1301
|
Tatomer DC, Wilusz JE. Attenuation of Eukaryotic Protein-Coding Gene Expression via Premature Transcription Termination. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:83-93. [PMID: 32086332 DOI: 10.1101/sqb.2019.84.039644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A complex network of RNA transcripts is generated from eukaryotic genomes, many of which are processed in unexpected ways. Here, we highlight how premature transcription termination events at protein-coding gene loci can simultaneously lead to the generation of short RNAs and attenuate production of full-length mRNA transcripts. We recently showed that the Integrator (Int) complex can be selectively recruited to protein-coding gene loci, including Drosophila metallothionein A (MtnA), where the IntS11 RNA endonuclease cleaves nascent transcripts near their 5' ends. Such premature termination events catalyzed by Integrator can repress the expression of some full-length mRNAs by more than 100-fold. Transcription at small nuclear RNA (snRNA) loci is likewise terminated by Integrator cleavage, but protein-coding and snRNA gene loci have notably distinct dependencies on Integrator subunits. Additional mechanisms that attenuate eukaryotic gene outputs via premature termination have been discovered, including by the cleavage and polyadenylation machinery in a manner controlled by U1 snRNP. These mechanisms appear to function broadly across the transcriptome. This suggests that synthesis of full-length transcripts is not always the default option and that premature termination events can lead to a variety of transcripts, some of which may have important and unexpected biological functions.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
1302
|
Zhou XY, Li Y, Zhang J, Liu YD, Zhe J, Zhang QY, Chen YX, Chen X, Chen SL. Expression profiles of circular RNA in granulosa cells from women with biochemical premature ovarian insufficiency. Epigenomics 2020; 12:319-332. [PMID: 32081025 DOI: 10.2217/epi-2019-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: To identify the expression profiles and potential functions of circular RNAs (circRNAs) in granulosa cells (GCs) from women with biochemical premature ovarian insufficiency (bPOI). Patients & methods: CircRNAs microarray analysis was performed to GCs from 8 patients with bPOI and 8 control women, followed by qRT-PCR in 15 paired samples. CircRNA-miRNA networks and the prediction of their enriched signaling pathways were conducted by bioinformatics analysis. Results: A total of 133 upregulated and 424 downregulated circRNAs was identified in women with bPOI. We constructed circRNA-miRNA networks and found that the most predominantly enriched signaling pathways were the FoxO signaling pathway and cellular senescence. Conclusion: CircRNAs are differentially expressed in bPOI, which might contribute to the pathogenesis of bPOI.
Collapse
Affiliation(s)
- Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ying Li
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jing Zhe
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Qing-Yan Zhang
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ying-Xue Chen
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xin Chen
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
1303
|
Sun D, Chen L, Lv H, Gao Y, Liu X, Zhang X. Circ_0058124 Upregulates MAPK1 Expression to Promote Proliferation, Metastasis and Metabolic Abilities in Thyroid Cancer Through Sponging miR-940. Onco Targets Ther 2020; 13:1569-1581. [PMID: 32110054 PMCID: PMC7037104 DOI: 10.2147/ott.s237307] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background Thyroid cancer (TC) is an endocrine disease, and its progression is regulated by many factors, including circular RNAs (circRNAs). However, as a new circRNA, the role of circ_0058124 in TC is worth further exploration. Methods The expression levels of circ_0058124, microRNA-940 (miR-940) and mitogen-activated protein kinase 1 (MAPK1) were assessed by quantitative polymerase chain reaction (q-PCR). The circular characteristic of circ_0058124 was identified by oligo (dT)18 primers, Ribonuclease R (RNase R) and Actinomycin D (ActD), and its localization was determined by nuclear-cytoplasmic separation assay. Also, cell proliferation was detected by colony formation assay, and cell migration and invasion were assessed by transwell assay. Further, Seahorse XF Extracellular Flux Analyzer was used to measure the oxygen consumption rate (OCR) of cells. Besides, dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to identify the mechanism of circ_0058124. Western blot (WB) analysis was used to test the MAPK1 protein level. In addition, mice xenograft models were constructed to test the effect of circ_0058124 on TC tumor growth in vivo. Results Circ_0058124 was highly expressed in TC and is a stable cyclic transcript, mainly located in the cytoplasm. Circ_0058124 knockdown suppressed proliferation, migration, invasion and metabolic abilities in TC cells. MiR-940 could be absorbed by circ_0058124, and the inhibition effect of its overexpression on TC progression could be reversed by overexpressed-circ_0058124. MAPK1 was a target of miR-940, and the suppression effect of its silencing on TC progression could be inverted by miR-940 inhibitor. Besides, MAPK1 expression was regulated by circ_0058124 and miR-940. Interference of circ_0058124 also reduced TC tumor growth in vivo. Conclusion Circ_0058124 might play a carcinogenic role in TC progression by regulating the miR-940/MAPK1 axis, which might provide a new idea for the treatment of TC.
Collapse
Affiliation(s)
- Dezhong Sun
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Li Chen
- Department of Anesthesiology Operation, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Huaiqing Lv
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Yongli Gao
- Department of Medicine Oncology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xuelai Liu
- Department of Neurosurgery, Linyi Hospital of Traditional Chinese Medicine, Linyi, Shandong, People's Republic of China
| | - Xiaoyan Zhang
- Department of Medicine Oncology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
1304
|
Elevated hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470 in the Human Blood: Novel Biomarkers to Early Diagnose Acute Pancreatitis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2419163. [PMID: 32149089 PMCID: PMC7049409 DOI: 10.1155/2020/2419163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Objective To explore potential biomarkers to accurately diagnose patients with acute pancreatitis (AP) at early stage and to auxiliary clinicians implement the best treatment options. Methods We selected 3 patients with AP and 3 healthy controls for microarray analysis to obtain differentially expressed circular RNAs (circRNAs). To further verify the results of the microarray analysis, the six differentially expressed circRNAs were confirmed by quantitative polymerase chain reaction (qPCR). The diagnostic accuracy and sensitivity of differentially expressed circRNAs were assessed using the receiver operating characteristic (ROC) curve. A ceRNA network was constructed based on the 6 differentially expressed circRNAs. Results There were 25 upregulated circRNAs and 26 downregulated circRNAs in the blood of patients with AP. Next, the qPCR verification results further confirmed three downregulated circRNAs, including hsa_circRNA_002532, has_circRNA_059665, and hsa_circRNA_104156, and three upregulated circRNAs including hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470. Among them, hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470 increased with the severity of the disease. ROC analysis showed that the three circRNA models show promise to diagnose AP. And a ceRNA network revealed that above six circRNAs could participate in complex regulated network. Conclusions Elevated hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470 could be used as novel biomarkers to diagnose AP patients.
Collapse
|
1305
|
Sun J, Li B, Shu C, Ma Q, Wang J. Functions and clinical significance of circular RNAs in glioma. Mol Cancer 2020; 19:34. [PMID: 32061256 PMCID: PMC7023692 DOI: 10.1186/s12943-019-1121-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
CircRNAs are a class of single-stranded RNA molecules with a covalently closed loop structure and have been characterized by high stability, abundance, conservation, and display tissue/developmental stage-specific expression, furthermore, based on the abundance in distinct body fluids or exosomes, circRNAs present novel biomarkers and targets for the diagnosis and prognosis of cancers. Recently, the regulatory mechanisms of biogenesis and molecular functions, including miRNAs and RBPs sponge, translation as well as transcriptional and splicing regulation, have been gradually uncovered, although various aspects remained to be elucidated in combination with deep-sequence and bioinformatics. Accumulating studies have indicated that circRNAs are more enriched in neuronal tissues partly due to the abundance of specific genes promoting circularization, suggesting dysregulation of circRNAs is closely related to diseases of the nervous system, including glioma. In this review, we elaborate on the biogenesis, functions, databases as well as novel advances especially involved in the molecular pathways, highlight its great value as diagnostic or therapeutic targets in glioma.
Collapse
Affiliation(s)
- Jikui Sun
- School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.,Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin, 300350, People's Republic of China
| | - Banban Li
- Qilu Hospital, Shandong University, 107 Cultural West Road, Jinan, 250012, People's Republic of China.,Department of Hematology, Taian Central Hospital, 29 Longtan Road, Taian, 271000, People's Republic of China
| | - Chang Shu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin, 300350, People's Republic of China
| | - Quanfeng Ma
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin, 300350, People's Republic of China
| | - Jinhuan Wang
- School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China. .,Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
1306
|
Wang G, Han B, Shen L, Wu S, Yang L, Liao J, Wu F, Li M, Leng S, Zang F, Zhang Y, Bai Y, Mao Y, Chen B, Yao H. Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke. EBioMedicine 2020; 52:102660. [PMID: 32062357 PMCID: PMC7016383 DOI: 10.1016/j.ebiom.2020.102660] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNAs (circRNAs) have been reported to be involved in central nervous system (CNS) diseases and to have a close connection with neuronal development. However, the role of circRNAs in neural stem cell (NSC) differentiation and the treatment of ischaemic stroke remains unknown. Methods Ischaemic stroke was induced in mice using transient middle cerebral artery occlusion (tMCAO). NSCs were transducted with circHIPK2 siRNA (si-circHIPK2-NSCs) or vehicle control (si-circCon-NSCs) and microinjected into lateral ventricle of brain at 7 d post-tMCAO. Magnetic resonance imaging (MRI) was used to detect brain damage, and functional deficits were evaluated with sensorimotor behavioural tests. The distribution of the transplanted NSCs was investigated by near-infrared fluorescence imaging (NIF) and immunofluorescence. The neural plasticity of si-circHIPK2-NSCs was verified by western blot and immunofluorescence in vivo and in vitro. Findings We investigated the role of circHIPK2 in NCS differentiation. In vitro, silencing of circHIPK2 facilitated NSCs directionally differentiated to neurons but had no effect on the differentiation to astrocytes. In vivo, microinjected NSCs could migrate to the ischaemic hemisphere after stroke induction. Si-circHIPK2-NSCs increased neuronal plasticity in the ischaemic brain, conferred long-lasting neuroprotection, and significantly reduced functional deficits. Interpretations Si-circHIPK2 regulates NSC differentiation, and microinjection of si-circHIPK2-NSCs exhibits a promising therapeutic strategy to neuroprotection and functional recovery after stroke. Funding The National Key Research and Development Program of China; the International Cooperation and Exchange of the National Natural Science Foundation of China; the National Natural Science Foundation of China; the Jiangsu Innovation & Entrepreneurship Team Program.
