14801
|
Specific Histopathologic Features Aid in Distinguishing Diffuse-type Gastric Adenocarcinoma From Metastatic Lobular Breast Carcinoma. Am J Surg Pathol 2019; 44:77-86. [DOI: 10.1097/pas.0000000000001341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14802
|
Song X, Ji J, Gleason KJ, Yang F, Martignetti JA, Chen LS, Wang P. Insights into Impact of DNA Copy Number Alteration and Methylation on the Proteogenomic Landscape of Human Ovarian Cancer via a Multi-omics Integrative Analysis. Mol Cell Proteomics 2019; 18:S52-S65. [PMID: 31227599 PMCID: PMC6692782 DOI: 10.1074/mcp.ra118.001220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
In this work, we propose iProFun, an integrative analysis tool to screen for proteogenomic functional traits perturbed by DNA copy number alterations (CNAs) and DNA methylations. The goal is to characterize functional consequences of DNA copy number and methylation alterations in tumors and to facilitate screening for cancer drivers contributing to tumor initiation and progression. Specifically, we consider three functional molecular quantitative traits: mRNA expression levels, global protein abundances, and phosphoprotein abundances. We aim to identify those genes whose CNAs and/or DNA methylations have cis-associations with either some or all three types of molecular traits. Compared with analyzing each molecular trait separately, the joint modeling of multi-omics data enjoys several benefits: iProFun experienced enhanced power for detecting significant cis-associations shared across different omics data types, and it also achieved better accuracy in inferring cis-associations unique to certain type(s) of molecular trait(s). For example, unique associations of CNAs/methylations to global/phospho protein abundances may imply posttranslational regulations.We applied iProFun to ovarian high-grade serous carcinoma tumor data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium and identified CNAs and methylations of 500 and 121 genes, respectively, affecting the cis-functional molecular quantitative traits of the corresponding genes. We observed substantial power gain via the joint analysis of iProFun. For example, iProFun identified 117 genes whose CNAs were associated with phosphoprotein abundances by leveraging mRNA expression levels and global protein abundances. By comparison, analyses based on phosphoprotein data alone identified none. A network analysis of these 117 genes revealed the known oncogene AKT1 as a key hub node interacting with many of the rest. In addition, iProFun identified one gene, BIN2, whose DNA methylation has cis-associations with its mRNA expression, global protein, and phosphoprotein abundances. These and other genes identified by iProFun could serve as potential drug targets for ovarian cancer.
Collapse
Affiliation(s)
- Xiaoyu Song
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiayi Ji
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kevin J Gleason
- Department of Public Health Sciences, The University of Chicago, Chicago, IL
| | - Fan Yang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lin S Chen
- Department of Public Health Sciences, The University of Chicago, Chicago, IL.
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
14803
|
Mining Prognosis Index of Brain Metastases Using Artificial Intelligence. Cancers (Basel) 2019; 11:cancers11081140. [PMID: 31395825 PMCID: PMC6721536 DOI: 10.3390/cancers11081140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
This study is to identify the optimum prognosis index for brain metastases by machine learning. Seven hundred cancer patients with brain metastases were enrolled and divided into 446 training and 254 testing cohorts. Seven features and seven prediction methods were selected to evaluate the performance of cancer prognosis for each patient. We used mutual information and rough set with particle swarm optimization (MIRSPSO) methods to predict patient’s prognosis with the highest accuracy at area under the curve (AUC) = 0.978 ± 0.06. The improvement by MIRSPSO in terms of AUC was at 1.72%, 1.29%, and 1.83% higher than that of the traditional statistical method, sequential feature selection (SFS), mutual information with particle swarm optimization(MIPSO), and mutual information with sequential feature selection (MISFS), respectively. Furthermore, the clinical performance of the best prognosis was superior to conventional statistic method in accuracy, sensitivity, and specificity. In conclusion, identifying optimal machine-learning methods for the prediction of overall survival in brain metastases is essential for clinical applications. The accuracy rate by machine-learning is far higher than that of conventional statistic methods.
Collapse
|
14804
|
Xu D, Tong X, Sun L, Li H, Jones RD, Liao J, Yang GY. Inhibition of mutant Kras and p53-driven pancreatic carcinogenesis by atorvastatin: Mainly via targeting of the farnesylated DNAJA1 in chaperoning mutant p53. Mol Carcinog 2019; 58:2052-2064. [PMID: 31397499 DOI: 10.1002/mc.23097] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Recent studies have indicated that using statins to inhibit the mevalonate pathway induces mutant p53 degradation by impairing the interaction of mutant p53 with DnaJ subfamily A member 1 (DNAJA1). However, the role of the C-terminus of DNAJA1 with a CAAX box for farnesylation in the binding, folding, and translocation of client proteins such as mutant p53 is not known. In the present study, we used a genetically engineered mouse model of pancreatic carcinoma and showed that atorvastatin significantly increased animal survival and inhibited pancreatic carcinogenesis. There was a dramatic decrease in mutant p53 protein accumulation in the pancreatic acini, pancreas intraepithelial neoplasia lesions, and adenocarcinoma. Supplementation with farnesyl pyrophosphate, a substrate for protein farnesylation, rescued atorvastatin-induced mutant p53 degradation in pancreatic cancer cells. Tipifarnib, a farnesyltransferase inhibitor, mirrored atorvastatin's effects on mutant p53, degraded mutant p53 in a dose-dependent manner, and converted farnesylated DNAJA1 into unfarnesylated DNAJA1. Farnesyltransferase gene knockdown also significantly promoted mutant p53 degradation. Coimmunoprecipitation either by an anti-DNAJA1 or p53 antibody confirmed the direct interaction of mutant p53 and DNAJA1 and higher doses of atorvastatin treatments converted more farnesylated DNAJA1 into unfarnesylated DNAJA1 with much less mutant p53 pulled down by DNAJA1. Strikingly, C394S mutant DNAJA1, in which the cysteine of the CAAX box was mutated to serine, was no longer able to be farnesylated and lost the ability to maintain mutant p53 stabilization. Our results show that farnesylated DNAJA1 is a crucial chaperone in maintaining mutant p53 stabilization and targeting farnesylated DNAJA1 by atorvastatin will be critical for inhibiting p53 mutant cancer.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xin Tong
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leyu Sun
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Haonan Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ryan D Jones
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jie Liao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
14805
|
Lou X, Li J, Yu D, Wei YQ, Feng S, Sun JJ. Comprehensive analysis of five long noncoding RNAs expression as competing endogenous RNAs in regulating hepatoma carcinoma. Cancer Med 2019; 8:5735-5749. [PMID: 31392826 PMCID: PMC6745846 DOI: 10.1002/cam4.2468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is the most common cancer and is the epitome of a recalcitrant cancer. Increasing evidence shown that long noncoding RNAs (lncRNA) were associated with cancer‐related death and could function as a competing endogenous RNA (ceRNA). To explore regulatory roles and potential prognostic biomarkers of lncRNA for liver cancer, RNA‐sequencing expression data were downloaded from the TCGA database and GEO database. A total of 357 patients were randomly divided into a discovery group and a validation group, of which 313 patients can obtain clinical data. In discovery phrase, 58 lncRNAs, 16 miRNAs, and 34 mRNAs were screened to construct the ceRNA network based on 252 patients employed from discovery group. Univariate and multivariate Cox hazard regression analysis model revealed that five lncRNAs (AATK‐AS1, C10orf91, LINC00162, LINC00200, and LINC00501) from 58 lncRNAs were formulated to predict the overall survival (OS). We used the value of gene expression and regression coefficients to construct a risk score based on the five lncRNAs. Next, we validated our model in the GSE116174 dataset (n = 64) and the validation group (n = 94) from TCGA database. Subgroup analysis suggest that the five lncRNAs played critical parts in early stage in cancer from both discovery and validation groups. The five lncRNAs were also found to be associated with immune cells infiltration including CD4+ memory activated, NK cells activated and mast cells activated, then the results were also validated according to the validation group. Furthermore, KEGG pathway enrichment analysis showed that these nine coexpressed modules using the method of WGCNA, and many of these pathways are associated with the development and progression of disease. At last, the transcription factor binding sites (TFBS) of the five lncRNAs were predicted, which help us to understand the potential mechanism that the TFBS adjusted the ceRNA network. In summary, the ceRNA regulatory network may contribute to a better understanding of liver cancer mechanism and provide potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xin Lou
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Jun Li
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Dong Yu
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Ya-Qing Wei
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Shuang Feng
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Jin-Jin Sun
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14806
|
Lin P, Wen DY, Chen L, Li X, Li SH, Yan HB, He RQ, Chen G, He Y, Yang H. A radiogenomics signature for predicting the clinical outcome of bladder urothelial carcinoma. Eur Radiol 2019; 30:547-557. [PMID: 31396730 DOI: 10.1007/s00330-019-06371-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To determine the integrative value of contrast-enhanced computed tomography (CECT), transcriptomics data and clinicopathological data for predicting the survival of bladder urothelial carcinoma (BLCA) patients. METHODS RNA sequencing data, radiomics features and clinical parameters of 62 BLCA patients were included in the study. Then, prognostic signatures based on radiomics features and gene expression profile were constructed by using least absolute shrinkage and selection operator (LASSO) Cox analysis. A multi-omics nomogram was developed by integrating radiomics, transcriptomics and clinicopathological data. More importantly, radiomics risk score-related genes were identified via weighted correlation network analysis and submitted to functional enrichment analysis. RESULTS The radiomics and transcriptomics signatures significantly stratified BLCA patients into high- and low-risk groups in terms of the progression-free interval (PFI). The two risk models remained independent prognostic factors in multivariate analyses after adjusting for clinical parameters. A nomogram was developed and showed an excellent predictive ability for the PFI in BLCA patients. Functional enrichment analysis suggested that the radiomics signature we developed could reflect the angiogenesis status of BLCA patients. CONCLUSIONS The integrative nomogram incorporated CECT radiomics, transcriptomics and clinical features improved the PFI prediction in BLCA patients and is a feasible and practical reference for oncological precision medicine. KEY POINTS • Our radiomics and transcriptomics models are proved robust for survival prediction in bladder urothelial carcinoma patients. • A multi-omics nomogram model which integrates radiomics, transcriptomics and clinical features for prediction of progression-free interval in bladder urothelial carcinoma is established. • Molecular functional enrichment analysis is used to reveal the potential molecular function of radiomics signature.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | | | - Xin Li
- GE Healthcare, Shanghai, China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hai-Biao Yan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
14807
|
Label-Free Proteomics Revealed Oxidative Stress and Inflammation as Factors That Enhance Chemoresistance in Luminal Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5357649. [PMID: 31485295 PMCID: PMC6702830 DOI: 10.1155/2019/5357649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer is the leading cause of cancer-associated death among women worldwide. Its high mortality rate is related to resistance towards chemotherapies, which is one of the major challenges of breast cancer research. In this study, we used label-free mass spectrometry- (MS-) based proteomics to investigate the differences between circulating proteins in the plasma of patients with chemoresponsive and chemoresistant luminal A breast cancer. MS analysis revealed 205 differentially expressed proteins. Furthermore, we used in silico tools to build protein-protein interaction networks. Most of the upregulated proteins in the chemoresistant group were closely related and tightly linked. The predominant networks were related to oxidative stress, the inflammatory response, and the complement cascade. Through this analysis, we identified inflammation and oxidative stress as central processes of breast cancer chemoresistance. Furthermore, we confirmed our hypothesis by evaluating oxidative stress and performing cytokine profiling in our cohort. The connections among oxidative stress, inflammation, and the complement system described in our study seem to indicate a pivotal axis in breast cancer chemoresistance. Hence, these findings will have significant clinical implications for improving therapies to bypass breast cancer chemoresistance in the future.
