1351
|
Liebermeister W, Rapoport TA, Heinrich R. Ratcheting in post-translational protein translocation: a mathematical model. J Mol Biol 2001; 305:643-56. [PMID: 11152619 DOI: 10.1006/jmbi.2000.4302] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a non-steady-state mathematical model describing post-translational protein translocation across the endoplasmic reticulum membrane. Movement of the polypeptide chain through the channel in the endoplasmic reticulum membrane is considered to be a stochastic process which is biased at the lumenal side of the channel by the binding of BiP (Kar2p), a member of the Hsp70 family of ATPases (ratcheting model). Assuming that movement of the chain through the channel is caused by passive diffusion (Brownian ratchet), the model describes all available experimental data. The optimum set of model parameters indicates that the ratcheting mechanism functions at near-maximum rate, being relatively insensitive to variations of the association or dissociation rate constants of BiP or its concentration. The estimated rate constant for diffusion of a polypeptide inside the channel indicates that the chain makes contact with the walls of the channel. Since fitting of the model to the data required that the backward rate constant be larger than the forward constant during early diffusion steps, translocation must occur against a force. The latter may arise, for example, from the unfolding of the polypeptide chain in the cytosol. Our results indicate that the ratchet can transport polypeptides against a free energy of about 25 kJ/mol without significant retardation of translocation. The modeling also suggests that the BiP ratchet is optimized, allowing fast translocation to be coupled with minimum consumption of ATP and rapid dissociation of BiP in the lumen of the ER. Finally, we have estimated the maximum hydrophobicity of a polypeptide segment up to which lateral partitioning from the channel into the lipid phase does not result in significant retardation of translocation.
Collapse
Affiliation(s)
- W Liebermeister
- Theoretische Biophysik Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | | | | |
Collapse
|
1352
|
|
1353
|
Tieleman DP, Berendsen HJ, Sansom MS. Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces. Biophys J 2001; 80:331-46. [PMID: 11159406 PMCID: PMC1301237 DOI: 10.1016/s0006-3495(01)76018-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Understanding the binding and insertion of peptides in lipid bilayers is a prerequisite for understanding phenomena such as antimicrobial activity and membrane-protein folding. We describe molecular dynamics simulations of the antimicrobial peptide alamethicin in lipid/water and octane/water environments, taking into account an external electric field to mimic the membrane potential. At cis-positive potentials, alamethicin does not insert into a phospholipid bilayer in 10 ns of simulation, due to the slow dynamics of the peptide and lipids. However, in octane N-terminal insertion occurs at field strengths from 0.33 V/nm and higher, in simulations of up to 100 ns duration. Insertion of alamethicin occurs in two steps, corresponding to desolvation of the Gln7 side chain, and the backbone of Aib10 and Gly11. The proline induced helix kink angle does not change significantly during insertion. Polyalanine and alamethicin form stable helices both when inserted in octane and at the water/octane interface, where they partition in the same location. In water, both polyalanine and alamethicin partially unfold in multiple simulations. We present a detailed analysis of the insertion of alamethicin into the octane slab and the influence of the external field on the peptide structure. Our findings give new insight into the mechanism of channel formation by alamethicin and the structure and dynamics of membrane-associated helices.
Collapse
Affiliation(s)
- D P Tieleman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, The Rex Richards Building, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | | | | |
Collapse
|
1354
|
Rosenbusch JP, Lustig A, Grabo M, Zulauf M, Regenass M. Approaches to determining membrane protein structures to high resolution: do selections of subpopulations occur? Micron 2001; 32:75-90. [PMID: 10900383 DOI: 10.1016/s0968-4328(00)00021-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three different methods are currently used for the study of high-resolution structures of membrane proteins: X-ray crystallography, electron crystallography, and nuclear magnetic resonance (NMR) spectroscopy. Thus far, all methods combined have yielded a rather modest number of crystal structures that have been solved at the atomic level. It is hypothesized here that different methods may select different populations of proteins on the basis of various properties. Thus, protein stability may be a significant factor in the formation of three-dimensional (3D) crystals from detergent solutions, since exposure of hydrophobic protein zones to water may cause structural perturbation or denaturation in conformationally labile proteins. This is different in the formation of two-dimensional (2D) crystals where a protein remains protected in its native membrane environment. A biological selection mechanism may therefore be operative in that highly ordered lattices may form only if strong protein-protein interactions are relevant in vivo, thereby limiting the number of proteins that are amenable to electron crystallography. Keeping a protein in a bilayer environment throughout 3D crystallization maintains the lateral pressure existing in native membranes. This can be accomplished by using lipidic cubic phases. Alternatively, the hydrophobic interface of a membrane protein may be spared from contact with water by crystallization from organic solvents where the polar caps are protected in reverse micelles by using appropriate detergents. Some of the criteria that are useful in optimizing the various approaches are given. While the usefulness of complementary methods seems obvious, the results presented may be particularly critical in recognizing key problems in other structural approaches.
Collapse
Affiliation(s)
- J P Rosenbusch
- Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
1355
|
Orlandini E, Seno F, Banavar JR, Laio A, Maritan A. Deciphering the folding kinetics of transmembrane helical proteins. Proc Natl Acad Sci U S A 2000; 97:14229-34. [PMID: 11121029 PMCID: PMC18900 DOI: 10.1073/pnas.97.26.14229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly a quarter of genomic sequences and almost half of all receptors that are likely to be targets for drug design are integral membrane proteins. Understanding the detailed mechanisms of the folding of membrane proteins is a largely unsolved, key problem in structural biology. Here, we introduce a general model and use computer simulations to study the equilibrium properties and the folding kinetics of a C(alpha)-based two-helix bundle fragment (comprised of 66 aa) of bacteriorhodopsin. Various intermediates are identified and their free energy are calculated together with the free energy barrier between them. In 40% of folding trajectories, the folding rate is considerably increased by the presence of nonobligatory intermediates acting as traps. In all cases, a substantial portion of the helices is rapidly formed. This initial stage is followed by a long period of consolidation of the helices accompanied by their correct packing within the membrane. Our results provide the framework for understanding the variety of folding pathways of helical transmembrane proteins.
