1351
|
Musio A, Montagna C, Mariani T, Tilenni M, Focarelli ML, Brait L, Indino E, Benedetti PA, Chessa L, Albertini A, Ried T, Vezzoni P. SMC1 involvement in fragile site expression. Hum Mol Genet 2005; 14:525-33. [PMID: 15640246 DOI: 10.1093/hmg/ddi049] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Common fragile sites have been involved in neoplastic transformation, although their molecular basis is still poorly understood. Here, we demonstrate that inhibition of the SMC1 by RNAi is sufficient to induce fragile site expression. By investigating normal, ATM- and ATR-deficient cell lines, we provide evidence that the contribution of SMC1 in preventing the collapse of stalled replication fork is an Atr-dependent pathway. Using a fluorescent antibody specific for gamma-H2AX, we show that very rare discrete nuclear foci appear 1 and 2 h after exposure to aphidicolin and/or RNAi-SMC1, but became more numerous and distinct after longer treatment times. In this context, fragile sites might be viewed as an in vitro phenomenon originating from double-strand breaks formed because of a stalled DNA replication that lasted too long to be managed by physiological rescue acting through the Atr/Smc1 axis. We propose that in vivo, following an extreme replication block, rare cells could escape checkpoint mechanisms and enter mitosis with a defect in genome assembly, eventually leading to neoplastic transformation.
Collapse
Affiliation(s)
- Antonio Musio
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1352
|
Brooks AL. From cell to organism: the need for multiparametric assessment of exposure and biological effects. Br J Radiol 2005. [DOI: 10.1259/bjr/78464782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
1353
|
Revy P, Buck D, le Deist F, de Villartay JP. The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Adv Immunol 2005; 87:237-95. [PMID: 16102576 DOI: 10.1016/s0065-2776(05)87007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is the site of various genotoxic stresses that occur during its maturation as well as during immune responses. These DNA lesions/modifications are primarily the consequences of specific physiological processes such as the V(D)J recombination, the immunoglobulin class switch recombination (CSR), and the generation of somatic hypermutations (SHMs) within Ig variable domains. The DNA lesions can be introduced either by specific factors (RAG1 and RAG2 in the case of V(D)J recombination and AID in the case of CSR and SHM) or during the various phases of cellular proliferation and cellular activation. All these DNA lesions are taken care of by the diverse DNA repair machineries of the cell. Several animal models as well as human conditions have established the critical importance of these DNA lesions/modifications and their repair in the physiology of the immune system. Indeed their defects have consequences ranging from immune deficiency to development of immune malignancy. The survey of human pathology has been highly instrumental in the past in identifying key factors involved in the generation of DNA modifications (AID for the Ig CSR and generation of SHM) or the repair of specific DNA damages (Artemis for V(D)J recombination). Defects in factors involved in the cell cycle checkpoints following DNA damage also have deleterious consequences on the immune system. The continuous survey of human diseases characterized by primary immunodeficiency associated with increased sensitivity to ionizing radiation should help identify other important DNA repair factors essential for the development and maintenance of the immune system.
Collapse
Affiliation(s)
- Patrick Revy
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
1354
|
MacLaren A, Black EJ, Clark W, Gillespie DAF. c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation. Mol Cell Biol 2004; 24:9006-18. [PMID: 15456874 PMCID: PMC517871 DOI: 10.1128/mcb.24.20.9006-9018.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mouse embryo fibroblasts deficient for the c-Jun proto-oncogene (c-Jun-/- MEF) undergo p53-dependent premature senescence in conventional culture. This phenotype becomes evident only after several cell divisions, suggesting that senescence may result from exposure to unknown environmental factors. Here, we show that c-Jun-/- MEF can proliferate successfully in low oxygen (3% O2), indicating that premature senescence under conventional culture conditions is a consequence of hyperoxic stress. c-Jun-/- MEF exhibit higher basal levels of DNA damage compared to normal fibroblasts in high but not low oxygen, implying that senescence results from chronic accumulation of spontaneous DNA damage. This accumulation may be attributable, at least in part, to inefficient repair, since DNA damage induced by gamma ionizing radiation and H2O2 persists for longer in c-Jun-/- MEF than in wild-type MEF. Unexpectedly, p53 expression, phosphorylation, and transcriptional activity are largely unaffected by oxygen exposure, indicating that the accumulation of spontaneous DNA damage does not result in chronic activation of p53 as judged by conventional criteria. Finally, we find that c-Jun associates with nuclear foci containing gammaH2AX and ATM following irradiation, suggesting a potential role for c-Jun in DNA repair processes per se.
Collapse
Affiliation(s)
- Ann MacLaren
- Beatson Institute for Cancer Research, Bearsden, UK.
| | | | | | | |
Collapse
|
1355
|
Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 2004; 16:991-1002. [PMID: 15610741 DOI: 10.1016/j.molcel.2004.11.027] [Citation(s) in RCA: 424] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/06/2004] [Accepted: 11/05/2004] [Indexed: 12/18/2022]
Abstract
The postreplicative repair of double-strand breaks (DSBs) is thought to require sister chromatid cohesion, provided by the cohesin complex along the chromosome arms. A further specialized role for cohesin in DSB repair is suggested by its de novo recruitment to regions of DNA damage in mammals. Here, we show in budding yeast that a single DSB induces the formation of a approximately 100 kb cohesin domain around the lesion. Our analyses suggest that the primary DNA damage checkpoint kinases Mec1p and Tel1p phosphorylate histone H2AX to generate a large domain, which is permissive for cohesin binding. Cohesin binding to the phospho-H2AX domain is enabled by Mre11p, a component of a critical repair complex, and Scc2p, a component of the cohesin loading machinery that is necessary for sister chromatid cohesion. We also provide evidence that the DSB-induced cohesin domain functions in postreplicative repair.
Collapse
Affiliation(s)
- Elçin Unal
- Howard Hughes Medical Institute, Department of Embryology, The Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | | | | | | | | | | | |
Collapse
|
1356
|
Mischo HE, Hemmerich P, Grosse F, Zhang S. Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II. J Biol Chem 2004; 280:9586-94. [PMID: 15613478 DOI: 10.1074/jbc.m411444200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Formation of gamma-H2AX foci is a P. O.cellular response to genotoxic stress, such as DNA double strand breaks or stalled replication forks. Here we show that gamma-H2AX foci were also formed when cells were incubated with 0.5 microg/ml DNA intercalating agent actinomycin D. In untreated cells, gamma-H2AX co-immunoprecipitated with Ku70, a subunit of DNA-dependent protein kinase, as well as with nuclear DNA helicase II (NDH II), a DEXH family helicase also known as RNA helicase A or DHX9. This association was increased manifold after actinomycin D treatment. DNA degradation diminished the amount of Ku70 associated with gamma-H2AX but not that of NDH II. In vitro binding studies with recombinant NDH II and H2AX phosphorylated by DNA-dependent protein kinase confirmed a direct physical interaction between NDH II and gamma-H2AX. Thereby, the NDH II DEXH domain alone, i.e. its catalytic core, was able to support binding to gamma-H2AX. Congruently, after actinomycin D treatment, NDH II accumulated in RNA-containing nuclear bodies that predominantly co-localized with gamma-H2AX foci. Taken together, these results suggest that histone gamma-H2AX promotes binding of NDH II to transcriptionally stalled sites on chromosomal DNA.
Collapse
Affiliation(s)
- Hannah Elisabeth Mischo
- Departments of Biochemistry and Molecular Biology, Institute of Molecular Biotechnology, Postfach 100 813, D-07708 Jena, Germany
| | | | | | | |
Collapse
|
1357
|
Bayart E, Grigorieva O, Leibovitch S, Onclercq-Delic R, Amor-Guéret M. A Major Role for Mitotic cdc2 Kinase Inactivation in the Establishment of the Mitotic DNA Damage Checkpoint. Cancer Res 2004; 64:8954-9. [PMID: 15604258 DOI: 10.1158/0008-5472.can-04-1613] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cdc2 kinase is inactivated when DNA damage occurs during the spindle assembly checkpoint. Here, we show that the level of mitotic Bloom syndrome protein phosphorylation reflects the level of cdc2 activity. A complete inactivation of cdc2 by either introduction of DNA double-strand breaks or roscovitine treatment prevents exit from mitosis. Thus, mitotic cdc2 inactivation plays a major role in the establishment of the mitotic DNA damage checkpoint. In response to mitotic cdc2 inactivation, the M/G(1) transition is delayed after releasing the drug block in nonmalignant cells, whereas tumor cells exit mitosis without dividing and rereplicate their DNA, which results in mitotic catastrophe. This opens the way for new chemotherapeutic strategies.