Collapse
Affiliation(s)
- Guangtian Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shusheng Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Li Yang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jiefeng Liao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mingyue Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Department of Radiology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengchao Zang
- Department of Radiology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yu Mao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China; Co-innovation Centre of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
1307
|
Yao RW, Liu CX, Chen LL. Linking RNA Processing and Function. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:67-82. [PMID: 32019863 DOI: 10.1101/sqb.2019.84.039495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA processing is critical for eukaryotic mRNA maturation and function. It appears there is no exception for other types of RNAs. Long noncoding RNAs (lncRNAs) represent a subclass of noncoding RNAs, have sizes of >200 nucleotides (nt), and participate in various aspects of gene regulation. Although many lncRNAs are capped, polyadenylated, and spliced just like mRNAs, others are derived from primary transcripts of RNA polymerase II and stabilized by forming circular structures or by ending with small nucleolar RNA-protein complexes. Here we summarize the recent progress in linking the processing and function of these unconventionally processed lncRNAs; we also discuss how directional RNA movement is achieved using the radial flux movement of nascent precursor ribosomal RNA (pre-rRNA) in the human nucleolus as an example.
Collapse
Affiliation(s)
- Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
1308
|
Yao Q, Liu Z, Yao A, Liu J, Jiang J, Chen Y, Li S, Han Y, Jiang Z, Qi Y. Circular RNA circTET3 mediates migration of rat vascular smooth muscle cells by targeting miR‐351‐5p. J Cell Physiol 2020; 235:6831-6842. [DOI: 10.1002/jcp.29577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Qing‐Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghai China
| | - Ze Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghai China
| | - Ai‐Hong Yao
- Institute of Embedded Computing and IoT, College of Computer Science and TechnologyHarbin Engineering UniversityHarbin China
| | - Ji‐Ting Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghai China
| | - Jun Jiang
- Department of Surgerythe Affiliated Hospital of Southwest Medical UniversityLuzhou China
| | - Yi Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghai China
| | - Shan‐Shan Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghai China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghai China
| | - Zong‐Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghai China
| | - Ying‐Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghai China
| |
Collapse
|
1309
|
Circular RNA Expression Profiles in Plasma from Patients with Heart Failure Related to Platelet Activity. Biomolecules 2020; 10:biom10020187. [PMID: 31991759 PMCID: PMC7072558 DOI: 10.3390/biom10020187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Heart failure (HF) is a deadly disease that is difficult to accurately diagnose. Circular RNAs (circRNAs) are a novel class of noncoding RNAs that might play important roles in many cardiovascular diseases. However, their role in HF remains unclear. CircRNA microarrays were performed on plasma samples obtained from three patients with HF and three healthy controls. The profiling results were validated by quantitative reverse transcription polymerase chain reaction. The diagnostic value of circRNAs for HF was evaluated by receiver operating characteristic (ROC) curves. The expression profiles indicated that 477 circRNAs were upregulated and 219 were downregulated in the plasma of patients with HF compared with healthy controls. Among the dysregulated circRNAs, hsa_circ_0112085 (p = 0.0032), hsa_circ_0062960 (p = 0.0006), hsa_circ_0053919 (p = 0.0074) and hsa_circ_0014010 (p = 0.025) showed significantly higher expression in patients with HF compared with healthy controls. The area under the ROC curve for hsa_circ_0062960 for HF diagnosis was 0.838 (p < 0.0001). Correlation analysis showed that the expression of hsa_circ_0062960 was highly correlated with B-type natriuretic peptide (BNP) serum levels. Some differential circRNAs were found to be related to platelet activity by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The landscape of circRNA expression profiles may play a role in HF pathogenesis and improve our understanding of platelet function in HF. Moreover, hsa_circ_0062960 has potential as a novel diagnostic biomarker for HF.
Collapse
|
1310
|
Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, Li X, Sun Z. Roles of circRNAs in the tumour microenvironment. Mol Cancer 2020; 19:14. [PMID: 31973726 PMCID: PMC6977266 DOI: 10.1186/s12943-019-1125-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The tumour microenvironment (TME) constitutes the area surrounding the tumour during its development and has been demonstrated to play roles in cancer-related diseases through crosstalk with tumour cells. Circular RNAs (circRNAs) are a subpopulation of endogenous noncoding RNAs (ncRNAs) that are ubiquitously expressed in eukaryotes and have multiple biological functions in the regulation of cancer onset and progression. An increasing number of studies have shown that circRNAs participate in the multifaceted biological regulation of the TME. However, details on the mechanisms involved have remained elusive until now. In this review, we analyse the effects of circRNAs on the TME from various perspectives, including immune surveillance, angiogenesis, hypoxia, matrix remodelling, exo-circRNAs and chemoradiation resistance. Currently, the enormous potential for circRNA use in targeted therapy and as noninvasive biomarkers have drawn our attention. We emphasize the prospect of targeting circRNAs as an essential strategy to regulate TME, overcome cancer resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiuge Zhang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaoli Li
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
1311
|
Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, Liu G, Li X, Yang Y, Chen R. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer 2020; 19:13. [PMID: 31973707 PMCID: PMC6977296 DOI: 10.1186/s12943-020-1139-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As a novel class of noncoding RNAs, circRNAs have been recently identified to regulate tumorigenesis and aggressiveness. However, the function of circRNAs in colorectal cancer (CRC) metastasis remains unclear. We aimed to identify circRNAs that are upregulated in CRC tissues from patients and study their function in CRC metastasis. METHODS We compared six pairs of CRC tissues and their matched adjacent non-tumor tissues by using circRNA microarray. We first evaluated the expression of circPTK2 (hsa_circ_0005273) in fresh tissues from CRC tumors and corresponding adjacent tissues by qPCR analysis. CircPTK2 expression levels in the tissue microarray with 5 years of survival information were determined by RNA-ISH analysis. Meanwhile, the expression levels of circulating circPTK2 were further analyzed according to the patients' clinical features. We analyzed cell apoptosis, colony formation, migration, and invasion in CRC cells. To further elucidate the effect of circPTK2 in CRC metastasis, we also conducted a colon cancer hepatic and pulmonary metastasis experiment. We used RNA biotin-labeled pull down and mass spectrometry to identify the target of circPTK2. We established a PDTX model to evaluate the effect of shRNA specifically targeting circPTK2 on tumor metastasis. RESULTS We identified a novel circRNA, circPTK2, which is back-spliced of three exons (exons 27, 28 and 29) of PTK2 by using circRNA microarray, bioinformatics and functional studies. CircPTK2 was elevated in CRC tissues and positively associated with tumor growth and metastasis. CRC patients with increased circPTK2 expression were positively correlated with poorer survival rates. Furthermore, our studies showed that circPTK2 could promote EMT of CRC cells in vitro and in vivo by binding to vimentin protein on sites Ser38, Ser55 and Ser82. We further demonstrated the interaction of circPTK2 and vimentin mediated the regulation of CRC by knockdown or overexpression of vimentin. In addition, we revealed that tail vein injection of shRNA specifically targeting circPTK2 blunt tumor metastasis in a patient-derived CRC xenograft model. CONCLUSIONS Collectively, these results demonstrate that circPTK2 exerts critical roles in CRC growth and metastasis and may serve as a potential therapeutic target for CRC metastasis, and also a promising biomarker for early diagnosis of metastasis.
Collapse
Affiliation(s)
- Hongbao Yang
- State Key Laboratory of Natural Medicines, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shenshen Wu
- School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Xianjing Li
- State Key Laboratory of Natural Medicines, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 211198, China.
- School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
- School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
1312
|
Xiao MS, Ai Y, Wilusz JE. Biogenesis and Functions of Circular RNAs Come into Focus. Trends Cell Biol 2020; 30:226-240. [PMID: 31973951 DOI: 10.1016/j.tcb.2019.12.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Many eukaryotic protein-coding genes are able to generate exonic circular RNAs. Most of these covalently linked transcripts are expressed at low levels, but some accumulate to higher levels than their associated linear mRNAs. We highlight several methodologies that have been developed in recent years to identify and characterize these transcripts, and which have revealed an increasingly detailed view of how circular RNAs can be generated and function. It is now clear that modulation of circular RNA levels can result in a variety of molecular and physiological phenotypes, including effects on the nervous system, innate immunity, microRNAs, and many disease-relevant pathways.