Collapse
Affiliation(s)
- E Orlandini
- Istituto Nazionale Fisica della Materia (INFM), Dipartimento di Fisica, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
1356
|
Petrache HI, Dodd SW, Brown MF. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. Biophys J 2000; 79:3172-92. [PMID: 11106622 PMCID: PMC1301193 DOI: 10.1016/s0006-3495(00)76551-9] [Citation(s) in RCA: 536] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Deuterium ((2)H) NMR spectroscopy provides detailed information regarding the structural fluctuations of lipid bilayers, including both the equilibrium properties and dynamics. Experimental (2)H NMR measurements for the homologous series of 1, 2-diacyl-sn-glycero-3-phosphocholines with perdeuterated saturated chains (from C12:0 to C18:0) have been performed on randomly oriented, fully hydrated multilamellar samples. For each lipid, the C-D bond order parameters have been calculated from de-Paked (2)H NMR spectra as a function of temperature. The experimental order parameters were analyzed using a mean-torque potential model for the acyl chain segment distributions, and comparison was made with the conventional diamond lattice approach. Statistical mechanical principles were used to relate the measured order parameters to the lipid bilayer structural parameters: the hydrocarbon thickness and the mean interfacial area per lipid. At fixed temperature, the area decreases with increasing acyl length, indicating increased van der Waals attraction for longer lipid chains. However, the main effect of increasing the acyl chain length is on the hydrocarbon thickness rather than on the area per lipid. Expansion coefficients of the structural parameters are reported and interpreted using an empirical free energy function that describes the force balance in fluid bilayers. At the same absolute temperature, the phosphatidylcholine (PC) series exhibits a universal chain packing profile that differs from that of phosphatidylethanolamines (PE). Hence, the lateral packing of phospholipids is more sensitive to the headgroup methylation than to the acyl chain length. A fit to the area per lipid for the PC series using the empirical free energy function shows that the PE area represents a limiting value for the packing of fluid acyl chains.
Collapse
Affiliation(s)
- H I Petrache
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
1357
|
Yu SM, McQuade DT, Quinn MA, Hackenberger CP, Krebs MP, Polans AS, Gellman SH. An improved tripod amphiphile for membrane protein solubilization. Protein Sci 2000; 9:2518-27. [PMID: 11206073 PMCID: PMC2144526 DOI: 10.1110/ps.9.12.2518] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Intrinsic membrane proteins represent a large fraction of the proteins produced by living organisms and perform many crucial functions. Structural and functional characterization of membrane proteins generally requires that they be extracted from the native lipid bilayer and solubilized with a small synthetic amphiphile, for example, a detergent. We describe the development of a small molecule with a distinctive amphiphilic architecture, a "tripod amphiphile," that solubilizes both bacteriorhodopsin (BR) and bovine rhodopsin (Rho). The polar portion of this amphiphile contains an amide and an amine-oxide; small variations in this polar segment are found to have profound effects on protein solubilization properties. The optimal tripod amphiphile extracts both BR and Rho from the native membrane environments and maintains each protein in a monomeric native-like form for several weeks after delipidation. Tripod amphiphiles are designed to display greater conformational rigidity than conventional detergents, with the long-range goal of promoting membrane protein crystallization. The results reported here represent an important step toward that ultimate goal.
Collapse
Affiliation(s)
- S M Yu
- Department of Chemistry, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | | | |
Collapse
|
1358
|
Han X, Tamm LK. A host-guest system to study structure-function relationships of membrane fusion peptides. Proc Natl Acad Sci U S A 2000; 97:13097-102. [PMID: 11069282 PMCID: PMC27184 DOI: 10.1073/pnas.230212097] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We designed a host-guest fusion peptide system, which is completely soluble in water and has a high affinity for biological and lipid model membranes. The guest sequences are those of the fusion peptides of influenza hemagglutinin, which are solubilized by a highly charged unstructured C-terminal host sequence. These peptides partition to the surface of negatively charged liposomes or erythrocytes and elicit membrane fusion or hemolysis. They undergo a conformational change from random coil to an obliquely inserted ( approximately 33 degrees from the surface) alpha-helix on binding to model membranes. Partition coefficients for membrane insertion were measured for influenza fusion peptides of increasing lengths (n = 8, 13, 16, and 20). The hydrophobic contribution to the free energy of binding of the 20-residue fusion peptide at pH 5.0 is -7.6 kcal/mol (1 cal = 4.18 J). This energy is sufficient to stabilize a "stalk" intermediate if a typical number of fusion peptides assemble at the site of membrane fusion. The fusion activity of the fusion peptides increases with each increment in length, and this increase strictly correlates with the hydrophobic binding energy and the angle of insertion.
Collapse
Affiliation(s)
- X Han
- Department of Molecular Physiology and Biological Physics and Center for Structural Biology, University of Virginia Health Sciences Center, P.O. Box 800736, Charlottesville, VA 22908-0736, USA
| | | |
Collapse
|
1359
|
Kessel A, Schulten K, Ben-Tal N. Calculations suggest a pathway for the transverse diffusion of a hydrophobic peptide across a lipid bilayer. Biophys J 2000; 79:2322-30. [PMID: 11053112 PMCID: PMC1301120 DOI: 10.1016/s0006-3495(00)76478-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alamethicin is a hydrophobic antibiotic peptide 20 amino acids in length. It is predominantly helical and partitions into lipid bilayers mostly in transmembrane orientations. The rate of the peptide transverse diffusion (flip-flop) in palmitoyl-oleyl-phosphatidylcholine vesicles has been measured recently and the results suggest that it involves an energy barrier, presumably due to the free energy of transfer of the peptide termini across the bilayer. We used continuum-solvent model calculations, the known x-ray crystal structure of alamethicin and a simplified representation of the lipid bilayer as a slab of low dielectric constant to calculate the flip-flop rate. We assumed that the lipids adjust rapidly to each configuration of alamethicin in the bilayer because their motions are significantly faster than the average peptide flip-flop time. Thus, we considered the process as a sequence of discrete peptide-membrane configurations, representing critical steps in the diffusion, and estimated the transmembrane flip-flop rate from the calculated free energy of the system in each configuration. Our calculations indicate that the simplest possible pathway, i.e., the rotation of the helix around the bilayer midplane, involving the simultaneous burial of the two termini in the membrane, is energetically unfavorable. The most plausible alternative is a two-step process, comprised of a rotation of alamethicin around its C-terminus residue from the initial transmembrane orientation to a surface orientation, followed by a rotation around the N-terminus residue from the surface to the final reversed transmembrane orientation. This process involves the burial of one terminus at a time and is much more likely than the rotation of the helix around the bilayer midplane. Our calculations give flip-flop rates of approximately 10(-7)/s for this pathway, in accord with the measured value of 1.7 x 10(-6)/s.