Collapse
Affiliation(s)
- Emilie Bayart
- CNRS, UMR 8126 and CNRS, UMR 8125, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
1358
|
Zimmerman ES, Chen J, Andersen JL, Ardon O, Dehart JL, Blackett J, Choudhary SK, Camerini D, Nghiem P, Planelles V. Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and gamma-H2AX focus formation. Mol Cell Biol 2004; 24:9286-94. [PMID: 15485898 PMCID: PMC522272 DOI: 10.1128/mcb.24.21.9286-9294.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells have evolved a complex mechanism for sensing DNA damage during genome replication. Activation of this pathway prevents entry into mitosis to allow for either DNA repair or, in the event of irreparable damage, commitment to apoptosis. Under conditions of replication stress, the damage signal is initiated by the ataxia-telangiectasia-mutated and Rad3-related kinase ATR. We recently demonstrated that the human immunodeficiency virus type 1 (HIV-1) gene product viral protein R (Vpr) arrests infected cells in the G(2) phase via the activation of ATR. In the present study, we show that the activation of ATR by Vpr is analogous to activation by certain genotoxic agents, both mechanistically and in its downstream consequences. Specifically, we show a requirement for Rad17 and Hus1 to induce G(2) arrest as well as Vpr-induced phosphorylation of histone 2A variant X (H2AX) and formation of nuclear foci containing H2AX and breast cancer susceptibility protein 1. These results demonstrate that G(2) arrest mediated by the HIV-1 gene product Vpr utilizes the cellular signaling pathway whose physiological function is to recognize replication stress. These findings should contribute to a greater understanding of how HIV-1 manipulates the CD4(+)-lymphocyte cell cycle and apoptosis induction in the progressive CD4(+)-lymphocyte depletion characteristic of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Erik S Zimmerman
- Department of Pathology, School of Medicine, University of Utah, 30 N. 1900 East, SOM 5C210, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1359
|
Andreau K, Castedo M, Perfettini JL, Roumier T, Pichart E, Souquere S, Vivet S, Larochette N, Kroemer G. Preapoptotic Chromatin Condensation Upstream of the Mitochondrial Checkpoint. J Biol Chem 2004; 279:55937-45. [PMID: 15498771 DOI: 10.1074/jbc.m406411200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When added for a short period (2-4 h) to cells, the kinase inhibitor staurosporine (STS), can trigger double strand breaks, the formation of nuclear foci containing phosphorylated H2AX, Chk2, and p53, a decrease in transcription, and a minor degree of peripheral chromatin condensation. This "preapoptotic chromatin condensation" (PACC) occurs before mitochondrial membrane permeabilization (MMP) and caspase activation become detectable and is not inhibited by Z-VAD-fmk or Bcl-2. PACC is followed by classical apoptosis, when cells are cultured overnight, even when STS is removed from the system. After overnight incubation, STS-pretreated cells manifest mitochondrial cytochrome c release, caspase activation, phosphatidylserine exposure, and apoptotic DNA fragmentation. Caspase or MMP inhibitors did not influence the advent of PACC yet did suppress the evolution of PACC toward apoptosis. Importantly, two unrelated MMP inhibitors (viral mitochondrial inhibitor of apoptosis (vMIA) from cytomegalovirus and mitochondrion-targeted Bcl-2) had a larger range of effects than the pan-caspase inhibitor Z-VAD-fmk. Caspase inhibition simply prevented the transition from PACC to apoptosis yet did not reverse PACC and did not restore transcription. In contrast, Bcl-2 and vMIA allowed for the repair of the DNA lesions, correlating with the reestablishment of active transcription. PACC could also be induced by a gross perturbation of RNA synthesis or primary DNA damage. Again, inhibition of MMP (but not that of caspases) reversed PACC induced by these stimuli. In synthesis, our data reveal the unexpected capacity of STS to induce DNA lesions and suggest qualitative differences in the cytoprotective and DNA repair-inducing potential of different apoptosis inhibitors.
Collapse
Affiliation(s)
- Karine Andreau
- CNRS-UMR8125, Institut Gustave Roussy, Pavillon de Recherche 1, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1360
|
Kobayashi J. Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma-H2AX through FHA/BRCT domain. JOURNAL OF RADIATION RESEARCH 2004; 45:473-8. [PMID: 15635255 DOI: 10.1269/jrr.45.473] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
DNA double-strand breaks represent the most potentially serious damage to a genome, and hence, many repair proteins are recruited to DNA damage sites by as yet poorly characterized sensor mechanisms. We clarified that NBS1 physically interacts with gamma-H2AX to form nuclear foci at DNA damage sites. The fork-head associated (FHA) and the BRCA1 C-terminal domains (BRCT) of NBS1 are essential for this physical interaction and focus formation of NBS1 in response to DNA damage. The inhibition of this interaction by introduction of anti-gamma-H2AX antibody into cells abolishes NBS1 foci formation in response to DNA damage. Consequently, the FHA/BRCT domain is likely to have a crucial role for both binding to histone and for re-localization of the NBS1/hMRE11/hRAD50 complex to the vicinity of DNA damage. Moreover, the foci formation of DNA repair-related proteins containing BRCT domain, such as BRCA1, requires the interaction with gamma-H2AX in response to DNA damage. These findings indicate that the physical interaction between gamma-H2AX and DNA repair-related proteins is indispensable for the recruitment of these proteins. Further, it was recently reported that the NBS1/hMRE11/hRAD50 complex has a crucial role for both the recruitment of ATM to DNA damage sites and the subsequent activation of ATM. Therefore, both gamma-H2AX and the NBS1/hMRE11/hRAD50 complex might function for the initial recognition of DNA damage.
Collapse
Affiliation(s)
- Junya Kobayashi
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Japan.
| |
Collapse
|
1361
|
Balajee AS, Geard CR. Replication protein A and gamma-H2AX foci assembly is triggered by cellular response to DNA double-strand breaks. Exp Cell Res 2004; 300:320-34. [PMID: 15474997 DOI: 10.1016/j.yexcr.2004.07.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 07/06/2004] [Indexed: 02/06/2023]
Abstract
Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, gamma-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and gamma-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and gamma-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and gamma-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and gamma-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with gamma-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and gamma-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with gamma-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
1362
|
Itakura E, Umeda K, Sekoguchi E, Takata H, Ohsumi M, Matsuura A. ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochem Biophys Res Commun 2004; 323:1197-202. [PMID: 15451423 DOI: 10.1016/j.bbrc.2004.08.228] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Indexed: 10/26/2022]
Abstract
PI-kinase-related protein kinase ATR forms a complex with ATRIP and plays pivotal roles in maintaining genome integrity. When DNA is damaged, the ATR-ATRIP complex is recruited to chromatin and is activated to transduce the checkpoint signal, but the precise kinase activation mechanism remains unknown. Here, we show that ATRIP is phosphorylated in an ATR-dependent manner after genotoxic stimuli. The serine 68 and 72 residues are important for the phosphorylation in vivo and are required exclusively for direct modification by ATR in vitro. Using phospho-specific antibody, we demonstrated that phosphorylated ATRIP accumulates at foci induced by DNA damage. Moreover, the loss of phosphorylation does not lead to detectable changes in the relocalization of ATRIP to nuclear foci nor in the activation of downstream effector proteins. Collectively, our results suggest that the ATR-mediated phosphorylation of ATRIP at Ser-68 and -72 is dispensable for the initial response to DNA damage.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
1363
|
Huang X, Halicka HD, Darzynkiewicz Z. Detection of Histone H2AX Phosphorylation on Ser‐139 as an Indicator of DNA Damage (DNA Double‐Strand Breaks). ACTA ACUST UNITED AC 2004; Chapter 7:Unit 7.27. [DOI: 10.1002/0471142956.cy0727s30] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuan Huang
- Brander Cancer Research Institute New York Medical College Valhalla New York
| | - H. Dorota Halicka
- Brander Cancer Research Institute New York Medical College Valhalla New York
| | | |
Collapse
|
1364
|
Yamauchi M, Suzuki K, Kodama S, Watanabe M. Stabilization of alanine substituted p53 protein at Ser15, Thr18, and Ser20 in response to ionizing radiation. Biochem Biophys Res Commun 2004; 323:906-11. [PMID: 15381086 DOI: 10.1016/j.bbrc.2004.08.175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Indexed: 11/29/2022]
Abstract
Phosphorylation of p53 at Ser15, Thr18, and Ser20 has been thought to be important for p53 stabilization in response to ionizing radiation. In the present study, we examined the X-ray-induced stabilization of Ala-substituted p53 protein at Ser15, Thr18, and Ser20, whose gene expression was controlled under an ecdyson-inducible promoter. We found that all single-, double-, or triple-Ala-substituted p53 at Ser15, Yhr18, and Ser20 were accumulated in the nucleus similarly to wild-type p53 after X-irradiation. These results indicate that the phosphorylation of p53 at Ser15, Thr18, and Ser20 is not necessarily needed for p53 stabilization in response to ionizing radiation.