Collapse
Affiliation(s)
- Mei-Sheng Xiao
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuxi Ai
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
1313
|
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M, Xu S. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis 2020; 11:32. [PMID: 31949130 PMCID: PMC6965119 DOI: 10.1038/s41419-020-2230-9] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022]
Abstract
Circular RNAs (circRNAs) have been identified play a vital role in various different types of cancer via sponging miRNAs (microRNAs). However, their role in lung adenocarcinoma (LUAD) remains largely unclear. In this study, we systematically characterized the circRNA expression profiles in the LUAD cancer tissues and paired adjacent non-cancerous tissues. Three circRNAs were found to be significantly upregulated. Among them, has-circRNA-002178 was further confirmed to be upregulated in the LUAD tissues, and LUAD cancer cells. Subsequently, we also found has-circRNA-002178 could enhance PDL1 expression via sponging miR-34 in cancer cells to induce T-cell exhaustion. More importantly, circRNA-002178 could be detected in exosomes of plasma from LUAD patients and could serve as biomarkers for LUAD early diagnosis. Finally, we found circRNA-002178 could be delivered into CD8+ T cells to induce PD1 expression via exosomes. Taken together, our study revealed that circRNA-002178 could act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma.
Collapse
Affiliation(s)
- JunFeng Wang
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - XuHai Zhao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - YanBo Wang
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - FengHai Ren
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - DaWei Sun
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - YuBo Yan
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - XiangLong Kong
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - JianLong Bu
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - MengFeng Liu
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - ShiDong Xu
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
1314
|
Chen HY, Li XN, Ye CX, Chen ZL, Wang ZJ. Circular RNA circHUWE1 Is Upregulated and Promotes Cell Proliferation, Migration and Invasion in Colorectal Cancer by Sponging miR-486. Onco Targets Ther 2020; 13:423-434. [PMID: 32021287 PMCID: PMC6969679 DOI: 10.2147/ott.s233338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/08/2020] [Indexed: 01/17/2023] Open
Abstract
Background Emerging studies have revealed that circular RNAs (circRNAs) correlate with diverse diseases including cancers. However, little is known about the functions of circRNAs in colorectal cancer (CRC). In our previous research, downregulation of hsa_circ_0140388 (circHUEW1) has been detected in CRC tissues through high-throughput sequencing. However, the underlying mechanism by which circHUWE1 regulates the proliferation and apoptosis in CRC has not been investigated. Materials and Methods The levels of circHUWE1 in 58 pairs of CRC tissues and corresponding adjacent healthy tissues were detected by RT-qPCR. In addition, the effects of circHUWE1 on cell proliferation, apoptosis migration and invasion were evaluated by cell proliferation assays, flow cytometry, and transwell assays in HCT116 and SW480 cell lines respectively. Meanwhile, the dual-luciferase reporter system assay was used to explore the interaction between circHUWE1 and miR-486 (hsa-miR-486-5p). Results In this study, we demonstrate that the expression of circHUEW1 is upregulated in CRC tissues. High expression of circHUEW1 was significantly associated with lymphovascular invasion (P =0.036), lymph node metastasis (P =0.017), distant metastasis (P =0.024), and TNM stage (P =0.009). Moreover, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 0.732, which indicated that circHUWE1 could serve as a potential biomarker in the detection of CRC. Silencing circHUWE1 significantly inhibited the proliferation, migration and invasion capacity of CRC cells in vitro. Mechanistically, we demonstrated that circHUWE1 could sponge miR-486 and the downregulation of miR-486 could reverse the cancer suppressive effects caused by silencing circHUWE1. Conclusion In this study, our results revealed that circHUWE1 may be a potential therapeutic target and diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Hong-Yu Chen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Xiang-Nan Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Chun-Xiang Ye
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Zhi-Lei Chen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Zhen-Jun Wang
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| |
Collapse
|
1315
|
Yue B, Wang J, Ru W, Wu J, Cao X, Yang H, Huang Y, Lan X, Lei C, Huang B, Chen H. The Circular RNA circHUWE1 Sponges the miR-29b-AKT3 Axis to Regulate Myoblast Development. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1086-1097. [PMID: 32045877 PMCID: PMC7015828 DOI: 10.1016/j.omtn.2019.12.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 12/09/2019] [Indexed: 02/09/2023]
Abstract
Myogenesis is controlled by a well-established transcriptional hierarchy that coordinates the activities of a set of muscle genes. Recently, roles in myogenesis have been described for non-coding RNAs, including a role of circular RNA (circRNA) to regulate muscle gene expression. However, the functions of circRNA and the underlying mechanism by which circRNAs affect myogenesis remain poorly understood. In this study, we analyzed circRNA high-throughput sequencing results of bovine skeletal muscle samples and constructed a circRNA-miRNA-mRNA network according to the competitive endogenous RNA (ceRNA) theory. The putative circHUWE1-miR-29b-AKT3 network was analyzed and its involvement in myogenesis was confirmed through a series of assays. To assess the potential function of this regulation, bovine myoblasts were infected with overexpression plasmids and small interfering RNAs (siRNAs) that target circHUWE1. Next, cell proliferation, apoptosis, and differentiation were analyzed using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU), flow cytometry, western blotting, and qRT-PCR assays. The results suggest that circHUWE1 facilitates bovine myoblast proliferation and inhibits cell apoptosis and differentiation. Next, bioinformatics, dual-luciferase reporter assay, and AGO2 RNA immunoprecipitation (RIP) approaches were used to verify the interaction between circHUWE1, miR-29b, and AKT3. Subsequently, we identified that circHUWE1 could directly interfere with the ability of miR-29b to relieve AKT3 suppression, which ultimately activates the AKT signaling pathway. These findings suggested a new regulatory pathway for bovine skeletal muscle development, and they also expand our understanding of circRNA functions in mammals.
Collapse
Affiliation(s)
- Binglin Yue
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxiu Ru
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiyao Wu
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiukai Cao
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiyan Yang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongzheng Huang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan 650212, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
1316
|
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19:8. [PMID: 31937318 PMCID: PMC6958568 DOI: 10.1186/s12943-019-1113-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs (ncRNAs) widely expressed in eukaryotic cells. Mounting evidence has highlighted circRNAs as critical regulators of various tumours. More importantly, circRNAs have been revealed to recruit and reprogram key components involved in the tumour microenvironment (TME), and mediate various signaling pathways, thus affecting tumourigenesis, angiogenesis, immune response, and metastatic progression. In this review, we briefly introduce the biogenesis, characteristics and classification of circRNAs, and describe various mechanistic models of circRNAs. Further, we provide the first systematic overview of the interplay between circRNAs and cellular/non-cellular counterparts of the TME and highlight the potential of circRNAs as prospective biomarkers or targets in cancer clinics. Finally, we discuss the biological mechanisms through which the circRNAs drive development of resistance, revealing the mystery of circRNAs in drug resistance of tumours. SHORT CONCLUSION Deep understanding the emerging role of circRNAs and their involvements in the TME may provide potential biomarkers and therapeutic targets for cancer patients. The combined targeting of circRNAs and co-activated components in the TME may achieve higher therapeutic efficiency and become a new mode of tumour therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China.
| |
Collapse
|
1317
|
Liu H, Yu W, Wu J, Li Z, Li H, Zhou J, Hu J, Lu Y. Identification and characterization of circular RNAs during wood formation of poplars in acclimation to low nitrogen availability. PLANTA 2020; 251:47. [PMID: 31925576 DOI: 10.1007/s00425-020-03338-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Circular RNA (circRNA) identification and expression profiles, and construction of circRNAs-miRNAs-mRNAs networks indicates that circRNAs are involved in wood formation of poplars in acclimation to low nitrogen availability. Circular RNAs (circRNAs) are covalently closed non-coding RNAs that play pivotal roles in various biological processes. However, circRNAs' roles in wood formation of poplars in acclimation to low nitrogen (N) availability are currently unknown. Here, we undertook a systematic identification and characterization of circRNAs in the wood of Populus × canescens exposed to either 50 (low N) or 500 (normal N) µM NH4NO3 using rRNA-depleted RNA-sequencing. A total of 2,509 unique circRNAs were identified, and 163 (ca. 6.5%) circRNAs were significantly differentially expressed (DE) under low N condition. We observed a positive correlation between the expression patterns of DE circRNAs and their hosting protein-coding genes. Moreover, circRNAs-miRNAs-mRNAs' networks were identified in the wood of poplars under low N availability. For instance, upregulated several circRNAs, such as circRNA1226, circRNA 1732, and circRNA392 induced increases in nuclear factor Y, subunit A1-A (NFYA1-A), NFYA1-B, and NFYA10 transcript levels via the mediation of miR169b members, which is in line with reduced xylem width and cell layers of the xylem in the wood of low N-supplied poplars. Upregulation of circRNA1006, circRNA1344, circRNA1941, circRNA901, and circRNA146 caused increased transcript level of MYB61 via the mediation of a miR5021 member, corresponding well to the higher lignin concentration in the wood of low N-treated poplars. Overall, these results indicated that DE circRNAs play an essential role in regulating gene expression via circRNAs-miRNAs-mRNAs' networks to modulate wood anatomical and chemical properties of poplars in acclimation to low N availability.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of State Forestry and Grassland Administration, Non-Timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Wanwen Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institution of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510000, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jingjing Hu
- Inertia Shanghai Biotechnology Co., Ltd., Shanghai, 200335, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
1318
|
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that normally do not encode proteins. circRNAs are involved in many physiological processes as well as the pathogenesis of diseases. Cardiac fibrosis is increasingly recognized as a pathological force in advanced heart diseases. A growing number of studies have reported that the occurrence and development of cardiac fibrosis is closely associated with the regulation of circRNAs. This review summarizes the current understanding of circRNA biogenesis and function and will highlight the recent updates regarding the involvement of circRNAs in cardiac fibrosis, and their potential as emerging biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Bahram M Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran.