Collapse
Affiliation(s)
- A Kessel
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
1360
|
Vogt B, Ducarme P, Schinzel S, Brasseur R, Bechinger B. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling. Biophys J 2000; 79:2644-56. [PMID: 11053137 PMCID: PMC1301145 DOI: 10.1016/s0006-3495(00)76503-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In order to better understand the driving forces that determine the alignment of amphipathic helical polypeptides with respect to the surface of phospholipid bilayers, lysine-containing peptide sequences were designed, prepared by solid-phase chemical synthesis, and reconstituted into membranes. CD spectroscopy indicates that all peptides exhibit a high degree of helicity in the presence of SDS micelles or POPC small unilamellar vesicles. Proton-decoupled (31)P-NMR solid-state NMR spectroscopy demonstrates that in the presence of peptides liquid crystalline phosphatidylcholine membranes orient well along glass surfaces. The orientational distribution and dynamics of peptides labeled with (15)N at selected sites were investigated by proton-decoupled (15)N solid-state NMR spectroscopy. Polypeptides with a single lysine residue adopt a transmembrane orientation, thereby locating this polar amino acid within the core region of the bilayer. In contrast, peptides with > or = 3 lysines reside along the surface of the membrane. With 2 lysines in the center of an otherwise hydrophobic amino acid sequence the peptides assume a broad orientational distribution. The energy of lysine discharge, hydrophobic, polar, and all other interactions are estimated to quantitatively describe the polypeptide topologies observed. Furthermore, a molecular modeling algorithm based on the hydrophobicities of atoms in a continuous hydrophilic-hydrophobic-hydrophilic potential describes the experimentally observed peptide topologies well.
Collapse
Affiliation(s)
- B Vogt
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
1361
|
Toescu EC, Myronova N, Verkhratsky A. Age-related structural and functional changes of brain mitochondria. Cell Calcium 2000; 28:329-38. [PMID: 11115372 DOI: 10.1054/ceca.2000.0167] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Normal ageing is associated with a gradual decline in the capacity of various cell types, including neurones, to respond to metabolic stress and return to the resting state. An important factor in the decrease of this 'homeostatic reserve' is the gradual, age-dependent impairment of mitochondrial function. In this article we review some of the major structural and functional changes in mitochondria associated with ageing. Apart from the increased mutations in mitochondrial DNA and the evidence for increased oxidative stress with ageing, we also discuss, in some detail, the importance of the mitochondrial membrane structure and composition (in particular lipid composition) for mitochondrial function in general and during ageing. Although some of the neurodegenerative diseases are also associated with some degree of mitochondrial dysfunction, it is not yet clear if these changes are due to the underlining process of normal, physiological ageing or due to the specific pathophysiologic agents responsible for the neurodegenerative processes. Furthermore, we are proposing that there are important differences between normal ageing and neurodegeneration.
Collapse
Affiliation(s)
- E C Toescu
- Department of Physiology, Division Medical Sciences, The University of Birmingham, Edgbaston, UK.
| | | | | |
Collapse
|
1362
|
Abstract
A dipole lattice model for lipid membranes and their interactions with peptides is presented. It uses the Langevin dipole method to calculate electrostatic interactions in the heterogeneous membrane environment. A series of test cases are presented, including spherical charges, dipoles, side chain analogs, and helical peptides. The model consistently produces qualitatively correct results.
Collapse
Affiliation(s)
- A Grossfield
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
1363
|
Harzer U, Bechinger B. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Biochemistry 2000; 39:13106-14. [PMID: 11052662 DOI: 10.1021/bi000770n] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secondary structure and alignment of hydrophobic model peptides in phosphatidylcholine membranes were investigated as a function of hydrophobic mismatch by CD and oriented proton-decoupled (15)N solid-state NMR spectroscopies. In addition, the macroscopic phase and the orientational order of the phospholipid headgroups was analyzed by proton-decoupled (31)P NMR spectroscopy. Both, variations in the composition of the polypeptide (10-30 hydrophobic residues) as well as the fatty acid acyl chain of the phospholipid (10-22 carbons) were studied. At lipid-to-peptide ratios of 50, the peptides adopt helical conformations and bilayer macroscopic phases are predominant. The peptide and lipid maintain much of their orientational order even when the peptide is calculated to be 3 A too short or 14 A too long to fit into the pure lipid bilayer. A continuous decrease in the (15)N chemical shift obtained from transmembrane peptides in oriented membranes suggests an increasing helical tilt angle when the membrane thickness is reduced. This response is, however, insufficient to account for the full hydrophobic mismatch. When the helix is much too long to span the membrane, both the lipid and the peptide order are perturbed, an indication of changes in the macroscopic properties of the membrane. In contrast, sequences that are much too short show little effect on the phospholipid headgroup order, but the peptides exhibit a wide range of orientational distributions predominantly close to parallel to the membrane surface. A thermodynamic formalism is applied to describe the two-state equilibrium between in-plane and transmembrane peptide orientations.