Collapse
|
14808
|
Yu Q, Xie J, Li J, Lu Y, Liao L. Clinical outcomes of BRAF plus MEK inhibition in melanoma: A meta-analysis and systematic review. Cancer Med 2019; 8:5414-5424. [PMID: 31393083 PMCID: PMC6745835 DOI: 10.1002/cam4.2248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background Melanoma is a potentially fatal malignancy with poor prognosis. Several recent studies have demonstrated that combination therapy of BRAF and MEK inhibition achieved better curative effect and appeared less toxic effects. We conducted a meta‐analysis to evaluate the efficacy and safety between BRAF inhibition plus MEK inhibition combination therapy and BRAF inhibition monotherapy in melanoma patients. Methods We performed the search in PubMed, EMBASE, and the Cochrane Library from January 2010 to January 2019. Inclusion and exclusion of studies, assessment of quality, outcome measures, data extraction, and synthesis were independently accomplished by two reviewers. Revman 5.3 software was used for the meta‐analysis. Results Totally, seven randomized controlled trials involving 3146 patients met our inclusion criteria. Comparing the results of combination therapy and monotherapy, combination therapy significantly improved OS (RR = 1.13; 95% CI, 1.08, 1.19; P < 0.00001), ORR (RR = 1.36; 95% CI, 1.28, 1.45; P < 0.00001), PFS (RR = 0.57; 95% CI, 0.52, 0.63; P < 0.00001) and reduced deaths (RR = 0.78; 95% CI, 0.69, 0.88; P < 0.0001). Skin‐related adverse events such as hyperkeratosis, cutaneous squamous‐cell carcinoma were less compared with monotherapy. However, gastrointestinal events like nausea, diarrhea, and vomiting were at a higher frequency. Conclusion Doublet BRAF and MEK inhibition achieved better survival outcomes over single‐agent BRAF inhibition and occurred less skin‐related events, but gastrointestinal events were more in combination therapy.
Collapse
Affiliation(s)
- Qingliang Yu
- Guangxi Medical University, The Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiayi Xie
- Guangxi Medical University, The Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiangmiao Li
- Guangxi Medical University, The Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunxin Lu
- Guangxi Medical University, The Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liang Liao
- Guangxi Medical University, The Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
14809
|
Pergolotti M, Alfano CM, Cernich AN, Yabroff KR, Manning PR, Moor JS, Hahn EE, Cheville AL, Mohile SG. A health services research agenda to fully integrate cancer rehabilitation into oncology care. Cancer 2019; 125:3908-3916. [DOI: 10.1002/cncr.32382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Mackenzi Pergolotti
- ReVital Cancer Rehabilitation, Select Medical Mechanicsburg Pennsylvania
- Department of Occupational Therapy Colorado State University Fort Collins Colorado
| | | | - Alison N. Cernich
- National Center for Medical Rehabilitation Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Rockville Maryland
| | - K. Robin Yabroff
- Surveillance and Health Services Research, Intramural Research Department American Cancer Society Inc Atlanta Georgia
| | - Peter R. Manning
- ReVital Cancer Rehabilitation, Select Medical Mechanicsburg Pennsylvania
| | - Janet S. Moor
- Division of Cancer Control and Population Sciences National Cancer Institute Rockville Maryland
| | - Erin E. Hahn
- Research and Evaluation, Kaiser Permanente Southern California Pasadena California
| | - Andrea L. Cheville
- Department of Physical Medicine and Rehabilitation Mayo Clinic Rochester Minnesota
| | - Supriya G. Mohile
- Department of Medicine University of Rochester Medical Center Rochester New York
| |
Collapse
|
14810
|
Yin L, Li W, Wang G, Shi H, Wang K, Yang H, Peng B. NR1B2 suppress kidney renal clear cell carcinoma (KIRC) progression by regulation of LATS 1/2-YAP signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:343. [PMID: 31391070 PMCID: PMC6686564 DOI: 10.1186/s13046-019-1344-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Kidney Renal Clear Cell Carcinoma (KIRC) accounts for 75% of all renal cancers. Previous study had conflict evidences regarding NR1B2 role in cancer, and its expression and biological role in KIRC remained unclear. Our aims were to characterize the role of NR1B2 in KIRC. METHODS NR1B2 expression in TCGA database were analyzed. Clinical KIRC samples were examined by RT-PCR, western blot and tissue microarray (TMA). The relationship between NR1B2 expression and the clinical characteristics were evaluated. KIRC cell line were stably overexpressed NR1B2 or with an NR1B2 knocked down using lentivirus system. The cells were analyzed by migration and invasion assay, then injected into nude mice to assess tumor growth and metastasis. EMT marker expression and LATS 1/2-YAP pathway demonstration were detected by the TCGA database and western blot. RESULTS The expression of NR1B2 in KIRC was significantly down-regulated in the TCGA database and our clinical samples. Moreover, NR1B2 expression negatively correlated with tumor stage and positively correlated with overall and disease-free survival rate. Univariate and multivariate analyses indicated the expression level of NR1B2 could be used as an independent factor for predicting the prognosis of KIRC. Overexpression NR1B2 significantly inhibited and knockdown NR1B2 markedly promoted KIRC cell invasion and metastasis both in vitro and in vivo. Mechanistic investigations revealed that NR1B2 might be a tumor suppressor to inhibit EMT through the LATS1/2-YAP pathway. CONCLUSIONS our results defined NR1B2 as a tumor suppressor in KIRC that restricted EMT by the LATS1/2-YAP pathway.
Collapse
Affiliation(s)
- Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Wenjia Li
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Heng Shi
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China.,Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Huan Yang
- Department of Urology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China.
| |
Collapse
|
14811
|
Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. Semin Cancer Biol 2019; 60:28-40. [PMID: 31400500 DOI: 10.1016/j.semcancer.2019.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is the main cause of cancer-related deaths. Disseminated tumor cells (DTCs), which seed metastasis, can remain undetected in a dormant state for decades after treatment of the primary tumor and their persistence is the main cause of late relapse and death in a substantial proportion of cancer patients. Understanding the mechanisms underlying the survival of dormant DTCs is of utmost importance to develop new therapies that effectively kill DTCs while in a quiescent state, therefore preventing metastatic disease and minimizing the chance of future relapses. Besides key interactions with the local microenvironment, dormant DTCs must integrate survival mechanisms to remain viable for long periods of time. Here, the pro-survival role of autophagy in tumor cell dissemination and dormant DTC maintenance are discussed, as well as the implications of the current knowledge for future research efforts.
Collapse
|
14812
|
Ramalingam S, Walker M, George DJ, Harrison MR. Real-World Data from a Metastatic Renal Cell Carcinoma Community-Academic Registry: Comparative Outcomes of Progression Free Survival and Overall Survival. KIDNEY CANCER 2019. [DOI: 10.3233/kca-190059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sundhar Ramalingam
- Duke Cancer Institute and the Division of Medical Oncology at the Duke University School of Medicine in Durham, NC, USA
| | | | - Daniel J. George
- Duke Cancer Institute and the Division of Medical Oncology at the Duke University School of Medicine in Durham, NC, USA
| | - Michael R. Harrison
- Duke Cancer Institute and the Division of Medical Oncology at the Duke University School of Medicine in Durham, NC, USA
| |
Collapse
|
14813
|
Wu J, Zheng Y, Tian Q, Yao M, Yi X. Establishment of patient-derived xenograft model in ovarian cancer and its influence factors analysis. J Obstet Gynaecol Res 2019; 45:2062-2073. [PMID: 31385376 DOI: 10.1111/jog.14054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023]
Abstract
AIM Patient-derived xenograft (PDX) model has been applied to the study of breast cancer, lung cancer, colon cancer and other cancers. However, its feasibility in ovarian cancer has not been understood. This study aimed to establish ovarian cancer PDX model and reveal its influence factors. METHODS In this study, 27 patients in Obstetrics and Gynecology Hospital affiliated to Fudan University from May 2015 to May 2016 were employed to explore the method of PDX model in ovarian cancer and verify its feasibility. RESULTS Finally, five cases of PDX models were successfully established, and the tumor formation rate (TFR) was 18.52%. In addition, immunohistochemistry and transcriptome sequencing analysis showed that tumor of PDX model have similar gene expression, gene splicing, gene fusion and single nucleotide polymorphisms with primary tumor (R2 = 0.741). Furthermore, it was revealed that compared to epithelial ovarian cancer, the TFR of PDX models with nonepithelial ovarian cancer was higher, while other factors such as the initiation site of tumor, the degree of tumor malignancy, the stage of tumor, the type of tumor and the species of experimental animals were not associated with the TFR. CONCLUSION Ovarian cancer PDX model, as a new scientific research model, can better keep the biological characteristics of primary tumor, which has great research value in ovarian cancer.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yunxi Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Qi Tian
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofang Yi
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
14814
|
de Oliveira Silva J, Fernandes RS, Ramos Oda CM, Ferreira TH, Machado Botelho AF, Martins Melo M, de Miranda MC, Assis Gomes D, Dantas Cassali G, Townsend DM, Rubello D, Oliveira MC, de Barros ALB. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed Pharmacother 2019; 118:109323. [PMID: 31400669 PMCID: PMC7104811 DOI: 10.1016/j.biopha.2019.109323] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022] Open
Abstract
Long circulating pH-sensitive liposomes have been shown to effectively deliver doxorubicin (DOX) to tumors and reduce its toxic effects. Folic acid receptors are upregulated in a wide variety of solid, epithelial tumors, including breast cancer. In order to improve liposomal endocytosis and antitumor activity, folic acid has been added to nanoparticles surfaces to exploit overexpression of folate receptors in tumor cells. The purpose of this study was to evaluate the antitumor activity in vitro and in vivo of long circulating pH-sensitive folate-coated DOX-loaded liposomes (SpHL-DOX-Fol) in a 4T1 breast cancer model system in vitro and in vivo. Biodistribution studies were performed and in vivo electrocardiographic parameters were evaluated. A higher tumor uptake for radiolabeled SpHL-Fol (99mTc-SpHL-Fol) 4 h after intravenous administration was observed in comparision with non-folate-coated liposomes (99mTc-SpHL). Antitumor activity showed that SpHL-DOX-Fol treatment led to a 68% growth arrest and drastically reduce pulmonary metastasis foci. Additionally, eletrocardiographic parameters analysis revealed no dispersion in the QT and QTc interval was observed in liposomal treated mice. In summary, this novel multifunctional nanoplatform deomonstrated higher tumor uptake and antitumor activity. SpHL-DOX-Fol represents a drug delivery platform to improve DOX tumor delivery and reduce dose-limiting toxicity.
