechanisms that cause Lafora disease. The emerging theme identifies a new phosphorylation substrate in glycogen metabolism, the glucan itself.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
1277
|
Ubhayasekera W, Rawat R, Ho SWT, Wiweger M, Von Arnold S, Chye ML, Mowbray SL. The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce. PLANT MOLECULAR BIOLOGY 2009; 71:277-289. [PMID: 19629717 DOI: 10.1007/s11103-009-9523-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 07/04/2009] [Indexed: 05/28/2023]
Abstract
Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.
Collapse
Affiliation(s)
- Wimal Ubhayasekera
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, 751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
1278
|
Sunna A. Modular organisation and functional analysis of dissected modular β-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl Microbiol Biotechnol 2009; 86:189-200. [DOI: 10.1007/s00253-009-2242-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
|
1279
|
Koseki T, Mochizuki K, Kisara H, Miyanaga A, Fushinobu S, Murayama T, Shiono Y. Characterization of a chimeric enzyme comprising feruloyl esterase and family 42 carbohydrate-binding module. Appl Microbiol Biotechnol 2009; 86:155-61. [DOI: 10.1007/s00253-009-2224-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 08/24/2009] [Accepted: 08/31/2009] [Indexed: 11/24/2022]
|
1280
|
Mishima Y, Quintin J, Aimanianda V, Kellenberger C, Coste F, Clavaud C, Hetru C, Hoffmann JA, Latgé JP, Ferrandon D, Roussel A. The N-terminal domain of Drosophila Gram-negative binding protein 3 (GNBP3) defines a novel family of fungal pattern recognition receptors. J Biol Chem 2009; 284:28687-97. [PMID: 19692333 DOI: 10.1074/jbc.m109.034587] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative binding protein 3 (GNBP3), a pattern recognition receptor that circulates in the hemolymph of Drosophila, is responsible for sensing fungal infection and triggering Toll pathway activation. Here, we report that GNBP3 N-terminal domain binds to fungi upon identifying long chains of beta-1,3-glucans in the fungal cell wall as a major ligand. Interestingly, this domain fails to interact strongly with short oligosaccharides. The crystal structure of GNBP3-Nter reveals an immunoglobulin-like fold in which the glucan binding site is masked by a loop that is highly conserved among glucan-binding proteins identified in several insect orders. Structure-based mutagenesis experiments reveal an essential role for this occluding loop in discriminating between short and long polysaccharides. The displacement of the occluding loop is necessary for binding and could explain the specificity of the interaction with long chain structured polysaccharides. This represents a novel mechanism for beta-glucan recognition.
Collapse
Affiliation(s)
- Yumiko Mishima
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, 45071 Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1281
|
Vincent F, Round A, Reynaud A, Bordi C, Filloux A, Bourne Y. Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Environ Microbiol 2009; 12:1775-86. [DOI: 10.1111/j.1462-2920.2010.02264.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
1282
|
Christiansen C, Abou Hachem M, Janecek S, Viksø-Nielsen A, Blennow A, Svensson B. The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J 2009; 276:5006-29. [PMID: 19682075 DOI: 10.1111/j.1742-4658.2009.07221.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starch-active enzymes often possess starch-binding domains (SBDs) mediating attachment to starch granules and other high molecular weight substrates. SBDs are divided into nine carbohydrate-binding module (CBM) families, and CBM20 is the earliest-assigned and best characterized family. High diversity characterizes CBM20s, which occur in starch-active glycoside hydrolase families 13, 14, 15, and 77, and enzymes involved in starch or glycogen metabolism, exemplified by the starch-phosphorylating enzyme glucan, water dikinase 3 from Arabidopsis thaliana and the mammalian glycogen phosphatases, laforins. The clear evolutionary relatedness of CBM20s to CBM21s, CBM48s and CBM53s suggests a common clan hosting most of the known SBDs. This review surveys the diversity within the CBM20 family, and makes an evolutionary comparison with CBM21s, CBM48s and CBM53s, discussing intrafamily and interfamily relationships. Data on binding to and enzymatic activity towards soluble ligands and starch granules are summarized for wild-type, mutant and chimeric fusion proteins involving CBM20s. Noticeably, whereas CBM20s in amylolytic enzymes confer moderate binding affinities, with dissociation constants in the low micromolar range for the starch mimic beta-cyclodextrin, recent findings indicate that CBM20s in regulatory enzymes have weaker, low millimolar affinities, presumably facilitating dynamic regulation. Structures of CBM20s, including the first example of a full-length glucoamylase featuring both the catalytic domain and the SBD, are summarized, and distinct architectural and functional features of the two SBDs and roles of pivotal amino acids in binding are described. Finally, some applications of SBDs as affinity or immobilization tags and, recently, in biofuel and in planta bioengineering are presented.
