1301
|
Díaz S, Martín-González A, Cubas L, Ortega R, Amaro F, Rodríguez-Martín D, Gutiérrez JC. High resistance of Tetrahymena thermophila to paraquat: Mitochondrial alterations, oxidative stress and antioxidant genes expression. CHEMOSPHERE 2016; 144:909-917. [PMID: 26432532 DOI: 10.1016/j.chemosphere.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Silvia Díaz
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Ana Martín-González
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Liliana Cubas
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Ruth Ortega
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Francisco Amaro
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Daniel Rodríguez-Martín
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Juan-Carlos Gutiérrez
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain.
| |
Collapse
|
1302
|
Reiser K, Mathys L, Curbo S, Pannecouque C, Noppen S, Liekens S, Engman L, Lundberg M, Balzarini J, Karlsson A. The Cellular Thioredoxin-1/Thioredoxin Reductase-1 Driven Oxidoreduction Represents a Chemotherapeutic Target for HIV-1 Entry Inhibition. PLoS One 2016; 11:e0147773. [PMID: 26816344 PMCID: PMC4729491 DOI: 10.1371/journal.pone.0147773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
Abstract
Background The entry of HIV into its host cell is an interesting target for chemotherapeutic intervention in the life-cycle of the virus. During entry, reduction of disulfide bridges in the viral envelope glycoprotein gp120 by cellular oxidoreductases is crucial. The cellular thioredoxin reductase-1 plays an important role in this oxidoreduction process by recycling electrons to thioredoxin-1. Therefore, thioredoxin reductase-1 inhibitors may inhibit gp120 reduction during HIV-1 entry. In this present study, tellurium-based thioredoxin reductase-1 inhibitors were investigated as potential inhibitors of HIV entry. Results The organotellurium compounds inhibited HIV-1 and HIV-2 replication in cell culture at low micromolar concentrations by targeting an early event in the viral infection cycle. Time-of-drug-addition studies pointed to virus entry as the drug target, more specifically: the organotellurium compound TE-2 showed a profile similar or close to that of the fusion inhibitor enfuvirtide (T-20). Surface plasmon resonance-based interaction studies revealed that the compounds do not directly interact with the HIV envelope glycoproteins gp120 and gp41, nor with soluble CD4, but instead, dose-dependently bind to thioredoxin reductase-1. By inhibiting the thioredoxin-1/thioredoxin reductase-1-directed oxidoreduction of gp120, the organotellurium compounds prevent conformational changes in the viral glycoprotein which are necessary during viral entry. Conclusion Our findings revealed that thioredoxin-1/thioredoxin reductase-1 acts as a cellular target for the inhibition of HIV entry.
Collapse
Affiliation(s)
- Kathrin Reiser
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Huddinge, Sweden
- * E-mail:
| | - Leen Mathys
- KU Leuven, Rega Institute for Medical Research, Minderbroederstraat 10, Leuven, Belgium
| | - Sophie Curbo
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Huddinge, Sweden
| | | | - Sam Noppen
- KU Leuven, Rega Institute for Medical Research, Minderbroederstraat 10, Leuven, Belgium
| | - Sandra Liekens
- KU Leuven, Rega Institute for Medical Research, Minderbroederstraat 10, Leuven, Belgium
| | - Lars Engman
- Uppsala University, Department of Chemistry–BMC, BOX 576, Uppsala, Sweden
| | - Mathias Lundberg
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Huddinge, Sweden
| | - Jan Balzarini
- KU Leuven, Rega Institute for Medical Research, Minderbroederstraat 10, Leuven, Belgium
| | - Anna Karlsson
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Huddinge, Sweden
| |
Collapse
|
1303
|
Abstract
BACKGROUND We identified auranofin as an antimicrobial compound utilizing a high-throughput screen using a Caenorhabditis elegans-Staphylococcus aureus infection model. Results/methodology: Treatment of infected nematodes with auranofin resulted in a prolonged survival rate of 95%, reached with 0.78 μg/ml. Further investigation of the antimicrobial activity of auranofin found inhibition against S. aureus, Enterococcus faecium and Enterococcus faecalis. Importantly, the fungal pathogens Cryptococcus neoformans was also effectively inhibited with an MIC at 0.5 μg/ml. Auranofin appears to target the thioredoxin system. CONCLUSION This work provides extensive additional data on the antibacterial effects of auranofin that includes both reference and clinical isolates and reports a novel inhibition of fungal pathogens by this compound.
Collapse
|
1304
|
|
1305
|
Hannemann L, Suppanz I, Ba Q, MacInnes K, Drepper F, Warscheid B, Koch HG. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1. Antioxid Redox Signal 2016; 24:141-56. [PMID: 26160547 PMCID: PMC4742990 DOI: 10.1089/ars.2015.6272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. RESULTS Our data identify a redox-regulated monomer-dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. INNOVATION YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. CONCLUSION Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response.
Collapse
Affiliation(s)
- Liya Hannemann
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Ida Suppanz
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Qiaorui Ba
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Katherine MacInnes
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Friedel Drepper
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Bettina Warscheid
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Hans-Georg Koch
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| |
Collapse
|
1306
|
Wang W, Luo J, Sheng W, Xue J, Li M, Ji J, Liu P, Zhang X, Cao J, Zhang S. Proteomic Profiling of Radiation-Induced Skin Fibrosis in Rats: Targeting the Ubiquitin-Proteasome System. Int J Radiat Oncol Biol Phys 2016; 95:751-60. [PMID: 27045812 DOI: 10.1016/j.ijrobp.2016.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the molecular changes underlying the pathogenesis of radiation-induced skin fibrosis. METHODS AND MATERIALS Rat skin was irradiated to 30 or 45 Gy with an electron beam. Protein expression in fibrotic rat skin and adjacent normal tissues was quantified by label-free protein quantitation. Human skin cells HaCaT and WS-1 were treated by x-ray irradiation, and the proteasome activity was determined with a fluorescent probe. The effect of proteasome inhibitors on Transforming growth factor Beta (TGF-B) signaling was measured by Western blot and immunofluorescence. The efficacy of bortezomib in wound healing of rat skin was assessed by the skin injury scale. RESULTS We found that irradiation induced epidermal and dermal hyperplasia in rat and human skin. One hundred ninety-six preferentially expressed and 80 unique proteins in the irradiated fibrotic skin were identified. Through bioinformatic analysis, the ubiquitin-proteasome pathway showed a significant fold change and was investigated in greater detail. In vitro experiments demonstrated that irradiation resulted in a decline in the activity of the proteasome in human skin cells. The proteasome inhibitor bortezomib suppressed profibrotic TGF-β downstream signaling but not TGF-β secretion stimulated by irradiation in HaCaT and WS-1 cells. Moreover, bortezomib ameliorated radiation-induced skin injury and attenuated epidermal hyperplasia. CONCLUSION Our findings illustrate the molecular changes during radiation-induced skin fibrosis and suggest that targeting the ubiquitin-proteasome system would be an effective countermeasure.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Judong Luo
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, China
| | - Wenjiong Sheng
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiao Xue
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ming Li
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiang Ji
- Department of Dermatology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Liu
- Department of Gastroenterology, the Affiliated Jiangyin Hospital of Southeast University, Jiangyin, China
| | - Xueguang Zhang
- Institute of Medical Biotechnology and Jiangsu Stem Cell Key Laboratory, Medical College of Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Soochow University, Suzhou, China.
