101
|
Li R, Chen Y, Yang B, Li Z, Wang S, He J, Zhou Z, Li X, Li J, Sun Y, Guo X, Wang X, Wu Y, Zhang W, Guo G. Integrated bioinformatics analysis and experimental validation identified CDCA families as prognostic biomarkers and sensitive indicators for rapamycin treatment of glioma. PLoS One 2024; 19:e0295346. [PMID: 38181024 PMCID: PMC10769025 DOI: 10.1371/journal.pone.0295346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.
Collapse
Affiliation(s)
- Ren Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shule Wang
- Department of General and Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihan Zhou
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuepeng Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayu Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqi Sun
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
102
|
Warner EW, Van der Eecken K, Murtha AJ, Kwan EM, Herberts C, Sipola J, Ng SWS, Chen XE, Fonseca NM, Ritch E, Schönlau E, Bernales CQ, Donnellan G, Munzur AD, Parekh K, Beja K, Wong A, Verbeke S, Lumen N, Van Dorpe J, De Laere B, Annala M, Vandekerkhove G, Ost P, Wyatt AW. Multiregion sampling of de novo metastatic prostate cancer reveals complex polyclonality and augments clinical genotyping. NATURE CANCER 2024; 5:114-130. [PMID: 38177459 DOI: 10.1038/s43018-023-00692-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2023] [Indexed: 01/06/2024]
Abstract
De novo metastatic prostate cancer is highly aggressive, but the paucity of routinely collected tissue has hindered genomic stratification and precision oncology. Here, we leveraged a rare study of surgical intervention in 43 de novo metastatic prostate cancers to assess somatic genotypes across 607 synchronous primary and metastatic tissue regions plus circulating tumor DNA. Intra-prostate heterogeneity was pervasive and impacted clinically relevant genes, resulting in discordant genotypes between select primary restricted regions and synchronous metastases. Additional complexity was driven by polyclonal metastatic seeding from phylogenetically related primary populations. When simulating clinical practice relying on a single tissue region, genomic heterogeneity plus variable tumor fraction across samples caused inaccurate genotyping of dominant disease; however, pooling extracted DNA from multiple biopsy cores before sequencing can rescue misassigned somatic genotypes. Our results define the relationship between synchronous treatment-sensitive primary and metastatic lesions in men with de novo metastatic prostate cancer and provide a framework for implementing genomics-guided patient management.
Collapse
Affiliation(s)
- Evan W Warner
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kim Van der Eecken
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Andrew J Murtha
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edmond M Kwan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Cameron Herberts
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joonatan Sipola
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Sarah W S Ng
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinyi E Chen
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolette M Fonseca
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elie Ritch
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena Schönlau
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cecily Q Bernales
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gráinne Donnellan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aslı D Munzur
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karan Parekh
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Beja
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda Wong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sofie Verbeke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Nicolaas Lumen
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Matti Annala
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Gillian Vandekerkhove
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
| |
Collapse
|
103
|
Hirano T, Yonezawa K, Kawahara T, Mizuno N, Hayashi H, Karibe Y, Asano J, Fusayasu S, Makiyama K, Uemura H, Ohta J, Moriyama M. Complete Response to Pembrolizumab in a Patient with Castration-Resistant Prostate Cancer with Both BRCA Positivity and a High Frequency of Microsatellite Instability: A Case Report. Case Rep Oncol 2024; 17:852-858. [PMID: 39144237 PMCID: PMC11324272 DOI: 10.1159/000540419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction There have been few reports of patients for whom a cancer gene panel test for solid tumors revealed the simultaneous presence of BRCA mutation and microsatellite instability (MSI)-high status. BRCA mutations have been reported in 13% of castration-resistant prostate cancer (CRPC) patients, and 3.1% of prostate cancer cases are MSI-high/mismatch repair deficient. Case Presentation A 71-year-old man with a history of urinary retention was referred to our department for clinically suspected prostate cancer and a high prostate-specific antigen (PSA) level (141 ng/mL). MRI revealed features of prostate cancer invading the bladder, seminal vesicles, and rectum. A histopathological examination of a transperineal needle biopsy specimen obtained from the prostate revealed adenocarcinoma. Bone scintigraphy revealed multiple metastases. The patient was treated with abiraterone acetate combined with androgen deprivation therapy followed by local radiation. Rectal wall thickening and lymph node metastasis were also observed, and docetaxel was administered. A cancer gene panel test was positive results for BRCA2 mutation with a MSI-high. After six courses of docetaxel, lymph node enlargement was observed and olaparib was initiated. Two months later, the metastatic lesions showed enlargement and the PSA level increased. Subsequently, pembrolizumab was administered. At 2 to the patient months after the initiation of pembrolizumab administration, PSA levels decreased to <0.025 ng/mL and the rectal lesions and lymph node metastases disappeared. The patient was continuing to receive pembrolizumab without any apparent adverse events or exacerbations, 9 months after initiation. Conclusion We herein report a case in which pembrolizumab treatment resulted in a complete response in a CRPC patient with both a BRCA2 mutation and an MSI-high status.