Collapse
Affiliation(s)
- Motohiro Yamauchi
- Division of Radiation Biology, Department of Radiology and Radiation Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|
1365
|
Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, Deweese TL. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem 2004; 279:49624-32. [PMID: 15377658 DOI: 10.1074/jbc.m409600200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage that is not repaired with high fidelity can lead to chromosomal aberrations or mitotic cell death. To date, it is unclear what factors control the ultimate fate of a cell receiving low levels of DNA damage (i.e. survival at the risk of increased mutation or cell death). We investigated whether DNA damage could be introduced into human cells at a level and frequency that could evade detection by cellular sensors of DNA damage. To achieve this, we exposed cells to equivalent doses of ionizing radiation delivered at either a high dose rate (HDR) or a continuous low dose rate (LDR). We observed reduced activation of the DNA damage sensor ataxia-telangiectasia mutated (ATM) and its downstream target histone H2A variant (H2AX) following LDR compared with HDR exposures in both cancerous and normal human cells. This lack of DNA damage signaling was associated with increased amounts of cell killing following LDR exposures. Increased killing by LDR radiation has been previously termed the "inverse dose rate effect," an effect for which no clear molecular processes have been described. These LDR effects could be abrogated by the preactivation of ATM or simulated in HDR-treated cells by inhibiting ATM function. These data are the first to demonstrate that DNA damage introduced at a reduced rate does not activate the DNA damage sensor ATM and that failure to activate ATM-associated repair pathways contributes to the increased lethality of continuous LDR radiation exposures. This inactivation may reflect one strategy by which cells avoid accumulating mutations as a result of error-prone DNA repair and may have a broad range of implications for carcinogenesis and, potentially, the clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins Oncology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
1366
|
Ward IM, Reina-San-Martin B, Olaru A, Minn K, Tamada K, Lau JS, Cascalho M, Chen L, Nussenzweig A, Livak F, Nussenzweig MC, Chen J. 53BP1 is required for class switch recombination. ACTA ACUST UNITED AC 2004; 165:459-64. [PMID: 15159415 PMCID: PMC2172356 DOI: 10.1083/jcb.200403021] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
53BP1 participates early in the DNA damage response and is involved in cell cycle checkpoint control. Moreover, the phenotype of mice and cells deficient in 53BP1 suggests a defect in DNA repair (Ward et al., 2003b). Therefore, we asked whether or not 53BP1 would be required for the efficient repair of DNA double strand breaks. Our data indicate that homologous recombination by gene conversion does not depend on 53BP1. Moreover, 53BP1-deficient mice support normal V(D)J recombination, indicating that 53BP1 is not required for “classic” nonhomologous end joining. However, class switch recombination is severely impaired in the absence of 53BP1, suggesting that 53BP1 facilitates DNA end joining in a way that is not required or redundant for the efficient closing of RAG-induced strand breaks. These findings are similar to those observed in mice or cells deficient in the tumor suppressors ATM and H2AX, further suggesting that the functions of ATM, H2AX, and 53BP1 are closely linked.
Collapse
Affiliation(s)
- Irene M Ward
- 1306 Guggenheim, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1367
|
Zhu Y, Alvarez C, Doll R, Kurata H, Schebye XM, Parry D, Lees E. Intra-S-phase checkpoint activation by direct CDK2 inhibition. Mol Cell Biol 2004; 24:6268-77. [PMID: 15226429 PMCID: PMC434231 DOI: 10.1128/mcb.24.14.6268-6277.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To ensure proper progression through a cell cycle, checkpoints have evolved to play a surveillance role in maintaining genomic integrity. In this study, we demonstrate that loss of CDK2 activity activates an intra-S-phase checkpoint. CDK2 inhibition triggers a p53-p21 response via ATM- and ATR-dependent p53 phosphorylation at serine 15. Phosphorylation of other ATM and ATR downstream substrates, such as H2AX, NBS1, CHK1, and CHK2 is also increased. We show that during S phase when CDK2 activity is inhibited, there is an unexpected loading of the minichromosome maintenance complex onto chromatin. In addition, there is an increased number of cells with more than 4N DNA content, detected in the absence of p53, suggesting that rereplication can occur as a result of CDK2 disruption. Our findings identify an important role for CDK2 in the maintenance of genomic stability, acting via an ATM- and ATR-dependent pathway.
Collapse
Affiliation(s)
- Yonghong Zhu
- Molecular Oncology Laboratory, Department of Discovery Research, DNAX Research, Inc., Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
1368
|
Daniel R, Ramcharan J, Rogakou E, Taganov KD, Greger JG, Bonner W, Nussenzweig A, Katz RA, Skalka AM. Histone H2AX is phosphorylated at sites of retroviral DNA integration but is dispensable for postintegration repair. J Biol Chem 2004; 279:45810-4. [PMID: 15308627 DOI: 10.1074/jbc.m407886200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histone variant H2AX is rapidly phosphorylated (denoted gammaH2AX) in large chromatin domains (foci) flanking double strand DNA (dsDNA) breaks that are produced by ionizing radiation or genotoxic agents and during V(D)J recombination. H2AX-deficient cells and mice demonstrate increased sensitivity to dsDNA break damage, indicating an active role for gammaH2AX in DNA repair; however, gammaH2AX formation is not required for V(D)J recombination. The latter finding has suggested a greater dependence on gammaH2AX for anchoring free broken ends versus ends that are held together during programmed breakage-joining reactions. Retroviral DNA integration produces a unique intermediate in which a dsDNA break in host DNA is held together by the intervening viral DNA, and such a reaction provides a useful model to distinguish gammaH2AX functions. We found that integration promotes transient formation of gammaH2AX at retroviral integration sites as detected by both immunocytological and chromatin immunoprecipitation methods. These results provide the first direct evidence for the association of newly integrated viral DNA with a protein species that is an established marker for the onset of a DNA damage response. We also show that H2AX is not required for repair of the retroviral integration intermediate as determined by stable transduction. These observations provide independent support for an anchoring model for the function of gammaH2AX in chromatin repair.
Collapse
Affiliation(s)
- René Daniel
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1369
|
Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, Nieborowska-Skorska M, Blasiak J, Skorski T. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 2004; 104:3746-53. [PMID: 15304390 DOI: 10.1182/blood-2004-05-1941] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.