| |
Collapse
|
1307
|
Insights into the Function of a Second, Nonclassical Ahp Peroxidase, AhpA, in Oxidative Stress Resistance in Bacillus subtilis. J Bacteriol 2016; 198:1044-57. [PMID: 26787766 DOI: 10.1128/jb.00679-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Organisms growing aerobically generate reactive oxygen-containing molecules, such as hydrogen peroxide (H2O2). These reactive oxygen molecules damage enzymes and DNA and may even cause cell death. In response, Bacillus subtilis produces at least nine potential peroxide-scavenging enzymes, two of which appear to be the primary enzymes responsible for detoxifying peroxides during vegetative growth: a catalase (encoded by katA) and an alkylhydroperoxide reductase (Ahp, encoded by ahpC). AhpC uses two redox-active cysteine residues to reduce peroxides to nontoxic molecules. A specialized thioredoxin-like protein, AhpF, is then required to restore oxidized AhpC back to its reduced state. Curiously, B. subtilis has two genes encoding Ahp: ahpC and ahpA. Although AhpC is well characterized, very little is known about AhpA. In fact, numerous bacterial species have multiple ahp genes; however, these additional Ahp proteins are generally uncharacterized. We seek to understand the role of AhpA in the bacterium's defense against toxic peroxide molecules in relation to the roles previously assigned to AhpC and catalase. Our results demonstrate that AhpA has catalytic activity similar to that of the primary enzyme, AhpC. Furthermore, our results suggest that a unique thioredoxin redox protein, AhpT, may reduce AhpA upon its oxidation by peroxides. However, unlike AhpC, which is expressed well during vegetative growth, our results suggest that AhpA is expressed primarily during postexponential growth. IMPORTANCE B. subtilis appears to produce nine enzymes designed to protect cells against peroxides; two belong to the Ahp class of peroxidases. These studies provide an initial characterization of one of these Ahp homologs and demonstrate that the two Ahp enzymes are not simply replicates of each other, suggesting that they instead are expressed at different times during growth of the cells. These results highlight the need to further study the Ahp homologs to better understand how they differ from one another and to identify their function, if any, in protection against oxidative stress. Through these studies, we may better understand why bacteria have multiple enzymes designed to scavenge peroxides and thus have a more accurate understanding of oxidative stress resistance.
Collapse
|
1308
|
Jeelani G, Nozaki T. Entamoeba thiol-based redox metabolism: A potential target for drug development. Mol Biochem Parasitol 2016; 206:39-45. [PMID: 26775086 DOI: 10.1016/j.molbiopara.2016.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
Amebiasis is an intestinal infection widespread throughout the world caused by the human pathogen Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its low efficacy against asymptomatic cyst carriers and emergence of resistance in other protozoa with similar anaerobic metabolism. Therefore, identification and characterization of specific targets is urgently needed to design new therapeutics for improved treatment against amebiasis. Toward this goal, thiol-dependent redox metabolism is of particular interest. The thiol-dependent redox metabolism in E. histolytica consists of proteins including peroxiredoxin, rubrerythrin, Fe-superoxide dismutase, flavodiiron proteins, NADPH: flavin oxidoreductase, and amino acids including l-cysteine, S-methyl-l-cysteine, and thioprolines (thiazolidine-4-carboxylic acids). E. histolytica completely lacks glutathione and its metabolism, and l-cysteine is the major intracellular low molecular mass thiol. Moreover, this parasite possesses a functional thioredoxin system consisting of thioredoxin and thioredoxin reductase, which is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In this review, we summarize and highlight the thiol-based redox metabolism and its control mechanisms in E. histolytica, in particular, the features of the system unique to E. histolytica, and its potential use for drug development against amebiasis.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
1309
|
Induction of thioredoxin reductase 1 by crotonaldehyde as an adaptive mechanism in human endothelial cells. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-015-0046-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
1310
|
HNO/Thiol Biology as a Therapeutic Target. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
1311
|
Eltoweissy M, Dihazi GH, Müller GA, Asif AR, Dihazi H. Protein DJ-1 and its anti-oxidative stress function play an important role in renal cell mediated response to profibrotic agents. MOLECULAR BIOSYSTEMS 2016; 12:1842-59. [DOI: 10.1039/c5mb00887e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the pathogenesis of renal fibrosis, oxidative stress (OS) enhances the production of reactive oxygen species (ROS) leading to sustained cell growth, inflammation, excessive tissue remodelling and accumulation, which results in the development and acceleration of renal damage.
Collapse
Affiliation(s)
- Marwa Eltoweissy
- Department of Nephrology and Rheumatology
- University Medical Center Göttingen
- Georg-August University Göttingen
- D-37075 Göttingen
- Germany
| | - Gry H. Dihazi
- Department of Nephrology and Rheumatology
- University Medical Center Göttingen
- Georg-August University Göttingen
- D-37075 Göttingen
- Germany
| | - Gerhard A. Müller
- Department of Nephrology and Rheumatology
- University Medical Center Göttingen
- Georg-August University Göttingen
- D-37075 Göttingen
- Germany
| | - Abdul R. Asif
- Department of Clinical Chemistry
- University Medical Center Göttingen
- Georg-August University Göttingen
- Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology
- University Medical Center Göttingen
- Georg-August University Göttingen
- D-37075 Göttingen
- Germany
| |
Collapse
|
1312
|
ÖZGENÇLİ İ, ÇİFTÇİ M. Purification and characterization of mitochondrial thioredoxin reductase enzyme from rainbow trout (Oncorhynchus mykiss) liver and investigation of the in vitro effects of some metal ions on the enzyme. Turk J Chem 2016. [DOI: 10.3906/kim-1503-41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
1313
|
Dóka É, Pader I, Bíró A, Johansson K, Cheng Q, Ballagó K, Prigge JR, Pastor-Flores D, Dick TP, Schmidt EE, Arnér ESJ, Nagy P. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. SCIENCE ADVANCES 2016; 2:e1500968. [PMID: 26844296 PMCID: PMC4737208 DOI: 10.1126/sciadv.1500968] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/20/2015] [Indexed: 05/17/2023]
Abstract
Hydrogen sulfide signaling involves persulfide formation at specific protein Cys residues. However, overcoming current methodological challenges in persulfide detection and elucidation of Cys regeneration mechanisms from persulfides are prerequisites for constructing a bona fide signaling model. We here establish a novel, highly specific protein persulfide detection protocol, ProPerDP, with which we quantify 1.52 ± 0.6 and 11.6 ± 6.9 μg/mg protein steady-state protein persulfide concentrations in human embryonic kidney 293 (HEK293) cells and mouse liver, respectively. Upon treatment with polysulfides, HEK293 and A549 cells exhibited increased protein persulfidation. Deletion of the sulfide-producing cystathionine-γ-lyase or cystathionine-β-synthase enzymes in yeast diminished protein persulfide levels, thereby corroborating their involvement in protein persulfidation processes. We here establish that thioredoxin (Trx) and glutathione (GSH) systems can independently catalyze reductions of inorganic polysulfides and protein persulfides. Increased endogenous persulfide levels and protein persulfidation following polysulfide treatment in thioredoxin reductase-1 (TrxR1) or thioredoxin-related protein of 14 kDa (TRP14) knockdown HEK293 cells indicated that these enzymes constitute a potent regeneration system of Cys residues from persulfides in a cellular context. Furthermore, TrxR1-deficient cells were less viable upon treatment with toxic amounts of polysulfides compared to control cells. Emphasizing the dominant role of cytosolic disulfide reduction systems in maintaining sulfane sulfur homeostasis in vivo, protein persulfide levels were markedly elevated in mouse livers where hepatocytes lack both TrxR1 and glutathione reductase (TR/GR-null). The different persulfide patterns observed in wild-type, GR-null, and TR/GR-null livers suggest distinct roles for the Trx and GSH systems in regulating subsets of protein persulfides and thereby fine-tuning sulfide signaling pathways.
Collapse
Affiliation(s)
- Éva Dóka
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary
| | - Irina Pader
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Adrienn Bíró
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary
| | - Katarina Johansson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Krisztina Ballagó
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary
| | - Justin R. Prigge
- Department of Microbiology and Immunology, Montana State University, Cooley Hall, PO Box 173520, Bozeman, MT 59717, USA
| | - Daniel Pastor-Flores
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tobias P. Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Edward E. Schmidt
- Department of Microbiology and Immunology, Montana State University, Cooley Hall, PO Box 173520, Bozeman, MT 59717, USA
| | - Elias S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary
- Corresponding author. E-mail:
| |
Collapse
|
1314
|
Liu Y, Ma H, Zhang L, Cui Y, Liu X, Fang J. A small molecule probe reveals declined mitochondrial thioredoxin reductase activity in a Parkinson's disease model. Chem Commun (Camb) 2016; 52:2296-9. [DOI: 10.1039/c5cc09998f] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first off–on probe, Mito-TRFS, for imaging the mitochondrial thioredoxin reductase (TrxR2) in live cells was reported.