Collapse
Affiliation(s)
- Takayuki Hirano
- Department of Urology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| | - Kousuke Yonezawa
- Department of Urology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| | - Takashi Kawahara
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, Japan
| | - Nobuhiko Mizuno
- Department of Urology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| | - Hiroyuki Hayashi
- Departments of Pathology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| | - Yuta Karibe
- Department of Urology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| | - Jun Asano
- Department of Urology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| | - Shusei Fusayasu
- Department of Urology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| | - Kazuhide Makiyama
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, Japan
| | - Junichi Ohta
- Department of Urology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| | - Masatoshi Moriyama
- Department of Urology, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan
| |
Collapse
|
104
|
Fang Q, Shen G, Xie Q, Guan Y, Liu X, Ren D, Zhao F, Liu Z, Ma F, Zhao J. Development of Tumor Markers for Breast Cancer Immunotherapy. Curr Mol Med 2024; 24:547-564. [PMID: 37157196 DOI: 10.2174/1566524023666230508152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Although breast cancer treatment has been developed remarkably in recent years, it remains the primary cause of death among women. Immune checkpoint blockade therapy has significantly altered the way breast cancer is treated, although not all patients benefit from the changes. At present, the most effective mechanism of immune checkpoint blockade application in malignant tumors is not clear and efficacy may be influenced by many factors, including host, tumor, and tumor microenvironment dynamics. Therefore, there is a pressing need for tumor immunomarkers that can be used to screen patients and help determine which of them would benefit from breast cancer immunotherapy. At present, no single tumor marker can predict treatment efficacy with sufficient accuracy. Multiple markers may be combined to more accurately pinpoint patients who will respond favorably to immune checkpoint blockade medication. In this review, we have examined the breast cancer treatments, developments in research on the role of tumor markers in maximizing the clinical efficacy of immune checkpoint inhibitors, prospects for the identification of novel therapeutic targets, and the creation of individualized treatment plans. We also discuss how tumor markers can provide guidance for clinical practice.
Collapse
Affiliation(s)
- Qianqian Fang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yumei Guan
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinlan Liu
- Department of Oncology, General Hospital of Ningxia Medical University, No. 804 Shengli Road, Xingqing District, Yinchuan, 750004, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| |
Collapse
|
105
|
Tsai AK, Kagalwalla S, Langer J, Le-Kumar T, Le-Kumar V, Antonarakis ES. Pembrolizumab for metastatic castration-resistant prostate cancer: trials and tribulations. Expert Opin Biol Ther 2024; 24:51-62. [PMID: 38284349 DOI: 10.1080/14712598.2024.2311750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Immunotherapies have revolutionized the management of various malignancies but have only recently been evaluated systematically in prostate cancer. Pembrolizumab, a programmed-death 1 (PD-1) blocking antibody, has been utilized in a small subset of prostate cancer patients with mismatch repair deficiency/microsatellite instability, but has now been assessed in broader populations of metastatic prostate cancer patients. AREAS COVERED The results of four pembrolizumab-based phase III clinical trials for metastatic castration-resistant prostate cancer (mCRPC) and metastatic hormone-sensitive prostate cancer (mHSPC) patients, including KEYNOTE-641, KEYNOTE-921, KEYNOTE-991, and KEYLYNK-010 are summarized. Programmed death-ligand 1 (PD-L1) expression, the efficacy of pembrolizumab in prostate cancer patients with certain molecular defects, and emerging pembrolizumab-based therapeutic combinations are also reviewed. EXPERT OPINION Pembrolizumab has not benefitted unselected metastatic prostate cancer patients when combined with chemotherapy, next-generation hormonal agents (NHA), or poly(ADP-ribose) polymerase inhibitors (PARPi). PD-L1 positivity does not predict the response to pembrolizumab in this disease. A small number of responding patients can likely be explained by rare genetic and molecular defects, and more innovative combination strategies are needed to improve outcomes in prostate cancer patients who are not sensitive to pembrolizumab. Emphasis should be placed on developing additional or alternative immuno-oncology approaches beyond classical immune checkpoint inhibition.
Collapse
Affiliation(s)
- Alexander K Tsai
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sana Kagalwalla
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Jenna Langer
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Thuy Le-Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Vikas Le-Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Emmanuel S Antonarakis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
106
|
Han L, Meng Y, Jianguo Z. Research Progress of PD 1/PD L1 Inhibitors in the Treatment of Urological Tumors. Curr Cancer Drug Targets 2024; 24:1104-1115. [PMID: 38318829 DOI: 10.2174/0115680096278251240108152600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer significant advantages for the treatment of urologic tumors, enhancing the immune function of anti-tumor T cells by inhibiting PD-1 and PDL1 binding. They have been shown to be well tolerated and remarkably effective in clinical practice, offering hope to many patients who are not well treated with conventional drugs. Clinical trials in recent years have shown that anti-PD-1 and PD-L1 antibodies have good efficacy and safety in the treatment of urologic tumors. These antibodies can be applied to a variety of urologic tumors, such as bladder cancer, renal cell carcinoma, and prostate cancer. They have been approved for the first-line treatment or as an option for follow-up therapy. By blocking the PD-1/PD-L1 signaling pathway, ICIs can release immune functions that are suppressed by tumor cells and enhance T-cell killing, thereby inhibiting tumor growth and metastasis. This therapeutic approach has achieved encouraging efficacy and improved survival for many patients. Although ICIs have shown remarkable results in the treatment of urologic tumors, some problems remain, such as drug resistance and adverse effects in some patients. Therefore, further studies remain important to optimize treatment strategies and improve clinical response in patients. In conclusion, PD-1/PD-L1 signaling pathway blockers have important research advances for the treatment of urologic tumors. Their emergence brings new hope for patients who have poor outcomes with traditional drug therapy and provides new options for immunotherapy of urologic tumors. The purpose of this article is to review the research progress of PD-1 and PD-L1 signaling pathway blockers in urologic tumors in recent years.