Collapse
Affiliation(s)
- Camilla Christiansen
- VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
1283
|
Turkenburg JP, Brzozowski AM, Svendsen A, Borchert TV, Davies GJ, Wilson KS. Structure of a pullulanase fromBacillus acidopullulyticus. Proteins 2009; 76:516-9. [DOI: 10.1002/prot.22416] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1284
|
Nielsen MM, Bozonnet S, Seo ES, Mótyán JA, Andersen JM, Dilokpimol A, Abou Hachem M, Gyémánt G, Næsted H, Kandra L, Sigurskjold BW, Svensson B. Two Secondary Carbohydrate Binding Sites on the Surface of Barley α-Amylase 1 Have Distinct Functions and Display Synergy in Hydrolysis of Starch Granules. Biochemistry 2009; 48:7686-97. [DOI: 10.1021/bi900795a] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Morten M. Nielsen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Sophie Bozonnet
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | - Eun-Seong Seo
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - János A. Mótyán
- Department of Biochemistry, Faculty of Sciences, University of Debrecen, Debrecen, Hungary H-4010
| | - Joakim M. Andersen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Adiphol Dilokpimol
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Gyöngyi Gyémánt
- Department of Biochemistry, Faculty of Sciences, University of Debrecen, Debrecen, Hungary H-4010
| | - Henrik Næsted
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Lili Kandra
- Department of Biochemistry, Faculty of Sciences, University of Debrecen, Debrecen, Hungary H-4010
| | - Bent W. Sigurskjold
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| |
Collapse
|
1285
|
Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 2009; 191:5697-705. [PMID: 19617364 DOI: 10.1128/jb.00481-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria and fungi are thought to degrade cellulose through the activity of either a complexed or a noncomplexed cellulolytic system composed of endoglucanases and cellobiohydrolases. The marine bacterium Saccharophagus degradans 2-40 produces a multicomponent cellulolytic system that is unusual in its abundance of GH5-containing endoglucanases. Secreted enzymes of this bacterium release high levels of cellobiose from cellulosic materials. Through cloning and purification, the predicted biochemical activities of the one annotated cellobiohydrolase Cel6A and the GH5-containing endoglucanases were evaluated. Cel6A was shown to be a classic endoglucanase, but Cel5H showed significantly higher activity on several types of cellulose, was the highest expressed, and processively released cellobiose from cellulosic substrates. Cel5G, Cel5H, and Cel5J were found to be members of a separate phylogenetic clade and were all shown to be processive. The processive endoglucanases are functionally equivalent to the endoglucanases and cellobiohydrolases required for other cellulolytic systems, thus providing a cellobiohydrolase-independent mechanism for this bacterium to convert cellulose to glucose.
Collapse
|
1286
|
Higgins MA, Whitworth GE, El Warry N, Randriantsoa M, Samain E, Burke RD, Vocadlo DJ, Boraston AB. Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases. J Biol Chem 2009; 284:26161-73. [PMID: 19608744 DOI: 10.1074/jbc.m109.024067] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-beta-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-beta-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.