Collapse
Affiliation(s)
- Yaping Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Huilong Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Liangwei Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Yajing Cui
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiaoting Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
1315
|
Liu X, Ward K, Xavier C, Jann J, Clark AF, Pang IH, Wu H. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol 2015; 8:98-109. [PMID: 26773873 PMCID: PMC4731949 DOI: 10.1016/j.redox.2015.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is an important factor in the pathogenesis of age-related macular degeneration (AMD). Previous studies have shown that RTA 408, a synthetic triterpenoid compound, potently activates Nrf2. This study aimed to investigate the protective effects of RTA 408 in cultured RPE cells during oxidative stress and to determine the effects of RTA 408 on Nrf2 and its downstream target genes. Primary human RPE cells were pretreated with RTA 408 and then incubated in 200μM H2O2 for 6h. Cell viability was measured with the WST-8 assay. Apoptosis was quantitatively measured by annexin V/propidium iodide (PI) double staining and Hoechst 33342 fluorescent staining. Reduced (GSH) and oxidized glutathione (GSSG) were measured using colorimetric assays. Nrf2 activation and its downstream effects on phase II enzymes were examined by Western blot. Treatment of RPE cells with nanomolar ranges (10 and 100nM) of RTA 408 markedly attenuated H2O2-induced viability loss and apoptosis. RTA 408 pretreatment significantly protected cells from oxidative stress-induced GSH loss, GSSG formation and decreased ROS production. RTA 408 activated Nrf2 and increased the expression of its downstream genes, such as HO-1, NQO1, SOD2, catalase, Grx1, and Trx1. Consequently, the enzyme activities of NQO1, Grx1, and Trx1 were fully protected by RTA 408 pretreatment under oxidative stress. Moreover, knockdown of Nrf2 by siRNA significantly reduced the cytoprotective effects of RTA 408. In conclusion, our data suggest that RTA 408 protect primary human RPE cells from oxidative stress-induced damage by activating Nrf2 and its downstream genes.
Collapse
Affiliation(s)
- Xiaobin Liu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Keith Ward
- REATA Pharmaceuticals, Inc., Irving, TX, USA
| | - Christy Xavier
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jamieson Jann
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Abbot F Clark
- Department of Cell Biology & Immunology, UNTHSC, Ft. Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Iok-Hou Pang
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
1316
|
Darja O, Stanislav M, Saša S, Andrej F, Lea B, Branka J. Responses of CHO cell lines to increased pCO2 at normal (37 °C) and reduced (33 °C) culture temperatures. J Biotechnol 2015; 219:98-109. [PMID: 26707809 DOI: 10.1016/j.jbiotec.2015.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/07/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
The correlation between dissolved carbon dioxide (pCO2) and cell growth, cell metabolism, productivity and product quality has often been reported. However, since pCO2 values in bioprocesses always vary concurrently with other bioprocess variables, it is very difficult to distinguish only the effect of pCO2. The aim of our work was to investigate further the specific effect of pCO2 and cell response on a proteome level. Proteome responses of three different CHO-Der3 cell lines in the exponential growth phase at normal (37 °C) and reduced (33 °C) culture temperatures, with normal (10%) and increased (20%) pCO2, were studied by comparative proteomic analysis (2D-DIGE). Cell viability and cell density, and the concentration of glucose, glutamine and lactate monitored over 72-h cultures showed that elevated pCO2 did not affect cell viability or productivity at either culture temperature, while metabolic activity was reduced. The specific metabolic profile also indicated altered glucose metabolism toward a less efficient anaerobic metabolism. Two-way ANOVA of proteomic data discriminated many more pCO2-specific changes in protein abundance (p<0.01) at 33 °C than at 37 °C and PCA analysis was able to distinguish clusters distinguishing cell lines and culture conditions at low temperature and elevated pCO2, indicating substantial proteome changes under these culture conditions. Cell sensitivity to increased pCO2 at the lower temperature was further confirmed by a significantly increased abundance of twelve proteins involved in anti- oxidative mechanisms and increased abundance of six proteins involved in glycolysis, including L-lactate dehydrogenase. Proteomic results support the metabolic data and the proposed pCO2 invoked metabolic switch toward anaerobic pathways. Anti- oxidative mechanisms, together with the anaerobic metabolism, allow the cells to detoxify while maintaining sufficient energy levels to preserve their vitality and functionality. This study provides further insight into the proteome responses of CHO cell lines to increased pCO2 at the two culture temperatures.
Collapse
Affiliation(s)
| | - Mandelc Stanislav
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | | | | | - Bojić Lea
- Lek Pharmaceuticals d.d., 1000 Ljubljana, Slovenia.
| | - Javornik Branka
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
1317
|
|
1318
|
HLAVÁČOVÁ M, GUMULEC J, STRAČINA T, FOJTŮ M, RAUDENSKÁ M, MASAŘÍK M, NOVÁKOVÁ M, PAULOVÁ H. Different Doxorubicin Formulations Affect Plasma 4-Hydroxy-2-Nonenal and Gene Expression of Aldehyde Dehydrogenase 3A1 and Thioredoxin Reductase 2 in Rat. Physiol Res 2015; 64:S653-60. [DOI: 10.33549/physiolres.933223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increased oxidative stress is indisputably an important mechanism of doxorubicin side effects, especially its cardiotoxicity. To prevent impairment of non-tumorous tissue and to improve the specificity in targeting the tumor tissue, new drug nanotransporters are developed. In many cases preclinical therapeutic advantage has been shown when compared with the administration of conventional drug solution. Three forms of doxorubicin – conventional (DOX), encapsulated in liposomes (lipoDOX) and in apoferritin (apoDOX) were applied to Wistar rats. After 24 h exposition, the plasma level of 4-hydroxy-2-nonenal (4-HNE) as a marker of lipoperoxidation and tissue gene expression of thioredoxin reductase 2 (TXNRD2) and aldehyde dehydrogenase 3A1 (ALDH3A1) as an important part of antioxidative system were determined. Only conventional DOX significantly increases the level of 4-HNE; encapsulated forms on the other hand show significant decrease in plasma levels of 4 HNE in comparison with DOX. They also cause significant decrease in gene expression of ALDH3A1 and TXNRD2 in liver as a main detoxification organ, and a mild influence on the expression of these enzymes in left heart ventricle as a potential target of toxicity. Thus, 4-HNE seems to be a good potential biomarker of oxidative stress induced by various forms of doxorubicin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - H. PAULOVÁ
- Department of Biochemistry, Faculty of Medicine, Masaryk University in Brno, Brno, Czech Republic
| |
Collapse
|
1319
|
Jeong SW, Jung JH, Kim MK, Seo HS, Lim HM, Lim S. The three catalases in Deinococcus radiodurans: Only two show catalase activity. Biochem Biophys Res Commun 2015; 469:443-8. [PMID: 26692481 DOI: 10.1016/j.bbrc.2015.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 01/31/2023]
Abstract
Deinococcus radiodurans, which is extremely resistant to ionizing radiation and oxidative stress, is known to have three catalases (DR1998, DRA0146, and DRA0259). In this study, to investigate the role of each catalase, we constructed catalase mutants (Δdr1998, ΔdrA0146, and ΔdrA0259) of D. radiodurans. Of the three mutants, Δdr1998 exhibited the greatest decrease in hydrogen peroxide (H2O2) resistance and the highest increase in intracellular reactive oxygen species (ROS) levels following H2O2 treatments, whereas ΔdrA0146 showed no change in its H2O2 resistance or ROS level. Catalase activity was not attenuated in ΔdrA0146, and none of the three bands detected in an in-gel catalase activity assay disappeared in ΔdrA0146. The purified His-tagged recombinant DRA0146 did not show catalase activity. In addition, the phylogenetic analysis of the deinococcal catalases revealed that the DR1998-type catalase is common in the genus Deinococcus, but the DRA0146-type catalase was found in only 4 of 23 Deinococcus species. Taken together, these results indicate that DR1998 plays a critical role in the anti-oxidative system of D. radiodurans by detoxifying H2O2, but DRA0146 does not have catalase activity and is not involved in the resistance to H2O2 stress.