Collapse
Affiliation(s)
- U Harzer
- Max Planck Institute for Biochemistry, Am Klopferspitz 18A, 82152 Martinsried, Germany
| | | |
Collapse
|
1364
|
Ladokhin AS, Jayasinghe S, White SH. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 2000; 285:235-45. [PMID: 11017708 DOI: 10.1006/abio.2000.4773] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tryptophan fluorescence is a powerful tool for studying protein structure and function, especially membrane-active proteins and peptides. It is arguably the most frequently used tool for examining the interactions of proteins and peptides with vesicular unilamellar model membranes. However, high light scattering associated with vesicular membrane systems presents special challenges. Because of their reduced light scattering compared to large unilamellar vesicles (LUV), small unilamellar vesicles (SUV) produced by sonication are widely used membrane models. Unfortunately, SUV, unlike LUV, are metastable and consequently unsuitable for equilibrium thermodynamic measurements. We present simple and easily implemented experimental procedures for the accurate determination of tryptophan (Trp) fluorescence in either LUV or SUV. Specifically, we show that Trp spectra can be obtained in the presence of up to 6 mM LUV that are virtually identical to spectra obtained in buffer alone, which obviates the use of SUV. We show how the widths and peak positions of such spectra can be used to evaluate the heterogeneity of the membrane conformation and penetration of peptides. Finally, we show how to use a reference fluorophore for the correction of intensity measurements so that the energetics of peptide partitioning into membranes can be accurately determined.
Collapse
Affiliation(s)
- A S Ladokhin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA
| | | | | |
Collapse
|
1365
|
Petrache HI, Grossfield A, MacKenzie KR, Engelman DM, Woolf TB. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations. J Mol Biol 2000; 302:727-46. [PMID: 10986130 DOI: 10.1006/jmbi.2000.4072] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Starting from the glycophorin A dimer structure determined by NMR, we performed simulations of both dimer and monomer forms in explicit lipid bilayers with constant normal pressure, lateral area, and temperature using the CHARMM potential. Analysis of the trajectories in four different lipids reveals how lipid chain length and saturation modulate the structural and energetic properties of transmembrane helices. Helix tilt, helix-helix crossing angle, and helix accessible volume depend on lipid type in a manner consistent with hydrophobic matching concepts: the most relevant lipid property appears to be the bilayer thickness. Although the net helix-helix interaction enthalpy is strongly attractive, analysis of residue-residue interactions reveals significant unfavorable electrostatic repulsion between interfacial glycine residues previously shown to be critical for dimerization. Peptide volume is nearly conserved upon dimerization in all lipid types, indicating that the monomeric helices pack equally well with lipid as dimer helices do with one another. Enthalpy calculations indicate that the helix-environment interaction energy is lower in the dimer than in the monomer form, when solvated by unsaturated lipids. In all lipid environments there is a marked preference for lipids to interact with peptide predominantly through one rather than both acyl chains. Although our trajectories are not long enough to allow a full thermodynamic treatment, these results demonstrate that molecular dynamics simulations are a powerful method for investigating the protein-protein, protein-lipid, and lipid-lipid interactions that determine the structure, stability and dynamics of transmembrane alpha-helices in membranes.
Collapse
Affiliation(s)
- H I Petrache
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
1366
|
Abstract
Membrane proteins present a hydrophobic surface to the surrounding lipid, whereas portions protruding into the aqueous milieu expose a polar surface. But how have proteins evolved to deal with the complex environment at the membrane-water interface? Some insights have been provided by high-resolution structures of membrane proteins, and recent studies of the role of individual amino acids in mediating protein-lipid contacts have shed further light on this issue. It now appears clear that the polar-aromatic residues Trp and Tyr have a specific affinity for a region near the lipid carbonyls, whereas positively charged residues extend into the lipid phosphate region.
Collapse
Affiliation(s)
- J A Killian
- Dept of Biochemistry of Membranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
1367
|
Suárez T, Gallaher WR, Agirre A, Goñi FM, Nieva JL. Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: putative role during viral fusion. J Virol 2000; 74:8038-47. [PMID: 10933713 PMCID: PMC112336 DOI: 10.1128/jvi.74.17.8038-8047.2000] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a region within the ectodomain of the fusogenic human immunodeficiency virus type 1 (HIV-1) gp41, different from the fusion peptide, that interacts strongly with membranes. This conserved sequence, which immediately precedes the transmembrane anchor, is not highly hydrophobic according to the Kyte-Doolittle hydropathy prediction algorithm, yet it shows a high tendency to partition into the membrane interface, as revealed by the Wimley-White interfacial hydrophobicity scale. We have investigated here the membrane effects induced by NH(2)-DKWASLWNWFNITNWLWYIK-CONH(2) (HIV(c)), the membrane interface-partitioning region at the C terminus of the gp41 ectodomain, in comparison to those caused by NH(2)-AVGIGALFLGFLGAAGSTMGARS-CONH(2) (HIV(n)), the fusion peptide at the N terminus of the subunit. Both HIV(c) and HIV(n) were seen to induce membrane fusion and permeabilization, although lower doses of HIV(c) were required for comparable effects to be detected. Experiments in which equimolar mixtures of HIV(c) and HIV(n) were used indicated that both peptides may act in a cooperative way. Peptide-membrane and peptide-peptide interactions underlying those effects were further confirmed by analyzing the changes in fluorescence of peptide Trp residues. Replacement of the first three Trp residues by Ala, known to render a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, also abrogated the HIV(c) ability to induce membrane fusion or form complexes with HIV(n) but not its ability to associate with vesicles. Hydropathy analysis indicated that the presence of two membrane-partitioning stretches separated by a collapsible intervening sequence is a common structural motif among other viral envelope proteins. Moreover, sequences with membrane surface-residing residues preceding the transmembrane anchor appeared to be a common feature in viral fusion proteins of several virus families. According to our experimental results, such a feature might be related to their fusogenic function.