Collapse
Affiliation(s)
- Juliana de Oliveira Silva
- Department Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Salgado Fernandes
- Department Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline Mari Ramos Oda
- Department Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Hilário Ferreira
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Flávia Machado Botelho
- Department of Veterinary Medicine, School of Veterinary and Zootechny, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Marília Martins Melo
- Department of Veterinary Clinical and Surgery, School of Veterinary, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Coutinho de Miranda
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Radiology, Molecular Imaging, Interventional Radiology, NeuroRadiology, Medical Physics, Pathology, Biomarkers Unit, Clinical Laboratory, Microbiology Unit, Rovigo & Adria Hospital, Rovigo, Italy
| | - Mônica Cristina Oliveira
- Department Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14815
|
Bhateja P, Cherian M, Majumder S, Ramaswamy B. The Hedgehog Signaling Pathway: A Viable Target in Breast Cancer? Cancers (Basel) 2019; 11:cancers11081126. [PMID: 31394751 PMCID: PMC6721501 DOI: 10.3390/cancers11081126] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
The hedgehog (Hh) pathway plays a key role in embryonic development and stem cell programs. Deregulation of the Hh pathway is a key driver of basal cell carcinoma, and therapeutic targeting led to approval of Hh inhibitor, vismodegib, in the management of this cancer. The Hh pathway is implicated in other malignancies including hormone receptor (HR+) positive and triple negative breast cancer (TNBC). Hh signaling, which is activated in human mammary stem cells, results in activation of glioma-associated oncogene (GLI) transcription factors. High GLI1 expression correlates with worse outcomes in breast cancer. Non-canonical GLI1 activation is one mechanism by which estrogen exposure promotes breast cancer stem cell proliferation and epithelial–mesenchymal transition. Tamoxifen resistant cell lines show aberrant activation of Hh signaling, and knockdown of Hh pathway inhibited growth of tamoxifen resistant cells. As in other cancers Hh signaling is activated by the PI3K/AKT pathway in these endocrine resistant cell lines. Hh pathway activation has also been reported to mediate chemotherapy resistance in TNBC via various mechanisms including paracrine signaling to tumor micro-environment and selective proliferation of cancer stem cells. Co-activation of Hh and Wnt signaling pathways is a poor prognostic marker in TNBC. Early phase clinical trials are evaluating the combination of smoothened (SMO) inhibitors and chemotherapy in TNBC. In addition to SMO inhibitors like vismodegib and sonidegib, which are in clinical use for basal cell carcinoma, GLI1 inhibitors like GANT58 and GANT61 are in preclinical drug development and might be an effective mechanism to overcome drug resistance in breast cancer. Gene signatures predictive of Hh pathway activation could enrich for patients likely to respond to these agents.
Collapse
Affiliation(s)
- Priyanka Bhateja
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mathew Cherian
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14816
|
Nizam A, Rhea LP, Gupta B, Aragon-Ching JB. The Emerging Role of Combination Angiogenesis Inhibitors and Immune Checkpoint Inhibitors in the Treatment of Metastatic Renal Cell Cancer. KIDNEY CANCER 2019. [DOI: 10.3233/kca-190050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Amanda Nizam
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Logan P. Rhea
- Department of Medicine, Inova Fairfax Hospital, Fairfax, VA, USA
| | - Brinda Gupta
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | |
Collapse
|
14817
|
Hung KC, Huang TC, Cheng CH, Cheng YW, Lin DY, Fan JJ, Lee KH. The Expression Profile and Prognostic Significance of Metallothionein Genes in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20163849. [PMID: 31394742 PMCID: PMC6721156 DOI: 10.3390/ijms20163849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease resulting from the combined influence of many genetic factors. This complexity has caused the molecular characterization of CRC to remain uncharacterized, with a lack of clear gene markers associated with CRC and the prognosis of this disease. Thus, highly sensitive tumor markers for the detection of CRC are the most essential determinants of survival. In this study, we examined the simultaneous downregulation of the mRNA levels of six metallothionein (MT) genes in CRC cell lines and public CRC datasets for the first time. In addition, we detected downregulation of these six MT mRNAs’ levels in 30 pairs of tumor (T) and adjacent non-tumor (N) CRC specimens. In order to understand the potential prognostic relevance of these six MT genes and CRC, we presented a four-gene signature to evaluate the prognosis of CRC patients. Further discovery suggested that the four-gene signature (MT1F, MT1G, MT1L, and MT1X) predicted survival better than any combination of two-, three-, four-, five-, or six-gene models. In conclusion, this study is the first to report that simultaneous downregulation of six MT mRNAs’ levels in CRC patients, and their aberrant expression together, accurately predicted CRC patients’ outcomes.
Collapse
Affiliation(s)
- Kuo-Chen Hung
- Division of Gastroenterologic Surgery, Department of Surgery, Yuan's General Hospital, Kaohsiung 80249, Taiwan
| | - Tsui-Chin Huang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Translational Cancer Research Center, Taipei Medical University, Taipei 11031, Taiwan
- Department of R&D, Calgent Biotechnology Co., Ltd., Taipei 10675, Taiwan
| | - Ding-Yen Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 003107, Taiwan
| | - Jhen-Jia Fan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
14818
|
Huang S, Chi Y, Chi W, Guo R, Su Y, Xue J, Zhou S, Wang J, Yang Z, Nie J, Shao Z, Chen D, Wu J. LINC00309 is associated with short disease-free survival in breast cancer. Cancer Cell Int 2019; 19:210. [PMID: 31406486 PMCID: PMC6686222 DOI: 10.1186/s12935-019-0887-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs play an important role in breast cancer. Even with adjuvant hormone therapy, patients with estrogen receptor positive breast cancer can present with recurrences and distant metastases. We investigated whether the expression of a novel long non-coding RNA LINC00309 can predict the outcome of breast cancer, especially for hormone-receptor positive patients. Methods This retrospective study collected 290 breast cancer patients including 161 patients with hormone-positive. qPCR was performed to detect the expression of LINC00309. Kaplan–Meier and Cox risk proportion model were applied to disclose the function of LINC00309 for breast cancer prognosis. Results LINC00309 high expression was an independent predictor for worse disease-free survival (HR = 2.127; 95% CI 1.074–4.212; p = 0.030) and associated with a shorter disease-free survival (p = 0.027), especially in hormone-positive breast cancer patients (p = 0.001). Also LINC00309 high expression was associated with a shorter disease-free survival both in selective estrogen receptor modulator related hormone therapy (p = 0.025) and aromatase inhibitors related hormone therapy (p = 0.048). Moreover, LINC00309 was an independent predictor of worse disease-free survival in hormone-receptor positive breast cancer patients on univariate (HR = 4.505; 95% CI 1.722–11.785; p = 0.002) and multivariate (HR = 4.159; 95% CI 1.537–11.251; p = 0.005) analyses. Conclusion In breast cancer, Linc00309 is significantly associated with poor prognosis and may represent a new marker of prognosis. Electronic supplementary material The online version of this article (10.1186/s12935-019-0887-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Huang
- 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Building 2, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,The 2nd Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Building 3, No. 519 Kunzhou Road, Kunming, 650118 China
| | - Yayun Chi
- 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Building 2, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiru Chi
- 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Building 2, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Guo
- 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Building 2, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghui Su
- 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Building 2, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyan Xue
- 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Building 2, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaoqiang Zhou
- The 2nd Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Building 3, No. 519 Kunzhou Road, Kunming, 650118 China
| | - Jiankui Wang
- The 2nd Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Building 3, No. 519 Kunzhou Road, Kunming, 650118 China
| | - Zhuangqing Yang
- The 2nd Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Building 3, No. 519 Kunzhou Road, Kunming, 650118 China
| | - Jianyun Nie
- The 2nd Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Building 3, No. 519 Kunzhou Road, Kunming, 650118 China
| | - Zhimin Shao
- 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Building 2, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dedian Chen
- The 2nd Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Building 3, No. 519 Kunzhou Road, Kunming, 650118 China
| | - Jiong Wu
- 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Building 2, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14819
|
Mei J, Hao L, Liu X, Sun G, Xu R, Wang H, Liu C. Comprehensive analysis of peroxiredoxins expression profiles and prognostic values in breast cancer. Biomark Res 2019; 7:16. [PMID: 31402980 PMCID: PMC6683561 DOI: 10.1186/s40364-019-0168-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The peroxiredoxins (PRDXs) gene family has been demonstrated to participate in carcinogenesis and development of numerous cancers and the prognostic values in several cancers have been evaluated already. Purpose of our research is to explore the expression profiles and prognostic values of PRDXs in breast cancer (BrCa). METHODS The transcriptional levels of PDRX family members in primary BrCa tissues and their association with intrinsic subclasses were analyzed using UALCAN database. Then, the genetic alterations of PDRXs were examined by cBioPortal database. Moreover, the prognostic values of PRDXs in BrCa patients were investigated via the Kaplan-Meier plotter. RESULTS The transcriptional levels of most PRDXs family members in BrCa tissues were significantly elevated compared with normal breast tissues. Meanwhile, dysregulated PRDXs expression was associated with intrinsic subclasses of BrCa. Besides, copy number alterations (CNA) of PRDXs positively regulated their mRNA expressions. Furthermore, high mRNA expression of PRDX4/6 was significantly associated with poor overall survival (OS) in BrCa patients, while high mRNA expression of PRDX3 was notably related to favorable OS. Simultaneously, high mRNA expression of PRDX1/2/4/5/6 was significantly associated with shorter relapse-free survival (RFS) in BrCa patients, while high mRNA expression of PRDX3 was notably related to favorable RFS. In addition, the prognostic value of PRDXs in the different clinicopathological features based on intrinsic subclasses and chemotherapeutic treatment of BrCa patients was further assessed in the KM plotter database. CONCLUSION Our findings systematically elucidate the expression profiles and distinct prognostic values of PRDXs in BrCa, which might provide novel therapeutic targets and potential prognostic biomarkers for BrCa patients.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 China
| | - Leiyu Hao
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Xiaorui Liu
- School of Pediatrics, Nanjing Medical University, Nanjing, 211166 China
| | - Guangshun Sun
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 China
| | - Rui Xu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Huiyu Wang
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 China
| | - Chaoying Liu
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 China
| |
Collapse
|
14820
|
Zhang LH, Wang Z, Li LH, Liu YK, Jin LF, Qi XW, Zhang C, Wang T, Hua D. Vestigial like family member 3 is a novel prognostic biomarker for gastric cancer. World J Clin Cases 2019; 7:1954-1963. [PMID: 31423427 PMCID: PMC6695548 DOI: 10.12998/wjcc.v7.i15.1954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/22/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vestigial like family member 3 (VGLL3) is associated with the prognosis of epithelial ovarian cancer and soft tissue sarcoma, but its role in gastric cancer (GC) is unclear.