Collapse
Affiliation(s)
- Sun-Wook Jeong
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea; Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Min-Kyu Kim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Heon-Man Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea.
| |
Collapse
|
1320
|
Zhang X, Lu J, Ren X, Du Y, Zheng Y, Ioannou PV, Holmgren A. Oxidation of structural cysteine residues in thioredoxin 1 by aromatic arsenicals enhances cancer cell cytotoxicity caused by the inhibition of thioredoxin reductase 1. Free Radic Biol Med 2015; 89:192-200. [PMID: 26169724 DOI: 10.1016/j.freeradbiomed.2015.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 01/06/2023]
Abstract
Thioredoxin systems, composed of thioredoxin reductase (TrxR), thioredoxin (Trx) and NADPH, play important roles in maintaining cellular redox homeostasis and redox signaling. Recently the cytosolic Trx1 system has been shown to be a cellular target of arsenic containing compounds. To elucidate the relationship of the structure of arsenic compounds with their ability of inhibiting TrxR1 and Trx1, and cytotoxicity, we have investigated the reaction of Trx1 system with seven arsenic trithiolates: As(Cys)3, As(GS)3, As(Penicillamine)3, As(Mercaptoethanesulfonate)3, As(Mercaptopurine)3, As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3. The cytotoxicity of these arsenicals was consistent with their ability to inhibit TrxR1 in vitro and in cells. Unlike other arsenicals, As(Mercaptopurine)3 which did not show inhibitory effects on TrxR1 had very weak cytotoxicity, indicating that TrxR1 is a reliable drug target for arsenicals. Moreover, the two aromatic compounds As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 showed stronger cytotoxicity than the others. As(2-mercaptopyridine)3 which selectively oxidized two structural cysteines (Cys62 and Cys69) in Trx1 showed mild improvement in cytotoxicity. As(2-mercaptopyridine N-oxide)3 oxidized all the Cys residues in Trx1, exhibiting the strongest cytotoxicity. Oxidation of Trx1 by As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 affected electron transfer from NADPH and TrxR1 to peroxiredoxin 1 (Prx1), which could result in the reactive oxygen species elevation and trigger cell death process. These results suggest that oxidation of structural cysteine residues in Trx1 by aromatic group in TrxR1-targeting drugs may sensitize tumor cells to cell death, providing a novel approach to regulate cellular redox signaling and also a basis for rational design of new anticancer agents.
Collapse
Affiliation(s)
- Xu Zhang
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Yatao Du
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Yujuan Zheng
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, SE 171 76 Stockholm, Sweden.
| | | | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
1321
|
Tomar D, Prajapati P, Lavie J, Singh K, Lakshmi S, Bhatelia K, Roy M, Singh R, Bénard G, Singh R. TRIM4; a novel mitochondrial interacting RING E3 ligase, sensitizes the cells to hydrogen peroxide (H2O2) induced cell death. Free Radic Biol Med 2015; 89:1036-48. [PMID: 26524401 DOI: 10.1016/j.freeradbiomed.2015.10.425] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
The emerging evidences suggest that posttranslational modification of target protein by ubiquitin (Ub) not only regulate its turnover through ubiquitin proteasome system (UPS) but is a critical regulator of various signaling pathways. During ubiquitination, E3 ligase recognizes the target protein and determines the topology of ubiquitin chains. In current study, we studied the role of TRIM4, a member of the TRIM/RBCC protein family of RING E3 ligase, in regulation of hydrogen peroxide (H2O2) induced cell death. TRIM4 is expressed differentially in human tissues and expressed in most of the analyzed human cancer cell lines. The subcellular localization studies showed that TRIM4 forms distinct cytoplasmic speckle like structures which transiently interacts with mitochondria. The expression of TRIM4 induces mitochondrial aggregation and increased level of mitochondrial ROS in the presence of H2O2. It sensitizes the cells to H2O2 induced death whereas knockdown reversed the effect. TRIM4 potentiates the loss of mitochondrial transmembrane potential and cytochrome c release in the presence of H2O2. The analysis of TRIM4 interacting proteins showed its interaction with peroxiredoxin 1 (PRX1), including other proteins involved in regulation of mitochondrial and redox homeostasis. TRIM4 interaction with PRX1 is critical for the regulation of H2O2 induced cell death. Collectively, the evidences in the current study suggest the role of TRIM4 in regulation of oxidative stress induced cell death.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India; Université de Bordeaux, Laboratoire Maladie Rares: Genetique et metabolisme, Hopital Pellegrin, 33076 Bordeaux, France
| | - Paresh Prajapati
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Julie Lavie
- Université de Bordeaux, Laboratoire Maladie Rares: Genetique et metabolisme, Hopital Pellegrin, 33076 Bordeaux, France
| | - Kritarth Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Sripada Lakshmi
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Khyati Bhatelia
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Rochika Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Giovanni Bénard
- Université de Bordeaux, Laboratoire Maladie Rares: Genetique et metabolisme, Hopital Pellegrin, 33076 Bordeaux, France.
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
1322
|
Apoptosis or autophagy, that is the question: Two ways for muscle sacrifice towards meat. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
1323
|
Dafre AL, Goldberg J, Wang T, Spiegel DA, Maher P. Methylglyoxal, the foe and friend of glyoxalase and Trx/TrxR systems in HT22 nerve cells. Free Radic Biol Med 2015; 89:8-19. [PMID: 26165190 PMCID: PMC5624793 DOI: 10.1016/j.freeradbiomed.2015.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 01/28/2023]
Abstract
Methylglyoxal (MGO) is a major glycating agent that reacts with basic residues of proteins and promotes the formation of advanced glycation end products (AGEs) which are believed to play key roles in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, we examined the effects of MGO on immortalized mouse hippocampal HT22 nerve cells. The endpoints analyzed were MGO and thiol status, the glyoxalase system, comprising glyoxalase 1 and 2 (GLO1/2), and the cytosolic and mitochondrial Trx/TrxR systems, as well as nuclear Nrf2 and its target genes. We found that nuclear Nrf2 is induced by MGO treatment in HT22 cells, as corroborated by induction of the Nrf2-controlled target genes and proteins glutamate cysteine ligase and heme oxygenase 1. Nrf2 knockdown prevented MGO-dependent induction of glutamate cysteine ligase and heme oxygenase 1. The cystine/glutamate antiporter, system xc(-), which is also controlled by Nrf2, was also induced. The increased cystine import (system xc(-)) activity and GCL expression promoted GSH synthesis, leading to increased levels of GSH. The data indicate that MGO can act as both a foe and a friend of the glyoxalase and the Trx/TrxR systems. At low concentrations of MGO (0.3mM), GLO2 is strongly induced, but at high MGO (0.75 mM) concentrations, GLO1 is inhibited and GLO2 is downregulated. The cytosolic Trx/TrxR system is impaired by MGO, where Trx is downregulated yet TrxR is induced, but strong MGO-dependent glycation may explain the loss in TrxR activity. We propose that Nrf2 can be the unifying element to explain the observed upregulation of GSH, GCL, HO1, TrxR1, Trx2, TrxR2, and system xc(-) system activity.