Collapse
Affiliation(s)
- Michal O Nowicki
- Center for Biotechnology, College of Science and Technology, Temple University, Bio-Life Sciences Bldg, Rm 419, 1900 N 12th St, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1370
|
Yoshida K, Morita T. Control of radiosensitivity of F9 mouse teratocarcinoma cells by regulation of histone H2AX gene expression using a tetracycline turn-off system. Cancer Res 2004; 64:4131-6. [PMID: 15205323 DOI: 10.1158/0008-5472.can-03-2566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mouse histone H2AX has unique COOH-terminal serine residues that are phosphorylated in response to double-strand DNA breaks introduced by ionizing radiation. This suggests that H2AX acts to maintain genomic stability. We constructed a tetracycline (tet)-directed turn-off vector and integrated it into F9 mouse teratocarcinoma cells by homologous recombination. In homozygously recombined cells, expression of the histone H2AX gene was repressed to 0.02% of the expression observed in wild-type cells by the addition of doxycycline, an analog of tet. Sensitivity of cells with repressed H2AX expression to X-irradiation was increased 1.95x, indicating that DNA repair was impaired by repression of H2AX. When we s.c. injected tet-regulated F9 cells into the flanks of mice, tumor growth was slightly suppressed by X-irradiation in H2AX-repressed tumors, whereas without X-irradiation, tumor growth did not differ by H2AX status. Thus, H2AX might be a potential molecular target for sensitizing cancer cells to radiotherapy to minimize required irradiation doses.
Collapse
Affiliation(s)
- Kayo Yoshida
- Department of Molecular Genetics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | |
Collapse
|
1371
|
Chaudhuri J, Alt FW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 2004; 4:541-52. [PMID: 15229473 DOI: 10.1038/nri1395] [Citation(s) in RCA: 446] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jayanta Chaudhuri
- Howard Hughes Medical Institute, Center for Blood Research and Department of Genetics, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
1372
|
Abstract
Breast carcinoma is the leading cause of cancer incidence, and second in cancer mortality to lung cancer, in women of the Western hemisphere. Germ line mutations in the breast cancer susceptibility gene, BRCA1, is responsible for half of all cases of hereditary breast cancer, which constitutes about 5-10% of all cases of breast cancer. Current hypothesis has ascribed a role for Brca1 in maintaining genomic stability, through its involvement in cellular response pathway to the DNA double-strand breaks (DSB). DNA DSB, which are the most deleterious form of DNA damage, are repaired through a series of coordinated steps embedded in a signal transduction pathway that ultimately ensure the elimination of potentially harmful mutations to the genome. This pathway can be crudely divided into a primary and secondary phase. The primary response phase is initiated by sensor proteins that activate transducer protein kinases Atm and Atr, which target downstream effector proteins, such as Chk1 and Chk2, to elicit the secondary response phase. Brca1 has been intimately linked with various aspects of this signaling pathway. However, the precise role of Brca1 in this process remains unclear. In this review, we will provide a simple model in an attempt to clarify the role of Brca1 during cellular response to DNA DSB.
Collapse
Affiliation(s)
- Nicholas S Y Ting
- Department of Biological Chemistry, University of California at Irvine, 124 Sprague Hall, Irvine, CA 92697, USA
| | | |
Collapse
|
1373
|
Abstract
The primary T-cell receptor repertoire is generated by somatic rearrangement of discontinuous gene segments. The shape of the combinatorial repertoire is stereotypical and, in part, evolutionarily conserved among mammals. Rearrangement is initiated by specific interactions between the recombinase and the recombination signals (RSs) that flank the gene segments. Conserved sequence variations in the RS, which modulate its interactions with the recombinase, appear to be a major factor in shaping the primary repertoire. In vitro, biochemical studies have revealed distinct steps in these complex recombinase-RS interactions that may determine the final frequency of gene segment rearrangement. These studies offer a plausible model to explain gene segment selection, but new, more physiological approaches will have to be developed to verify and refine the mechanism by which the recombinase targets the RS in its endogenous chromosomal context in vivo.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Damage/physiology
- Gene Rearrangement, T-Lymphocyte
- Genes, Immunoglobulin/immunology
- Genes, Immunoglobulin/physiology
- Genes, T-Cell Receptor
- Humans
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- VDJ Recombinases/physiology
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
1374
|
Koundrioukoff S, Polo S, Almouzni G. Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM-dependent checkpoints. DNA Repair (Amst) 2004; 3:969-78. [PMID: 15279783 DOI: 10.1016/j.dnarep.2004.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Maintenance of both genome stability and its structural organization into chromatin are essential to avoid aberrant gene expression that could lead to neoplasia. Genome integrity being threatened by various sources of genotoxic stresses, cells have evolved regulatory mechanisms, termed cell cycle checkpoints. In general, these surveillance pathways are thought to act mainly to coordinate proficient DNA repair with cell cycle progression. To date, this cellular response to genotoxic stress has been viewed mainly as a DNA-based signal transduction pathway. Recent studies, in both yeast and human, however, highlight possible connections between chromatin structure and cell cycle checkpoints, in particular those involving kinases of the ATM and ATR family, known as key response factors activated early in the checkpoint pathway. In this review, based on this example, we will discuss hypotheses for chromatin-based events as potential initiators of a checkpoint response or conversely, for chromatin-associated factors as targets of checkpoint proteins, promoting changes in chromatin structure, in order to make a lesion more accessible and contribute to a more efficient repair response.
Collapse
Affiliation(s)
- Stephane Koundrioukoff
- Laboratory of Nuclear Dynamics and Genome Plasticity, UMR 218 CNRS/Curie Institute, 26 rue d'Ulm, 75248 Paris, cedex 5, France
| | | | | |
Collapse
|
1375
|
Zhu W, Chen Y, Dutta A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol 2004; 24:7140-50. [PMID: 15282313 PMCID: PMC479725 DOI: 10.1128/mcb.24.16.7140-7150.2004] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/09/2004] [Accepted: 05/28/2004] [Indexed: 11/20/2022] Open
Abstract
Genomic DNA replication is tightly controlled to ensure that DNA replication occurs once per cell cycle; loss of this control leads to genomic instability. Geminin, a DNA replication inhibitor, plays an important role in regulation of DNA replication. To investigate the role of human geminin in the maintenance of genomic stability, we eliminated geminin by RNA interference in human cancer cells. Depletion of geminin led to overreplication and the formation of giant nuclei in cells that had wild-type or mutant p53. We found that overreplication caused by depletion of geminin activated both Chk1 and Chk2, which then phosphorylated Cdc25C on Ser216, resulting in its sequestration outside the nucleus, thus inhibiting cyclin B-Cdc2 activity. This activated G(2)/M checkpoint prevented cells with overreplicated DNA from entering mitosis. Addition of caffeine, UCN-01, or inhibitors of checkpoint pathways or silencing of Chk1 suppressed the accumulation of overreplicated cells and promoted apoptosis. From these results, we conclude that geminin is required for suppressing overreplication in human cells and that a G(2)/M checkpoint restricts the proliferation of cells with overreplicated DNA.
Collapse
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
1376
|
Abstract
One of the most toxic insults a cell can incur is a disruption of its linear DNA in the form of a double-strand break (DSB). Left unrepaired, or repaired improperly, these lesions can result in cell death or neoplastic transformation. Despite these dangers, lymphoid cells purposely introduce DSBs into their genome to maximize the diversity and effector functions of their antigen receptor genes. While the generation of breaks requires distinct lymphoid-specific factors, their resolution requires various ubiquitously expressed DNA-repair proteins, known collectively as the non-homologous end-joining pathway. In this review, we discuss the factors that constitute this pathway as well as the evidence of their involvement in two lymphoid-specific DNA recombination events.
Collapse
Affiliation(s)
- Sean Rooney
- Howard Hughes Medical Institute, The Children's Hospital, The Department of Genetics, Harvard Medical School and The Center for Blood Research, Boston, MA 02115, USA
| | | | | |
Collapse
|
1377
|
Abstract
The roles of different histone modifications have been explored extensively in a number of nuclear processes, particularly in transcriptional regulation. Only recently has the role of histone modification in signaling or facilitating DNA repair begun to be elucidated. DNA broken along both strands in the same region, a double-strand break, is damaged in the most severe way possible and can be the most difficult type of damage to repair accurately. To successfully repair the double-strand break, the cell must gain access to the damaged ends of the DNA and recruit repair factors, and in the case of homologous recombination repair, the cell must also find, colocalize, and gain access to a suitable homologous sequence. In the repair of a double-strand break, the cell must also choose between homologous and non-homologous pathways of repair. Here, we will briefly review the mechanisms of double-strand-break repair, and discuss the known roles of histone modifications in signaling and repairing double-strand breaks.Key words: H23A, double strand break repair, histone modification.