AIM To explore the expression pattern and clinical significance of VGLL3 in GC.
METHODS Integrative analysis was performed on the GC transcriptome profiles and survival information deposited in the ONCOMINE, GEPIA, and ONCOLNC databases. The expression levels of VGLL3 mRNA and protein were analyzed in the freshly resected tumor and normal gastric tissues from GC patients by quantitative RT-PCR and Western blot, respectively. In addition, the in situ expression of VGLL3 in the GC tissues was determined by immunohistochemistry (IHC), and the patients were accordingly classified into the high and low expression groups. The correlation of VGLL3 expression status with patient prognosis was then determined by univariate and multivariate Cox regression analyses.
RESULTS Analysis of the ONCOMINE and GEPIA databases showed that VGLL3 was significantly up-regulated in GC tissues (P = 0.003), and associated with the tumor TNM stage (P = 0.0163). The high VGLL3 expression group had a significantly worse prognosis compared to the low expression group, as per both GEPIA (P = 0.0057) and ONCOLNC (P = 0.01). The bioinformatics results were validated by the significantly higher VGLL3 mRNA and protein levels in the GC tissues compared to the adjacent normal tissues (P < 0.001) in a cohort of 30 GC patients. Furthermore, high in situ expression of VGLL3 protein was associated with more advanced N and TNM stages and HER2 mutation (P < 0.05) in a cohort of 172 patients. Kaplan-Meier analysis showed that the high VGLL3 expression group had a worse prognosis compared to the low expression group (P = 0.019). Multivariate analysis showed that VGLL3 expression status was an independent risk factor for prognosis. In addition, the prognostic risk model nomogram showed that VGLL3 was the most important indicator, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.613 for 3-year survival and 0.706 for 5-year survival. Finally, the protein interaction network analysis revealed that VGLL3 is likely involved in the Hippo signaling pathway.
CONCLUSION VGLL3 is overexpressed in GC tissues and associated with a poor prognosis, indicating its potential as a novel prognosis biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Li-Hua Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Zhuo Wang
- Department of Geriatrics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Long-Hai Li
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yan-Kui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Lin-Fang Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Xiao-Wei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Chun Zhang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Dong Hua
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| |
Collapse
|
14821
|
Lieberman A, Gneezy A, Berry E, Miller S, Koch M, Ahn C, Balasubramanian BA, Argenbright KE, Gupta S. Financial Incentives to Promote Colorectal Cancer Screening: A Longitudinal Randomized Control Trial. Cancer Epidemiol Biomarkers Prev 2019; 28:1902-1908. [PMID: 31387970 DOI: 10.1158/1055-9965.epi-19-0039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Financial incentives may improve health behaviors. We tested the impact of offering financial incentives for mailed fecal immunochemical test (FIT) completion annually for 3 years. METHODS Patients, ages 50 to 64 years, not up-to-date with screening were randomized to receive either a mailed FIT outreach (n = 6,565), outreach plus $5 (n = 1,000), or $10 (n = 1,000) incentive for completion. Patients who completed the test were reinvited using the same incentive the following year, for 3 years. In year 4, patients who returned the kit in all preceding 3 years were reinvited without incentives. Primary outcome was FIT completion among patients offered any incentive versus outreach alone each year. Secondary outcomes were FIT completion for groups offered $5 versus outreach alone, $10 versus outreach alone, and $5 versus $10. RESULTS Year 1 FIT completion was 36.9% with incentives versus 36.2% outreach alone (P = 0.59) and was not statistically different for $10 (34.6%; P = 0.31) or $5 (39.2%; P = 0.070) versus outreach alone. Year 2 completion was 61.6% with incentives versus 60.8% outreach alone (P = 0.75) and not statistically different for $10 or $5 versus outreach alone. Year 3 completion was 79.4% with incentives versus 74.8% outreach alone (P = 0.080), and was higher for $10 (82.4%) versus outreach alone (P = 0.033), but not for $5 versus outreach alone. Completion was similar across conditions in year 4 (no incentives). CONCLUSIONS Offering small incentives did not increase FIT completion relative to standard outreach. IMPACT This was the first longitudinal study testing the impact of repeated financial incentives, and their withdrawal, on FIT completion.
Collapse
Affiliation(s)
- Alicea Lieberman
- Rady School of Management, University of California San Diego, La Jolla, California
| | - Ayelet Gneezy
- Rady School of Management, University of California San Diego, La Jolla, California
| | - Emily Berry
- University of Texas Southwestern Medical Center, Moncrief Cancer Institute, Fort Worth, Texas
| | - Stacie Miller
- University of Texas Southwestern Medical Center, Moncrief Cancer Institute, Fort Worth, Texas
| | - Mark Koch
- Department of Family Medicine, John Peter Smith Health Network, Fort Worth, Texas
| | - Chul Ahn
- University of Texas Southwestern Medical Center, Harold C. Simmons Cancer Center, Dallas, Texas.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bijal A Balasubramanian
- Department of Epidemiology, Genetics, & Environmental Science, UT Health School of Public Health, Dallas, Texas
| | - Keith E Argenbright
- University of Texas Southwestern Medical Center, Moncrief Cancer Institute, Fort Worth, Texas.,University of Texas Southwestern Medical Center, Harold C. Simmons Cancer Center, Dallas, Texas.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Samir Gupta
- San Diego Veterans Affairs Healthcare System, San Diego, California. .,Department of Internal Medicine, Division of Gastroenterology, and the Moores Cancer Center, University of California San Diego, San Diego, California
| |
Collapse
|
14822
|
Byrne MM, Thurer RJ, Studts JL. Individual decision making about lung cancer screening: A conjoint analysis of perspectives among a high-risk national sample. Cancer Med 2019; 8:5779-5786. [PMID: 31385463 PMCID: PMC6745859 DOI: 10.1002/cam4.2445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 07/14/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Lung cancer screening (LCS) is effective in reducing lung cancer mortality, but there is limited information available regarding preferences among high-risk individuals concerning LCS. In this study, we use a conjoint valuation analysis (CVA) to better understand which LCS attributes most affect LCS preferences. MATERIALS AND METHODS We implemented a web-based nationally representative survey that included a full-profile CVA exercise. Participants were over the age of 45, had at least a 20 pack-year smoking history, and no history of lung cancer. The CVA instrument included five LCS attributes, and additional survey items collected demographic and psychosocial information. RESULTS Participants (n = 210) had a mean age of 61 (SD 8.5) years, approximately half were female (51.9%), and were racially/ethnically diverse. Average relative importance of the LCS program attributes was (from high to low): out of pocket costs (27.3 ± 17.7); provider recommendation (24.8 ± 13.4); mortality reduction (17.2 ± 8.9); false-positive rate (15.8 ± 10.4); and ease of access (14.8 ± 7.3). There was large variation among individuals, but few significant associations of propensity to screen with individual demographic characteristics. Average screening propensity across individuals (1-9 scale) was 3.63 ± 1.6, and average rates of individual scenarios ranged from 2.60 ± 2.00 to 5.57 ± 2.13, indicating low inclination for screening. CONCLUSIONS We found that overall propensity for screening is low in a high-risk population, and that out of pocket costs were of greater importance to potential screeners than mortality reduction or false-positive rates. Thus, individuals considering or eligible for LCS need additional education and support regarding the LCS landscape in order to achieve informed decision making.