Collapse
Affiliation(s)
- A L Dafre
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - J Goldberg
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - T Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - D A Spiegel
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - P Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
1324
|
Lyakhovich A, Lleonart ME. Bypassing Mechanisms of Mitochondria-Mediated Cancer Stem Cells Resistance to Chemo- and Radiotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1716341. [PMID: 26697128 PMCID: PMC4677234 DOI: 10.1155/2016/1716341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
Abstract
Cancer stem cells (CSCs) are highly resistant to conventional chemo- and radiotherapeutic regimes. Therefore, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs. Such resistance can be attributed to some bypassing pathways including detoxification mechanisms of reactive oxygen and nitrogen species (RO/NS) formation or enhanced autophagy. Unlike in normal cells, where RO/NS concentration is maintained at certain threshold required for signal transduction or immune response mechanisms, CSCs may develop alternative pathways to diminish RO/NS levels leading to cancer survival. In this minireview, we will focus on elaborated mechanisms developed by CSCs to attenuate high RO/NS levels. Gaining a better insight into the mechanisms of stem cell resistance to chemo- or radiotherapy may lead to new therapeutic targets thus serving for better anticancer strategies.
Collapse
Affiliation(s)
- Alex Lyakhovich
- International Clinical Research Center, St. Anne's University Hospital, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Matilde E. Lleonart
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
1325
|
Monteiro MB, Santos-Bezerra DP, Thieme K, Admoni SN, Perez RV, Machado CG, Queiroz MS, Nery M, Oliveira-Souza M, Woronik V, Passarelli M, Giannella-Neto D, Machado UF, Corrêa-Giannella ML. Thioredoxin interacting protein expression in the urinary sediment associates with renal function decline in type 1 diabetes. Free Radic Res 2015; 50:101-10. [PMID: 26480949 DOI: 10.3109/10715762.2015.1109083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS Thioredoxin interacting protein (TXNIP), an inhibitor of antioxidant thioredoxin (Trx), is upregulated by hyperglycemia and implicated in pathogenesis of diabetes complications. We evaluated mRNA expressions of genes encoding TXNIP and Trx (TXN) in urinary sediment and peripheral blood mononuclear cells (PBMC) of type 1 diabetes (T1D) patients with different degrees of chronic complications. METHODS qPCR was employed to quantify target genes in urinary sediment (n = 55) and PBMC (n = 161) from patients sorted by presence or absence of diabetic nephropathy (DN), retinopathy, peripheral and cardiovascular neuropathy; 26 healthy controls and 13 patients presenting non-diabetic nephropathy (focal and segmental glomerulosclerosis, FSGS) were also included. RESULTS Regarding the urinary sediment, TXNIP (but not TXN) expression was higher in T1D (p = 0.0023) and FSGS (p = 0.0027) patients versus controls. Expressions of TXNIP and TXN were higher, respectively, in T1D patients with versus without DN (p = 0.032) and in those with estimated glomerular filtration rate (eGFR) < 60 versus ≥60 mL/min/1.73 m(2) (p = 0.008). eGFR negatively correlated with TXNIP (p = 0.04, r = -0.28) and TXN (p = 0.04, r = -0.30) expressions. T1D patients who lost ≥5 mL/min/1.73 m(2) yearly of eGFR presented higher basal TXNIP expression than those who lost <5 mL/min/1.73 m(2) yearly after median follow-up of 24 months. TXNIP (p < 0.0001) and TXN (p = 0.002) expressions in PBMC of T1D patients were significantly higher than in controls but no differences were observed between patients with or without chronic complications. CONCLUSIONS TXNIP and TXN are upregulated in urinary sediment of T1D patients with diabetic kidney disease (DKD), but only TXNIP expression is associated with magnitude of eGFR decline.
Collapse
Affiliation(s)
- Maria Beatriz Monteiro
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | - Daniele Pereira Santos-Bezerra
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | - Karina Thieme
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | - Sharon Nina Admoni
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | - Ricardo Vessoni Perez
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | | | | | - Marcia Nery
- c Divisão de Endocrinologia , Hospital das Clínicas, FMUSP , Brazil
| | - Maria Oliveira-Souza
- d Laboratório de Fisiologia Renal , Departamento de Fisiologia e Biofísica do Instituto de Ciências Biomédicas da Universidade de São Paulo (ICBUSP) , Brazil
| | | | | | - Daniel Giannella-Neto
- g Programa de Pós-Graduação em Medicina , Universidade Nove de Julho - UNINOVE , Brazil
| | - Ubiratan Fabres Machado
- h Laboratório de Metabolismo e Endocrinologia , Departamento de Fisiologia e Biofísica do ICBUSP , Brazil
| | - Maria Lúcia Corrêa-Giannella
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil ;,i Núcleo de Terapia Celular e Molecular (NUCEL/NETCEM), FMUSP , Brazil
| |
Collapse
|
1326
|
Peskin AV, Pace PE, Behring JB, Paton LN, Soethoudt M, Bachschmid MM, Winterbourn CC. Glutathionylation of the Active Site Cysteines of Peroxiredoxin 2 and Recycling by Glutaredoxin. J Biol Chem 2015; 291:3053-62. [PMID: 26601956 DOI: 10.1074/jbc.m115.692798] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Indexed: 12/13/2022] Open
Abstract
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m(-1) s(-1)) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.
Collapse
Affiliation(s)
- Alexander V Peskin
- From the Centre for Free Radical Research, University of Otago Christchurch, Christchurch 8140, New Zealand and
| | - Paul E Pace
- From the Centre for Free Radical Research, University of Otago Christchurch, Christchurch 8140, New Zealand and
| | - Jessica B Behring
- Vascular Biology Section and Cardiovascular Proteomics Center, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Louise N Paton
- From the Centre for Free Radical Research, University of Otago Christchurch, Christchurch 8140, New Zealand and
| | - Marjolein Soethoudt
- From the Centre for Free Radical Research, University of Otago Christchurch, Christchurch 8140, New Zealand and
| | - Markus M Bachschmid
- Vascular Biology Section and Cardiovascular Proteomics Center, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Christine C Winterbourn
- From the Centre for Free Radical Research, University of Otago Christchurch, Christchurch 8140, New Zealand and
| |
Collapse
|
1327
|
Leiser OP, Merkley ED, Clowers BH, Deatherage Kaiser BL, Lin A, Hutchison JR, Melville AM, Wagner DM, Keim PS, Foster JT, Kreuzer HW. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach. PLoS One 2015; 10:e0142997. [PMID: 26599979 PMCID: PMC4658026 DOI: 10.1371/journal.pone.0142997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.
Collapse
Affiliation(s)
- Owen P. Leiser
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Eric D. Merkley
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99354, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Andy Lin
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Janine R. Hutchison
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Angela M. Melville
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - David M. Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Paul S. Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Jeffrey T. Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
- * E-mail:
| |
Collapse
|
1328
|
Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy. Cancers (Basel) 2015; 7:2262-76. [PMID: 26569310 PMCID: PMC4695889 DOI: 10.3390/cancers7040889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/14/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022] Open
Abstract
A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system.
Collapse
|
1329
|
Thioredoxin-2 Modulates Neuronal Programmed Cell Death in the Embryonic Chick Spinal Cord in Basal and Target-Deprived Conditions. PLoS One 2015; 10:e0142280. [PMID: 26540198 PMCID: PMC4634972 DOI: 10.1371/journal.pone.0142280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
Thioredoxin-2 (Trx2) is a mitochondrial protein using a dithiol active site to reduce protein disulfides. In addition to the cytoprotective function of this enzyme, several studies have highlighted the implication of Trx2 in cellular signaling events. In particular, growing evidence points to such roles of redox enzymes in developmental processes taking place in the central nervous system. Here, we investigate the potential implication of Trx2 in embryonic development of chick spinal cord. To this end, we first studied the distribution of the enzyme in this tissue and report strong expression of Trx2 in chick embryo post-mitotic neurons at E4.5 and in motor neurons at E6.5. Using in ovo electroporation, we go on to highlight a cytoprotective effect of Trx2 on the programmed cell death (PCD) of neurons during spinal cord development and in a novel cultured spinal cord explant model. These findings suggest an implication of Trx2 in the modulation of developmental PCD of neurons during embryonic development of the spinal cord, possibly through redox regulation mechanisms.