Collapse
Affiliation(s)
- T Suárez
- Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
1368
|
Müller DJ, Heymann JB, Oesterhelt F, Möller C, Gaub H, Büldt G, Engel A. Atomic force microscopy of native purple membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:27-38. [PMID: 10984588 DOI: 10.1016/s0005-2728(00)00127-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atomic force microscopy (AFM) allows the observation of surface structures of purple membrane (PM) in buffer solution with subnanometer resolution. This offers the possibility to classify the major conformations of the native bacteriorhodopsin (BR) surfaces and to map the variability of individual polypeptide loops connecting transmembrane alpha-helices of BR. The position, the variability and the flexibility of these loops depend on the packing arrangement of BR molecules in the lipid bilayer with significant differences observed between the trigonal and orthorhombic crystal forms. Cleavage of the Schiff base bond leads to a disassembly of the trigonal PM crystal, which is restored by regenerating the bleached PM. The combination of single molecule AFM imaging and single molecule force-spectroscopy provides an unique insight into the interactions between individual BR molecules and the PM, and between secondary structure elements within BR.
Collapse
Affiliation(s)
- D J Müller
- M.E. Müller-Institute for Structural Biology, Biozentrum, University of Basel, Klingelkbergstr. 70, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
1369
|
Luecke H. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:133-56. [PMID: 10984596 DOI: 10.1016/s0005-2728(00)00135-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.
Collapse
Affiliation(s)
- H Luecke
- Departments of Molecular Biology and Biochemistry and Physiology and Biophysics, UCI Program in Macromolecular Structure, University of California, 92697-3900, Irvine, CA, USA.
| |
Collapse
|
1370
|
Krebs MP, Isenbarger TA. Structural determinants of purple membrane assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:15-26. [PMID: 10984587 DOI: 10.1016/s0005-2728(00)00126-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purple membrane is a two-dimensional crystalline lattice formed by bacteriorhodopsin and lipid molecules in the cytoplasmic membrane of Halobacterium salinarum. High-resolution structural studies, in conjunction with detailed knowledge of the lipid composition, make the purple membrane one of the best models for elucidating the forces that are responsible for the assembly and stability of integral membrane protein complexes. In this review, recent mutational efforts to identify the structural features of bacteriorhodopsin that determine its assembly in the purple membrane are discussed in the context of structural, calorimetric and reconstitution studies. Quantitative evidence is presented that interactions between transmembrane helices of neighboring bacteriorhodopsin molecules contribute to purple membrane assembly. However, other specific interactions, particularly between bacteriorhodopsin and lipid molecules, may provide the major driving force for assembly. Elucidating the molecular basis of protein-protein and protein-lipid interactions in the purple membrane may provide insights into the formation of integral membrane protein complexes in other systems.
Collapse
Affiliation(s)
- M P Krebs
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 53706-1532, Madison, WI, USA.
| | | |
Collapse
|
1371
|
Möller C, Büldt G, Dencher NA, Engel A, Müller DJ. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine. J Mol Biol 2000; 301:869-79. [PMID: 10966792 DOI: 10.1006/jmbi.2000.3995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural changes of purple membrane during photobleaching in the presence of hydroxylamine were monitored using atomic force microscopy (AFM). The process of bleaching was associated with the disassembly of the purple membrane crystal into smaller crystals. Imaging steps of the photobleaching progress showed that disassembly proceeds until the sample is fully bleached and its crystallinity is almost lost. As revealed from high resolution AFM topographs, the loss of crystallinity was initiated by loss of lattice forming contact between the individual bacteriorhodopsin trimers. The bacteriorhodopsin molecules, however, remained assembled into trimers during the entire photobleaching process. Regeneration of the photobleached sample into intact purple membrane resulted in the reassembly of the bacteriorhodopsin trimers into the trigonal lattice of purple membrane. The data provide novel insights into factors triggering purple membrane formation and structure.
Collapse
Affiliation(s)
- C Möller
- M. E. Müller Institute for Structural Biology, Biozentrum, Klingelbergstr. 70, Basel, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
1372
|
Stevens TJ, Arkin IT. Turning an opinion inside-out: Rees and Eisenberg's commentary (Proteins 2000;38:121-122) on "Are membrane proteins 'inside-out' proteins?" (Proteins 1999;36:135-143). Proteins 2000; 40:463-4. [PMID: 10861937 DOI: 10.1002/1097-0134(20000815)40:3<463::aid-prot120>3.0.co;2-d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T J Stevens
- Department of Biochemistry, Cambridge Centre for Molecular Recognition, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
1373
|
Abstract
Solid-state nmr spectroscopy provides a robust method for investigating polypeptides that have been prepared by chemical synthesis and that are immobilized by strong interactions with solid surfaces or large macroscopic complexes. Solid-state nmr spectroscopy has been widely used to investigate membrane polypeptides or peptide aggregates such as amyloid fibrils. Whereas magic angle spinning solid-state nmr spectroscopy allows one to measure distances and dihedral angles with high accuracy, static membrane samples that are aligned with respect to the magnetic field direction allow one to determine the secondary structure of bound polypeptides and their orientation with respect to the bilayer normal. Peptide dynamics and the effect of polypeptides on the macroscopic phase preference of phospholipid membranes have been investigated in nonoriented samples. Investigations of the structure and topology of membrane channels, peptide antibiotics, signal sequences as well as model systems that allow one to dissect the interaction contributions in phospholipid membranes will be presented in greater detail.
Collapse
Affiliation(s)
- B Bechinger
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18A, 82152 Marinsried, Germany.
| | | | | | | | | | | |
Collapse
|
1374
|
Sanders CR, Nagy JK. Misfolding of membrane proteins in health and disease: the lady or the tiger? Curr Opin Struct Biol 2000; 10:438-42. [PMID: 10981632 DOI: 10.1016/s0959-440x(00)00112-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein misfolding is increasingly recognized as a factor in many diseases, including cystic fibrosis, Parkinson's, Alzheimer's and atherosclerosis. Many proteins involved in misfolding-based pathologies are membrane-associated, such that the bilayer may play roles in normal and aberrant folding. It can be argued that the in vivo partitioning of eukaryotic membrane proteins between folding and misfolding pathways is under kinetic control. Moreover, the balance between these pathways can be surprisingly delicate.