Collapse
Affiliation(s)
- Margaret M Byrne
- Department of Health Outcomes and Behavior, H Lee Moffitt Cancer Center, Tampa, Florida
| | - Richard J Thurer
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Jamie L Studts
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, Kentucky.,Cancer Prevention and Control Program, University of Kentucky Markey Cancer Center, Lexington, Kentucky
| |
Collapse
|
14823
|
Luo T, Chen M, Zhao Y, Wang D, Liu J, Chen J, Luo H, Li L. Macrophage-associated lncRNA ELMO1-AS1: a novel therapeutic target and prognostic biomarker for hepatocellular carcinoma. Onco Targets Ther 2019; 12:6203-6216. [PMID: 31498334 PMCID: PMC6689543 DOI: 10.2147/ott.s213833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a prevalent malignant tumor. Long non-coding RNAs (lncRNAs) have been demonstrated to be abnormally expressed in many tumors and act as crucial regulators in various biological processes. However, the expression and function of the recently identified macrophage-associated lncRNA ELMO1 antisense RNA 1 (ELMO1-AS1) in HCC are unclear. Methods The expression of ELMO1-AS1 was determined in HCC tissues and adjacent nontumorous tissues by quantitative real-time polymerase chain reaction (qRT-PCR). The Kaplan-Meier survival analysis and Cox regression analysis were performed to establish the correlation between the expression level and survival of HCC patients in a training set and a validation set, respectively. The overexpression experiments were also conducted to investigate the biological role of ELMO1-AS1 in HCC cells. Results We uncovered that ELMO1-AS1 was significantly downregulated in HCC tissues, and high expression of ELMO1-AS1 is correlated with optimistic treatment outcome suggesting its potential as an independent prognostic biomarker for HCC. It was also found that overexpression of ELMO1-AS1 in HCC cells suppressed cell proliferation, migration and invasion and engulfment and cell motility 1 (ELMO1) may be a target of ELMO1-AS1. Conclusion Our results suggested that macrophage-associated lncRNA ELMO1-AS1 could be a crucial regulator involved in HCC progression and considered as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Luo
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| | - Miao Chen
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province 530021, People's Republic of China
| | - Yuan Zhao
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| | - Duo Wang
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province 530021, People's Republic of China
| | - Junjie Liu
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province 530021, People's Republic of China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| | - Honglin Luo
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| |
Collapse
|
14824
|
Braga TL, Pinto SR, Dos Reis SRR, Portilho FL, da Silva de Barros AO, Bernardes ES, Dos Santos SN, Alencar LMR, Ricci-Junior E, Santos-Oliveira R. Octreotide Nanoparticles Showed Affinity for In Vivo MIA Paca-2 Inducted Pancreas Ductal Adenocarcinoma Mimicking Pancreatic Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma). Pharm Res 2019; 36:143. [PMID: 31385111 DOI: 10.1007/s11095-019-2678-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/29/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE Pancreatic Polypeptide-secreting tumor of the distal pancreas (PPoma) is a rare, difficult and indolent type of cancer with a survival rate of 5-year in only 10% of all cases. The PPoma is classified as a neuroendocrine tumor (NET) not functioning that overexpresses SSTR 2 (somatostatin receptor subtype 2). Thus, in order to improve the diagnosis of this type of tumor, we developed nanoparticulate drug carriers based on poly-lactic acid (PLA) polymer loaded with octreotide and radiolabeled with Technetium-99 m (99mTc). METHODS PLA/PVA octreotide nanoparticles were developed by double-emulsion technique. These nanoparticles were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) and radiolabeled with 99mTc by the direct via forming 99mTc-PLA/PVA octreotide nanoparticles. The safety of these nanosystems was evaluated by the MTT cell toxicity assay and their in vivo biodistribution was evaluated in xenografted inducted animals. RESULTS The results showed that a 189 nm sized nanoparticle were formed with a PDI of 0,097, corroborating the monodispersive behavior. These nanoparticles were successfully radiolabeled with 99mTc showing uptake by the inducted tumor. The MTT assay corroborated the safety of the nanosystem for the cells. CONCLUSION The results support the use of this nanosystem (99mTc-PLA/PVA octreotide nanoparticles) as imaging agent for PPoma. Graphical Abstract Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma) Radiolabeled Nanoparticles for Imaging.
Collapse
Affiliation(s)
- Thaís Ligiéro Braga
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil
| | - Suyene Rocha Pinto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil
| | | | - Filipe Leal Portilho
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil
| | | | | | | | - Luciana Magalhães Rebelo Alencar
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil
- Department of Physics, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Eduardo Ricci-Junior
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil.
- Laboratory of Radiopharmacy and Nano-radiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil.
| |
Collapse
|
14825
|
Diagnostic role of kidney injury molecule-1 in renal cell carcinoma. Int Urol Nephrol 2019; 51:1893-1902. [DOI: 10.1007/s11255-019-02231-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
14826
|
Overexpression of DCLK1-AL Increases Tumor Cell Invasion, Drug Resistance, and KRAS Activation and Can Be Targeted to Inhibit Tumorigenesis in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2019; 2019:6402925. [PMID: 31467540 PMCID: PMC6699308 DOI: 10.1155/2019/6402925] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
Oncogenic KRAS mutation plays a key role in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis with nearly 95% of PDAC harboring mutation-activated KRAS, which has been considered an undruggable target. Doublecortin-like kinase 1 (DCLK1) is often overexpressed in pancreatic cancer, and recent studies indicate that DCLK1+ PDAC cells can initiate pancreatic tumorigenesis. In this study, we investigate whether overexpressing DCLK1 activates RAS and promotes tumorigenesis, metastasis, and drug resistance. Human pancreatic cancer cells (AsPC-1 and MiaPaCa-2) were infected with lentivirus and selected to create stable DCLK1 isoform 2 (alpha-long, AL) overexpressing lines. The invasive potential of these cells relative to vector control was compared using Matrigel coated transwell assay. KRAS activation and interaction were determined by a pull-down assay and coimmunoprecipitation. Gemcitabine, mTOR (Everolimus), PI3K (LY-294002), and BCL-2 (ABT-199) inhibitors were used to evaluate drug resistance downstream of KRAS activation. Immunostaining of a PDAC tissue microarray was performed to detect DCLK1 alpha- and beta-long expression. Analysis of gene expression in human PDAC was performed using the TCGA PAAD dataset. The effects of targeting DCLK1 were studied using xenograft and Pdx1CreKrasG12DTrp53R172H/+ (KPC) mouse models. Overexpression of DCLK1-AL drives a more than 2-fold increase in invasion and drug resistance and increased the activation of KRAS. Evidence from TCGA PAAD demonstrated that human PDACs expressing high levels of DCLK1 correlate with activated PI3K/AKT/MTOR-pathway signaling suggesting greater KRAS activity. High DCLK1 expression in normal adjacent tissue of PDAC correlated with poor survival and anti-DCLK1 mAb inhibited pancreatic tumor growth in vivo in mouse models.
Collapse
|
14827
|
MCOLN1 Promotes Proliferation and Predicts Poor Survival of Patients with Pancreatic Ductal Adenocarcinoma. DISEASE MARKERS 2019; 2019:9436047. [PMID: 31481985 PMCID: PMC6701426 DOI: 10.1155/2019/9436047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/10/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
Background MCOLN1 (mucolipin subfamily, member 1) was first identified as an autophagic regulator, which was essential for efficient fusion of both autophagosomes and late endosomes with lysosomes. This study is aimed at investigating the role of MCOLN1 in the development of pancreatic ductal adenocarcinoma (PDAC). Methods Immunohistochemistry (IHC) assay was conducted to evaluate the expression level of MCOLN1 in 82 human PDAC tumor tissues. Overall survival (OS) and recurrence-free survival (RFS) analysis was performed to assess the prognosis of patients. Colony formation and MTT assays [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] were performed to measure the proliferation capacity of tumor cells. The expression level of related genes was measured by RT-PCR (reverse transcription polymerase chain reaction) and western blot assays. The animal model was used to examine the effects of indicated protein on tumorigenesis in vivo. Results The results of IHC showed that a high level of MCOLN1 expression was associated with the poor clinical characteristics of PDAC patients. OS and RFS were significantly worse in patients with high MCOLN1 expression. Silencing of MCOLN1 dramatically blocked the proliferation of PDAC cells. Mechanism studies confirmed that knockdown of MCOLN1 decreased the expression of Ki67 and PCNA (proliferating cell nuclear antigen), two markers of cell proliferation. In vivo, MCOILN1 depletion reduced the formation and growth of tumors in mice. Conclusion The high level of MCOLN1 expression was associated with poor clinical outcomes of PDAC patients. MCOLN1 ablation could inhibit PDAC proliferation of both in vitro and in vivo, which provide a new insight and novel therapeutic target for the treatment of PDAC.
Collapse
|
14828
|
The impact of rural residence on adult brain cancer survival in the United States. J Neurooncol 2019; 144:535-543. [DOI: 10.1007/s11060-019-03254-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
|
14829
|
Santarpia M, Menis J, Chaib I, Gonzalez Cao M, Rosell R. Dacomitinib for the first-line treatment of patients with EGFR-mutated metastatic non-small cell lung cancer. Expert Rev Clin Pharmacol 2019; 12:831-840. [PMID: 31356117 DOI: 10.1080/17512433.2019.1649136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Different EGFR tyrosine kinase inhibitors (TKIs) are currently approved for the first-line treatment of NSCLC patients with EGFR mutations. Dacomitinib is an orally administered, second-generation pan-HER inhibitor that has shown to improve PFS and OS compared to the first-generation TKI gefitinib and is the most recent inhibitor to be approved in this setting. Areas covered: This article will review relevant literature regarding preclinical findings and clinical data from phase I-III trials of dacomitinib. We particularly discuss the mechanism of action of dacomitinib and its clinical efficacy and toxicity as a novel, first-line therapeutic option for EGFR-mutated NSCLC. Expert commentary: The therapeutic landscape for EGFR-mutated NSCLC has been greatly expanded. In the first-line setting, we have currently first-, second- and third-generation EGFR TKIs available and some combination strategies, including EGFR TKIs with anti-angiogenic drugs or chemotherapy, have also shown to be effective. However, more data are needed to define the optimal therapeutic sequencing of all these targeted agents and combinations. In this view, molecular profiling of tumor tissues and liquid biopsies may provide novel insights on mechanisms of resistance to different drugs and guide treatment decisions.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Medical Oncology Unit, AOU Policlinico "G. Martino", Department of Human Pathology of Adult and Evolutive Age "G.Barresi", University of Messina , Messina , Italy
| | - Jessica Menis
- Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS , Padova , Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova , Padova , Italy
| | - Imane Chaib
- Catalan Institute of Oncology, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Maria Gonzalez Cao
- Dr. Rosell Oncology Institute (IOR), Dexeus University Hospital , Barcelona , Spain
| | - Rafael Rosell
- Catalan Institute of Oncology, Germans Trias i Pujol University Hospital , Badalona , Spain.,Dr. Rosell Oncology Institute (IOR), Dexeus University Hospital , Barcelona , Spain
| |
Collapse
|
14830
|
Roviello G, Corona SP, Nesi G, Mini E. Results from a meta-analysis of immune checkpoint inhibitors in first-line renal cancer patients: does PD-L1 matter? Ther Adv Med Oncol 2019; 11:1758835919861905. [PMID: 31428205 PMCID: PMC6683319 DOI: 10.1177/1758835919861905] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of this study was to perform a literature-based meta-analysis to assess the efficacy of the novel immune checkpoint inhibitors (ICIs) in first-line metastatic renal cell carcinoma (RCC), focusing on the predictive role of PD-L1 expression. METHODS The primary outcome was overall survival, and secondary outcomes were progression-free survival (PFS) and objective response. We planned a subgroup analysis for overall survival according to PD-L1 status. RESULTS Five studies were included in the analysis for a total of 4063 cases. Overall survival was greater in PD-L1 positive tumours (HR = 0.49, 95% CI: 0.36-0.67; p < 0.001). The pooled analysis of the unselected cases showed a statistically significative improvement in PFS with the use of ICIs (HR = 0.85, 95% CI: 0.72-0.99; p = 0.04) and we found a greater PFS benefit (HR = 0.65, 95% CI: 0.57-0.74; p < 0.001) in patients with PD-L1 positive tumours. CONCLUSIONS This study supports the efficacy of ICIs and, although a significant clinical benefit has been reported in PD-L1 negative patients, a greater efficacy of ICIs was observed in PD-L1 positive patients. More prospective randomized studies are needed to clarify the role of PDL-1 status in metastatic RCC treated with ICIs.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, University of Florence, viale Pieraccini, 6, 50139, Italy
| | - Silvia Paola Corona
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, Section of Pathological Anatomy, University Hospital of Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Italy
| |
Collapse
|
14831
|
Chang J, Chaudhuri O. Beyond proteases: Basement membrane mechanics and cancer invasion. J Cell Biol 2019; 218:2456-2469. [PMID: 31315943 PMCID: PMC6683740 DOI: 10.1083/jcb.201903066] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
In epithelial cancers, cells must invade through basement membranes (BMs) to metastasize. The BM, a thin layer of extracellular matrix underlying epithelial and endothelial tissues, is primarily composed of laminin and collagen IV and serves as a structural barrier to cancer cell invasion, intravasation, and extravasation. BM invasion has been thought to require protease degradation since cells, which are typically on the order of 10 µm in size, are too large to squeeze through the nanometer-scale pores of the BM. However, recent studies point toward a more complex picture, with physical forces generated by cancer cells facilitating protease-independent BM invasion. Moreover, collective cell interactions, proliferation, cancer-associated fibroblasts, myoepithelial cells, and immune cells are all implicated in regulating BM invasion through physical forces. A comprehensive understanding of BM structure and mechanics and diverse modes of BM invasion may yield new strategies for blocking cancer progression and metastasis.