Collapse
|
1330
|
Liu Z, Sancheti H, Cadenas E, Yin F. Energy-Redox Axis in Mitochondria: Interconnection of Energy-Transducing Capacity and Redox Status. OXIDATIVE STRESS AND DISEASE 2015. [DOI: 10.1201/b19420-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1331
|
You BR, Park WH. Auranofin induces mesothelioma cell death through oxidative stress and GSH depletion. Oncol Rep 2015; 35:546-51. [PMID: 26530353 DOI: 10.3892/or.2015.4382] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/11/2015] [Indexed: 11/06/2022] Open
Abstract
Mesothelioma is an aggressive tumor associated with asbestos exposure. Auranofin as an inhibitor of thioredoxin reductase (TrxR) affects many biological processes such as inflammation and proliferation. In the present study, we investigated the cellular effects of auranofin on patient-derived mesothelioma cells in relation to reactive oxygen species (ROS) and glutathione (GSH) levels. Basal TrxR1 levels have no difference between mesothelial cells and certain mesothelioma cells. In particular, ADA, CON and Hmeso mesothelioma cells showed lower levels of TrxR1 expression. Auranofin inhibited the proliferation of mesothelioma cells in a dose-dependent manner. Among mesothelioma cells were ADA and CON cells sensitive to auranofin. This agent also induced caspase-independent apoptosis and necrosis in ADA cells. In addition, auranofin increased ROS levels including O2(•-) and induced GSH depletion in mesothelioma cells. While N-acetyl cysteine (NAC) prevented cell death and decreased ROS levels in auranofin-treated mesothelioma cells, L-buthionine sulfoximine (BSO) intensified apoptosis and GSH depletion in these cells. In conclusion, auranofin induced mesothelioma cell death through oxidative stress and the death was regulated by the status of GSH content.
Collapse
Affiliation(s)
- Bo Ra You
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju 561‑180, Republic of Korea
| | - Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju 561‑180, Republic of Korea
| |
Collapse
|
1332
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 635] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
1333
|
Ludwig M, Chua TT, Chew CY, Bryant DA. Fur-type transcriptional repressors and metal homeostasis in the cyanobacterium Synechococcus sp. PCC 7002. Front Microbiol 2015; 6:1217. [PMID: 26582412 PMCID: PMC4628125 DOI: 10.3389/fmicb.2015.01217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/19/2015] [Indexed: 11/29/2022] Open
Abstract
Metal homeostasis is a crucial cellular function for nearly all organisms. Some heavy metals (e.g., Fe, Zn, Co, Mo) are essential because they serve as cofactors for enzymes or metalloproteins, and chlorophototrophs such as cyanobacteria have an especially high demand for iron. At excessive levels, however, metals become toxic to cyanobacteria. Therefore, a tight control mechanism is essential for metal homeostasis. Metal homeostasis in microorganisms comprises two elements: metal acquisition from the environment and detoxification or excretion of excess metal ions. Different families of metal-sensing regulators exist in cyanobacteria and each addresses a more or less specific set of target genes. In this study the regulons of three Fur-type and two ArsR-SmtB-type regulators were investigated in a comparative approach in the cyanobacterium Synechococcus sp. PCC 7002. One Fur-type regulator controls genes for iron acquisition (Fur); one controls genes for zinc acquisition (Zur); and the third controls two genes involved in oxidative stress (Per). Compared to other well-investigated cyanobacterial strains, however, the set of target genes for each regulator is relatively small. Target genes for the two ArsR-SmtB transcriptional repressors (SmtB (SYNPCC7002_A2564) and SYNPCC7002_A0590) are involved in zinc homeostasis in addition to Zur. Their target genes, however, are less specific for zinc and point to roles in a broader heavy metal detoxification response.
Collapse
Affiliation(s)
- Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park PA, USA
| | - Tiing Tiing Chua
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park PA, USA
| | - Chyue Yie Chew
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park PA, USA ; Department of Chemistry and Biochemistry, Montana State University, Bozeman MT, USA
| |
Collapse
|
1334
|
Roussel C, Cesselin B, Cachon R, Gaudu P. Characterization of two Lactococcus lactis zinc membrane proteins, Llmg_0524 and Llmg_0526, and role of Llmg_0524 in cell wall integrity. BMC Microbiol 2015; 15:246. [PMID: 26519082 PMCID: PMC4628341 DOI: 10.1186/s12866-015-0587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to its extraordinary chemical properties, the cysteine amino acid residue is often involved in protein folding, electron driving, sensing stress, and binding metals such as iron or zinc. Lactococcus lactis, a Gram-positive bacterium, houses around one hundred cysteine-rich proteins (with the CX2C motif) in the cytoplasm, but only a few in the membrane. RESULTS In order to understand the role played by this motif we focused our work on two membrane proteins of unknown function: Llmg_0524 and Llmg_0526. Each of these proteins has two CX2C motifs separated by ten amino-acid residues (CX2CX10CX2C). Together with a short intervening gene (llmg_0525), the genes of these two proteins form an operon, which is induced only during the early log growth phase. In both proteins, we found that the CX2CX10CX2C motif chelated a zinc ion via its cysteine residues, but the sphere of coordination was remarkably different in each case. In the case of Llmg_0524, two of the four cysteines were ligands of a zinc ion whereas in Llmg_0526, all four residues were involved in binding zinc. In both proteins, the cysteine-zinc complex was very stable at 37 °C or in the presence of oxidative agents, suggesting a probable role in protein stability. We found that the complete deletion of llmg_0524 increased the sensitivity of the mutant to cumene hydroperoxide whereas the deletion of the cysteine motif in Llmg_0524 resulted in a growth defect. The latter mutant was much more resistant to lysozyme than other strains. CONCLUSIONS Our data suggest that the CX2CX10CX2C motif is used to chelate a zinc ion but we cannot predict the number of cysteine residue involved as ligand of metal. Although no other motif is present in sequence to identify roles played by these proteins, our results indicate that Llmg_0524 contributes to the cell wall integrity.
Collapse
Affiliation(s)
- Célia Roussel
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Bénédicte Cesselin
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Rémy Cachon
- UMR A 02.102 Unité Procédés Alimentaires et Microbiologiques, AgroSup Dijon-Université de Bourgogne, 1-esplanade Erasme, F-21000, Dijon, France.
| | - Philippe Gaudu
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France. .,Institut Micalis UMR1319 et AgroParisTech, Domaine de Vilvert, 78352 Jouy-en-Josas, Cedex, France.
| |
Collapse
|
1335
|
Sequence analysis, expression profiles and function of thioredoxin 2 and thioredoxin reductase 1 in resistance to nucleopolyhedrovirus in Helicoverpa armigera. Sci Rep 2015; 5:15531. [PMID: 26502992 PMCID: PMC4621414 DOI: 10.1038/srep15531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/25/2015] [Indexed: 12/30/2022] Open
Abstract
The thioredoxin system, including NADPH, thioredoxin (Trx), and thioredoxin reductase (TrxR), plays significant roles in maintaining intracellular redox homeostasis and protecting organisms against oxidative damage. In this study, the characteristics and functions of H. armigera HaTrx2 and HaTrxR1 were identified. Sequence analysis showed that HaTrx2 and HaTrxR1 were both highly conserved and shared high sequence identity with other insect counterparts. The mRNA of HaTrx2 was expressed the highest in 5th instar 96 h and was mainly detected in heads and epidermis. The expression of HaTrxR1 was highly concentrated in 5th instar 72 h and 96 h, and higher in malpighian tube, midgut and hemocyte than other examined tissues. HaTrx2 and HaTrxR1 were markedly induced by various types of stress. HaTrx2- or HaTrxR1-knockdown increased ROS production in hemocytes and also increased the lipid damage in NPV infected H. armigera larvae. Furthermore, interference with expression of HaTrx2 or HaTrxR1 transcripts in H. armigera larvae resulted in increased sensitivity to NPV infection and shortened LT50 values. Our findings indicated that HaTrx2 and HaTrxR1 contribute to the susceptibility of H. armigera to NPV and also provided the theoretical basis for the in-depth study of insect thioredoxin system.