| |
Collapse
|
1319
|
Xie Y, Yuan X, Zhou W, Kosiba AA, Shi H, Gu J, Qin Z. The circular RNA HIPK3 (circHIPK3) and its regulation in cancer progression: Review. Life Sci 2020; 254:117252. [PMID: 31901445 DOI: 10.1016/j.lfs.2019.117252] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 01/12/2023]
Abstract
Circular RNAs (circRNAs) are a class of covalently closed continuous loops of single-stranded RNA molecules, and broadly expressed in the cytoplasm of eukaryotic cells. CircRNAs have attracted considerable research attention in recent years, an attention primarily attributed to their critical roles in the development and progression of diseases, especially in cancers. The circRNA homeodomain-interacting protein kinase 3 (circHIPK3) is a recently identified circRNA, acknowledged to be relevant to human pathology and cancer progression. Here, we summarize the origin and functions of the circHIPK3 and its target molecules in cancer, and thus, providing a broader knowledge to our current understanding of circRNAs. This review will therefore be essential to enriching our knowledge on the roles of circRNAs in cancers by outlining their potential values and application in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yimin Xie
- Affiliated Hospital of Jiangsu University-Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Xuefeng Yuan
- Affiliated Hospital of Jiangsu University-Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Weimin Zhou
- Affiliated Hospital of Jiangsu University-Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | | | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhenqian Qin
- Affiliated Hospital of Jiangsu University-Yixing People's Hospital, Yixing, Jiangsu 214200, China.
| |
Collapse
|
1320
|
Liu X, Hu Z, Zhou J, Tian C, Tian G, He M, Gao L, Chen L, Li T, Peng H, Zhang W. Interior circular RNA. RNA Biol 2020; 17:87-97. [PMID: 31532701 PMCID: PMC6948956 DOI: 10.1080/15476286.2019.1669391] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Formed by back splicing or back fusion of linear RNAs, circular RNAs (circRNAs) constitute a new class of non-coding RNAs of eukaryotes. Recent studies reveal a spliceosome-dependent biogenesis of circRNAs where circRNAs arise at the intron-exon junctions of mRNAs. In this study, using a novel de novo identification method, we show that circRNAs can originate from the interior regions of exons, introns, and intergenic transcripts in human, mouse and rice, which were referred to as interior circRNAs (i-circRNAs). Many i-circRNAs have some remarkable characteristics: multiple i-circRNAs may arise from the same genomic locus; their back fusion points may not be associated with the AG/GT splicing sites, but rather a new pair of motif AC/CT, their back fusion points are adjacent to complementary sequences; and they may circulate on short homologous sequences. We validated several i-circRNAs in HeLa cells by Polymerase Chain Reaction followed by Sanger sequencing. Our results combined showed that i-circRNAs are bona fide circRNAs, indicated novel biogenesis pathways independent of the splicing apparatus, and expanded our understanding of the origin, diversity, and complexity of circRNAs.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO, USA
| | - Zhangfeng Hu
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Junfei Zhou
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Cheng Tian
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Guangmei Tian
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Miao He
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Lifen Gao
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Lihong Chen
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
1321
|
Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol 2020. [PMID: 31995554 DOI: 10.1371/journal.pbio.3000582.g006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
In most plants, centromeric DNA contains highly repetitive sequences, including tandem repeats and retrotransposons; however, the roles of these sequences in the structure and function of the centromere are unclear. Here, we found that multiple RNA sequences from centromeric retrotransposons (CRMs) were enriched in maize (Zea mays) centromeres, and back-spliced RNAs were generated from CRM1. We identified 3 types of CRM1-derived circular RNAs with the same back-splicing site based on the back-spliced sequences. These circular RNAs bound to the centromere through R-loops. Two R-loop sites inside a single circular RNA promoted the formation of chromatin loops in CRM1 regions. When RNA interference (RNAi) was used to target the back-splicing site of the circular CRM1 RNAs, the levels of R-loops and chromatin loops formed by these circular RNAs decreased, while the levels of R-loops produced by linear RNAs with similar binding sites increased. Linear RNAs with only one R-loop site could not promote chromatin loop formation. Higher levels of R-loops and lower levels of chromatin loops in the CRM1 regions of RNAi plants led to a reduced localization of the centromeric H3 variant (CENH3). Our work reveals centromeric chromatin organization by circular CRM1 RNAs via R-loops and chromatin loops, which suggested that CRM1 elements might help build a suitable chromatin environment during centromere evolution. These results highlight that R-loops are integral components of centromeric chromatin and proper centromere structure is essential for CENH3 localization.
Collapse
Affiliation(s)
- Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
1322
|
Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol 2020; 18:e3000582. [PMID: 31995554 PMCID: PMC7010299 DOI: 10.1371/journal.pbio.3000582] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/10/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In most plants, centromeric DNA contains highly repetitive sequences, including tandem repeats and retrotransposons; however, the roles of these sequences in the structure and function of the centromere are unclear. Here, we found that multiple RNA sequences from centromeric retrotransposons (CRMs) were enriched in maize (Zea mays) centromeres, and back-spliced RNAs were generated from CRM1. We identified 3 types of CRM1-derived circular RNAs with the same back-splicing site based on the back-spliced sequences. These circular RNAs bound to the centromere through R-loops. Two R-loop sites inside a single circular RNA promoted the formation of chromatin loops in CRM1 regions. When RNA interference (RNAi) was used to target the back-splicing site of the circular CRM1 RNAs, the levels of R-loops and chromatin loops formed by these circular RNAs decreased, while the levels of R-loops produced by linear RNAs with similar binding sites increased. Linear RNAs with only one R-loop site could not promote chromatin loop formation. Higher levels of R-loops and lower levels of chromatin loops in the CRM1 regions of RNAi plants led to a reduced localization of the centromeric H3 variant (CENH3). Our work reveals centromeric chromatin organization by circular CRM1 RNAs via R-loops and chromatin loops, which suggested that CRM1 elements might help build a suitable chromatin environment during centromere evolution. These results highlight that R-loops are integral components of centromeric chromatin and proper centromere structure is essential for CENH3 localization.
Collapse
Affiliation(s)
- Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
1323
|
Hon KW, Othman N, Hanif EAM, Nasir SN, Razak NSA, Jamal R, Abu N. Predictive biomarkers of drug resistance in colorectal cancer—Recent updates. DRUG RESISTANCE IN COLORECTAL CANCER: MOLECULAR MECHANISMS AND THERAPEUTIC STRATEGIES 2020:135-151. [DOI: 10.1016/b978-0-12-819937-4.00008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
1324
|
Wang J, Kong J, Nie Z, Chen D, Qiang J, Gao W, Chen X. Circular RNA Hsa_circ_0066755 as an Oncogene via sponging miR-651 and as a Promising Diagnostic Biomarker for Nasopharyngeal Carcinoma. Int J Med Sci 2020; 17:1499-1507. [PMID: 32669952 PMCID: PMC7359393 DOI: 10.7150/ijms.47024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Circular RNAs (circRNAs) represent a class of broad and diversified endogenous RNAs that regulate gene expressions in eukaryotes. Hsa_circ_006675 has been proven as an important circRNA molecule in nasopharyngeal carcinoma (NPC), however, its function still remains elusive. This study aims to discuss the biofunctions of hsa_circ_0066755 in NPC. Methods: We detected the expression levels of hsa_circ_0066755 in NPC patients by quantitative real-time polymerase chain reaction (qRT-PCR), and the corresponding ROC curves were plotted. Functional experiments including CCK-8, colony formation, Transwell assay and Xenograft experiment were conducted. Bioinformatics analysis was performed to seek miRNAs which might have binding sites with hsa_circ_0066755. Luciferase reporter assays were finally carried out to verify the binding sites. Results: We found significant increases of hsa_circ_0066755 in the plasma and tissues of the patients. Moreover, its levels were positively correlated with clinical staging (P=0.019). The receiver operating characteristic (ROC) analysis showed that the area under the curves (AUCs) of tissue and plasma hsa_circ_0066755 for distinguishing NPC from non-cancerous controls were 0.8537 and 0.9044, respectively. Both tissue and plasma hsa_circ_0066755 testing presented a comparable diagnostic accuracy to the magnetic resonance imaging (MRI). Our in-vitro experiment showed that the overexpression of hsa_circ_0066755 facilitated the growth, proliferation, clone formation, invasion and migration of CNE-1 NPC cells, while its down-regulation showed completely opposite effects. The xenograft experiment showed that exogenous hsa_circ_0066755 could significantly enhance the in-vivo tumorigenic ability of CNE-1 cells. Rescue assay further confirmed hsa_circ_0066755 as a tumor facilitator by sponging miR-651. Conclusions: Collectively, this study reported for the first time that hsa_circ_0066755 played a role of oncogene in NPC and could be used as an effective diagnostic marker for NPC, and that hsa_circ_0066755 / miR-651 axis also involved in the progression of NPC.