Collapse
Affiliation(s)
- C R Sanders
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA.
| | | |
Collapse
|
1375
|
|
1376
|
Abstract
We present a mean-field theory relating the helix tilt angle in a bilayer to lipid disorder. The theory provides a method to compare the rotational barriers for different helices in lipid bilayers. The results suggest that the helix tilt angle is strongly affected by both the hydrophobicity of the helix and the average lipid disorder. This leads us to point out future experiments that could shed light on lipid-protein interactions.
Collapse
Affiliation(s)
- L Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
1377
|
Suárez T, Nir S, Goñi FM, Saéz-Cirión A, Nieva JL. The pre-transmembrane region of the human immunodeficiency virus type-1 glycoprotein: a novel fusogenic sequence. FEBS Lett 2000; 477:145-9. [PMID: 10899326 DOI: 10.1016/s0014-5793(00)01785-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated membrane interactions and perturbations induced by NH(2)-DKWASLWNWFNITNWLWYIK-COOH (HIV(c)), representing the membrane interface-partitioning region that precedes the transmembrane anchor of the human immunodeficiency virus type-1 gp41 fusion protein. The HIV(c) peptide bound with high affinity to electrically neutral vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and cholesterol (molar ratio, 1:1:1), and induced vesicle leakage and lipid mixing. Infrared spectra suggest that these effects were promoted by membrane-associated peptides adopting an alpha-helical conformation. A sequence representing a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, was equally unable to induce vesicle fusion, and adopted a non-helical conformation in the membrane. We conclude that membrane perturbation and adoption of the alpha-helical conformation by this gp41 region might be functionally meaningful.
Collapse
Affiliation(s)
- T Suárez
- Unidad de Biofisica, Departamento de Bioquimica, Universidaad del Pais Vasco, Aptdo, 644, 48080, Bilboa, Spain
| | | | | | | | | |
Collapse
|
1378
|
Orzáez M, Pérez-Payá E, Mingarro I. Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process. Protein Sci 2000; 9:1246-53. [PMID: 10892817 PMCID: PMC2144652 DOI: 10.1110/ps.9.6.1246] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The monomer-dimer equilibrium of the glycophorin A (GpA) transmembrane (TM) fragment has been used as a model system to investigate the amino acid sequence requirements that permit an appropriate helix-helix packing in a membrane-mimetic environment. In particular, we have focused on a region of the helix where no crucial residues for packing have been yet reported. Various deletion and replacement mutants in the C-terminal region of the TM fragment showed that the distance between the dimerization motif and the flanking charged residues from the cytoplasmic side of the protein is important for helix packing. Furthermore, selected GpA mutants have been used to illustrate the rearrangement of TM fragments that takes place when leucine repeats are introduced in such protein segments. We also show that secondary structure of GpA derivatives was independent from dimerization, in agreement with the two-stage model for membrane protein folding and oligomerization.
Collapse
Affiliation(s)
- M Orzáez
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | | | | |
Collapse
|
1379
|
Abstract
Direct measurement of the free energies of transfer of hydrophobic membrane-spanning alpha-helices from water to membranes is important for the determination of an accurate experiment-based hydrophobicity scale for membrane proteins. An important objective of such a scale is to account for the presently unknown thermodynamic cost of partitioning hydrogen-bonded peptide bonds into the membrane hydrocarbon core. We describe here the physical properties of a transmembrane (TM) peptide, TMX-1, designed to test the feasibility of engineering peptides that spontaneously insert across bilayers but that have the important property of measurable monomeric water solubility. TMX-1, Ac-WNALAAVAAAL-AAVAAALAAVAAGKSKSKS-NH(2), is a 31-residue sequence with a 21-residue nonpolar core, N- and C-caps to favor helix formation, and a highly polar C-terminus to improve solubility and to control directionality of insertion into lipid vesicles. TMX-1 appeared to be soluble in water up to a concentration of at least 1 mg/mL (0.3 mM). However, fluorescence spectroscopy, fluorescence quenching, and circular dichroism (CD) spectroscopy indicated that the high solubility was due to the formation of molecular aggregates that persisted at peptide concentrations down to at least 0.1 microM peptide. Nevertheless, aqueous TMX-1 partitioned strongly into membrane vesicles with apparent mole-fraction free-energy values of -7.1 kcal mol(-1) for phosphatidylcholine (POPC) vesicles and -8.2 kcal mol(-1) for phosphatidylglycerol (POPG) vesicles. CD spectroscopy of TMX-1 in oriented multilayers formed from either lipid disclosed a very strong preference for a transmembrane alpha-helical conformation. When TMX-1 was added to preformed vesicles, it was fully helical. A novel fluorescence resonance energy transfer (FRET) method demonstrated that at least 50% of the TMX-1 insered spontaneously across the vesicle membranes. Binding and insertion were found to be fully reversible for POPC vesicles but not POPG vesicles. TMX-1 was thus found to have many of the properties required for thermodynamic measurements of TM peptide insertion. Importantly, the results obtained delineate the experimental problems that must be considered in the design of peptides that can partition spontaneously and reversibly as monomers into and across membranes. Our success with TMX-1 suggests that these problems are not insurmountable.
Collapse
Affiliation(s)
- W C Wimley
- Department of Physiology and Biophysics and the Program in Macromolecular Structure, University of California at Irvine, Irvine, California 92697-4560, USA
| | | |
Collapse
|
1380
|
Affiliation(s)
- J G Forbes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA.
| | | |
Collapse
|
1381
|
Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ. Unfolding pathways of individual bacteriorhodopsins. Science 2000; 288:143-6. [PMID: 10753119 DOI: 10.1126/science.288.5463.143] [Citation(s) in RCA: 473] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Atomic force microscopy and single-molecule force spectroscopy were combined to image and manipulate purple membrane patches from Halobacterium salinarum. Individual bacteriorhodopsin molecules were first localized and then extracted from the membrane; the remaining vacancies were imaged again. Anchoring forces between 100 and 200 piconewtons for the different helices were found. Upon extraction, the helices were found to unfold. The force spectra revealed the individuality of the unfolding pathways. Helices G and F as well as helices E and D always unfolded pairwise, whereas helices B and C occasionally unfolded one after the other. Experiments with cleaved loops revealed the origin of the individuality: stabilization of helix B by neighboring helices.