Collapse
Affiliation(s)
- Lv Han
- Guizhou Medical University, Guiyang, 550000, China
| | - Yang Meng
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| | - Zhu Jianguo
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| |
Collapse
|
107
|
Xu H, Li YF, Yi XYL, Zheng XN, Yang Y, Wang Y, Liao DZ, Zhang JP, Tan P, Xiong XY, Jin X, Gong LN, Qiu S, Cao DH, Li H, Wei Q, Yang L, Ai JZ. ADP-dependent glucokinase controls metabolic fitness in prostate cancer progression. Mil Med Res 2023; 10:64. [PMID: 38082365 PMCID: PMC10714548 DOI: 10.1186/s40779-023-00500-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cell metabolism plays a pivotal role in tumor progression, and targeting cancer metabolism might effectively kill cancer cells. We aimed to investigate the role of hexokinases in prostate cancer (PCa) and identify a crucial target for PCa treatment. METHODS The Cancer Genome Atlas (TCGA) database, online tools and clinical samples were used to assess the expression and prognostic role of ADP-dependent glucokinase (ADPGK) in PCa. The effect of ADPGK expression on PCa cell malignant phenotypes was validated in vitro and in vivo. Quantitative proteomics, metabolomics, and extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) tests were performed to evaluate the impact of ADPGK on PCa metabolism. The underlying mechanisms were explored through ADPGK overexpression and knockdown, co-immunoprecipitation (Co-IP), ECAR analysis and cell counting kit-8 (CCK-8) assays. RESULTS ADPGK was the only glucokinase that was both upregulated and predicted worse overall survival (OS) in prostate adenocarcinoma (PRAD). Clinical sample analysis demonstrated that ADPGK was markedly upregulated in PCa tissues vs. non-PCa tissues. High ADPGK expression indicates worse survival outcomes, and ADPGK serves as an independent factor of biochemical recurrence. In vitro and in vivo experiments showed that ADPGK overexpression promoted PCa cell proliferation and migration, and ADPGK inhibition suppressed malignant phenotypes. Metabolomics, proteomics, and ECAR and OCR tests revealed that ADPGK significantly accelerated glycolysis in PCa. Mechanistically, ADPGK binds aldolase C (ALDOC) to promote glycolysis via AMP-activated protein kinase (AMPK) phosphorylation. ALDOC was positively correlated with ADPGK, and high ALDOC expression was associated with worse survival outcomes in PCa. CONCLUSIONS In summary, ADPGK is a driving factor in PCa progression, and its high expression contributes to a poor prognosis in PCa patients. ADPGK accelerates PCa glycolysis and progression by activating ALDOC-AMPK signaling, suggesting that ADPGK might be an effective target and marker for PCa treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Fan Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xian-Yan-Ling Yi
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Nan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Da-Zhou Liao
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia-Peng Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Tan
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing-Yu Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Jin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li-Na Gong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - De-Hong Cao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jian-Zhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
108
|
Marino F, Totaro A, Gandi C, Bientinesi R, Moretto S, Gavi F, Pierconti F, Iacovelli R, Bassi P, Sacco E. Germline mutations in prostate cancer: a systematic review of the evidence for personalized medicine. Prostate Cancer Prostatic Dis 2023; 26:655-664. [PMID: 36434163 DOI: 10.1038/s41391-022-00609-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The goal of precision medicine in prostate cancer (PCa) is to individualize the treatment according to the patient's germline mutation status. PCa has a very high rate of genetic predisposition compared with other cancers in men, with an estimated rate of cancers ascribable to hereditary factors of 5-15%. METHODS A systematic search (PubMed, Web of Science, and ClinicalTrials.gov) of English literature from 2000 to 2022, using the keywords "prostate cancer", "germline mutations", "family history", and "inheritance" was conducted, according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. RESULTS The search identified 980 publications. Of these, 200 papers were removed before screening (duplicates, non-English literature, and publication year before 2000) and 245 records were excluded after title/abstract screening. Finally, 50 articles were included in the final analysis. We analyze the latest evidence on the genetic basis of PCa predisposition and clinical implications for more personalized screening protocols and therapeutic management of this high-prevalent cancer. DISCUSSION Emerging data show that germline mutations in homologous recombination genes (BRCA1/2, ATM, CHECK2), in mismatch repair genes (MLH1, MLH2, MSH6), and other additional genes are associated with the development and aggressiveness of PCa. Germline testing and genetic counseling have increasingly important implications in cancer screening and therapeutic decisions making for patients affected by PCa. Patients with localized PCa and some gene mutations are more likely to develop aggressive cancer, so active treatment may be preferable to active surveillance for these patients. Moreover, in patients with metastatic PCa, these gene alterations may be useful biomarkers for predicting response to specific therapy such as PARP inhibitors, recently approved for the treatment of metastatic castration-resistant PCa. The evidence supports recent guidelines and recommendations considering germline genetic testing for patients with a positive family history of PCa or men with high risk or metastatic disease.