Collapse
Affiliation(s)
- John D Moore
- Department of Biological Sciences, University of Alaska Anchorage, 99508, USA
| | | |
Collapse
|
1378
|
Brumbaugh KM, Otterness DM, Geisen C, Oliveira V, Brognard J, Li X, Lejeune F, Tibbetts RS, Maquat LE, Abraham RT. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol Cell 2004; 14:585-98. [PMID: 15175154 DOI: 10.1016/j.molcel.2004.05.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 04/13/2004] [Accepted: 04/16/2004] [Indexed: 11/18/2022]
Abstract
Members of the PI 3-kinase-related kinase (PIKK) family function in mitogenic and stress-induced signaling pathways in eukaryotic cells. Here, we characterize the newest PIKK family member, hSMG-1, as a genotoxic stress-activated protein kinase that displays some functional overlap with the related kinase, ATM, in human cells. Both ATM and hSMG-1 phosphorylate Ser/Thr-Gln-containing target sequences in the checkpoint protein p53 and the nonsense-mediated mRNA decay (NMD) protein hUpf1. Expression of hSMG-1 is required for optimal p53 activation after cellular exposure to genotoxic stress, and depletion of hSMG-1 leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). Moreover, IR exposure triggers hUpf1 phosphorylation at Ser/Thr-Gln motifs, and both ATM and hSMG-1 contribute to these phosphorylation events. Finally, NMD is suppressed in hSMG-1- but not ATM-deficient cells. These results indicate that hSMG-1 plays important roles in the maintenance of both genome and transcriptome integrity in human cells.
Collapse
Affiliation(s)
- Kathryn M Brumbaugh
- Program in Signal Transduction Research, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1379
|
Ren Y, Wu JR. Differential activation of intra-S-phase checkpoint in response to tripchlorolide and its effects on DNA replication. Cell Res 2004; 14:227-33. [PMID: 15225416 DOI: 10.1038/sj.cr.7290223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
DNA replication is tightly regulated during the S phase of the cell cycle, and the activation of the intra-S-phase checkpoint due to DNA damage usually results in arrest of DNA synthesis. However, the molecular details about the correlation between the checkpoint and regulation of DNA replication are still unclear. To investigate the connections between DNA replication and DNA damage checkpoint, a DNA-damage reagent, tripchlorolide, was applied to CHO (Chinese ovary hamster) cells at early- or middle-stages of the S phase. The early-S-phase treatment with TC significantly delayed the progression of the S phase and caused the phosphorylation of the Chk1 checkpoint protein, whereas the middle-S-phase treatment only slightly slowed down the progression of the S phase. Furthermore, the analysis of DNA replication patterns revealed that replication pattern II was greatly prolonged in the cells treated with the drug during the early-S phase, whereas the late-replication patterns of these cells were hardly detected, suggesting that the activation of the intra-S-phase checkpoint inhibits the late-origin firing of DNA replication. We conclude that cells at different stages of the S phase are differentially sensitive to the DNA-damage reagent, and the activation of the intra-S-phase checkpoint blocks the DNA replication progression in the late stage of S phase.
Collapse
Affiliation(s)
- Yan Ren
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | |
Collapse
|
1380
|
Buchmann AM, Skaar JR, DeCaprio JA. Activation of a DNA damage checkpoint response in a TAF1-defective cell line. Mol Cell Biol 2004; 24:5332-9. [PMID: 15169897 PMCID: PMC419897 DOI: 10.1128/mcb.24.12.5332-5339.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphorylation of several downstream targets, including p53 and Chk1, resulting in cell cycle arrest. The increase in p53 expression and the G(1) phase arrest could be blocked by caffeine, an inhibitor of ATR. In addition, dominant negative forms of ATR but not ATM were able to override the arrest in G(1). These results suggest that a defect in TAF1 can elicit a DNA damage response.
Collapse
Affiliation(s)
- Ann M Buchmann
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
1381
|
Corbucci GG, Perrino C, Donato G, Ricchi A, Lettieri B, Troncone G, Indolfi C, Chiariello M, Avvedimento EV. Transient and reversible deoxyribonucleic acid damage in human left ventricle under controlled ischemia and reperfusion. J Am Coll Cardiol 2004; 43:1992-9. [PMID: 15172403 DOI: 10.1016/j.jacc.2004.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 01/15/2004] [Accepted: 01/27/2004] [Indexed: 01/02/2023]
Abstract
OBJECTIVES We sought to describe the sequence of molecular events during ischemia and reperfusion of the human heart and to determine the activation of stress kinases and deoxyribonucleic acid (DNA) damage response elements on apoptosis in ischemia or reperfusion of the human heart. BACKGROUND Brief ischemia is tolerated by cardiac myocytes, but it determines immediate metabolic changes and block of contraction. Prompt restoration of coronary blood flow is inexorably associated with a slow recovery of myocardial contractile function. The prolonged, postischemic contractile dysfunction in the viable tissue is called myocardial stunning. The molecular mechanisms underlying myocardial stunning and ischemia-reperfusion injury are still poorly understood. Their elucidation would be valuable in order to identify novel therapeutic strategies. METHODS We examined human left ventricular samples taken from 20 patients undergoing elective valve surgery before aortic cross-clamping, 20 +/- 2 min (brief ischemia), 58 +/- 5 min after the cross-clamping period (prolonged ischemia), and 21 +/- 4 min after reconstitution of coronary blood flow (reperfusion). Stress kinases and DNA damage sensor proteins (ATM, H2AX, p53) were determined by immunoblotting with specific antibodies. Electron microscopy analysis was carried out on ischemic and reperfused samples. ATP content, reactive oxygen species (ROS) levels, and cytochrome oxidase activity were determined by biochemical assays. RESULTS Ischemia caused accumulation of ROS, reduction of cytochrome C oxidase and ATP, and activation of stress kinases p38 and Jun terminal kinase. Electron microscopy showed significant mitochondrial swelling in the majority of cells, but no appreciable apoptosis of cardiomyocytes. During ischemia, myocytes were intensely stained by TUNEL, and many cells showed proliferative cell nuclear antigen-positive nuclei. Finally, we found in ischemic tissues increased p53/p21(WAF) levels and phosphorylation of histone H2AX, a substrate of ATM kinase, which marks double-strand DNA breaks. Reperfusion caused a robust extracellular signal-regulated kinase-1/2 activation, a marked reduction of TUNEL staining, and persistent activation of ATM checkpoint. CONCLUSIONS These data indicate that ischemia induces extensive DNA damage and activation of ATM checkpoint. Reperfusion allows the repair of the DNA lesions and salvage of ischemic cells.
Collapse
Affiliation(s)
- Gian G Corbucci
- Division of Anesthesiology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
1382
|
Karlsson KH, Stenerlöw B. Focus formation of DNA repair proteins in normal and repair-deficient cells irradiated with high-LET ions. Radiat Res 2004; 161:517-27. [PMID: 15161372 DOI: 10.1667/rr3171] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To investigate the repair of clustered lesions within the DNA/chromatin, the focus formation and persistence of foci of the phosphorylated histone protein H2AX and the repair protein MRE11 were studied in normal cells and in cells lacking DNA-PKcs (M059J) or ATM (GM2052D) after irradiation with high-LET nitrogen ions or low-LET photons. There was a rapid formation of MRE11 and gamma-H2AX foci, and 0.5 h after high-LET irradiation, the number of foci in normal cells correlated well with the number of particle hits per cell nucleus. After 8 h of repair, there were significantly more gamma-H2AX foci than MRE11 foci remaining in the normal cells, independent of radiation quality. The difficulty in repairing clustered breaks was detected as slower rejoining of DSBs (measured by DNA fragmentation analysis), as quantification of the amount of gamma-H2AX over time, and as a larger fraction of repair foci remaining after 24 h in cells irradiated with high- LET ions. These data indicate that clustered lesions are repaired by a pathway involving the same proteins that repair sparsely distributed breaks. Further, for both low- and high- LET radiation, no reduction of the initial number of gamma-H2AX and MRE11 foci was detected in M059J cells up to 21 h after irradiation, which was in accordance with a complete absence of DSB rejoining in these cells. In the GM2052D cells there was also a higher level of foci remaining after 21 h; however, this was not accompanied by unrejoined DSBs, indicating that these foci not only represent DSBs but also may be a sign of persistent problems even when breaks are rejoined.