Collapse
Affiliation(s)
- Melanie A Higgins
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
1287
|
Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families. BMC STRUCTURAL BIOLOGY 2009; 9:46. [PMID: 19594936 PMCID: PMC2716378 DOI: 10.1186/1472-6807-9-46] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
Abstract
Background The Asp-box is a short sequence and structure motif that folds as a well-defined β-hairpin. It is present in different folds, but occurs most prominently as repeats in β-propellers. Asp-box β-propellers are known to be characteristically irregular and to occur in many medically important proteins, most of which are glycosidase enzymes, but they are otherwise not well characterized and are only rarely treated as a distinct β-propeller family. We have analyzed the sequence, structure, function and occurrence of the Asp-box and s-Asp-box -a related shorter variant, and provide a comprehensive classification and computational analysis of the Asp-box β-propeller family. Results We find that all conserved residues of the Asp-box support its structure, whereas the residues in variable positions are generally used for other purposes. The Asp-box clearly has a structural role in β-propellers and is highly unlikely to be involved in ligand binding. Sequence analysis of the Asp-box β-propeller family reveals it to be very widespread especially in bacteria and suggests a wide functional range. Disregarding the Asp-boxes, sequence conservation of the propeller blades is very low, but a distinct pattern of residues with specific properties have been identified. Interestingly, Asp-boxes are occasionally found very close to other propeller-associated repeats in extensive mixed-motif stretches, which strongly suggests the existence of a novel class of hybrid β-propellers. Structural analysis reveals that the top and bottom faces of Asp-box β-propellers have striking and consistently different loop properties; the bottom is structurally conserved whereas the top shows great structural variation. Interestingly, only the top face is used for functional purposes in known structures. A structural analysis of the 10-bladed β-propeller fold, which has so far only been observed in the Asp-box family, reveals that the inner strands of the blades are unusually far apart, which explains the surprisingly large diameter of the central tunnel of sortilin. Conclusion We have provided new insight into the structure and function of the Asp-box motif and of Asp-box β-propellers, and expect that the classification and analysis presented here will prove helpful in interpreting future data on Asp-box proteins in general and on Asp-box β-propellers in particular.
Collapse
|
1288
|
Li R, Kibblewhite R, Orts WJ, Lee CC. Molecular cloning and characterization of multidomain xylanase from manure library. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0111-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
1289
|
Cicortas Gunnarsson L, Nordberg Karlsson E, Andersson M, Holst O, Ohlin M. Molecular engineering of a thermostable carbohydrate-binding module. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500518516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
1290
|
Ficko-Blean E, Boraston AB. N-acetylglucosamine recognition by a family 32 carbohydrate-binding module from Clostridium perfringens NagH. J Mol Biol 2009; 390:208-20. [PMID: 19422833 PMCID: PMC2937040 DOI: 10.1016/j.jmb.2009.04.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
Many carbohydrate-active enzymes have complex architectures comprising multiple modules that may be involved in catalysis, carbohydrate binding, or protein-protein interactions. Carbohydrate-binding modules (CBMs) are a common ancillary module whose function is to promote the adherence of the complete enzyme to carbohydrate substrates. CBM family 32 has been proposed to be one of the most diverse CBM families classified to date, yet all of the structurally characterized CBM32s thus far recognize galactose-based ligands. Here, we report a unique binding specificity and mode of ligand binding for a family 32 CBM. NagHCBM32-2 is one of four CBM32 modules in NagH, a family 84 glycoside hydrolase secreted by Clostridium perfringens. NagHCBM32-2 has the beta-sandwich scaffold common to members of the family; however, its specificity for N-acetylglucosamine is unusual among CBMs. X-ray crystallographic analysis of the module at resolutions from 1.45 to 2.0 A and in complex with disaccharides reveals that its mode of sugar recognition is quite different from that observed for galactose-specific CBM32s. This study continues to unravel the diversity of CBMs found in family 32 and how these CBMs might impart the carbohydrate-binding specificity to the extracellular glycoside hydrolases in C. perfringens.
Collapse
Affiliation(s)
- Elizabeth Ficko-Blean
- Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Alisdair B. Boraston
- Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
1291
|
Vafiadi C, Topakas E, Biely P, Christakopoulos P. Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase fromSporotrichum thermophile. FEMS Microbiol Lett 2009; 296:178-84. [DOI: 10.1111/j.1574-6968.2009.01631.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
1292
|
Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching. J Biotechnol 2009; 142:220-6. [DOI: 10.1016/j.jbiotec.2009.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/11/2009] [Accepted: 04/26/2009] [Indexed: 11/15/2022]
|
1293
|
Carbohydrate-binding properties of a separately folding protein module from β-1,3-glucanase Lic16A of Clostridium thermocellum. Microbiology (Reading) 2009; 155:2442-2449. [DOI: 10.1099/mic.0.026930-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multi-modular non-cellulosomal endo-1,3(4)-β-glucanase Lic16A from Clostridium thermocellum contains a so-called X module (denoted as CBMX) near the N terminus of the catalytic module (191–426 aa). Melting of X-module-containing recombinant proteins revealed an independent folding of the module. CBMX was isolated and studied as a separate fragment. It was shown to bind to various insoluble polysaccharides, including xylan, pustulan, chitin, chitosan, yeast cell wall glucan, Avicel and bacterial crystalline cellulose. CBMX thus contains a hitherto unknown carbohydrate-binding module (CBM54). It did not bind soluble polysaccharides on which Lic16A is highly active. Ca2+ ions had effects on the binding, e.g. stimulated complex formation with chitosan, which was observed only in the presence of Ca2+. The highest affinity to CBMX was shown for xylan (binding constant K=3.1×104 M−1), yeast cell wall glucan (K=1.4×105 M−1) and chitin (K=3.3.105 M−1 in the presence of Ca2+). Lic16A deletion derivatives lacking CBMX had lower affinity to lichenan and laminarin and a slight decrease in optimum temperature and thermostability. However, the specific activity was not significantly affected.