Collapse
Affiliation(s)
- Filippo Marino
- Urology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Angelo Totaro
- Urology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carlo Gandi
- Urology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Riccardo Bientinesi
- Urology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Stefano Moretto
- Urology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Filippo Gavi
- Urology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Pierconti
- Anatomic Pathology and Histology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Roberto Iacovelli
- Medical Oncology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - PierFrancesco Bassi
- Urology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Emilio Sacco
- Urology Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
109
|
Ge Q, Li J, Yang F, Tian X, Zhang M, Hao Z, Liang C, Meng J. Molecular classifications of prostate cancer: basis for individualized risk stratification and precision therapy. Ann Med 2023; 55:2279235. [PMID: 37939258 PMCID: PMC10653710 DOI: 10.1080/07853890.2023.2279235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Tumour classifications play a pivotal role in prostate cancer (PCa) management. It can predict the clinical outcomes of PCa as early as the disease is diagnosed and then guide therapeutic schemes, such as active monitoring, standalone surgical intervention, or surgery supplemented with postoperative adjunctive therapy, thereby circumventing disease exacerbation and excessive treatment. Classifications based on clinicopathological features, such as prostate cancer-specific antigen, Gleason score, and TNM stage, are still the main risk stratification strategies and have played an essential role in standardized clinical decision-making. However, mounting evidence indicates that clinicopathological parameters in isolation fail to adequately capture the heterogeneity exhibited among distinct PCa patients, such as those sharing identical Gleason scores yet experiencing divergent prognoses. As a remedy, molecular classifications have been introduced. Currently, molecular studies have revealed the characteristic genomic alterations, epigenetic modulations, and tumour microenvironment associated with different types of PCa, which provide a chance for urologists to refine the PCa classification. In this context, numerous invaluable molecular classifications have been devised, employing disparate statistical methodologies and algorithmic approaches, encompassing self-organizing map clustering, unsupervised cluster analysis, and multifarious algorithms. Interestingly, the classifier PAM50 was used in a phase-2 multicentre open-label trial, NRG-GU-006, for further validation, which hints at the promise of molecular classification for clinical use. Consequently, this review examines the extant molecular classifications, delineates the prevailing panorama of clinically pertinent molecular signatures, and delves into eight emblematic molecular classifications, dissecting their methodological underpinnings and clinical utility.
Collapse
Affiliation(s)
- Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | | | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
110
|
Wang Q, Tang Z, Li C, Li X, Su C. Evaluating distinct KRAS subtypes as potential biomarkers for immune checkpoint inhibitor efficacy in lung adenocarcinoma. Front Immunol 2023; 14:1297588. [PMID: 37954616 PMCID: PMC10635421 DOI: 10.3389/fimmu.2023.1297588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Background Despite the acknowledged predictive value of KRAS in immune checkpoint inhibitor (ICI) responses, the heterogeneous behavior of its mutations in this sphere remains largely unexplored. As of now, no studies have definitively categorized KRAS subtype variations as independent prognostic indicators for ICI responses in lung cancer patients. Methods We analyzed a cohort of 103 patients, all harboring different KRAS mutation subtypes, and complemented this data with information from TCGA and GEO databases. Our research focused on delineating the relationships between KRAS mutation subtypes and factors like immunotherapy markers and immune cell composition, in addition to examining survival rates, drug sensitivity, and PD-L1 responses corresponding to distinct KRAS subtypes. Results We found that the G12V and G12D subtypes demonstrated elevated expressions of immunotherapy markers, implying a potentially enhanced benefit from immunotherapy. Significant variations were identified in the distribution of naive B cells, activated CD4+ memory T cells, and regulatory T cells (Tregs) across different KRAS mutant subtypes. A notable difference was observed in the Tumor Mutation Burden (TMB) levels across the four KRAS subtypes, with the G12D subtype displaying the lowest TMB level. Furthermore, G12C subtype showcased the worst prognosis in terms of progression-free intervals (PFI), in stark contrast to the more favorable outcomes associated with the G12A subtype. Conclusion Our study reveals that KRAS mutations exhibit considerable variability in predicting outcomes for LUAD patients undergoing ICI treatment. Thus, the evaluation of KRAS as a biomarker for ICIs necessitates recognizing the potential diversity inherent in KRAS mutations.
Collapse
Affiliation(s)
- Qi Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
111
|
Currie C, Bjerknes C, Myklebust TÅ, Framroze B. Assessing the Potential of Small Peptides for Altering Expression Levels of the Iron-Regulatory Genes FTH1 and TFRC and Enhancing Androgen Receptor Inhibitor Activity in In Vitro Prostate Cancer Models. Int J Mol Sci 2023; 24:15231. [PMID: 37894914 PMCID: PMC10607736 DOI: 10.3390/ijms242015231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Recent research highlights the key role of iron dyshomeostasis in the pathogenesis of prostate cancer (PCa). PCa cells are heavily dependent on bioavailable iron, which frequently results in the reprogramming of iron uptake and storage pathways. Although advanced-stage PCa is currently incurable, bioactive peptides capable of modulating key iron-regulatory genes may constitute a means of exploiting a metabolic adaptation necessary for tumor growth. Recent annual increases in PCa incidence have been reported, highlighting the urgent need for novel treatments. We examined the ability of LNCaP, PC3, VCaP, and VCaP-EnzR cells to form colonies in the presence of androgen receptor inhibitors (ARI) and a series of iron-gene modulating oligopeptides (FT-001-FT-008). The viability of colonies following treatment was determined with clonogenic assays, and the expression levels of FTH1 (ferritin heavy chain 1) and TFRC (transferrin receptor) were determined with quantitative polymerase chain reaction (PCR). Peptides and ARIs combined significantly reduced PCa cell growth across all phenotypes, of which two peptides were the most effective. Colony growth suppression generally correlated with the magnitude of concurrent increases in FTH1 and decreases in TFRC expression for all cells. The results of this study provide preliminary insight into a novel approach at targeting iron dysmetabolism and sensitizing PCa cells to established cancer treatments.