Collapse
Affiliation(s)
- Karin H Karlsson
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden.
| | | |
Collapse
|
1383
|
Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, Khanna KK. BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 2004; 279:31251-8. [PMID: 15159397 DOI: 10.1074/jbc.m405372200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BRCA1 is a major player in the DNA damage response. This is evident from its loss, which causes cells to become sensitive to a wide variety of DNA damaging agents. The major BRCA1 binding partner, BARD1, is also implicated in the DNA damage response, and recent reports indicate that BRCA1 and BARD1 co-operate in this pathway. In this report, we utilized small interfering RNA to deplete BRCA1 and BARD1 to demonstrate that the BRCA1-BARD1 complex is required for ATM/ATR (ataxia-telangiectasia-mutated/ATM and Rad3-related)-mediated phosphorylation of p53(Ser-15) following IR- and UV radiation-induced DNA damage. In contrast, phosphorylation of a number of other ATM/ATR targets including H2AX, Chk2, Chk1, and c-jun does not depend on the presence of BRCA1-BARD1 complexes. Moreover, prior ATM/ATR-dependent phosphorylation of BRCA1 at Ser-1423 or Ser-1524 regulates the ability of ATM/ATR to phosphorylate p53(Ser-15) efficiently. Phosphorylation of p53(Ser-15) is necessary for an IR-induced G(1)/S arrest via transcriptional induction of the cyclin-dependent kinase inhibitor p21. Consistent with these data, repressing p53(Ser-15) phosphorylation by BRCA1-BARD1 depletion compromises p21 induction and the G(1)/S checkpoint arrest in response to IR but not UV radia-tion. These findings suggest that BRCA1-BARD1 complexes act as an adaptor to mediate ATM/ATR-directed phosphorylation of p53, influencing G(1)/S cell cycle progression after DNA damage.
Collapse
Affiliation(s)
- Megan Fabbro
- Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
1384
|
Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Löbrich M, Jeggo PA. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 2004; 64:2390-6. [PMID: 15059890 DOI: 10.1158/0008-5472.can-03-3207] [Citation(s) in RCA: 769] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
H2AX phosphorylation is an early step in the response to DNA damage. It is widely accepted that ATM (ataxia telangiectasia mutated protein) phosphorylates H2AX in response to DNA double-strand breaks (DSBs). Whether DNA-dependent protein kinase (DNA-PK) plays any role in this response is unclear. Here, we show that H2AX phosphorylation after exposure to ionizing radiation (IR) occurs to similar extents in human fibroblasts and in mouse embryo fibroblasts lacking either DNA-PK or ATM but is ablated in ATM-deficient cells treated with LY294002, a drug that specifically inhibits DNA-PK. Additionally, we show that inactivation of both DNA-PK and ATM is required to ablate IR-induced H2AX phosphorylation in chicken cells. We confirm that H2AX phosphorylation induced by DSBs in nonreplicating cells is ATR (ataxia telangiectasia and Rad3-related protein) independent. Taken together, we conclude that under most normal growth conditions, IR-induced H2AX phosphorylation can be carried out by ATM and DNA-PK in a redundant, overlapping manner. In contrast, DNA-PK cannot phosphorylate other proteins involved in the checkpoint response, including chromatin-associated Rad17. However, by phosphorylating H2AX, DNA-PK can contribute to the presence of the damage response proteins MDC1 and 53BP1 at the site of the DSB.
Collapse
Affiliation(s)
- Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, East Sussex, United Kingdom
| | | | | | | | | | | |
Collapse
|
1385
|
Affiliation(s)
- Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01605, USA.
| | | |
Collapse
|
1386
|
Allard S, Masson JY, Côté J. Chromatin remodeling and the maintenance of genome integrity. ACTA ACUST UNITED AC 2004; 1677:158-64. [PMID: 15020056 DOI: 10.1016/j.bbaexp.2003.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/06/2003] [Accepted: 10/06/2003] [Indexed: 12/18/2022]
Abstract
DNA damage of any type is threatening for a cell. If lesions are left unrepaired, genomic instability can arise, faithful transmission of genetic information is greatly compromised eventually leading the cell to undergo apoptosis or carcinogenesis. In order to access/detect and repair these damages, repair factors must circumvent the natural repressive barrier of chromatin. This review will present recent progress showing the intricate link between chromatin, its remodeling and the DNA repair process. Several studies demonstrated that one of the first events following specific types of DNA damage is the phosphorylation of histone H2A. This mark or the damage itself are responsible for the association of chromatin-modifying complexes near damaged DNA. These complexes are able to change the chromatin structure around the wounded DNA in order to allow the repair machinery to gain access and repair the lesion. Chromatin modifiers include ATP-dependent remodelers such as SWI/SNF and Rad54 as well as histone acetyltransferases (HATs) like SAGA/NuA4-related complexes and p300/CBP, which have been shown to facilitate DNA accessibility and repair in different pathways leading to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Stéphane Allard
- Centre de Recherche en Cancérologie de l'Université Laval, Hôtel-Dieu de Québec (CHUQ), 9 rue McMahon, Québec, Canada G1R 2J6
| | | | | |
Collapse
|
1387
|
Costanzo V, Paull T, Gottesman M, Gautier J. Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol 2004; 2:E110. [PMID: 15138496 PMCID: PMC406388 DOI: 10.1371/journal.pbio.0020110] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 02/10/2004] [Indexed: 11/25/2022] Open
Abstract
Mre11/Rad50/Nbs1 complex (MRN) is essential to suppress the generation of double-strand breaks (DSBs) during DNA replication. MRN also plays a role in the response to DSBs created by DNA damage. Hypomorphic mutations in Mre11 (which causes an ataxia-telangiectasia-like disease [ATLD]) and mutations in the ataxia-telangiectasia-mutated (ATM) gene lead to defects in handling damaged DNA and to similar clinical and cellular phenotypes. Using Xenopus egg extracts, we have designed a simple assay to define the biochemistry of Mre11. MRN is required for efficient activation of the DNA damage response induced by DSBs. We isolated a high molecular weight DNA damage signaling complex that includes MRN, damaged DNA molecules, and activated ATM. Complex formation is partially dependent upon Zn(2+) and requires an intact Mre11 C-terminal domain that is deleted in some ATLD patients. The ATLD truncation can still perform the role of Mre11 during replication. Our work demonstrates the role of Mre11 in assembling DNA damage signaling centers that are reminiscent of irradiation-induced foci. It also provides a molecular explanation for the similarities between ataxia-telangiectasia (A-T) and ATLD.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Genetics and Development, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
1388
|
Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG. E2F1 Uses the ATM Signaling Pathway to Induce p53 and Chk2 Phosphorylation and Apoptosis. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.203.2.4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The p53 tumor suppressor protein is phosphorylated and activated by several DNA damage-inducible kinases, such as ATM, and is a key effector of the DNA damage response by promoting cell cycle arrest or apoptosis. Deregulation of the Rb-E2F1 pathway also results in the activation of p53 and the promotion of apoptosis, and this contributes to the suppression of tumor development. Here, we describe a novel connection between E2F1 and the ATM DNA damage response pathway. In primary human fibroblasts lacking functional ATM, the ability of E2F1 to induce the phosphorylation of p53 and apoptosis is impaired. In contrast, ATM status has no effect on transcriptional activation of target genes or the stimulation of DNA synthesis by E2F1. Cells containing mutant Nijmegen breakage syndrome protein (NBS1), a component of the Mre11-Rad50 DNA repair complex, also have attenuated p53 phosphorylation and apoptosis in response to E2F1 expression. Moreover, E2F1 induces ATM- and NBS1-dependent phosphorylation of the checkpoint kinase Chk2 at Thr68, a phosphorylation site that stimulates Chk2 activity. Delayed γH2AX phosphorylation and absence of ATM autophosphorylation at Ser1981 suggest that E2F1 stimulates ATM through a unique mechanism that is distinct from agents that cause DNA double-strand breaks. These findings identify new roles for several DNA damage response factors by demonstrating that they also participate in the oncogenic stress signaling pathway between E2F1 and p53.