Collapse
Affiliation(s)
- Jian Wang
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhong Nie
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Diansen Chen
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jun Qiang
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wanqin Gao
- Center of Image Diagnoses, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaojie Chen
- Medical College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
1325
|
Wei Y, Chen X, Liang C, Ling Y, Yang X, Ye X, Zhang H, Yang P, Cui X, Ren Y, Xin X, Li H, Wang R, Wang W, Jiang F, Liu S, Ding J, Zhang B, Li L, Wang H. A Noncoding Regulatory RNAs Network Driven by Circ-CDYL Acts Specifically in the Early Stages Hepatocellular Carcinoma. Hepatology 2020; 71:130-147. [PMID: 31148183 DOI: 10.1002/hep.30795] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/17/2019] [Indexed: 01/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the fastest-rising causes of cancer-related death worldwide, but its deficiency of specific biomarkers and therapeutic targets in the early stages lead to severe inadequacy in the early diagnosis and treatment of HCC. Covalently closed circular RNA (circRNA), which was once considered an aberrant splicing by-product, is now drawing new interest in cancer research because of its remarkable functionality. Beneath the surface of the dominant functional proteins events, a hidden circRNA-centric noncoding regulatory RNAs network active in the very early stage of HCC is here revealed by a genome-wide analysis of mRNA, circRNA, and microRNA (miRNA) expression profiles. Circ-CDYL (chromodomain Y like) is specifically up-regulated in the early stages of HCC and therefore contributes to the properties of epithelial cell adhesion molecule (EPCAM)-positive liver tumor-initiating cells. Circ-CDYL interacts with mRNAs encoding hepatoma-derived growth factor (HDGF) and hypoxia-inducible factor asparagine hydroxylase (HIF1AN) by acting as the sponge of miR-892a and miR-328-3p, respectively. Subsequently, activation of the phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase-mechanistic target of rapamycin kinase complex 1/β-catenin and NOTCH2 pathways, which promote the expression of the effect proteins, baculoviral IAP repeat containing 5 (BIRC5 or SURVIVIN) and MYC proto-oncogene, is influenced by circ-CDYL. A treatment incorporating circ-CDYL interference and traditional enzyme inhibitors targeting PI3K and HIF1AN demonstrated highly effective inhibition of stem-like characteristics and tumor growth in HCC. Finally, we demonstrated that circ-CDYL expression or which combined with HDGF and HIF1AN are both independent markers for discrimination of early stages of HCC with the odds ratios of 1.09 (95% confidence interval [CI], 1.02-1.17) and 124.58 (95% CI, 13.26-1170.56), respectively. Conclusion: These findings uncover a circRNA-centric noncoding regulatory RNAs network in the early stages of HCC and thus provide a possibility for surveillance and early treatment of HCC.
Collapse
Affiliation(s)
- Yanping Wei
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China.,The Graduate School of Fujian Medical University, Fujian, China
| | - Xin Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Chi Liang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Yan Ling
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Xinwei Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Pinghua Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Yibing Ren
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Xianglei Xin
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hengyu Li
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ruoyu Wang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenjing Wang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Feng Jiang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Hospital of Jiangsu Province, Nanjing, China
| | - Suiyi Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jing Ding
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Baohua Zhang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Liang Li
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China.,National Laboratory for Oncogenes and Related Genes, Cancer Institute, RenJi Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
1326
|
Wang W, Li Y, Li X, Liu B, Han S, Li X, Zhang B, Li J, Sun S. Circular RNA circ-FOXP1 induced by SOX9 promotes hepatocellular carcinoma progression via sponging miR-875-3p and miR-421. Biomed Pharmacother 2020; 121:109517. [DOI: 10.1016/j.biopha.2019.109517] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022] Open
|
1327
|
Li D, Li Z, Yang Y, Zeng X, Li Y, Du X, Zhu X. Circular RNAs as biomarkers and therapeutic targets in environmental chemical exposure-related diseases. ENVIRONMENTAL RESEARCH 2020; 180:108825. [PMID: 31683121 DOI: 10.1016/j.envres.2019.108825] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Chemical contamination in the environment is known to cause abnormal circular RNA (circRNA) expression through multiple exposure routes; yet, the underlying molecular mechanisms remain unclear. Non-coding RNAs (ncRNAs), especially circRNAs, play important roles in epigenetic regulation and disease pathogenesis; however, few studies have examined the function of circRNAs in chemical contamination-induced diseases. CircRNAs are covalently closed continuous loops that do not possess 5' and 3' ends, increasing their structural stability and limiting degradation by exoribonucleases. In addition, environmental chemical exposure-related diseases are often accompanied by aberrant expression of specific circRNAs and those circRNAs are often detected in tissues and body fluids. Based on these characteristics, circRNAs may serve as candidate biomarkers for the diagnosis of diseases related to environmental chemical exposure. Here, we review the generation and function of circRNAs, and the possible molecular mechanisms underlying the regulation of environmental chemical exposure-related disorders by circRNAs. This is the first comprehensive review of the relationship between environmental chemical exposure and circRNAs in chemical exposure-induced diseases.
Collapse
Affiliation(s)
- Dong Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Zeqin Li
- College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| | - Yan Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Youping Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Xiaohua Zhu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| |
Collapse
|
1328
|
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disease, involving the rapid proliferation and abnormal differentiation of keratinocytes and activation of T cells. It is generally accepted that the central pathogenesis of psoriasis is a T cell-dominant immune disorder affected by multiple factors including genetic susceptibility, environmental factors, innate and adaptive immune responses, etc. However, the exact etiology is largely unknown. In recent years, epigenetic involvements, such as the DNA methylation, chromatin modifications, and noncoding RNA regulation are reported to be critical for the pathogenesis of psoriasis. However, the interplay between these factors has only recently been started to be unraveled. Notably, inhibitors of enzymes that work in epigenetic modifications, such as DNA methyltransferases and histone deacetylases, are beginning to appear in the clinical setting to restore normal epigenetic patterns (Generali et al. in J Autoimmun 83:51-61, 2017), providing novel therapeutic potential as novel treatment targets for psoriasis. Indeed, medications previously used to treat autoimmune diseases have later been discovered to exert their action via epigenetic mechanisms. Herein, we review the findings on epigenetics associated with psoriasis, and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
1329
|
Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, Mirzaei HR, Bafrani HH, Savardashtaki A, Mirzaei H, Hamblin MR. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 2020; 145:102854. [PMID: 31877535 PMCID: PMC6982584 DOI: 10.1016/j.critrevonc.2019.102854] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Both environmental and genetic factors are involved in the initiation and development of gastrointestinal cancer. Covalent closed circular RNAs (circRNAs) are produced by a mechanism called "back-splicing" from mRNAs. They are highly stable and show cell and tissue specific expression patterns. Although some functions such as "microRNA sponge" and "RNA binding protein sponge" have been reported for a small number of circRNAs, the function of thousands of other circRNAs is still unknown. Dysregulation of circRNAs has been reported in many GI cancers and are involved in metastasis and invasion. CircRNAs have been reported to be useful as prognostic markers and targets for developing new treatments. We first describe the properties and biogenesis of circRNAs. We then summarize recent reports about circRNA functions, expression status, and their potential to be used as biomarkers in GI cancers including, gastric cancer, colorectal cancer, esophageal cancer, hepatocellular carcinoma, gallbladder cancer and pancreatic cancer.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran.
| | | | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, TarbiatModares University, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Hassani Bafrani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
1330
|
Vaschetto LM, Litholdo CG, Sendín LN, Terenti Romero CM, Filippone MP. Cereal Circular RNAs (circRNAs): An Overview of the Computational Resources for Identification and Analysis. Methods Mol Biol 2020; 2072:157-163. [PMID: 31541445 DOI: 10.1007/978-1-4939-9865-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circular RNAs (circRNAs) are a widespread class of endogenous noncoding RNAs and they have been studied in the past few years, implying important biological functions in all kingdoms of life. Recently, circRNAs have been identified in many plant species, including cereal crops, showing differential expression during stress response and developmental programs, which suggests their role in these process. In the following years, it is expected that insights into the functional roles of circRNAs can be used by cereal scientists and molecular breeders with the aim to develop new strategies for crop improvement. Here, we briefly outline the current knowledge about circRNAs in plants and we also outline available computational resources for their validation and analysis in cereal species.
Collapse
Affiliation(s)
- Luis M Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Córdoba, Argentina.
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Córdoba, Argentina.
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, USA.
| | - Celso Gaspar Litholdo
- Centre National pour la Recherche Scientifique (CNRS)/Université de Perpignan Via Domitia (UPVD)-Laboratoire Génome et Développement des Plantes (LGDP-UMR5096), Perpignan, France
| | - Lorena Noelia Sendín
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Claudia Mabel Terenti Romero
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria San Luis (INTA, EEA SAN LUIS), San Luis, Argentina
| | - María Paula Filippone
- Universidad Nacional de Tucumán, Facultad de Agronomía y Zootecnia, (UNT-FAZ), Tucumán, Argentina
| |
Collapse
|
1331
|
Zou Y, Zheng S, Xiao W, Xie X, Yang A, Gao G, Xiong Z, Xue Z, Tang H, Xie X. circRAD18 sponges miR-208a/3164 to promote triple-negative breast cancer progression through regulating IGF1 and FGF2 expression. Carcinogenesis 2019; 40:1469-1479. [PMID: 31001629 DOI: 10.1093/carcin/bgz071] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023] Open
Abstract
As a new rising star of non-coding RNA, circular RNAs (circRNAs) emerged as vital regulators with biological functions in diverse of cancers. However, the function and precise mechanism of the vast majority of circRNAs in triple-negative breast cancer (TNBC) occurrence and progression have not been clearly elucidated. In the current study, we identified and further investigated hsa_circ_0002453 (circRAD18) by analyzing our previous microarray profiling. Expression of circRAD18 was found significantly upregulated in TNBC compared with normal mammary tissues and cell lines. circRAD18 was positively correlated with T stage, clinical stage and pathological grade and was an independent risk factor for TNBC patients. We performed proliferation, colony formation, cell migration, apoptosis and mouse xenograft assays to verify the functions of circRAD18. Knockdown of circRAD18 significantly suppressed cell proliferation and migration, promoted cell apoptosis and inhibited tumor growth in functional and xenograft experiments. Through luciferase reporter assays, we confirmed that circRAD18 acts as a sponge of miR-208a and miR-3164 and promotes TNBC progression through upregulating IGF1 and FGF2 expression. Altogether, our research revealed the pivotal role of circRAD18-miR-208a/3164-IGF1/FGF2 axis in TNBC tumorigenesis and metastasis though the mechanism of competing endogenous RNAs. Thus, circRAD18 may serve as a novel prognostic biomarker and potential target for TNBC treatment in the future.