Collapse
Affiliation(s)
- Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
14832
|
Farahani MA, Afsargharehbagh R, Marandi F, Moradi M, Hashemi SM, Moghadam MP, Balouchi A. Effect of aromatherapy on cancer complications: A systematic review. Complement Ther Med 2019; 47:102169. [PMID: 31779991 DOI: 10.1016/j.ctim.2019.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The aim of this study was to determine the effect of aromatherapy on cancer complications. METHODS In this systematic review, international (PubMed, Web of Science, Scopus, EMBASE and CENTRAL) and national databases (SID and Magiran) were searched from inception of the databases to April 31, 2019. JBI and Jadad scales were used to assess the quality of the studies included. RESULTS of 43 Studies conducted on 3239 cancer patients in 13 countries from 1995 to 2019, entered the final stage. The results showed that the aromatherapy improves the various physical and psychological complications, although few studies have shown that aromatherapy had no effect on skin reactions. CONCLUSION Considering the various complications and costs in cancer patients, it seems that the aromatherapy can be used as a proper supplemental treatment to improve complications, although further studies are needed to determine the protocol and the standard dosage.
Collapse
Affiliation(s)
- Mansoureh Ashghali Farahani
- Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Marandi
- MSc, Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Moradi
- MSs Student of Medical -Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mehdi Hashemi
- Clinical Immunology Research Center, Department of Internal Medicine, Hematology and Medical Oncology Ward, Ali-Ebne-Abitalelb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdieh Poodineh Moghadam
- Instructor, Department of Nursing, Faculty of Nursing and Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | - Abbas Balouchi
- Student Research Committee, Nursing and Midwifery School, Iran University of Medical Science, Iran
| |
Collapse
|
14833
|
Zhao G, Song Y, Dong L, Shi H, Li H, Yang L, Wang J. Silencing of lemur tyrosine kinase 2 restricts the proliferation and invasion of hepatocellular carcinoma through modulation of GSK-3β/Wnt/β-catenin signaling. Biochem Biophys Res Commun 2019; 517:722-728. [PMID: 31395338 DOI: 10.1016/j.bbrc.2019.07.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Lemur tyrosine kinase 2 (LMTK2) was recently identified as a novel cancer-related gene in several human cancers. However, little is known of its function in hepatocellular carcinoma (HCC). Here we aim to investigate the expression pattern, biological function, and regulatory mechanism of LMTK2 in HCC. We found that LMTK2 was highly expressed in HCC tissues, and patients with high expression of LMTK2 in tumor tissues had shorter survival times. LMTK2 expression was also elevated in HCC cell lines, and LMTK2 silencing markedly repressed the proliferation and invasion of HCC cells. By contrast, LMTK2 overexpression exerted promotion effects on HCC cell proliferation and invasion. Our results demonstrate that LMTK2 silencing decreases the phosphorylation of glycogen synthase kinase-3β (GSK-3β) and the expression of an active β-catenin protein, leading to inhibition of Wnt/β-catenin signaling. Notably, GSK-3β inhibition significantly reversed the LMTK2 silencing-mediated antitumor effect on proliferation, invasion, and Wnt/β-catenin signaling in HCC cells. LMTK2 silencing retarded the tumor growth of HCC cells in an in vivo xenograft tumor model, associated with downregulation of Wnt/β-catenin signaling. In conclusion, our findings suggest that silencing of LMTK2 suppresses the proliferation and invasion of HCC cells through the inhibition of Wnt/β-catenin signaling, via GSK-3β, highlighting the importance of LMTK2/GSK-3β/Wnt/β-catenin signaling in HCC progression.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yahua Song
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Longbao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
14834
|
New Era of Endoscopic Ultrasound-Guided Tissue Acquisition: Next-Generation Sequencing by Endoscopic Ultrasound-Guided Sampling for Pancreatic Cancer. J Clin Med 2019; 8:jcm8081173. [PMID: 31387310 PMCID: PMC6723875 DOI: 10.3390/jcm8081173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a lethal cancer with an increasing incidence. Despite improvements in chemotherapy, patients with pancreatic cancer continue to face poor prognoses. Endoscopic ultrasound-guided tissue acquisition (EUS-TA) is the primary method for obtaining tissue samples of pancreatic cancer. Due to advancements in next-generation sequencing (NGS) technologies, multiple parallel sequencing can be applied to EUS-TA samples. Genomic biomarkers for therapeutic stratification in pancreatic cancer are still lacking, however, NGS can unveil potential predictive genomic biomarkers of treatment response. Thus, the importance of NGS using EUS-TA samples is becoming recognized. In this review, we discuss the recent advances in EUS-TA application for NGS of pancreatic cancer.
Collapse
|
14835
|
Du P, Guan Y, An Z, Li P, Liu L. A selective and robust UPLC-MS/MS method for the simultaneous quantitative determination of anlotinib, ceritinib and ibrutinib in rat plasma and its application to a pharmacokinetic study. Analyst 2019; 144:5462-5471. [PMID: 31380858 DOI: 10.1039/c9an00861f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A selective and robust UPLC-MS/MS method has been firstly developed for simultaneous determination of three anti-tumor tyrosine kinase inhibitors (anlotinib, ANL; ceritinib, CER; ibrutinib, IBR) in rat plasma using cost-effective protein precipitation extraction. LC separation was achieved on Waters XBrige C18 column (50 mm × 2.1 mm, 3.5 μm) under gradient conditions in a run time of 5 min. ESI+ was involved through mass spectrometry. Multiple reaction monitoring transitions were at m/z 408.2 → 339.2 for ANL, 558.2 → 433.2 for CER, 441.0 → 138.0 for IBR, 285.0 → 193.1 for diazepam (internal standard), respectively. The optimized method was validated based on US FDA guideline, EMEA guideline as well as Pharmacopoeia of the People's Republic of China. The assay was linear in the range of 0.1-20 ng mL-1 for ANL, 2-1000 ng mL-1 for CER, 1-500 ng mL-1 for IBR. Intra- and inter-day accuracy and precision for all analytes were ≦13.84% and ≦12.56%, respectively. ANL, CER and IBR were sufficiently stable under most investigated conditions. The optimized method was successfully applied for a pharmacokinetic study after single oral gavage administration of mixture (ANL, CER and IBR) at dose of 6 mg kg-1, 25 mg kg-1 and 10 mg kg-1.
Collapse
Affiliation(s)
- Ping Du
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Yin Guan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Pengfei Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Lihong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14836
|
Small molecule HDAC inhibitors: Promising agents for breast cancer treatment. Bioorg Chem 2019; 91:103184. [PMID: 31408831 DOI: 10.1016/j.bioorg.2019.103184] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a heterogeneous disease, is the most frequently diagnosed cancer and the second leading cause of cancer-related death among women worldwide. Recently, epigenetic abnormalities have emerged as an important hallmark of cancer development and progression. Given that histone deacetylases (HDACs) are crucial to chromatin remodeling and epigenetics, their inhibitors have become promising potential anticancer drugs for research. Here we reviewed the mechanism and classification of histone deacetylases (HDACs), association between HDACs and breast cancer, classification and structure-activity relationship (SAR) of HDACIs, pharmacokinetic and toxicological properties of the HDACIs, and registered clinical studies for breast cancer treatment. In conclusion, HDACIs have shown desirable effects on breast cancer, especially when they are used in combination with other anticancer agents. In the coming future, more multicenter and randomized Phase III studies are expected to be conducted pushing promising new therapies closer to the market. In addition, the design and synthesis of novel HDACIs are also needed.