Collapse
Affiliation(s)
- John T. Powers
- 1Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
- 2Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas; and
| | - SungKi Hong
- 1Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Christopher N. Mayhew
- 3Department of Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Pamela M. Rogers
- 1Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Erik S. Knudsen
- 3Department of Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - David G. Johnson
- 1Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
- 2Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas; and
| |
Collapse
|
1389
|
Debiak M, Nikolova T, Kaina B. Loss of ATM sensitizes against O6-methylguanine triggered apoptosis, SCEs and chromosomal aberrations. DNA Repair (Amst) 2004; 3:359-68. [PMID: 15010311 DOI: 10.1016/j.dnarep.2003.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2003] [Indexed: 01/09/2023]
Abstract
A critical pre-cytotoxic and -apoptotic DNA lesion induced by methylating carcinogens and chemotherapeutic drugs is O6-methylguanine (O6MeG). The mechanism by which O6MeG causes cell death via apoptosis is only partially understood. The current model ascribes a role to DNA replication and mismatch repair, which converts O6MeG into a critical distal lesion (presumably a DNA double-strand break) that is finally responsible for genotoxicity and apoptosis. Here we analysed whether the PI3-like kinase ATM is involved in this process. ATM is a major player in recognizing and signaling DNA breaks, but most reports are limited to ionizing radiation. Comparing mouse ATM knockout fibroblasts (ATM-/-) with the corresponding wild-type (ATM+/+) we show that ATM-/- cells are hypersensitive to the cytotoxic and apoptosis-inducing effect of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Inhibition of O6-methylguanine-DNA methyltransferase (MGMT) activity by O6-benzylguanine enhanced cell killing whereas the increase of MGMT activity by transfection with an expression vector provoked MNNG resistance. This was more pronounced in ATM-/- than in ATM+/+ cells, suggesting that O6MeG is responsible, at least in part, for increased MNNG sensitivity of ATM-/- cells. Cytogenetic studies showed that MNNG-induced sister-chromatid exchange frequencies were the same in ATM-/- and ATM+/+ cells in the first mitoses following treatment, but higher in ATM-/- cells than in the wild-type in the second post-treatment mitoses, when MGMT was depleted. Also, a significant higher frequency of MNNG-induced chromosomal aberrations was observed in ATM-/- than in ATM+/+ cells when analysed at a late recovery time, which is consistent with O6MeG being the inducing lesion. In summary, we conclude that ATM is not only involved in resistance to ionizing radiation but also to methylating agents, playing a role in the repair of secondary DNA damage generated from O6MeG lesions. The data also show that ATM is not required for activating the apoptotic pathway in response to O6MeG since ATM-/- cells are able to undergo apoptosis with high frequency.
Collapse
Affiliation(s)
- Malgorzata Debiak
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Street 67, D-55131 Mainz, Germany
| | | | | |
Collapse
|
1390
|
Hoyer-Fender S. Molecular aspects of XY body formation. Cytogenet Genome Res 2004; 103:245-55. [PMID: 15051945 DOI: 10.1159/000076810] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 09/26/2003] [Indexed: 11/19/2022] Open
Abstract
More than a century ago, a densely stained area inside the nucleus of male meiotic cells was described. It was later shown to harbor the sex chromosomes which undergo transcriptional inactivation in conjunction with heterochromatinisation and synapsis to form the XY body. Formation of the XY body is conserved throughout the mammalian phylogenetic tree and is thought to be essential for successful spermatogenesis. However, its biological role as well as the molecular mechanisms underlying XY body formation are still far from being understood. A lot of effort has already been undertaken to characterize components of the XY body and to investigate their functional implications in sex chromatin heterochromatinisation and meiotic sex chromosome inactivation (MSCI). This review gives an overview of those components and their possible implications in XY body formation and function.
Collapse
Affiliation(s)
- S Hoyer-Fender
- Georg-August-Universität Göttingen, Göttinger Zentrum für Molekulare Biowissenschaften, Abteilung Entwicklungsbiologie, Göttingen, Germany.
| |
Collapse
|
1391
|
Ismail IH, Mårtensson S, Moshinsky D, Rice A, Tang C, Howlett A, McMahon G, Hammarsten O. SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene 2004; 23:873-82. [PMID: 14661061 DOI: 10.1038/sj.onc.1207303] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of the DNA-dependent protein kinase (DNA-PK) results in increased sensitivity to ionizing radiation due to inefficient repair of DNA double-strand breaks. Overexpression of DNA-PK in tumor cells conversely results in resistance to ionizing radiation. It is therefore possible that inhibition of DNA-PK will enhance the preferential killing of tumor cells by radiotherapy. Available inhibitors of DNA-PK, like wortmannin, are cytotoxic and stop the cell cycle because they inhibit phoshatidylinositol-3-kinases at 100-fold lower concentrations required to inhibit DNA-PK. In an effort to develop a specific DNA-PK inhibitor, we have characterized SU11752, from a three-substituted indolin-2-ones library. SU11752 and wortmannin were equally potent inhibitors of DNA-PK. In contrast, inhibition of the phoshatidylinositol-3-kinase p110gamma required 500-fold higher concentration of SU11752. Thus, SU11752 was a more selective inhibitor of DNA-PK than wortmannin. Inhibition kinetics and a direct assay for ATP binding showed that SU11752 inhibited DNA-PK by competing with ATP. SU11752 inhibited DNA double-strand break repair in cells and gave rise to a five-fold sensitization to ionizing radiation. At concentrations of SU11752 that inhibited DNA repair, cell cycle progression was still normal and ATM kinase activity was not inhibited. We conclude that SU11752 defines a new class of drugs that may serve as a starting point for the development of specific DNA-PK inhibitors.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Department of Clinical Chemistry, Göteborg University, Sahlgrenska University Hospital, Göteborg 41345, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
1392
|
Marples B, Wouters BG, Collis SJ, Chalmers AJ, Joiner MC. Low-Dose Hyper-radiosensitivity: A Consequence of Ineffective Cell Cycle Arrest of Radiation-Damaged G2-Phase Cells. Radiat Res 2004; 161:247-55. [PMID: 14982490 DOI: 10.1667/rr3130] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review highlights the phenomenon of low-dose hyper- radiosensitivity (HRS), an effect in which cells die from excessive sensitivity to small single doses of ionizing radiation but become more resistant (per unit dose) to larger single doses. Established and new data pertaining to HRS are discussed with respect to its possible underlying molecular mechanisms. To explain HRS, a three-component model is proposed that consists of damage recognition, signal transduction and damage repair. The foundation of the model is a rapidly occurring dose-dependent pre-mitotic cell cycle checkpoint that is specific to cells irradiated in the G2phase. This checkpoint exhibits a dose expression profile that is identical to the cell survival pattern that characterizes HRS and is probably the key control element of low-dose radiosensitivity. This premise is strengthened by the recent observation coupling low- dose radiosensitivity of G2-phase cells directly to HRS. The putative role of known damage response factors such as ATM, PARP, H2AX, 53BP1 and HDAC4 is also included within the framework of the HRS model.