Collapse
|
1294
|
Solution structure of the silkworm betaGRP/GNBP3 N-terminal domain reveals the mechanism for beta-1,3-glucan-specific recognition. Proc Natl Acad Sci U S A 2009; 106:11679-84. [PMID: 19561300 DOI: 10.1073/pnas.0901671106] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The beta-1,3-glucan recognition protein (betaGRP)/Gram-negative bacteria-binding protein 3 (GNBP3) is a crucial pattern-recognition receptor that specifically binds beta-1,3-glucan, a component of fungal cell walls. It evokes innate immunity against fungi through activation of the prophenoloxidase (proPO) cascade and Toll pathway in invertebrates. The betaGRP consists of an N-terminal beta-1,3-glucan-recognition domain and a C-terminal glucanase-like domain, with the former reported to be responsible for the proPO cascade activation. This report shows the solution structure of the N-terminal beta-1,3-glucan recognition domain of silkworm betaGRP. Although the N-terminal domain of betaGRP has a beta-sandwich fold, often seen in carbohydrate-binding modules, both NMR titration experiments and mutational analysis showed that betaGRP has a binding mechanism which is distinct from those observed in previously reported carbohydarate-binding domains. Our results suggest that betaGRP is a beta-1,3-glucan-recognition protein that specifically recognizes a triple-helical structure of beta-1,3-glucan.
Collapse
|
1295
|
Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 2009; 284:24673-7. [PMID: 19553672 PMCID: PMC2757170 DOI: 10.1074/jbc.r109.022848] [Citation(s) in RCA: 472] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trillions of microbes inhabit the distal gut of adult humans. They have evolved to compete efficiently for nutrients, including a wide array of chemically diverse, complex glycans present in our diets, secreted by our intestinal mucosa, and displayed on the surfaces of other gut microbes. Here, we review how members of the Bacteroidetes, one of two dominant gut-associated bacterial phyla, process complex glycans using a series of similarly patterned, cell envelope-associated multiprotein systems. These systems provide insights into how gut, as well as terrestrial and aquatic, Bacteroidetes survive in highly competitive ecosystems.
Collapse
Affiliation(s)
- Eric C Martens
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | |
Collapse
|
1296
|
Gentry MS, Pace RM. Conservation of the glucan phosphatase laforin is linked to rates of molecular evolution and the glucan metabolism of the organism. BMC Evol Biol 2009; 9:138. [PMID: 19545434 PMCID: PMC2714694 DOI: 10.1186/1471-2148-9-138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/22/2009] [Indexed: 02/02/2023] Open
Abstract
Background Lafora disease (LD) is a fatal autosomal recessive neurodegenerative disease. A hallmark of LD is cytoplasmic accumulation of insoluble glucans, called Lafora bodies (LBs). Mutations in the gene encoding the phosphatase laforin account for ~50% of LD cases, and this gene is conserved in all vertebrates. We recently demonstrated that laforin is the founding member of a unique class of phosphatases that dephosphorylate glucans. Results Herein, we identify laforin orthologs in a protist and two invertebrate genomes, and report that laforin is absent in the vast majority of protozoan genomes and it is lacking in all other invertebrate genomes sequenced to date. We biochemically characterized recombinant proteins from the sea anemone Nematostella vectensis and the amphioxus Branchiostoma floridae to demonstrate that they are laforin orthologs. We demonstrate that the laforin gene has a unique evolutionary lineage; it is conserved in all vertebrates, a subclass of protists that metabolize insoluble glucans resembling LBs, and two invertebrates. We analyzed the intron-exon boundaries of the laforin genes in each organism and determine, based on recently published reports describing rates of molecular evolution in Branchiostoma and Nematostella, that the conservation of laforin is linked to the molecular rate of evolution and the glucan metabolism of an organism. Conclusion Our results alter the existing view of glucan phosphorylation/dephosphorylation and strongly suggest that glucan phosphorylation is a multi-Kingdom regulatory mechanism, encompassing at least some invertebrates. These results establish boundaries concerning which organisms contain laforin. Laforin is conserved in all vertebrates, it has been lost in the vast majority of lower organisms, and yet it is an ancient gene that is conserved in a subset of protists and invertebrates that have undergone slower rates of molecular evolution and/or metabolize a carbohydrate similar to LBs. Thus, the laforin gene holds a unique place in evolutionary biology and has yielded insights into glucan metabolism and the molecular etiology of Lafora disease.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S, Limestone, BBSRB, B177, Lexington, Kentucky 40536-0509, USA.