Collapse
Affiliation(s)
- Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Shaoquan Zheng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Weikai Xiao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Zhenchong Xiong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Zhicheng Xue
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
1332
|
Du J, Zhang G, Qiu H, Yu H, Yuan W. The novel circular RNA circ-CAMK2A enhances lung adenocarcinoma metastasis by regulating the miR-615-5p/fibronectin 1 pathway. Cell Mol Biol Lett 2019; 24:72. [PMID: 31889960 PMCID: PMC6933717 DOI: 10.1186/s11658-019-0198-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNA (circRNA) has recently been considered as a key regulator in carcinogenesis. In this study, we investigated the functional significance and regulatory role of circ-CAMK2A (hsa_circ_0128332) in lung adenocarcinoma (LUAD). METHODS GSE101586 was employed to screen differentially expressed circRNAs. = Relative expression levels of circ-CAMK2A, miR-615-5p, fibronectin 1 (FN1), MMP2, and MMP9 were tested by quantitative reverse transcription PCR (qRT-PCR) or western blotting. Functional experiments were performed by CCK-8, wound healing, and transwell assays. Luciferase reporter and biotin-labeled RNA pull-down assays were carried out to evaluate the interaction between circ-CAMK2A, miR-615-5p, and fibronectin 1. In addition, a lung metastasis model was constructed to determine the metastasis-promoting role of circ-CAMK2A in vivo. RESULTS Circ-CAMK2A overexpression was observed in LUAD and was closely associated with lymph node metastasis, distant metastasis, advanced clinical stage, and poor prognosis. Circ-CAMK2A silencing evidently inhibited LUAD cell migration and invasion, whereas circ-CAMK2A overexpression had an opposite effect. Importantly, overexpression of circ-CAMK2A also enhanced LUAD metastasis in vivo. Mechanistically, miR-615-5p was identified as a direct target of circ-CAMK2A. Circ-CAMK2A up-regulates the expression level of fibronectin 1 by sponging miR-615-5p, thereby increasing MMP2 and MMP9 expression to promote the metastasis of LUAD. CONCLUSION Circ-CAMK2A plays a crucial role in the metastasis of LUAD, at least partially, by regulating the miR-615-5p/fibronectin 1 axis.
Collapse
Affiliation(s)
- Jiahui Du
- Minimally invasive surgery, Henan Provincial Chest Hospital, No. 1 Weiwu Road, Jinshui District, Zhengzhou, 450000 People’s Republic of China
| | - Guangzhao Zhang
- Minimally invasive surgery, Henan Provincial Chest Hospital, No. 1 Weiwu Road, Jinshui District, Zhengzhou, 450000 People’s Republic of China
| | - Hongli Qiu
- Minimally invasive surgery, Henan Provincial Chest Hospital, No. 1 Weiwu Road, Jinshui District, Zhengzhou, 450000 People’s Republic of China
| | - Haifeng Yu
- Minimally invasive surgery, Henan Provincial Chest Hospital, No. 1 Weiwu Road, Jinshui District, Zhengzhou, 450000 People’s Republic of China
| | - Wuying Yuan
- Minimally invasive surgery, Henan Provincial Chest Hospital, No. 1 Weiwu Road, Jinshui District, Zhengzhou, 450000 People’s Republic of China
| |
Collapse
|
1333
|
Xu G, Zhang H, Li X, Hu J, Yang G, Sun S. Genome-Wide Differential Expression Profiling of Ovarian circRNAs Associated With Litter Size in Pigs. Front Genet 2019; 10:1010. [PMID: 31803223 PMCID: PMC6873881 DOI: 10.3389/fgene.2019.01010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) have been emerging as an important regulator in mammalian reproduction via acting as miRNA sponges. However, the circRNAs in porcine ovaries related with litter size remains largely unknown. In this study, porcine ovaries with smaller or larger litter size (LLS) were subjected to high-throughput RNA sequencing. In total, 38,722 circRNAs were identified, of which 1,291 circRNAs were commonly expressed in all samples. There were 56 circRNAs significantly down-regulated and 54 circRNAs up-regulated in LLS pig (|log2 (fold change) | > 1, FDR < 0.05). Bioinformatics predicted that most of circRNAs harbored miRNA binding sites, and the expression patterns of circRNAs and their putative binding miRNAs were validated by qPCR. Moreover, the expression of circ-TCP11/miR-183 was significantly reversely correlated and their direct interaction was confirmed by dual-luciferase assay. Our study indicates that circRNAs may play potential effects on modulating porcine litter size.
Collapse
Affiliation(s)
- Gaoxiao Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, China.,Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| | - Huifang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, China
| | - Shiduo Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, China
| |
Collapse
|
1334
|
Xiao MS, Wilusz JE. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3' ends. Nucleic Acids Res 2019; 47:8755-8769. [PMID: 31269210 PMCID: PMC6895279 DOI: 10.1093/nar/gkz576] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Thousands of eukaryotic protein-coding genes generate circular RNAs that have covalently linked ends and are resistant to degradation by exonucleases. To prove their circularity as well as biochemically enrich these transcripts, it has become standard in the field to use the 3′-5′ exonuclease RNase R. Here, we demonstrate that standard protocols involving RNase R can fail to digest >20% of all highly expressed linear RNAs, but these shortcomings can largely be overcome. RNAs with highly structured 3′ ends, including snRNAs and histone mRNAs, are naturally resistant to RNase R, but can be efficiently degraded once a poly(A) tail has been added to their ends. In addition, RNase R stalls in the body of many polyadenylated mRNAs, especially at G-rich sequences that have been previously annotated as G-quadruplex (G4) structures. Upon replacing K+ (which stabilizes G4s) with Li+ in the reaction buffer, we find that RNase R is now able to proceed through these sequences and fully degrade the mRNAs in their entirety. In total, our results provide important improvements to the current methods used to isolate circular RNAs as well as a way to reveal RNA structures that may naturally inhibit degradation by cellular exonucleases.
Collapse
Affiliation(s)
- Mei-Sheng Xiao
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
1335
|
The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries. Acta Biotheor 2019; 67:273-297. [PMID: 31388859 DOI: 10.1007/s10441-019-09356-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Theoretical minimal RNA rings attempt to mimick life's primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring's 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic code integration orders of RNA ring anticodon cognate amino acids. Analyses consider for each secondary structure all nucleotide triplets as potential anticodon. Anticodons for ancient, chemically inert cognate amino acids are most frequent in the 25 RNA rings. For RNA rings with primordial cognate amino acids according to tRNA-homology-derived anticodons, tRNA-homology and coding sequences coincide, these are separate for predicted cognate amino acids that presumably integrated late the genetic code. RNA ring secondary structure similarity with rRNA over tRNA secondary structures associates best with genetic code integration orders of anticodon cognate amino acids when assuming split anticodons (one and two nucleotides at the spliced RNA ring 5' and 3' extremities, respectively), and at predicted anticodon location in the spliced RNA ring's midst. Results confirm RNA ring homologies with tRNAs and CDs, ancestral status of tRNA half genes split at anticodons, the tRNA-rRNA axis of RNA evolution, and that single theoretical minimal RNA rings potentially produce near-complete proto-tRNA sets. Hence genetic code pre-existence determines 25 short circular gene- and tRNA-like RNAs. Accounting for each potential splicing position, each RNA ring potentially translates most amino acids, realistically mimicks evolution of the tRNA-rRNA translation machinery. These RNA rings 'of creation' remind the uroboros' (snake biting its tail) symbolism for creative regeneration.