Collapse
|
1336
|
Jan YH, Heck DE, Casillas RP, Laskin DL, Laskin JD. Thioredoxin Cross-Linking by Nitrogen Mustard in Lung Epithelial Cells: Formation of Multimeric Thioredoxin/Thioredoxin Reductase Complexes and Inhibition of Disulfide Reduction. Chem Res Toxicol 2015; 28:2091-103. [PMID: 26451472 DOI: 10.1021/acs.chemrestox.5b00194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The thioredoxin (Trx) system, which consists of Trx and thioredoxin reductase (TrxR), is a major cellular disulfide reduction system important in antioxidant defense. TrxR is a target of mechlorethamine (methylbis(2-chloroethyl)amine; HN2), a bifunctional alkylating agent that covalently binds to selenocysteine/cysteine residues in the redox centers of the enzyme, leading to inactivation and toxicity. Mammalian Trx contains two catalytic cysteines; herein, we determined if HN2 also targets Trx. HN2 caused a time- and concentration-dependent inhibition of purified Trx and Trx in A549 lung epithelial cells. Three Trx cross-linked protein complexes were identified in both cytosolic and nuclear fractions of HN2-treated cells. LC-MS/MS of these complexes identified both Trx and TrxR, indicating that HN2 cross-linked TrxR and Trx. This is supported by our findings of a significant decrease of Trx/TrxR complexes in cytosolic TrxR knockdown cells after HN2 treatment. Using purified recombinant enzymes, the formation of protein cross-links and enzyme inhibition were found to be redox status-dependent; reduced Trx was more sensitive to HN2 inactivation than the oxidized enzyme, and Trx/TrxR cross-links were only observed using reduced enzyme. These data suggest that HN2 directly targets catalytic cysteine residues in Trx resulting in enzyme inactivation and protein complex formation. LC-MS/MS confirmed that HN2 directly alkylated cysteine residues on Trx, including Cys32 and Cys35 in the redox center of the enzyme. Inhibition of the Trx system by HN2 can disrupt cellular thiol-disulfide balance, contributing to vesicant-induced lung toxicity.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Department of Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School , Piscataway, New Jersey 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College , Valhalla, New York 10595, United States
| | | | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School , Piscataway, New Jersey 08854, United States
| |
Collapse
|
1337
|
Oleaga A, Obolo-Mvoulouga P, Manzano-Román R, Pérez-Sánchez R. Midgut proteome of an argasid tick, Ornithodoros erraticus: a comparison between unfed and engorged females. Parasit Vectors 2015; 8:525. [PMID: 26459090 PMCID: PMC4603979 DOI: 10.1186/s13071-015-1148-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
Background The argasid tick Ornithodoros erraticus is the vector of African swine fever virus and of several Borrelia species that cause human relapsing fever in the Iberian Peninsula. The tick midgut is part of the ectoparasite-host interface and expresses proteins that are vital for the survival of the tick. Midgut proteins are therefore potential targets for drug and/or vaccine design aimed at the development of new strategies for tick control. Thus, the aim of this work was the characterization of the proteome of the O. erraticus midgut before and after a blood meal trying to elucidate the induced changes upon blood feeding. Methods Midgut tissues from unfed and engorged O. erraticus females were dissected and proteins were fractionated by centrifugation and SDS-PAGE, and the corresponding gel pieces analysed by LC–MS/MS. The identified proteins were classified according to their Protein Class and Molecular Function and the differences between fed and unfed specimens were analysed. Results Overall 555 tick proteins were identified: 414 in the midgut of the unfed specimens and 376 in the fed specimens, of which 235 were present in both groups. The proteins with catalytic, binding and structural functions were the most numerous and abundant, consistent with their role in the intracellular processing of the blood meal. The analysis of some groups of proteins putatively involved directly in blood meal digestion, including protein digestion (peptidase activity), iron metabolism, enzymes involved in oxidative stress and detoxification and membrane traffic and transport proteins, detected some differences between the fed and unfed ticks Conclusions This work reports for the first time the collection and analysis of the midgut proteome of an argasid tick species and provides molecular information about the argasid machinery involved in blood digestion. This information represents a starting point for the identification and selection of new targets for the development of alternative control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1148-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| | - Raúl Manzano-Román
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| |
Collapse
|
1338
|
Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015; 23:823-53. [PMID: 26058897 PMCID: PMC4589110 DOI: 10.1089/ars.2015.6378] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE All cells must maintain a balance between oxidants and reductants, while allowing for fluctuations in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore, they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis. RECENT ADVANCES Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regulation are likely to exist upstream of, or in parallel with, Keap1. CRITICAL ISSUES Here, we propose that the mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxidase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models. FUTURE DIRECTIONS Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Collapse
Affiliation(s)
- Marcus Cebula
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Edward E Schmidt
- 2 Microbiology and Immunology, Montana State University , Bozeman, Montana
| | - Elias S J Arnér
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
1339
|
Ray A, Sehgal N, Karunakaran S, Rangarajan G, Ravindranath V. MPTP activates ASK1-p38 MAPK signaling pathway through TNF-dependent Trx1 oxidation in parkinsonism mouse model. Free Radic Biol Med 2015; 87:312-25. [PMID: 26164633 DOI: 10.1016/j.freeradbiomed.2015.06.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/16/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
Activation of apoptosis signal-regulating kinase 1 (ASK1)-p38 MAPK death signaling cascade is implicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream p38 MAPK in a time-dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thioredoxin (Trx1), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase µ 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein covariation network analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mediated TNF signaling through intrathecal administration of TNF-neutralizing antibody prevented Trx1 oxidation and downstream ASK1-p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1-p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states.
Collapse
Affiliation(s)
- Ajit Ray
- National Brain Research Centre, Nainwal Mode, Manesar-122051, India; Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Neha Sehgal
- National Brain Research Centre, Nainwal Mode, Manesar-122051, India
| | | | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
1340
|
Hennebert E, Leroy B, Wattiez R, Ladurner P. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J Proteomics 2015; 128:83-91. [DOI: 10.1016/j.jprot.2015.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/02/2015] [Indexed: 01/04/2023]
|
1341
|
Tedeschi PM, Lin H, Gounder M, Kerrigan JE, Abali EE, Scotto K, Bertino JR. Suppression of Cytosolic NADPH Pool by Thionicotinamide Increases Oxidative Stress and Synergizes with Chemotherapy. Mol Pharmacol 2015; 88:720-7. [PMID: 26219913 PMCID: PMC4576680 DOI: 10.1124/mol.114.096727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
NAD(+) kinase (NADK) is the only known cytosolic enzyme that converts NAD(+) to NADP(+), which is subsequently reduced to NADPH. The demand for NADPH in cancer cells is elevated as reducing equivalents are required for the high levels of nucleotide, protein, and fatty acid synthesis found in proliferating cells as well as for neutralizing high levels of reactive oxygen species (ROS). We determined whether inhibition of NADK activity is a valid anticancer strategy alone and in combination with chemotherapeutic drugs known to induce ROS. In vitro and in vivo inhibition of NADK with either small-hairpin RNA or thionicotinamide inhibited proliferation. Thionicotinamide enhanced the ROS produced by several chemotherapeutic drugs and produced synergistic cell kill. NADK inhibitors alone or in combination with drugs that increase ROS-mediated stress may represent an efficacious antitumor combination and should be explored further.