| | | |
Collapse
|
1297
|
Tsuzuki S, Uchimaru T, Mikami M. Magnitude and nature of carbohydrate-aromatic interactions: ab initio calculations of fucose-benzene complex. J Phys Chem B 2009; 113:5617-21. [PMID: 19331351 DOI: 10.1021/jp8093726] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stable geometries of fucose-benzene complex and the stabilization energies by formation of the complex (E(form)) were studied by ab initio molecular orbital calculations. The benzene ring has close contact with an O-H or C-H bond of fucose in the optimized geometries (OH/pi hydrogen-bonded structures and CH/pi contact structures). The E(form) calculated for the most stable OH/pi hydrogen-bonded structure was -5.1 kcal/mol. The E(form) calculated for the most stable CH/pi contact structure was -4.5 kcal/mol, which shows that significant attraction exists between the nonpolar surface of fucose and a benzene. The E(form) is close to the interaction energies in typical hydrogen-bonded complexes. A few nearly isoenergetic CH/pi contact structures were found by the calculations, which suggests that the directionality of the carbohydrate-aromatic interaction is weak. The dispersion interaction is the major source of the attraction in the complex. The electrostatic contributions to the attraction are relatively small. Although the size of the interaction energy is not largely different from that of typical hydrogen bonds, the nature of the carbohydrate-aromatic interaction, which is sometimes denoted as a CH/pi hydrogen bond, is completely different from that of typical hydrogen bonds, which have strong directionality due to the strong electrostatic interactions.
Collapse
Affiliation(s)
- Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| | | | | |
Collapse
|
1298
|
Montanier C, Money VA, Pires VMR, Flint JE, Pinheiro BA, Goyal A, Prates JAM, Izumi A, Stålbrand H, Morland C, Cartmell A, Kolenova K, Topakas E, Dodson EJ, Bolam DN, Davies GJ, Fontes CMGA, Gilbert HJ. The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. PLoS Biol 2009; 7:e71. [PMID: 19338387 PMCID: PMC2661963 DOI: 10.1371/journal.pbio.1000071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/17/2009] [Indexed: 11/19/2022] Open
Abstract
Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, consistent with the specific chemical requirements of each activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within an enzyme is likely to be a rare event, because it would compromise the existing activity of the protein. In contrast to this view, a potential example of multifunctional recruitment into a single protein domain is provided by CtCel5C-CE2, which contains an N-terminal module that displays cellulase activity and a C-terminal module, CtCE2, which exhibits a noncatalytic cellulose-binding function but also shares sequence identity with the CE2 family of esterases. Here we show that, unlike other CE2 members, the CtCE2 domain displays divergent catalytic esterase and noncatalytic carbohydrate binding functions. Intriguingly, these diverse activities are housed within the same site on the protein. Thus, a critical component of the active site of CtCE2, the catalytic Ser-His dyad, in harness with inserted aromatic residues, confers noncatalytic binding to cellulose whilst the active site of the domain retains its esterase activity. CtCE2 catalyses deacetylation of noncellulosic plant structural polysaccharides to deprotect these substrates for attack by other enzymes. Yet it also acts as a cellulose-binding domain, which promotes the activity of the appended cellulase on recalcitrant substrates. The CE2 family encapsulates the requirement for multiple activities by biocatalysts that attack challenging macromolecular substrates, including the grafting of a second, powerful and discrete noncatalytic binding functionality into the active site of an enzyme. This article provides a rare example of “gene sharing,” where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst. Proteins that display multiple activities have typically evolved through the recruitment of different domains, each of which has a specific function. Thus, in a multifunctional protein, the different activities are mediated by spatially distinct domains such that a single domain can provide the specific chemical requirements for one activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within a single-domain enzyme is likely to be a rare event, as it would compromise the existing activity of the protein when a new function evolves. Nonetheless, a potential example of multifunctional recruitment into a single protein domain is provided by an enzyme that contains a