Collapse
Affiliation(s)
- Crawford Currie
- HBC Immunology Inc., 1455 Adams Drive, Suite, Menlo Park, CA 2043, USA;
- Hofseth Biocare, Keiser Wilhelmsgate 24, 6003 Ålesund, Norway;
| | - Christian Bjerknes
- Hofseth Biocare, Keiser Wilhelmsgate 24, 6003 Ålesund, Norway;
- Department for Health Sciences, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 6025 Ålesund, Norway
| | - Tor Åge Myklebust
- Department of Registration, Cancer Registry of Norway, 0379 Oslo, Norway;
- Department of Research and Innovation, Møre og Romsdal Hospital Trust, 6026 Ålesund, Norway
| | - Bomi Framroze
- HBC Immunology Inc., 1455 Adams Drive, Suite, Menlo Park, CA 2043, USA;
- GPH Biotech LLC, 1455 Adams Drive, Menlo Park, CA 94025, USA
| |
Collapse
|
112
|
Zhang H, Yang X, Xie J, Cheng X, Chen J, Shen M, Ding W, Wang S, Zhang Z, Wang C, Zhao M. Clinicopathological and molecular analysis of microsatellite instability in prostate cancer: a multi-institutional study in China. Front Oncol 2023; 13:1277233. [PMID: 37901334 PMCID: PMC10613026 DOI: 10.3389/fonc.2023.1277233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Background Microsatellite instability (MSI), or mismatch repair-deficiency (dMMR), is rare in prostate cancers (PCas). The histological and molecular features of PCas with MSI/dMMR are incompletely described. Thus, we sought to identify the characteristics of PCas with MSI/dMMR. Methods and results We analyzed 1,141 primary treatment-naive PCas by MMR-related protein immunohistochemistry (MLH1, PMS2, MSH2, and MSH6). We identified eight cases exhibiting MSI/dMMR (0.7%, 8/1141). Of these, six tumors had both MSH2 and MSH6 protein loss, one had both MLH1 and PMS2 protein loss, and one had only MSH6 loss. Histologically, MSI/dMMR-PCas frequently demonstrated high histological grade (Grade Group 4 or 5), ductal/intraductal histology (6/8 cases), pleomorphic giant-cell features (4/8 cases), and conspicuous tumor lymphocytic infiltration (8/8 cases). Polymerase chain reaction-based analysis of seven MSI/dMMR tumors revealed two MSI-H tumors with loss of both MSH2 and MSH6 proteins. Subsequently, the seven cases underwent next-generation sequencing (NGS) analysis with a highly validated targeted panel; four were MSI. All cases had a high tumor mutation burden (median: 45.3 mutations/Mb). Overall, the MSI/dMMR-PCas showed a high frequency of DNA damage-repair pathway gene changes, including five with pathogenic somatic or germline MMR gene mutations. Activating mutations in the MAPK pathway, PI3K pathway, and WNT/β-catenin pathway were common. TMPRSS2::ERG rearrangement was identified in one case (1/7, 14.3%). Conclusions Several pathological features are associated with MSI/dMMR in PCas. Identification of these features may help to select patients for genetic screening. As MSI/dMMR-PCas are enriched for actionable mutations, patients should be offered NGS to guide standard-of-care treatment.
Collapse
Affiliation(s)
- Huizhi Zhang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Cheng
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Jiayi Chen
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Miaomiao Shen
- Department of Pathology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wenyi Ding
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Suying Wang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Zhe Zhang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Zhao
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| |
Collapse
|
113
|
Oka S, Urakami S, Hagiwara K, Hayashida M, Sakaguchi K, Miura Y, Inoshita N, Arai M. The prevalence of lynch syndrome (DNA mismatch repair protein deficiency) in patients with primary localized prostate cancer using immunohistochemistry screening. Hered Cancer Clin Pract 2023; 21:20. [PMID: 37828628 PMCID: PMC10568829 DOI: 10.1186/s13053-023-00265-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most heritable human cancers. Lynch syndrome is an autosomal dominant inheritance caused by germline mutations in DNA mismatch repair (MMR) genes, which are also associated with an increased incidence of prostate cancer. However, prostate cancer has not been defined as a Lynch syndrome-associated cancer. The proportion of Lynch syndrome patients in primary prostate cancers is unclear. In this study, we investigated MMR protein loss using universal immunohistochemical screening to determine the prevalence of Lynch syndrome in patients with localized prostate cancer who underwent radical prostatectomy. METHODS One hundred twenty-nine surgical specimens from radical prostatectomy performed at Toranomon Hospital between 2012 and 2015 were retrospectively tested using universal screening with immunohistochemistry staining for expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. For all suspected MMR-deficient patients, germline genetic tests focusing on MMR genes were performed. RESULTS MMR protein loss was found in only one patient (0.8%) who showed dual MSH2/MSH6 loss. This patient showed a single nucleotide pathogenic germline mutation from c.1129 C to T (p.Gln377*) at exon 7 in the MSH2 gene. He was diagnosed with a primary prostate cancer at 66 years of age. He had a documented history of Lynch syndrome (Muir-Torre syndrome) with previous colon cancer, sebaceous tumor, and keratoacanthoma as well as subsequent bladder cancer, all of which also showed dual MSH2/MSH6 loss. He also had a strong family history of colorectal and other Lynch syndrome-associated cancers. The pathological stage was pT3aN0M0, and the pathological grade was Gleason 7(4 + 3) with tertiary pattern 5. CONCLUSIONS In this study, immunohistochemical screening of MMR proteins for Lynch syndrome was performed in a series of prostate cancer cases. The prevalence of Lynch syndrome in localized prostate cancer was 0.8%, which is low compared with other Lynch syndrome-associated cancers.