Collapse
Affiliation(s)
- F Oesterhelt
- CeNS and Lehrstuhl für angewandte Physik, Ludwig Maximilians-Universität München, Amalienstrasse 54, 80799 München, Germany
| | | | | | | | | | | |
Collapse
|
1382
|
Abstract
Leakage from liposomes induced by several peptides is reviewed and a pore model is described. According to this model peptide molecules become incorporated into the vesicle bilayer and aggregate reversibly or irreversibly within the surface. When a peptide aggregate reaches a critical size, peptide translocation can occur and a pore is formed. With the peptide GALA the pores are stable and persist for at least 10 minutes. The model predicts that for a given lipid/peptide ratio, the extent of leakage should decrease as the vesicle diameter decreases, and for a given amount of peptide bound per vesicle less leakage would be observed at higher temperatures due to the increase in reversibility of surface aggregates of the peptide. Effect of membrane composition on pore formation is reviewed. When cholesterol was included in the liposomes the efficiency of inducation of leakage by the peptide GALA was reduced due to reduced binding and increased reversibility of surface aggregation of the peptide. Phospholipids which contain less ordered acyl-chains and have a slightly wedge-like shape, can better accommodate peptide surface aggregates, and consequently insertion and translocation of the peptide may be less favored. Demonstrations of antagonism between pore formation and fusion are presented. The choice of factors which promote vesicle aggregation, e.g., larger peptides, increased vesicle and peptide concentration results in enhanced vesicle fusion at the expense of formation of intravesicular pores. FTIR studies with HIV-1 fusion peptides indicate that in systems where extensive vesicle fusion occurred the beta conformation of the peptides was predominant, whereas the alpha conformation was exhibited in cases where leakage was the main outcome. Antagonism between leakage and fusion was exhibited by 1-palmitoyl-2-oleoylphosphatidylglycerol vesicles, where the order of addition of peptide (HIV(arg)) or Ca(2+)dictated whether pore formation or vesicle fusion would occur. The current study emphasizes that the addition of Ca(2+), which promotes vesicle aggregation can also reduce peptide translocation in isolated vesicles.
Collapse
Affiliation(s)
- S Nir
- Seagram Center for Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot, Israel.
| | | |
Collapse
|
1383
|
Stevens TJ, Arkin IT. The effect of nucleotide bias upon the composition and prediction of transmembrane helices. Protein Sci 2000; 9:505-11. [PMID: 10752612 PMCID: PMC2144572 DOI: 10.1110/ps.9.3.505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Transmembrane helices are the most readily predictable secondary structure components of proteins. They can be predicted to a high degree of accuracy in a variety of ways. Many of these methods compare new sequence data with the sequence characteristics of known transmembrane domains. However, the known transmembrane sequences are not necessarily representative of a particular organism. We attempt to demonstrate that parameters optimized for the known transmembrane domains are far from optimal when predicting transmembrane regions in a given genome. In particular, we have tested the effect of nucleotide bias upon the composition and hence the prediction characteristics of transmembrane helices. Our analysis shows that nucleotide bias of a genome has a strong and predictable influence upon the occurrences of several of the most important hydrophobic amino acids found within transmembrane helices. Thus, we show that nucleotide bias should be taken into account when determining putative transmembrane domains from sequence data.
Collapse
Affiliation(s)
- T J Stevens
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, United Kingdom
| | | |
Collapse
|
1384
|
Mall S, Broadbridge R, Sharma RP, Lee AG, East JM. Effects of aromatic residues at the ends of transmembrane alpha-helices on helix interactions with lipid bilayers. Biochemistry 2000; 39:2071-8. [PMID: 10684657 DOI: 10.1021/bi992205u] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the effects of aromatic residues at the ends of peptides of the type Ac-KKGL(n)()WL(m)()KKA-amide on their interactions with lipid bilayers as a function of lipid fatty acyl chain length, physical phase, and charge. Peptide Ac-KKGFL(6)WL(8)FKKA-amide (F(2)L(14)) incorporated into bilayers of phosphatidylcholines containing monounsaturated fatty acyl chains of lengths C14-C24 at a peptide:lipid molar ratio of 1:100 in contrast to Ac-KKGL(7)WL(9)KKA-amide (L(16)) which did not incorporate at all into dierucoylphosphatidylcholine [di(C24:1)PC]; Ac-KKGYL(6)WL(8)YKKA-amide (Y(2)L(14)) incorporated partly into di(C24:1)PC. Lipid-binding constants relative to that for dioleoylphosphatidylcholine (C18:1)PC were obtained using a fluorescence quenching method. For Y(2)L(14) and F(2)L(14), relative lipid-binding constants increased with increasing fatty acyl chain length from C14 to C24; strongest binding did not occur at the point where the hydrophobic length of the peptide equalled the hydrophobic thickness of the bilayer. For Ac-KKGYL(9)WL(11)YKKA-amide (Y(2)L(20)), increasing chain length from C18 to C24 had little effect on relative binding constants. Anionic phospholipids bound more strongly than zwitterionic phospholipids to Y(2)L(14) and Y(2)L(20) but effects of charge were relatively small. In two phase (gel and liquid crystalline) mixtures, all the peptides partitioned more strongly into liquid crystalline than gel phase; effects were independent of the structure of the peptide or of the lipid (dipalmitoylphosphatidylcholine or bovine brain sphingomyelin). Addition of cholesterol had little effect on incorporation of the peptides into lipid bilayers. It is concluded that the presence of aromatic residues at the ends of transmembrane alpha-helices effectively buffers them against changes in bilayer thickness caused either by an increase in the chain length of the phospholipid or by the presence of cholesterol.