Collapse
|
14837
|
Ahluwalia P, Mondal AK, Bloomer C, Fulzele S, Jones K, Ananth S, Gahlay GK, Heneidi S, Rojiani AM, Kota V, Kolhe R. Identification and Clinical Validation of a Novel 4 Gene-Signature with Prognostic Utility in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20153818. [PMID: 31387239 PMCID: PMC6696416 DOI: 10.3390/ijms20153818] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a high burden disease with several genes involved in tumor progression. The aim of the present study was to identify, generate and clinically validate a novel gene signature to improve prediction of overall survival (OS) to effectively manage colorectal cancer. We explored The Cancer Genome Atlas (TCGA), COAD and READ datasets (597 samples) from The Protein Atlas (TPA) database to extract a total of 595 candidate genes. In parallel, we identified 29 genes with perturbations in > 6 cancers which are also affected in CRC. These genes were entered in cBioportal to generate a 17 gene panel with highest perturbations. For clinical validation, this gene panel was tested on the FFPE tissues of colorectal cancer patients (88 patients) using Nanostring analysis. Using multivariate analysis, a high prognostic score (composite 4 gene signature-DPP7/2, YWHAB, MCM4 and FBXO46) was found to be a significant predictor of poor prognosis in CRC patients (HR: 3.42, 95% CI: 1.71-7.94, p < 0.001 *) along with stage (HR: 4.56, 95% CI: 1.35-19.15, p = 0.01 *). The Kaplan-Meier analysis also segregated patients on the basis of prognostic score (log-rank test, p = 0.001 *). The external validation using GEO dataset (GSE38832, 122 patients) corroborated the prognostic score (HR: 2.7, 95% CI: 1.99-3.73, p < 0.001 *). Additionally, higher score was able to differentiate stage II and III patients (130 patients) on the basis of OS (HR: 2.5, 95% CI: 1.78-3.63, p < 0.001 *). Overall, our results identify a novel 4 gene prognostic signature that has clinical utility in colorectal cancer.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Ashis K Mondal
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chance Bloomer
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kimya Jones
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sudha Ananth
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Saleh Heneidi
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Amyn M Rojiani
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vamsi Kota
- Department of Medicine, Hematology Oncology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Ravindra Kolhe
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
14838
|
Yao Z, Zhang Y, Xu D, Zhou X, Peng P, Pan Z, Xiao N, Yao J, Li Z. Research Progress on Long Non-Coding RNA and Radiotherapy. Med Sci Monit 2019; 25:5757-5770. [PMID: 31375656 PMCID: PMC6690404 DOI: 10.12659/msm.915647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs longer than 200 nucleotides, are involved in multiple biological and pathological processes, such as proliferation, apoptosis, migration, invasion, angiogenesis, and immune escape. Many studies have shown that lncRNAs participate in the complex network of cancer and play vital roles as oncogenes or tumor-suppressor genes in a variety of cancers. Moreover, recent research has shown that abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy may participate in the progression of cancers and affect the radiation sensitivity of malignant tumor cells mediated by specific signaling pathways or cell cycle regulation. In this review, we summarize the published studies on lncRNAs in radiotherapy regarding the biological function and mechanism of human cancers, including esophageal cancer, pancreatic cancers, nasopharyngeal carcinoma, hepatocellular carcinoma, cervical cancer, colorectal cancer, and gastric cancer.
Collapse
Affiliation(s)
- Zhifeng Yao
- Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Danghui Xu
- Department of Medical Imaging, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xuejun Zhou
- Department of Medical Imaging, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Peng Peng
- Department of Nursing, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhiyao Pan
- Department of Basic Medicine, Zhejiang University Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Nan Xiao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhifeng Li
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
14839
|
DNA-Methylation-Caused Downregulation of miR-30 Contributes to the High Expression of XPO1 and the Aggressive Growth of Tumors in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11081101. [PMID: 31382411 PMCID: PMC6721494 DOI: 10.3390/cancers11081101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive cancers, with high mortality in the United States. One of the important signal transduction proteins involved in the regulation of pancreatic cancer's aggressive progression is the nuclear export protein (XPO1). High expression of XPO1 has been found in pancreatic, lung, breast and other cancers and lymphomas with a poor prognosis of patients with tumors and high proliferative activity of cancer cells. Because XPO1 exports multiple tumor suppressor proteins simultaneously from the nucleus, the inhibition of XPO1 may retain multiple tumor suppressors in the nucleus, resulting in the suppression of cell proliferation and the induction of apoptosis in tumors. In this study, we found that the high expression of XPO1 in pancreatic cancer cells could be, in part, due to the methylation of the miR-30 gene, leading to the low expression level of the miR-30 family. By co-transfection of the XPO1 3'-UTR-Luc target vector with miR-30 mimic, we found that XPO1 is a direct target of the miR-30 family. We also observed that the enforced expression of the miR-30 family inhibited the expression of XPO1, resulting in the suppression of pancreatic cancer growth both in vitro and in vivo. These findings could help to design a novel therapeutic strategy for the treatment of pancreatic cancer by introducing miR-30 into cancer cells.
Collapse
|
14840
|
Ma SJ, Oladeru OT, Miccio JA, Iovoli AJ, Hermann GM, Singh AK. Association of Timing of Adjuvant Therapy With Survival in Patients With Resected Stage I to II Pancreatic Cancer. JAMA Netw Open 2019; 2:e199126. [PMID: 31411712 PMCID: PMC6694394 DOI: 10.1001/jamanetworkopen.2019.9126] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE Surgery followed by adjuvant chemotherapy or chemoradiation is widely used to treat resectable pancreatic cancer. Although studies suggest initiation of adjuvant therapy within 12 weeks of surgery, there is no clear time interval associated with better survival. OBJECTIVE To evaluate the ideal timing of adjuvant therapy for patients with stage I to II resected pancreatic cancer. DESIGN, SETTING, AND PARTICIPANTS This cohort study included 7548 patients with stage I to II resected pancreatic cancer (5453 with adjuvant therapy; 2095 without adjuvant therapy) from the National Cancer Database from 2004 to 2015. Data were collected from January 2014 to December 2015 and analyzed from December 2018 to May 2019. EXPOSURES Adjuvant chemotherapy or chemoradiation at various time intervals. MAIN OUTCOMES AND MEASURES Overall survival (OS). RESULTS A total of 7548 patients (3770 male [49.9%]; median [interquartile range] age, 67 [59-74] years) were identified from the National Cancer Database. Among 5453 patients with adjuvant therapy, a Cox model with restricted cubic splines identified the lowest mortality risk when adjuvant therapy was started 28 to 59 days after surgery. Patients were divided into early (n = 269, adjuvant therapy initiated within <28 days), reference (n = 3048, adjuvant therapy initiated within 28-59 days), and late (n = 2136, adjuvant therapy initiated after >59 days) interval cohorts. Median (interquartile range) overall follow-up was 38.6 (24.6-62.0) months. Compared with the reference interval cohort on multivariable analysis, both the early cohort (hazard ratio, 1.17; 95% CI, 1.02-1.35; P = .03) and the late cohort (hazard ratio, 1.09; 95% CI, 1.02-1.17; P = .008) were associated with worse mortality. Similarly, the reference interval cohort had improved OS compared with the early cohort in 268 propensity-matched pairs (2-year OS, 52.5% [95% CI, 46.7%-59.0%] vs 45.1% [95% CI, 39.5%-51.6%]; P = .02) and compared with the late cohort in 2042 propensity-matched pairs (2-year OS, 51.3% [95% CI, 49.1%-53.6%] vs 45.4% [95% CI, 43.3%-47.7%]; P = .01). Patients who received adjuvant therapy more than 12 weeks after surgery (n = 683) had improved OS compared with surgery alone in both multivariable analysis (hazard ratio, 0.75; 95% CI, 0.66-0.85; P < .001) and 655 propensity-matched pairs (2-year OS, 47.2% [95% CI, 43.5%-51.3%] vs 38.0% [95% CI, 34.4%-42.0%]; P < .001). CONCLUSIONS AND RELEVANCE Patients with stage I to II pancreatic cancer who commenced adjuvant therapy within 28 to 59 days after primary surgical resection had improved survival outcomes compared with those with adjuvant therapy before 28 days or after 59 days. Patients who recovered slowly from surgery still benefited from delayed adjuvant therapy initiated more than 12 weeks after surgery compared with patients who underwent surgery only.