cellulase enzyme module and a discrete noncatalytic cellulose-binding module. In this article, we show that the cellulose-binding module displays esterase activity and that these diverse activities are housed within the same site on the protein. Structural analysis of the enzyme reveals that its catalytic residues also contribute to the noncatalytic cellulose-binding function. This report provides a rare example of “gene sharing,” whereby the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the catalyst. The active of site of an esterase enzyme has acquired a noncatalytic carbohydrate-binding function without compromising its catalytic activity, providing support for the "gene sharing" model of protein diversification.
Collapse
Affiliation(s)
- Cedric Montanier
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
| | - Victoria A Money
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, United Kingdom
| | - Virginia M. R Pires
- CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - James E Flint
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
| | - Benedita A Pinheiro
- CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Arun Goyal
- CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - José A. M Prates
- CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Atsushi Izumi
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, United Kingdom
| | - Henrik Stålbrand
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Carl Morland
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
| | - Alan Cartmell
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
| | - Katarina Kolenova
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Evangelos Topakas
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
| | - Eleanor J Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, United Kingdom
| | - David N Bolam
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, United Kingdom
- * To whom correspondence should be addressed. E-mail: (GJD); (HJG)
| | - Carlos M. G. A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
- * To whom correspondence should be addressed. E-mail: (GJD); (HJG)
| |
Collapse
|
1299
|
Li Y, Yin Q, Ding M, Zhao F. Purification, characterization and molecular cloning of a novel endo-β-1,4-glucanase AC-EG65 from the mollusc Ampullaria crossean. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:149-56. [DOI: 10.1016/j.cbpb.2009.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/18/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
1300
|
Moreno-Ruiz E, Ortu G, de Groot PWJ, Cottier F, Loussert C, Prévost MC, de Koster C, Klis FM, Goyard S, d'Enfert C. The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology (Reading) 2009; 155:2004-2020. [DOI: 10.1099/mic.0.028902-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fungal cell wall is essential in maintaining cellular integrity and plays key roles in the interplay between fungal pathogens and their hosts. The PGA59 and PGA62 genes encode two short and related glycosylphosphatidylinositol-anchored cell wall proteins and their expression has been previously shown to be strongly upregulated when the human pathogen Candida albicans grows as biofilms. Using GFP fusion proteins, we have shown that Pga59 and Pga62 are cell-wall-located, N- and O-glycosylated proteins. The characterization of C. albicans pga59Δ/pga59Δ, pga62Δ/pga62Δ and pga59Δ/pga59Δ pga62Δ/pga62Δ mutants suggested a minor role of these two proteins in hyphal morphogenesis and that they are not critical to biofilm formation. Importantly, the sensitivity to different cell-wall-perturbing agents was altered in these mutants. In particular, simultaneous inactivation of PGA59 and PGA62 resulted in high sensitivity to Calcofluor white, Congo red and nikkomicin Z and in resistance to caspofungin. Furthermore, cell wall composition and observation by transmission electron microscopy indicated an altered cell wall structure in the mutant strains. Collectively, these data suggest that the cell wall proteins Pga59 and Pga62 contribute to cell wall stability and structure.
Collapse
Affiliation(s)
- Emilia Moreno-Ruiz
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Giuseppe Ortu
- Sezione di Microbiologia generale ed Applicat, DISAABA, Sassari, Italy
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Piet W. J. de Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Fabien Cottier
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Céline Loussert
- Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
| | | | - Chris de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie Goyard
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| |
Collapse
|