Collapse
Affiliation(s)
- B Marples
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201-2013, USA.
| | | | | | | | | |
Collapse
|
1393
|
Golding SE, Rosenberg E, Khalil A, McEwen A, Holmes M, Neill S, Povirk LF, Valerie K. Double strand break repair by homologous recombination is regulated by cell cycle-independent signaling via ATM in human glioma cells. J Biol Chem 2004; 279:15402-10. [PMID: 14744854 DOI: 10.1074/jbc.m314191200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate double strand break (DSB) repair and signaling in human glioma cells, we stably transfected human U87 (ATM(+), p53(+)) glioma cells with a plasmid having a single I-SceI site within an inactive green fluorescent protein (GFP) expression cassette, allowing for the detection of homologous recombination repair (HRR) by GFP expression. HRR and nonhomologous end joining (NHEJ) were also determined by PCR. DSB repair was first detected at 12 h postinfection with an adenovirus expressing I-SceI with repair reaching plateau levels between 24 and 48 h. Within this time frame, NHEJ predominated over HRR in the range of 3-50-fold. To assess the involvement of ATM in DSB repair, we first examined whether ATM was associated with the DSB. Chromatin immunoprecipitation showed that ATM was present at the site of the DSB as early as 18 h postinfection. In cells treated with caffeine, an inhibitor of ATM, HRR was reduced, whereas NHEJ was not. In support of this finding, GFP flow cytometry demonstrated that caffeine reduced HRR by 90% under conditions when ATM kinase activity was inhibited. Dominant-negative ATM expressed from adenovirus inhibited HRR by 45%, also having little to no effect on NHEJ. Furthermore, HRR was inhibited by caffeine in serum-starved cells arrested in G(0)/G(1), suggesting that ATM is also important for HRR outside of the S and G(2) cell cycle phases. Altogether, these results demonstrate that HRR contributes substantially to DSB repair in human glioma cells, and, importantly, ATM plays a critical role in regulating HRR but not NHEJ throughout the cell cycle.
Collapse
Affiliation(s)
- Sarah E Golding
- Department of Radiation Oncology, Pharmacology & Toxicology, Medical College of Virginia, Virginia 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
1394
|
Kühne C, Tjörnhammar ML, Pongor S, Banks L, Simoncsits A. Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint. Nucleic Acids Res 2004; 31:7227-37. [PMID: 14654698 PMCID: PMC291875 DOI: 10.1093/nar/gkg937] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3'-hydroxyl and 5'-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function.
Collapse
Affiliation(s)
- Christian Kühne
- International Center for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano 99, I-34000 Trieste, Italy.
| | | | | | | | | |
Collapse
|
1395
|
Perche PY, Robert-Nicoud M, Khochbin S, Vourc'h C. [Nucleosome differentiation: role of histone H2A variants]. Med Sci (Paris) 2004; 19:1137-45. [PMID: 14648485 DOI: 10.1051/medsci/200319111137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The histones H2A, H2B, H3 and H4 are very conserved basic proteins that wrap almost two turns of DNA to form the nucleosome core. Conventional histones can be replaced with histone variants that are found in all eukaryotic organisms. Together with other nucleosome modification pathways, histone variants participate in the functional specialization of chromatin. In this review, we focus on three major H2A histone variants: H2A.X, H2A.Z and macroH2A. Recent discoveries highlight their involvement in crucial events such as DNA repair and transcriptional regulation.
Collapse
Affiliation(s)
- Pierre-Yves Perche
- UMR s-309, Université Joseph Fourier, Inserm, Institut Albert-Bonniot, 38706 La Tronche.
| | | | | | | |
Collapse
|
1396
|
Olive PL. Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol 2004; 75:355-73. [PMID: 15603433 DOI: 10.1016/s0091-679x(04)75014-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peggy L Olive
- Department of Medical Biophysics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| |
Collapse
|
1397
|
Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR. Histone H2AX Phosphorylation as a Predictor of Radiosensitivity and Target for Radiotherapy. J Biol Chem 2004; 279:2273-80. [PMID: 14561744 DOI: 10.1074/jbc.m310030200] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on the role of phosphorylation of the histone H2A variant H2AX in recruitment of DNA repair and checkpoint proteins to the sites of DNA damage, we have investigated gammaH2AX as a reporter of tumor radiosensitivity and a potential target to enhance the effectiveness of radiation therapy. Clinically relevant ionizing radiation (IR) doses induced similar patterns of gammaH2AX focus formation or immunoreactivity in radiosensitive and radioresistant human tumor cell lines and xenografted tumors. However, radiosensitive tumor cells and xenografts retained gammaH2AX for a greater duration than radioresistant cells and tumors. These results suggest that persistence of gammaH2AX after IR may predict tumor response to radiotherapy. We synthesized peptide mimics of the H2AX carboxyl-terminal tail to test whether antagonizing H2AX function affects tumor cell survival following IR. The peptides did not alter the viability of unirradiated tumor cells, but both blocked induction of gammaH2AX foci by IR and enhanced cell death in irradiated radioresistant tumor cells. These results suggest that H2AX is a potential molecular target to enhance the effects of radiotherapy.
Collapse
Affiliation(s)
- Neelam Taneja
- Center for Molecular Oncology, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
1398
|
Abstract
The ability to sense DNA damage and activate response pathways that coordinate cell cycle progression and DNA repair is essential for the maintenance of genomic integrity and the viability of organisms. During the last couple of years, several proteins have been identified that participate very early in the DNA damage response. Here we review the current understanding of the mechanisms by which mammalian cells detect DNA lesions, especially double-strand breaks, and mediate the signal to downstream transducers.
Collapse
Affiliation(s)
- Irene Ward
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
1399
|
Histone modifications. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
1400
|
Huang X, Okafuji M, Traganos F, Luther E, Holden E, Darzynkiewicz Z. Assessment of histone H2AX phosphorylation induced by DNA topoisomerase I and II inhibitors topotecan and mitoxantrone and by the DNA cross-linking agent cisplatin. ACTA ACUST UNITED AC 2004; 58:99-110. [PMID: 15057963 DOI: 10.1002/cyto.a.20018] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND DNA double-strand breaks (DSBs) in chromatin, whether induced by radiation, antitumor drugs, or by apoptosis-associated (AA) DNA fragmentation, provide a signal for histone H2AX phosphorylation on Ser-139; the phosphorylated H2AX is denoted gammaH2AX. The intensity of immunofluorescence (IF) of gammaH2AX was reported to reveal the frequency of DSBs in chromatin induced by radiation or by DNA topoisomerase I (topo 1) and II (topo 2) inhibitors. The purpose of this study was to further characterize the drug-induced (DI) IF of gammaH2AX, and in particular to distinguish it from AA gammaH2AX IF triggered by DNA breaks that occur in the course of AA DNA fragmentation. METHODS HL-60 cells in cultures were treated with topotecan (TPT), mitoxantrone (MTX), or with DNA cross-linking drug cisplatin (CP); using multiparameter flow and laser-scanning cytometry, induction of gammaH2AX was correlated with: 1) caspase-3 activation; 2) chromatin condensation, 3) cell cycle phase, and 4) AA DNA fragmentation. The intensity of gammaH2AX IF was compensated for by an increase in histone/DNA content, which doubles during the cell cycle, and for the "programmed" H2AX phosphorylation, which occurs in untreated cells. RESULTS In cells treated with TPT or MTX, the increase in DI-gammaH2AX IF peaked at 1.5 or 2 h, and was maximal in S- or G(1)-phase cells, respectively, for each drug. In cells treated with CP, compared with TPT, the gammaH2AX IF was less intense, peaked later (3 h) and showed no cell cycle-phase specificity. In the presence of phosphatase inhibitor calyculin A, a continuous increase in the TPT-induced gammaH2AX IF was still seen past 1.5 h, and after 3 h gammaH2AX IF was 2.7- to 3.4-fold higher than in the absence of the inhibitor. The AA gammaH2AX IF was distinguished from the DI-gammaH2AX IF by: 1) its greater intensity; 2) its prevention by caspase inhibitor zVAD-FMK; and 3) the concurrent activation of caspase-3 in the same cells. A decrease in AA gammaH2AX IF coinciding with AA chromatin condensation was seen in the late stages of apoptosis. CONCLUSIONS Multiparameter analysis of gammaH2AX IF, caspase-3 activation, cellular DNA content, and chromatin condensation allowed us to distinguish the DI from AA H2AX phosphorylation and relate them to the cell cycle phase and stage of apoptosis. With a comparable degree of ds DNA breaks, the cells arrested at the G1 or G2/M checkpoint were less prone to undergo apoptosis than the cells replicating DNA. H2AX phosphorylation seen in CP-treated cells may be associated with DNA repair that involves nucleotide excision repair (NER) and nonhomologous end joining (NHEJ). When the primary drug-induced lesions do not involve ds DNA breaks, but ds DNA breaks are formed during DNA repair, as in the case of CP, analysis of H2AX phosphorylation may reflect extent of the repair process.
Collapse
Affiliation(s)
- Xuan Huang
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10532, USA
| | | | | | | | | | | |
Collapse
|