Collapse
|
1336
|
Jadhav SP, Kumari N, Ng L, Tan PF, Yeo-Teh NSL, Goh Y, Fam WN, Tng JQ, Tian JS, Koh BTH, Chun CM, Wang W, Chng WJ, Fullwood MJ, Guccione E, Karnani N, Tenen DG, Jha S. circASXL1-1 regulates BAP1 deubiquitinase activity in leukemia. Haematologica 2019; 105:e343-e348. [PMID: 31780633 DOI: 10.3324/haematol.2019.225961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shweta Pradip Jadhav
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Larry Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pei Fang Tan
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Nicole Shu Ling Yeo-Teh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore
| | - Yufen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wee Nih Fam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jia Qi Tng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Johann Shane Tian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan T H Koh
- Department of Orthopedic Surgery, National University Health Systems, Singapore
| | - Chan Ming Chun
- Department of Orthopedic Surgery, National University Health Systems, Singapore
| | - Wilson Wang
- Department of Orthopedic Surgery, National University of Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological Institute, Singapore.,Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore.,Tisch Cancer Institute, Department of Oncological Sciences and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
1337
|
Liu Z, Yu Y, Huang Z, Kong Y, Hu X, Xiao W, Quan J, Fan X. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis 2019; 10:900. [PMID: 31776329 PMCID: PMC6881381 DOI: 10.1038/s41419-019-2089-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs), one kind of noncoding RNAs, can interact with miRNA and transcription factors to regulate gene expression. However, little is known on which circRNA is crucial for the pathogenesis of hepatocellular carcinoma (HCC). CircRNA expression profile was analyzed by a microarray. Regulatory gene targets were predicted by bioinformatics analysis and validated by luciferase assay. Their expression was determined by qRT-PCR and Western blotting. DNA methylation was determined by methylation-specific PCR. Gene knockdown and overexpression were mediated by lentivirus-mediated shRNA and transfection with plasmids for cDNA expression, respectively. MTT assay, wound-healing assay, transwell invasion assay, and flow cytometry were used to determine malignant behaviors of HCC cells. HCC xenograft mouse model was used to determine the in vivo effects of circRNA-5692. CircRNA-5692 expression was downregulated in HCC tissues, and circRNA-5692 overexpression attenuated the malignant behaviors of HCC cells. Bioinformatics predicted that circRNA-5692 interacted with miR-328-5p, which targeted the DAB2IP mRNA. Actually, miR-328-5p promoted the malignant behaviors of HCC cells, while DAB2IP had opposite effects. Moreover, circRNA-5692 overexpression inhibited the growth of xenograft HCC tumors in vivo by decreasing miR-328-5p expression to enhance DAB2IP expression. In conclusion, the circRNA-5692–miR-328-5p–DAB2IP regulatory pathway inhibits the progression of HCC. Our findings may provide potential new targets for the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Infectious Disease, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical College, Guilin, 541002, China
| | - Zebing Huang
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi Kong
- The Department of Hepatopancreatobiliary Medicine, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xingwang Hu
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Xiao
- Department of Infectious Disease, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jun Quan
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xuegong Fan
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
1338
|
Yu AQ, Wang ZX, Wu W, Chen KY, Yan SR, Mao ZB. Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting CCNE2. Aging (Albany NY) 2019; 11:10220-10241. [PMID: 31767812 PMCID: PMC6914408 DOI: 10.18632/aging.102449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
Circular RNAs (CircRNAs) are a novel subset of non-coding RNA widely present in eukaryotes that play a central role in physiological and pathological conditions. Accumulating evidence has indicated that CircRNAs participated in modulating tumorigenesis by acting as a competing endogenous RNA (CeRNA). However, the roles and functions of CircRNAs in cellular senescence and aging of organisms remain largely obscure. We performed whole transcriptome sequencing to compare the expression patterns of circular RNAs in young and prematurely senescent human diploid fibroblast 2BS cells, and identified senescence-associated circRNAs (SAC-RNAs). Among these SAC-RNAs, we observed the significantly downregulated expression of CircRNAs originating from exons 6 and 7 circularization of the cyclin B1 gene (CCNB1), termed CircCCNB1. Reduced CircCCNB1 expression triggered senescence in young 2BS cells, as measured by increased senescence associated-beta-galactosidase (SA-β-gal) activity, enhanced expression of cyclin-dependent kinase inhibitor 1A (CDKN1A)/P21 and tumor protein 53 (TP53) expression, and reduced cell proliferation. Mechanistically, reduced CircCCNB1 level inhibited cyclin E2 (CCNE2) expression by modulating micro RNA (miR)-449a activity, which repressed cellular proliferation. Our data suggested that CircCCNB1may serve as a sponge against miR-449a to delay cellular senescence by targeting CCNE2. Targeting CircCCNB1 may represent a promising strategy for aging and age-related disease interventions. Furthermore, we also identified and characterized several kinds of the CircCCNB1-binding proteins (CBPs), which may contribute to the degradation of CircCCNB1.
Collapse
Affiliation(s)
- Ai Qing Yu
- Peking University Research Center on Aging, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing 100191, China
| | - Zhi Xiao Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Wu Wu
- Department of Immunology, School of Basic Medical Science, Tianjing Medical University, Tianjing 300070, China
| | - Ke Yu Chen
- Peking University Research Center on Aging, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing 100191, China
| | - Shi Rong Yan
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.,School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Ze Bin Mao
- Peking University Research Center on Aging, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing 100191, China
| |
Collapse
|
1339
|
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q, Sun Z. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol 2019; 12:121. [PMID: 31757221 PMCID: PMC6874823 DOI: 10.1186/s13045-019-0805-7] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) methylation, one of the most common RNA modifications, has been reported to execute important functions that affect normal life activities and diseases. Most studies have suggested that m6A modification can affect the complexity of cancer progression by regulating biological functions related to cancer. M6A modification of noncoding RNAs regulates the cleavage, transport, stability, and degradation of noncoding RNAs themselves. It also regulates cell proliferation and metastasis, stem cell differentiation, and homeostasis in cancer by affecting the biological function of cells. Interestingly, noncoding RNAs also play significant roles in regulating these m6A modifications. Additionally, it is becoming increasingly clear that m6A and noncoding RNAs potentially contribute to the clinical application of cancer treatment. In this review, we summarize the effect of the interactions between m6A modifications and noncoding RNAs on the biological functions involved in cancer progression. In particular, we discuss the role of m6A and noncoding RNAs as possible potential biomarkers and therapeutic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiang Ji
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanbo Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guixian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhenqiang Sun
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
1340
|
Feng Z, Zhang L, Wang S, Hong Q. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson's disease. Biochem Biophys Res Commun 2019; 522:388-394. [PMID: 31761328 DOI: 10.1016/j.bbrc.2019.11.102] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease which is characterized by the substantia nigra dopaminergic neurons denatured. Circular RNA (circRNA) DLGAP4 (circDLGAP4) was found to have neuroprotective effect. In this study, we aimed to investigate whether circDLGAP4 participates in the progression of PD. Here, our results showed that circDLGAP4 expression was decreased in MPTP-induced PD mouse model and MPP+-induced PD cell models. In vitro study revealed that circDLGAP4 could promote viability, reduce apoptosis, decrease mitochondrial damage, enhance autophagy and thereby attenuated the neurotoxic effects of MPP+ in SH-SY5Y and MN9D cells. Further research suggested that circDLGAP4 exerted its functions via regulating miR-134-5p. Moreover, we demonstrated that CREB was a target of miR-134-5p and CREB expression could be regulated by circDLGAP4/miR-134-5p axis. CircDLGAP4/miR-134-5p could also modulate the activation of CREB signaling and thereby influence the expression of CREB target genes including BDNF, Bcl-2 and PGC-1α in SH-SY5Y and MN9D cells. In all, our study identifies that circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway both in human and mouse.
Collapse
Affiliation(s)
- Zhong Feng
- Department of Neurology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Li Zhang
- Department of Neurology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Sa Wang
- Department of Neurology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Qing Hong
- Department of Neurology, The First People's Hospital of Wenling, Wenling, Zhejiang, China.
| |
Collapse
|
1341
|
Downregulated Expression of hsa_circ_0005556 in Gastric Cancer and Its Clinical Significance. DISEASE MARKERS 2019; 2019:2624586. [PMID: 31827632 PMCID: PMC6885797 DOI: 10.1155/2019/2624586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
Background Gastric cancer (GC) has a poor prognosis due to the lack of ideal tumor markers. Circular RNAs (circRNAs) are a novel type of noncoding RNA related to the occurrence of GC. Among our research, we investigated the role of hsa_circ_0005556 in GC. Materials and Methods The expression of hsa_circ_0005556 of 100 paired GC tissues and adjacent normal tissues was detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of hsa_circ_0005556. The correlation between the expression of hsa_circ_0005556 and corresponding clinicopathological characteristic was explored. Results hsa_circ_0005556 was significantly downregulated in GC tissues contrasted with adjacent normal tissues (n = 100, p < 0.001). The areas under the ROC curve (AUC) of hsa_circ_0005556 were up to 0.773, while 64% sensitivity and 82% specificity, respectively. Moreover, its expression levels were significantly associated with differentiation (p = 0.001), TNM stage (p = 0.013), and lymphatic metastasis (p = 0.039). GC patients of high hsa_circ_0005556 levels had a longer overall survival (OS) than those of the low group (p = 0.047). Conclusion hsa_circ_0005556 is a potential biomarker for GC, which may guide judgment of the indication of endoscopic treatment for early gastric cancer (EGC).
Collapse
|
1342
|
Hong L, Gu T, He Y, Zhou C, Hu Q, Wang X, Zheng E, Huang S, Xu Z, Yang J, Yang H, Li Z, Liu D, Cai G, Wu Z. Genome-Wide Analysis of Circular RNAs Mediated ceRNA Regulation in Porcine Embryonic Muscle Development. Front Cell Dev Biol 2019; 7:289. [PMID: 31803743 PMCID: PMC6877547 DOI: 10.3389/fcell.2019.00289] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Many circular RNAs (circRNAs) have been discovered in various tissues and cell types in pig. However, the temporal expression pattern of circRNAs during porcine embryonic muscle development remains unclear. Here, we present a panorama view of circRNA expression in embryonic muscle development at 33-, 65-, and 90-days post-coitus (dpc) from Duroc pigs. An unbiased analysis reveals that more than 5,000 circRNAs specifically express in embryonic muscle development. The amount and complexity of circRNA expression is most pronounced in skeletal muscle at day 33 of gestation. Our circRNAs annotation analyses show that “hot-spot” genes produce multiple circRNA isoforms and RNA binding protein (RBPs) may regulate the biogenesis of circRNAs. Furthermore, we observed that host genes of differentially expressed circRNA across porcine muscle development are enriched in skeletal muscle function. A competing endogenous RNA (ceRNA) network analysis of circRNAs reveals that circRNAs regulate muscle gene expression by functioning as miRNA sponges. Finally, our experimental validation demonstrated that circTUT7 regulate the expression of HMG20B in a ceRNA mechanism. Our analyses show that circRNAs are dynamically expressed and interacting with muscle genes through ceRNA manner, suggesting their critical functions in embryonic skeletal muscle development.