Collapse
Affiliation(s)
- Philip M Tedeschi
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - HongXia Lin
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - Murugesan Gounder
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - John E Kerrigan
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - Emine Ercikan Abali
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - Kathleen Scotto
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - Joseph R Bertino
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
1342
|
Abstract
Mitochondrial dysfunction underlies many human disorders, including those that affect the visual system. The retinal ganglion cells, whose axons form the optic nerve, are often damaged by mitochondrial-related diseases which result in blindness. Both mitochondrial DNA (mtDNA) and nuclear gene mutations impacting many different mitochondrial processes can result in optic nerve disease. Of particular importance are mutations that impair mitochondrial network dynamics (fusion and fission), oxidative phosphorylation (OXPHOS), and formation of iron-sulfur complexes. Current genetic knowledge can inform genetic counseling and suggest strategies for novel gene-based therapies. Identifying new optic neuropathy-causing genes and defining the role of current and novel genes in disease will be important steps toward the development of effective and potentially neuroprotective therapies.
Collapse
Affiliation(s)
- Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, Massachusetts 02114;
| |
Collapse
|
1343
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
1344
|
Tereshina EV, Laskavy VN, Ivanenko SI. Four components of the conjugated redox system in organisms: Carbon, nitrogen, sulfur, oxygen. BIOCHEMISTRY (MOSCOW) 2015; 80:1186-200. [DOI: 10.1134/s0006297915090096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
1345
|
Kehrer JP, Klotz LO. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Crit Rev Toxicol 2015; 45:765-98. [DOI: 10.3109/10408444.2015.1074159] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1346
|
Madrigal-Matute J, Fernandez-Garcia CE, Blanco-Colio LM, Burillo E, Fortuño A, Martinez-Pinna R, Llamas-Granda P, Beloqui O, Egido J, Zalba G, Martin-Ventura JL. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med 2015; 86:352-61. [PMID: 26117319 DOI: 10.1016/j.freeradbiomed.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/13/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Luis Miguel Blanco-Colio
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Elena Burillo
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Ana Fortuño
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain
| | - Roxana Martinez-Pinna
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Patricia Llamas-Granda
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Oscar Beloqui
- Department of Internal Medicine, University Clinic, University of Navarra, Pamplona, Spain
| | - Jesus Egido
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - José Luis Martin-Ventura
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain.
| |
Collapse
|
1347
|
Protein synthesis as an integral quality control mechanism during ageing. Ageing Res Rev 2015; 23:75-89. [PMID: 25555680 DOI: 10.1016/j.arr.2014.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
Ageing is manifested as functional and structural deterioration that affects cell and tissue physiology. mRNA translation is a central cellular process, supplying cells with newly synthesized proteins. Accumulating evidence suggests that alterations in protein synthesis are not merely a corollary but rather a critical factor for the progression of ageing. Here, we survey protein synthesis regulatory mechanisms and focus on the pre-translational regulation of the process exerted by non-coding RNA species, RNA binding proteins and alterations of intrinsic RNA properties. In addition, we discuss the tight relationship between mRNA translation and two central pathways that modulate ageing, namely the insulin/IGF-1 and TOR signalling cascades. A thorough understanding of the complex interplay between protein synthesis regulation and ageing will provide critical insights into the pathogenesis of age-related disorders, associated with impaired proteostasis and protein quality control.
Collapse
|
1348
|
Zhang C, Xin Y, Wang Y, Guo T, Lu S, Kong J. Identification of a Novel Dye-Decolorizing Peroxidase, EfeB, Translocated by a Twin-Arginine Translocation System in Streptococcus thermophilus CGMCC 7.179. Appl Environ Microbiol 2015; 81:6108-19. [PMID: 26092460 PMCID: PMC4542251 DOI: 10.1128/aem.01300-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus is a facultative anaerobic bacterium that has the ability to grow and survive in aerobic environments, but the mechanism for this remains unclear. In this study, the efeB gene, encoding a dye-decolorizing peroxidase, was identified in the genome of Streptococcus thermophilus CGMCC 7.179, and purified EfeB was able to decolorize reactive blue 5. Strikingly, genes encoding two components (TatA and TatC) of the twin-arginine translocation (TAT) system were also found in the same operon with the efeB gene. Knocking out efeB or tatC resulted in decreased growth of the strain under aerobic conditions, and complementation of the efeB-deficient strains with the efeB gene enhanced the biomass of the hosts only in the presence of the tatC gene. Moreover, it was proved for both S. thermophilus CGMCC 7.179 and Escherichia coli DE3 that EfeB could be translocated by the TAT system of S. thermophilus. In addition, the transcriptional levels of efeB and tatC increased when the strain was cultured under aerobic conditions. Overall, these results provide the first evidence that EfeB plays a role in protecting cells of S. thermophilus from oxidative stress, with the assistance of the TAT system.
Collapse
Affiliation(s)
- Chenchen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Yue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Shiyi Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
1349
|
Yao XF, Zheng BL, Bai J, Jiang LP, Zheng Y, Qi BX, Geng CY, Zhong LF, Yang G, Chen M, Liu XF, Sun XC. Low-level sodium arsenite induces apoptosis through inhibiting TrxR activity in pancreatic β-cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:486-91. [PMID: 26291581 DOI: 10.1016/j.etap.2015.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 05/02/2023]
Abstract
In our previous study, we reported that sodium arsenite induced ROS-dependent apoptosis through lysosomal-mitochondrial pathway in pancreatic β-cells. Since the thioredoxin (Trx) system is the key antioxidant factor in mammalian cells, we investigate whether the inhibition of Trx system contributes to sodium arsenite-induced apoptosis in this study. After treatment with low-level (0.25-1μM) sodium arsenite for 96h, the thioredoxin reductase (TrxR) activity was decreased significantly in pancreatic INS-1 cells. Following with the inactivation of TrxR, ASK1 was released from combining with Trx, which was evidenced by increased levels of ASK1 in sodium arsenite-treated INS-1 cells. Subsequently, activated ASK1 accelerated the expression of proapoptotic protein Bax and reduced the expression of anti-apoptic protein Bcl-2. Finally, low-level sodium arsenite induced apoptosis via caspase-3 in INS-1 cells. Knockdown of ASK1 alleviated sodium arsenite-induced apoptosis. In summary, the precise molecular mechanisms through which arsenic is related to diabetes have not been completely elucidated, inactivation of Trx system might provide insights into the underlying mechanisms at the environmental exposure levels.
Collapse
Affiliation(s)
- Xiao-Feng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Bai-Lu Zheng
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Li-Ping Jiang
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Yue Zheng
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Bao-Xu Qi
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Cheng-Yan Geng
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Lai-Fu Zhong
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Min Chen
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiao-Fang Liu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xian-Ce Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China; Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
1350
|
Cassidy PB, Honeggar M, Poerschke RL, White K, Florell SR, Andtbacka RHI, Tross J, Anderson M, Leachman SA, Moos PJ. The role of thioredoxin reductase 1 in melanoma metabolism and metastasis. Pigment Cell Melanoma Res 2015; 28:685-95. [PMID: 26184858 DOI: 10.1111/pcmr.12398] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 07/09/2015] [Indexed: 12/12/2022]
Abstract
Although significant progress has been made in targeted and immunologic therapeutics for melanoma, many tumors fail to respond, and most eventually progress when treated with the most efficacious targeted combination therapies thus far identified. Therefore, alternative approaches that exploit distinct melanoma phenotypes are necessary to develop new approaches for therapeutic intervention. Tissue microarrays containing human nevi and melanomas were used to evaluate levels of the antioxidant protein thioredoxin reductase 1 (TR1), which was found to increase as a function of disease progression. Melanoma cell lines revealed metabolic differences that correlated with TR1 levels. We used this new insight to design a model treatment strategy that creates a synthetic lethal interaction wherein targeting TR1 sensitizes melanoma to inhibition of glycolytic metabolism, resulting in a decrease in metastases in vivo. This approach holds the promise of a new clinical therapeutic strategy, distinct from oncoprotein inhibition.
Collapse
Affiliation(s)
- Pamela B Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, OH, USA
| | - Matthew Honeggar
- Department of Dermatology, Oregon Health & Science University, Portland, OH, USA
| | - Robyn L Poerschke
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Karen White
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Scott R Florell
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | | | - Joycelyn Tross
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Madeleine Anderson
- Department of Dermatology, Oregon Health & Science University, Portland, OH, USA
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, OH, USA
| | - Philip J Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|