Collapse
Affiliation(s)
- S Mall
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, U.K
| | | | | | | | | |
Collapse
|
1385
|
Rees DC, Eisenberg D. Turning a reference inside-out: Commentary on an article by Stevens and Arkin entitled: ?Are membrane proteins ?inside-out? proteins?? (Proteins 1999;36:135-143). Proteins 2000. [DOI: 10.1002/(sici)1097-0134(20000201)38:2<121::aid-prot1>3.0.co;2-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
1386
|
Abstract
Genome sequencing efforts have revealed that perhaps as many as 20-40% of open reading frames in complex organisms may encode proteins containing at least one helical transmembrane segment. Contrasting with this approaching tidal wave of helical membrane proteins is the fact that our understanding of the sequence-structure-function relationships for membrane proteins lags far behind that of soluble proteins. This looming reality emphasizes the tremendous biochemical and structural work that remains to be done on helical membrane proteins in order to elucidate the structural and energetic principles that specify and stabilize their folds, which define their functions. These facts are not lost on the pharmaceutical industry, where successful therapeutics and major discovery efforts are targeting membrane proteins.
Collapse
Affiliation(s)
- K G Fleming
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, New Haven, CT 06520-8114, USA.
| |
Collapse
|
1387
|
Wimley WC, White SH. Determining the membrane topology of peptides by fluorescence quenching. Biochemistry 2000; 39:161-70. [PMID: 10625491 DOI: 10.1021/bi991836l] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determination of the topology of peptides in membranes is important for characterizing and understanding the interactions of peptides with membranes. We describe a method that uses fluorescence quenching arising from resonance energy transfer ("FRET") for determining the topology of the tryptophan residues of peptides partitioned into phospholipid bilayer vesicles. This is accomplished through the use of a novel lyso-phospholipid quencher (lysoMC), N-(7-hydroxyl-4-methylcoumarin-3-acetyl)-1-palmitoyl-2-hydroxy-sn-gly cero-3-phosphoethanolamine. The design principle was to anchor the methylcoumarin quencher in the membrane interface by attaching it to the headgroup of lyso-phosphoethanolamine. We show that lysoMC can be incorporated readily into large unilamellar phospholipid vesicles to yield either symmetrically (both leaflets) or asymmetrically (outer leaflet only) labeled bilayers. LysoMC quenches the fluorescence of membrane-bound tryptophan by the Förster mechanism with an apparent R(0) that is comparable to the thickness of the hydrocarbon core of a lipid bilayer (approximately 25 A). Consequently, the methylcoumarin acceptor predominantly quenches tryptophans that reside in the same monolayer as the probe. The topology of a peptide's tryptophan in membranes can be determined by comparing the quenching in symmetric and asymmetric lysoMC-labeled vesicles. Because it is essential to know that asymmetrically incorporated lysoMC remains so under all conditions, we also developed a second type of FRET experiment for assessing the rate of transbilayer diffusion (flip-flop) of lysoMC. Except in the presence of pore-forming peptides, there was no measurable flip-flop of lysoMC, indicating that asymmetric distributions of quencher are stable. We used these methods to show that N-acetyl-tryptophan-octylamide and tryptophan-octylester rapidly equilibrate across phosphatidylcholine (POPC) and phosphatidylglycerol (POPG) bilayers, while four amphipathic model peptides remain exclusively on the outer monolayer. The topology of the amphipathic peptide melittin bound to POPC could not be determined because it induced rapid flip-flop of lysoMC. Interestingly, melittin did not induce lysoMC flip-flop in POPG vesicles and was found to remain stably on the external monolayer.
Collapse
Affiliation(s)
- W C Wimley
- Department of Physiology, University of California at Irvine 92697-4560, USA
| | | |
Collapse
|
1388
|
|
1389
|
Efremov RG, Nolde DE, Volynsky PE, Chernyavsky AA, Dubovskii PV, Arseniev AS. Factors important for fusogenic activity of peptides: molecular modeling study of analogs of fusion peptide of influenza virus hemagglutinin. FEBS Lett 1999; 462:205-10. [PMID: 10580120 DOI: 10.1016/s0014-5793(99)01505-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nine analogs of fusion peptide of influenza virus hemagglutinin whose membrane perturbation activity has been thoroughly tested [Murata et al. (1992) Biochemistry 31, 1986-1992; Murata et al. (1993) Biophys. J. 64, 724-734] were characterized by molecular modeling techniques with the aim of delineating any specific structural and/or hydrophobic properties inherent in peptides with fusogenic activity. It was shown that, regardless of characteristics common to all analogs (peripheral disposition at the water-lipid interface, amphiphilic nature, alpha-helical structure, etc.), only fusion active peptides reveal a specific 'tilted oblique-oriented' pattern of hydrophobicity on their surfaces and a certain depth of penetration to the non-polar membrane core. The conclusion was reached that these factors are among the most important for the specific destabilization of a bilayer, which is followed by membrane fusion.
Collapse
Affiliation(s)
- R G Efremov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, V-437, 117871 GSP, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
1390
|
Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 1999; 291:899-911. [PMID: 10452895 DOI: 10.1006/jmbi.1999.3027] [Citation(s) in RCA: 1171] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Th?e atomic structure of the light-driven ion pump bacteriorhodopsin and the surrounding lipid matrix was determined by X-ray diffraction of crystals grown in cubic lipid phase. In the extracellular region, an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base and the proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline? kink. The bulge is stabilized by hydrogen-bonding of the main-chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The results indicate extensive involvement of bound water molecules in both the structure and the function of this seven-helical membrane protein. A bilayer of 18 tightly bound lipid chains forms an annulus around the protein in the crystal. Contacts between the trimers in the membrane plane are mediated almost exclusively by lipids.
Collapse
Affiliation(s)
- H Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | | | | | | | | |
Collapse
|