Collapse
Affiliation(s)
- Sung Jun Ma
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Joseph A. Miccio
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Austin J. Iovoli
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo-State University of New York (SUNY), Buffalo
| | - Gregory M. Hermann
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
14841
|
Affiliation(s)
- Aamir Ahmad
- Oncologic Sciences Mitchell Cancer Institute 1660 Springhill Avenue, Mobile, AL, 36604, United States
| |
Collapse
|
14842
|
Zhong X, Kan A, Zhang W, Zhou J, Zhang H, Chen J, Tang S. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:5483-5497. [PMID: 31375643 PMCID: PMC6710055 DOI: 10.18632/aging.102132] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023]
Abstract
HP1γ, encoded by CBX3, is associated with cancer progression and patient prognosis. However, the prognostic value and functions of CBX3/HP1γ in hepatocellular carcinoma (HCC) remain unclear. Here, we performed a bioinformatics analysis using the Oncomine, TCGA and Human Protein Atlas databases, the Kaplan-Meier plotter, and the UALCAN web-portal to explore the expression and prognostic significance of CBX3/HP1γ in patients with different cancers, including liver cancer. HCC tissues and microarrays containing 354 samples were examined using immunohistochemical staining, quantitative real-time polymerase chain reaction, and Western blotting. CBX3-overexpression HCC cell lines were tested in proliferation assays to determine the function of CBX3/HP1γ. We found that CBX3/HP1γ was upregulated in many cancers and was associated with poor prognosis. Our results also revealed that CBX3/HP1γ is elevated in HCC tissues and is associated with malignant clinicopathological characteristics. Kaplan-Meier and Cox regression analyses verified that high CBX3/HP1γ expression is an independent and significant prognostic factor for reduced overall survival in HCC patients. Moreover, invitro functional assays showed that CBX3/HP1γ overexpression promotes HCC cell proliferation. These findings suggest that CBX3/HP1γ is an important oncogene in HCC that might act as a useful biomarker for prognosis and targeted therapy.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Anna Kan
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huayong Zhang
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
- Department of Thyroid and Breast Surgery, The Fifth Affiliated Hospital of Sun Yat sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
14843
|
Xu H, Zhang L, Qian X, Zhou X, Yan Y, Zhou J, Ge W, Albahde M, Wang W. GSK343 induces autophagy and downregulates the AKT/mTOR signaling pathway in pancreatic cancer cells. Exp Ther Med 2019; 18:2608-2616. [PMID: 31572509 PMCID: PMC6755448 DOI: 10.3892/etm.2019.7845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a common malignancy that has a poor prognosis and limited therapeutic options. Enhancer of zeste homolog 2 (EZH2) serves a key role in the progression of different types of cancers. The effect of GSK343 (a competitive inhibitor of EZH2) on pancreatic cancer cells was assessed in the present study. Cell viability was evaluated using MTT and cell counting kit-8 assays in AsPC-1 and PANC-1 cells. Flow cytometry and an EdU assay were also performed to assess the effects of GSK343 on cell proliferation, apoptosis and the cell cycle. The induction of autophagy and associated molecular mechanisms were studied using fluorescence microscopy and western blot analysis. The results demonstrated that GSK343 inhibited cell viability in a dose- and time-dependent manner. Furthermore, GSK343 suppressed cell proliferation, promoted apoptosis and blocked cell cycle progression at the G1-phase. Furthermore, GSK343 induced autophagy in pancreatic cancer via the AKT/mTOR signaling pathway. In conclusion, GSK343 exhibited an anti-cancer effect on pancreatic cancer cells, downregulating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Linshi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaohui Qian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaohu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yingcai Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiarong Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wenhao Ge
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Mugahed Albahde
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
14844
|
Deng JL, Xu YH, Wang G. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis. Front Genet 2019; 10:695. [PMID: 31428132 PMCID: PMC6688090 DOI: 10.3389/fgene.2019.00695] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 01/10/2023] Open
Abstract
Background: The molecular mechanism of tumorigenesis remains to be fully understood in breast cancer. It is urgently required to identify genes that are associated with breast cancer development and prognosis and to elucidate the underlying molecular mechanisms. In the present study, we aimed to identify potential pathogenic and prognostic differentially expressed genes (DEGs) in breast adenocarcinoma through bioinformatic analysis of public datasets. Methods: Four datasets (GSE21422, GSE29431, GSE42568, and GSE61304) from Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) dataset were used for the bioinformatic analysis. DEGs were identified using LIMMA Package of R. The GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were conducted through FunRich. The protein-protein interaction (PPI) network of the DEGs was established through STRING (Search Tool for the Retrieval of Interacting Genes database) website, visualized by Cytoscape and further analyzed by Molecular Complex Detection (MCODE). UALCAN and Kaplan–Meier (KM) plotter were employed to analyze the expression levels and prognostic values of hub genes. The expression levels of the hub genes were also validated in clinical samples from breast cancer patients. In addition, the gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Results: In total, 203 up-regulated and 118 down-regulated DEGs were identified. Mitotic cell cycle and epithelial-to-mesenchymal transition pathway were the major enriched pathways for the up-regulated and down-regulated genes, respectively. The PPI network was constructed with 314 nodes and 1,810 interactions, and two significant modules are selected. The most significant enriched pathway in module 1 was the mitotic cell cycle. Moreover, six hub genes were selected and validated in clinical sample for further analysis owing to the high degree of connectivity, including CDK1, CCNA2, TOP2A, CCNB1, KIF11, and MELK, and they were all correlated to worse overall survival (OS) in breast cancer. Conclusion: These results revealed that mitotic cell cycle and epithelial-to-mesenchymal transition pathway could be potential pathways accounting for the progression in breast cancer, and CDK1, CCNA2, TOP2A, CCNB1, KIF11, and MELK may be potential crucial genes. Further, it could be utilized as new biomarkers for prognosis and potential new targets for drug synthesis of breast cancer.
Collapse
Affiliation(s)
- Jun-Li Deng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yun-Hua Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
14845
|
Plata-Bello J, Plata-Bello A, Pérez-Martín Y, Fajardo V, Concepción-Massip T. Androgen deprivation therapy increases brain ageing. Aging (Albany NY) 2019; 11:5613-5627. [PMID: 31377745 PMCID: PMC6710035 DOI: 10.18632/aging.102142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Prostate cancer (PC) is the most frequent neoplasia in the male population and androgen deprivation therapy (ADT) is frequently used in the management of the disease. AIM To evaluate the effect of ADT exposure on cognitive status, grey matter volume (GMV) and white matter lesion (WML) load. METHODS Fifty ADT patients and fifteen PC-non-ADT (control) patients were included in the study. A neuropsychological evaluation was performed and a magnetic resonance imaging (MRI), with anatomical T1 and FLAIR sequences, was performed to evaluate the GMV and the WML burden. RESULTS Most of the patients included in the study presented a significant cognitive impairment (CI). No significant differences were identified in the cognitive assessment between the studied groups, but when considering the educational background intragroup differences were found.No significant difference of GMV and WML volume were identified between groups, but a negative relationship between the ADT period and the GMV was identified. Furthermore, a significant positive association between the age and the lesion volume was found in the ADT group (β=.406; p=.004). CONCLUSION PC patients exposed to ADT present an acceleration of age-related brain changes, such as WML development and GMV loss.
Collapse
Affiliation(s)
- Julio Plata-Bello
- Department of Neuroscience, Hospital Universitario de Canarias, S/C de Tenerife, CP 38320, Spain
| | - Ana Plata-Bello
- Department of Urology, Hospital Universitario de Canarias, S/C de Tenerife, CP 38320, Spain
| | - Yaiza Pérez-Martín
- Department of Neuroscience, Hospital Universitario de Canarias, S/C de Tenerife, CP 38320, Spain
| | - Victor Fajardo
- Department of Neuroscience, Hospital Universitario de Canarias, S/C de Tenerife, CP 38320, Spain
| | | |
Collapse
|
14846
|
Mercan E, Mehta S, Bartlett J, Shapiro LG, Weaver DL, Elmore JG. Assessment of Machine Learning of Breast Pathology Structures for Automated Differentiation of Breast Cancer and High-Risk Proliferative Lesions. JAMA Netw Open 2019; 2:e198777. [PMID: 31397859 PMCID: PMC6692690 DOI: 10.1001/jamanetworkopen.2019.8777] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Following recent US Food and Drug Administration approval, adoption of whole slide imaging in clinical settings may be imminent, and diagnostic accuracy, particularly among challenging breast biopsy specimens, may benefit from computerized diagnostic support tools. OBJECTIVE To develop and evaluate computer vision methods to assist pathologists in diagnosing the full spectrum of breast biopsy samples, from benign to invasive cancer. DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, 240 breast biopsies from Breast Cancer Surveillance Consortium registries that varied by breast density, diagnosis, patient age, and biopsy type were selected, reviewed, and categorized by 3 expert pathologists as benign, atypia, ductal carcinoma in situ (DCIS), and invasive cancer. The atypia and DCIS cases were oversampled to increase statistical power. High-resolution digital slide images were obtained, and 2 automated image features (tissue distribution feature and structure feature) were developed and evaluated according to the consensus diagnosis of the expert panel. The performance of the automated image analysis methods was compared with independent interpretations from 87 practicing US pathologists. Data analysis was performed between February 2017 and February 2019. MAIN OUTCOMES AND MEASURES Diagnostic accuracy defined by consensus reference standard of 3 experienced breast pathologists. RESULTS The accuracy of machine learning tissue distribution features, structure features, and pathologists for classification of invasive cancer vs noninvasive cancer was 0.94, 0.91, and 0.98, respectively; the accuracy of classification of atypia and DCIS vs benign tissue was 0.70, 0.70, and 0.81, respectively; and the accuracy of classification of DCIS vs atypia was 0.83, 0.85, and 0.80, respectively. The sensitivity of both machine learning features was lower than that of the pathologists for the invasive vs noninvasive classification (tissue distribution feature, 0.70; structure feature, 0.49; pathologists, 0.84) but higher for the classification of atypia and DCIS vs benign cases (tissue distribution feature, 0.79; structure feature, 0.85; pathologists, 0.72) and the classification of DCIS vs atypia (tissue distribution feature, 0.88; structure feature, 0.89; pathologists, 0.70). For the DCIS vs atypia classification, the specificity of the machine learning feature classification was similar to that of the pathologists (tissue distribution feature, 0.78; structure feature, 0.80; pathologists, 0.82). CONCLUSION AND RELEVANCE The computer-based automated approach to interpreting breast pathology showed promise, especially as a diagnostic aid in differentiating DCIS from atypical hyperplasia.
Collapse
Affiliation(s)
- Ezgi Mercan
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle
- nowwith Seattle Children’s Hospital, Seattle, Washington
| | - Sachin Mehta
- Department of Electrical and Computer Engineering, University of Washington, Seattle
| | - Jamen Bartlett
- University of Vermont Medical Center, Burlington
- now with Southern Ohio Pathology Consultants, Cincinnati, Ohio
| | - Linda G. Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle
| | - Donald L. Weaver
- Department of Pathology and University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington
| | - Joann G. Elmore
- Division of General Internal Medicine and Health Services Research, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles
| |
Collapse
|
14847
|
Toward a genome-based treatment landscape for renal cell carcinoma. Crit Rev Oncol Hematol 2019; 142:141-152. [PMID: 31401421 DOI: 10.1016/j.critrevonc.2019.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023] Open
Abstract
Knowledge about molecular mechanisms driving development and progression of renal cell carcinoma has been elucidated by different studies. In few years we discovered a large difference between genomic landscapes of clear cell and non-clear cell carcinoma. Moreover, tumor heterogeneity and different acquisition of gene mutations during tumor progression are issues of particular interest. In this review we focalized our attention on principal genomic alterations identified among RCC subtypes. Acquired gene mutations may be an adaptive response to several external pressure including metabolic, treatment, genomic and immune-related external pressure. Thus we correlated and discussed principal genomic alterations adopted by tumor to escape from each external pressures. The aim of the present work is to summarize current knowledge about genomic alterations in RCC with special interest of treatment strategies tailored on the basis of disease mutations assessment.
Collapse
|
14848
|
Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett 2019; 458:123-135. [DOI: 10.1016/j.canlet.2019.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
14849
|
Farran B, Nagaraju GP. The dynamic interactions between the stroma, pancreatic stellate cells and pancreatic tumor development: Novel therapeutic targets. Cytokine Growth Factor Rev 2019; 48:11-23. [PMID: 31331827 DOI: 10.1016/j.cytogfr.2019.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023]
|
14850
|
Schiller SJ, Shannon C, Brophy MT, Denicoff AM, Good MJ, Prindiville SA, Huang GD. The National Cancer Institute and Department of Veterans Affairs Interagency Group to Accelerate Trials Enrollment (NAVIGATE): A federal collaboration to improve cancer care. Semin Oncol 2019; 46:308-313. [DOI: 10.1053/j.seminoncol.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/28/2019] [Indexed: 11/11/2022]
|