Collapse
Affiliation(s)
- Suguru Oka
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan.
| | - Shinji Urakami
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Kiichi Hagiwara
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Michikata Hayashida
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Kazushige Sakaguchi
- Department of Urology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Yuji Miura
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Naoko Inoshita
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
| | - Masami Arai
- Center for Genetics and Medical Care, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, 105-8470, Tokyo, Japan
- Department of Clinical genetics, Graduate School of Medicine, Juntendo University, 2-1-1, Bunkyo-ku, 113-8421, Tokyo, Japan
| |
Collapse
|
114
|
Liang L, Shang J, Zhang Y, Xu Y, Zhouteng Y, Wen J, Zhao Y, Feng N, Zhao R. Identification and validation of obesity related genes signature based on microenvironment phenotypes in prostate adenocarcinoma. Aging (Albany NY) 2023; 15:10168-10192. [PMID: 37788005 PMCID: PMC10599753 DOI: 10.18632/aging.205065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/20/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The role of obesity related genes (ORGs) in the immune checkpoint inhibitors (ICIs) treatment of prostate adenocarcinoma (PRAD) has not yet been proved by research. METHODS We comprehensively evaluated the ORGs patterns in PRAD based on tumor microenvironment (TME) phenotypes and immunotherapy efficacies. Then we constructed a ORGs risk score for prognosis and a ORGs signature for accurate prediction of TME phenotype and immunotherapy efficacy in order to evaluate individual patients. RESULTS Two distinct ORGs patterns were generated. The two ORGs patterns were consistent with inflammatory and non-inflammatory TME phenotypes. ORGs patterns had an important role for predicting immunotherapy efficacies. Next, we constructed a ORGs risk score for predicting each patient's prognosis with high performance in TCGA-PRAD. The ORGs risk score could be well verified in the external cohorts including GSE70769 and GSE21034. Then, we developed a ORGs signature and found it was significantly positively correlated with tumor-infiltrating lymphocytes in TCGA-PRAD. We found that each patient in the high-risk ORGs signature group represented a non-inflamed TME phenotype on the single cell level. The patients with high ORGs signature had more sensitivity to immunotherapy. And those ORGs were verified. CONCLUSIONS ORGs pattern depicts different TME phenotypes in PRAD. The ORGs risk score and ORGs signature have an important role for predicting prognosis and immunotherapy efficacies.
Collapse
Affiliation(s)
- Linghui Liang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University and Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Jinwei Shang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, Jiangsu, China
| | - Yuxin Xu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | - Yuxin Zhao
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University and Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Ruizhe Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
115
|
Khuntikeo N, Padthaisong S, Loilome W, Klanrit P, Ratchatapusit S, Techasen A, Jareanrat A, Thanasukarn V, Srisuk T, Luvira V, Chindaprasirt J, Sa-ngiamwibool P, Aphivatanasiri C, Intarawichian P, Koonmee S, Prajumwongs P, Titapun A. Mismatch Repair Deficiency Is a Prognostic Factor Predicting Good Survival of Opisthorchis viverrini-Associated Cholangiocarcinoma at Early Cancer Stage. Cancers (Basel) 2023; 15:4831. [PMID: 37835526 PMCID: PMC10572072 DOI: 10.3390/cancers15194831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The mismatch repair (MMR) system prevents DNA mutation; therefore, deficient MMR protein (dMMR) expression causes genetic alterations and microsatellite instability (MSI). dMMR is correlated with a good outcome and treatment response in various cancers; however, the situation remains ambiguous in cholangiocarcinoma (CCA). This study aims to evaluate the prevalence of dMMR and investigate the correlation with clinicopathological features and the survival of CCA patients after resection. MATERIALS AND METHODS Serum and tissues were collected from CCA patients who underwent resection from January 2005 to December 2017. Serum OV IgG was examined using ELISA. The expression of MMR proteins MLH1, MSH2, MSH6 and PMS2 was investigated by immunohistochemistry; subsequently, MMR assessment was evaluated as either proficient or as deficient by pathologists. The clinicopathological features and MMR status were compared using the Chi-square test. Univariate and multivariate analyses were conducted to identify prognostic factors. RESULTS Among the 102 CCA patients, dMMR was detected in 22.5%. Survival analysis revealed that dMMR patients had better survival than pMMR (HR = 0.50, p = 0.008). In multivariate analysis, dMMR was an independent factor for a good prognosis in CCA patients (HR = 0.58, p = 0.041), especially at an early stage (HR = 0.18, p = 0.027). Moreover, subgroup analysis showed dMMR patients who received adjuvant chemotherapy had better survival than surgery alone (HR = 0.28, p = 0.012). CONCLUSION This study showed a high prevalence of dMMR in cholangiocarcinoma with dMMR being the independent prognostic factor for good survival, especially in early-stage CCA and for patients who received adjuvant chemotherapy. dMMR should be the marker for selecting patients to receive a specific adjuvant treatment after resection for CCA.