Collapse
Affiliation(s)
- Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanjuan He
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingwang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
1343
|
Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H, Wang M. circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer 2019; 18:160. [PMID: 31722716 PMCID: PMC6854808 DOI: 10.1186/s12943-019-1095-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn much attention in the pathogenesis of human cancers. However, the role of circRNAs in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we aimed to identify novel circRNAs that regulate ESCC progression and explored their regulatory mechanisms and clinical significance in ESCC. Methods Differentially expressed circRNAs between ESCC and paired adjacent normal tissues were identified using microarrays. The effects of a specific differentially expressed circRNA (circGSK3β) on tumor progression were explored in vitro and in vivo. Plasma samples from patients with ESCC, benign lesions and healthy controls were subjected to droplet digital PCR (ddPCR) analyses for circGSK3β, and the detection rates of plasma circGSK3β for ESCC were investigated. Results We demonstrated that upregulated expression of circGSK3β was positively associated with advanced clinical stage and poor outcome in patients with ESCC. We further revealed that circGSK3β promoted ESCC cell migration and invasion via direct interaction with GSK3β and inhibiting GSK3β activity, providing a novel mechanism of circRNA in cancer progression. Importantly, we identified that circGSK3β expression in plasma was a biomarker for detection of ESCC and early stage of ESCC with the area under curve (AUC) of 0.782 and 0.793, respectively. Conclusions CircGSK3β exerts critical roles in promoting ESCC metastasis and may serve as a novel therapeutic target for ESCC patients. The plasma level of circGSK3β have potential to serve as a novel diagnostic and prognostic biomarker for ESCC detection.
Collapse
Affiliation(s)
- Xueting Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Duoguang Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xiaotian He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Huiying Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhanghai He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiatong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Kefeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Wenjian Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. .,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
1344
|
Liu W, Feng R, Li X, Li D, Zhai W. TGF-β- and lipopolysaccharide-induced upregulation of circular RNA PWWP2A promotes hepatic fibrosis via sponging miR-203 and miR-223. Aging (Albany NY) 2019; 11:9569-9580. [PMID: 31719209 PMCID: PMC6874441 DOI: 10.18632/aging.102405] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022]
Abstract
Both transforming growth factor-beta (TGF-β) and lipopolysaccharide (LPS) can activate hepatic stellate cells (HSCs), thus increasing expressions of alpha smooth muscle actin (α-SMA) and type I collagen alpha 1 (Col1α1) and promoting liver fibrosis. However, whether TGF-β and LPS have a common downstream reactor remains unclear. Recently, a strong relationship of circular RNAs (circRNAs) and fibrogenesis has been elucidated. In this study, we compared the expressions of several circRNAs in TGF-β- and LPS-activated HSCs, and found that circ-PWWP2A was upregulated in both TGF-β- and LPS-activated HSCs and in mouse fibrotic liver tissues. Meanwhile, circ-PWWP2A was positively correlated with HSC activation and proliferation. Two microRNAs, miR-203 and miR-223, were identified to be the downstream targets of circ-PWWP2A using luciferase reporter assay and pull-down interaction assay. Circ-PWWP2A was suggested to promote HSC activation and proliferation via sponging miR-203 and miR-223, and subsequently increasing Fstl1 and TLR4, respectively. Furthermore, downregulating circ-PWWP2A was indicated to alleviate hepatic fibrosis in vivo. In conclusion, our findings indicated that circ-PWWP2A is the common downstream reactor of TGF-β and LPS in HSC activation, and that circ-PWWP2A plays a critical role in hepatic fibrogenesis via sponging miR-203 and miR-223.
Collapse
Affiliation(s)
- Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruo Feng
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xingxing Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Dingyang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
1345
|
Zhai Z, Fu Q, Liu C, Zhang X, Jia P, Xia P, Liu P, Liao S, Qin T, Zhang H. Emerging Roles Of hsa-circ-0046600 Targeting The miR-640/HIF-1α Signalling Pathway In The Progression Of HCC. Onco Targets Ther 2019; 12:9291-9302. [PMID: 31807009 PMCID: PMC6842743 DOI: 10.2147/ott.s229514] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Circular RNAs (circRNAs) play important roles in the development and progression of various human cancers. hsa-circ-0046600 is a circRNA of unknown function. The purpose of this study was to investigate the biological function of hsa-circ-0046600 in hepatocellular carcinoma (HCC) and elucidate the possible molecular mechanisms of this circRNA. Materials and methods GSE97332, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH) were used to detect the expression of hsa-circ-0046600 in HCC tissues and cells. A dual-luciferase reporter assay was used to confirm the interaction between hsa-circ-0046600 and miR-640, and a meta-analysis confirmed the expression of miR-640 in HCC. Bioinformatics was used for the functional analysis of miR-640 target genes. N-cadherin and HIF-1α expression was measured by Western blot analysis. Results The expression level of hsa-circ-0046600 in HCC tissue was significantly higher than that in adjacent normal tissue (P < 0.05) and was associated with tumour size, TNM stage and pathological vascular invasion. Moreover, the downregulated expression of hsa-circ-0046600 significantly inhibited the migration of HepG2 and SK-HEP-1 cells. hsa-circ-0046600 is present mainly in the cytoplasm and promotes the expression of proteins such as HIF-1α by competitively binding to miR-640 in HCC, thereby affecting the malignant biological behaviour of liver cancer cells. Conclusion hsa-circ-0046600 can be used as a new biomarker for HCC diagnosis and disease progression and provides a potential target for targeted therapy.
Collapse
Affiliation(s)
- Zhensheng Zhai
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Qiang Fu
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Chuanjiang Liu
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Xu Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Pengchong Jia
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Peng Xia
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Pan Liu
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Shixiu Liao
- Department of Institute of Genetics, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Tao Qin
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| | - Hongwei Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
1346
|
Liu H, Wang X, Wang Z, Li L. Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR‐24‐3p and targeting fibroblast growth factor 11. J Cell Physiol 2019; 235:4520-4529. [PMID: 31680239 DOI: 10.1002/jcp.29329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xin Wang
- Department of Endocrinology, Lianshui People's Hospital Kangda College of Nanjing Medical University Huai'an China
| | | | - Lingzhi Li
- Department of Emergency The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an Huai'an China
| |
Collapse
|
1347
|
Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA Polymerase II C‐terminal domain phosphorylation, phase separation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1574. [DOI: 10.1002/wrna.1574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| |
Collapse
|
1348
|
Circular RNA expression profile of liver tissues in an EtOH-induced mouse model of alcoholic hepatitis. Eur J Pharmacol 2019; 862:172642. [DOI: 10.1016/j.ejphar.2019.172642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 01/28/2023]
|
1349
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20:675-691. [PMID: 31395983 DOI: 10.1038/s41576-019-0158-7] [Citation(s) in RCA: 3069] [Impact Index Per Article: 511.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed, endogenous biomolecules in eukaryotes with tissue-specific and cell-specific expression patterns, whose biogenesis is regulated by specific cis-acting elements and trans-acting factors. Some circRNAs are abundant and evolutionarily conserved, and many circRNAs exert important biological functions by acting as microRNA or protein inhibitors ('sponges'), by regulating protein function or by being translated themselves. Furthermore, circRNAs have been implicated in diseases such as diabetes mellitus, neurological disorders, cardiovascular diseases and cancer. Although the circular nature of these transcripts makes their detection, quantification and functional characterization challenging, recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.
Collapse
Affiliation(s)
- Lasse S Kristensen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark.
| | - Maria S Andersen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Lotte V W Stagsted
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
| | - Karoline K Ebbesen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
1350
|
Zaiou M. Circular RNAs in hypertension: challenges and clinical promise. Hypertens Res 2019; 42:1653-1663. [PMID: 31239534 DOI: 10.1038/s41440-019-0294-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Hypertension (HT), or high blood pressure (BP), is a chronic disease that is common among populations worldwide. The occurrence of HT is one of the leading causes of cardiovascular morbidity and mortality in adults. Although multiple studies have stressed the multifactorial and multigenic nature of HT, uncertainties about its etiology persist, and current diagnostic biomarkers can explain only a small part of the phenotypic variance of BP. Hence, the search for novel biomarkers that enable early disease prevention and guided therapy is warranted. Regulatory circRNAs have emerged as the newest player in HT-related gene networks and hold promise for improving the accuracy of diagnosis. These RNAs are genome products that are formed through back-splicing of specific regions of pre-mRNAs. Evidence suggests that these RNA species are involved in various metabolic diseases. Recent studies have revealed that aberrant expression of circRNAs is relevant to the occurrence and development of HT. Accordingly, circRNAs are proposed as a new generation of predictive biomarkers and potential therapeutic targets for different forms of HT, including pulmonary hypertension and preeclampsia. This paper presents an overview of the findings from current research focusing on the emerging role of circRNAs in the pathogenesis of hypertension. Furthermore, some of the challenges encountered by circRNA studies are highlighted, and perspectives are provided on the future of research in this area.
Collapse
Affiliation(s)
- Mohamed Zaiou
- University of Lorraine, Department of Biochemistry and Molecular Biology, 7 Avenue de la Foret de Haye, BP 90170, 54505, Vandoeuvre les Nancy Cedex, France.
| |
Collapse
|