Collapse
Affiliation(s)
- Natcha Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Sureerat Padthaisong
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soontaree Ratchatapusit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Jareanrat
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Vasin Thanasukarn
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Tharatip Srisuk
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Jarin Chindaprasirt
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Medical Oncology Program, Department of Medicine Srinagarind Hospital, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prakasit Sa-ngiamwibool
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaiwat Aphivatanasiri
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piyapharom Intarawichian
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supinda Koonmee
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piya Prajumwongs
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| |
Collapse
|
116
|
Rendon RA, Selvarajah S, Wyatt AW, Kolinsky M, Schrader KA, Fleshner NE, Kinnaird A, Merrimen J, Niazi T, Saad F, Shayegan B, Wood L, Chi KN. 2023 Canadian Urological Association guideline: Genetic testing in prostate cancer. Can Urol Assoc J 2023; 17:314-325. [PMID: 37851913 PMCID: PMC10581723 DOI: 10.5489/cuaj.8588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Affiliation(s)
| | - Shamini Selvarajah
- Department of Clinical Laboratory Genetics, UHN Laboratory Medicine Program, University of Toronto, Toronto, ON, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Michael Kolinsky
- Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Neil E. Fleshner
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam Kinnaird
- Divison of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | | | - Tamim Niazi
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Fred Saad
- Division of Urology, Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Bobby Shayegan
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Lori Wood
- Division of Medical Oncology, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | | |
Collapse
|
117
|
Conteduca V, Brighi N, Schepisi G, De Giorgi U. Immunogenomic profiles associated with response to life-prolonging agents in prostate cancer. Br J Cancer 2023; 129:1050-1060. [PMID: 37443349 PMCID: PMC10539309 DOI: 10.1038/s41416-023-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer but the management of advanced prostate cancer remains a therapeutic challenge, despite the survival benefits imparted by several therapeutic discoveries targeting different molecular pathways. The mechanisms of resistance to androgen deprivation and tumour progression to lethal metastatic variants are often regulated by androgen receptor (AR) bypass mechanisms and/or neuroendocrine differentiation. Moreover, recent data also suggested the involvement of adaptive and innate infiltrated immune cells in prostate tumour progression. Improvements in cancer genome analyses contributed to a better understanding of antitumour immunity and provided solutions for targeting highly cancer-specific neoantigens generated from somatic mutations in individual patients. In this review, we investigated the current knowledge on the interplay between cancer development and the complex mechanisms of immune regulation. Particularly, we focused on the role of tumour immune microenvironment, generally characterised by strong barriers for immunotherapy, and we discuss the rationale for the potential application of single agent and combination immune-targeting strategies that could lead to improved outcomes. Careful selection based on clinical and genomic factors may allow identification of patients who could benefit from this treatment approach in multiple settings (from localised to advanced prostate tumour) and in different histological subtypes (from adenocarcinoma to neuroendocrine prostate cancer).
Collapse
Affiliation(s)
- Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122, Foggia, Italy.
| | - Nicole Brighi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giuseppe Schepisi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| |
Collapse
|
118
|
Hatano K, Nonomura N. Systemic Therapies for Metastatic Castration-Resistant Prostate Cancer: An Updated Review. World J Mens Health 2023; 41:769-784. [PMID: 36792090 PMCID: PMC10523115 DOI: 10.5534/wjmh.220200] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 02/01/2023] Open
Abstract
The introduction of novel therapeutic agents for advanced prostate cancer has led to a wide range of treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC). In the past decade, new treatment options for mCRPC, including abiraterone, enzalutamide, docetaxel, cabazitaxel, sipuleucel-T, radium-223, 177Lu-PSMA-617, and Olaparib, have demonstrated a survival benefit in phase 3 trials. Bone-modifying agents have become part of the overall treatment strategy for mCRPC, in which denosumab and zoledronic acid reduce skeletal-related events. Recently, androgen receptor-signaling inhibitors (ARSIs) and docetaxel have been used upfront against metastatic castration-sensitive prostate cancer. Further, triplet therapy with ARSI, docetaxel, and androgen deprivation therapy is emerging. However, cross-resistance may occur between these treatments, and the optimal treatment sequence must be considered. The sequential administration of ARSIs, such as abiraterone and enzalutamide, is associated with limited efficacy; however, cabazitaxel is effective for patients with mCRPC who were previously treated with docetaxel and had disease progression during treatment with ARSI. Radioligand therapy with 177Lu-PSMA-617 is a new effective class of therapy for patients with advanced PSMA-positive mCRPC. Tumors with gene alterations that affect homologous recombination repair, such as BRCA1 and BRCA2 alterations, are sensitive to poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors in mCRPC. This review sought to highlight recent advances in systemic therapy for mCRPC and strategies to support patient selection and treatment sequencing.
Collapse
Affiliation(s)
- Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
119
|
Lin X, Zong C, Zhang Z, Fang W, Xu P. Progresses in biomarkers for cancer immunotherapy. MedComm (Beijing) 2023; 4:e387. [PMID: 37799808 PMCID: PMC10547938 DOI: 10.1002/mco2.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Currently, checkpoint inhibitor-based immunotherapy has emerged as prevailing treatment modality for diverse cancers. However, immunotherapy as a first-line therapy has not consistently yielded durable responses. Moreover, the risk of immune-related adverse events increases with combination regimens. Thus, the development of predictive biomarkers is needed to optimize individuals benefit, minimize risk of toxicities, and guide combination approaches. The greatest focus has been on tumor programmed cell death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB). However, there remains a subject of debate due to thresholds variability and significant heterogeneity. Major unmet challenges in immunotherapy are the discovery and validation of predictive biomarkers. Here, we show the status of tumor PD-L1, MSI, TMB, and emerging data on novel biomarker strategies with oncogenic signaling and epigenetic regulation. Considering the exploration of peripheral and intestinal immunity has served as noninvasive alternative in predicting immunotherapy, this review also summarizes current data in systemic immunity, encompassing solute PD-L1 and TMB, circulating tumor DNA and infiltrating lymphocytes, routine emerging inflammatory markers and cytokines, as well as gut microbiota. This review provides up-to-date information on the evolving field of currently available biomarkers in predicting immunotherapy. Future exploration of novel biomarkers is warranted.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineShantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Chenyu Zong
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| | - Zhihan Zhang
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Weiyi Fang
- Cancer Research InstituteSchool of Basic Medical ScienceSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Ping Xu
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| |
Collapse
|
120
|
Cao Y, Wang D, Wu J, Yao Z, Shen S, Niu C, Liu Y, Zhang P, Wang Q, Wang J, Li H, Wei X, Wang X, Dong Q. MSI-XGNN: an explainable GNN computational framework integrating transcription- and methylation-level biomarkers for microsatellite instability detection. Brief Bioinform 2023; 24:bbad362. [PMID: 37833839 DOI: 10.1093/bib/bbad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.
Collapse
Affiliation(s)
- Yang Cao
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dan Wang
- Department of Bioinformatics, Yicon (Beijing) Biomedical Technology Inc
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Si Shen
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300050, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ying Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengcheng Zhang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | | | - Jinhao Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hua Li
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xinxing Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Qingyang Dong
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
121
|
Yi X, Li J, Zheng X, Xu H, Liao D, Zhang T, Wei Q, Li H, Peng J, Ai J. Construction of PANoptosis signature: Novel target discovery for prostate cancer immunotherapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:376-390. [PMID: 37547288 PMCID: PMC10400972 DOI: 10.1016/j.omtn.2023.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
PANoptosis pathway gene sets encompassing pyroptosis, apoptosis, and necroptosis were identified from the MSigDB database. We analyzed the perturbations and crosstalk in the PANoptosis pathway in prostate adenocarcinoma (PRAD), including gene mutation, transcription, methylation, and clinical features. By constructing a PANoptosis signature, we accurately predicted the prognosis and immunotherapeutic response of PRAD patients. We further explored the molecular features and immunological roles of the signature, dividing patients into high- and low-score groups. Notably, the high-score group correlated with better survival outcomes and immunotherapeutic responses, as well as a higher mutation frequency and enrichment score in the PANoptosis and HALLMARK pathways. The PANoptosis signature also enhanced overall antitumor immunity, promoted immune cell infiltration, upregulated immune checkpoint regulators, and revealed the cold tumor characteristics of PRAD. We also identified potential drug targets based on the PANoptosis signature. These findings lead the way in identifying novel prognostic markers and therapeutic targets for patients with PRAD.
Collapse
Affiliation(s)
- Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Dazhou Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Tianyi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| |
Collapse
|
122
|
Hwang C, Henderson NC, Chu SC, Holland B, Cackowski FC, Pilling A, Jang A, Rothstein S, Labriola M, Park JJ, Ghose A, Bilen MA, Mustafa S, Kilari D, Pierro MJ, Thapa B, Tripathi A, Garje R, Ravindra A, Koshkin VS, Hernandez E, Schweizer MT, Armstrong AJ, McKay RR, Dorff TB, Alva AS, Barata PC. Biomarker-Directed Therapy in Black and White Men With Metastatic Castration-Resistant Prostate Cancer. JAMA Netw Open 2023; 6:e2334208. [PMID: 37721753 PMCID: PMC10507489 DOI: 10.1001/jamanetworkopen.2023.34208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Importance Black men have higher incidence and mortality from prostate cancer. Whether precision oncology disparities affect Black men with metastatic castration-resistant prostate cancer (mCRPC) is unknown. Objective To compare precision medicine data and outcomes between Black and White men with mCRPC. Design, Setting, and Participants This retrospective cohort study used data collected by the Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) consortium, a multi-institutional registry with linked clinicogenomic data, from April 2020 to December 2021. Participants included Black and White patients with mCRPC with molecular data. Data were analyzed from December 2021 to May 2023. Exposures Database-reported race and ethnicity. Main Outcomes and Measures The primary outcome was the frequency of actionable molecular data, defined as the presence of mismatch repair deficiency (MMRD) or high microsatellite instability (MSI-H), homologous recombination repair deficiency, or tumor mutational burden of 10 mutations per megabase or greater. Secondary outcomes included the frequency of other alterations, the type and timing of genomic testing performed, and use of targeted therapy. Efficacy outcomes were prostate-specific antigen response rate, site-reported radiographic response, and overall survival. Results A total of 962 eligible patients with mCRPC were identified, including 204 Black patients (21.2%; median [IQR] age at diagnosis, 61 [55-67] years; 131 patients [64.2%] with Gleason scores 8-10; 92 patients [45.1%] with de novo metastatic disease) and 758 White patients (78.8%; median [IQR] age, 63 [57-69] years; 445 patients [58.7%] with Gleason scores 8-10; 310 patients [40.9%] with de novo metastatic disease). Median (IQR) follow-up from mCRPC was 26.6 (14.2-44.7) months. Blood-based molecular testing was more common in Black men (111 men [48.7%]) than White men (317 men [36.4%]; P < .001). Rates of actionable alterations were similar between groups (65 Black men [32.8%]; 215 White men [29.1%]; P = .35), but MMRD or MSI-H was more common in Black men (18 men [9.1]) than White men (36 men [4.9%]; P = .04). PTEN alterations were less frequent in Black men than White men (31 men [15.7%] vs 194 men [26.3%]; P = .003), as were TMPRSS alterations (14 men [7.1%] vs 155 men [21.0%]; P < .001). No other differences were seen in the 15 most frequently altered genes, including TP53, AR, CDK12, RB1, and PIK3CA. Matched targeted therapy was given less frequently in Black men than White men (22 men [33.5%] vs 115 men [53.5%]; P = .008). There were no differences in response to targeted therapy or survival between the two cohorts. Conclusions and Relevance This cohort study of men with mCRPC found higher frequency of MMRD or MSI-H and lower frequency of PTEN and TMPRSS alterations in Black men compared with White men. Although Black men received targeted therapy less frequently than White men, no differences were observed in clinical outcomes.
Collapse
Affiliation(s)
| | | | | | - Brandon Holland
- Wayne State University School of Medicine, Detroit, Michigan
| | - Frank C. Cackowski
- Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Detroit, Michigan
| | | | | | - Shoshana Rothstein
- Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Detroit, Michigan
| | - Matthew Labriola
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University, Durham, North Carolina
| | | | | | | | | | | | | | - Bicky Thapa
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | - Vadim S. Koshkin
- University of California San Francisco, San Francisco, California
| | - Erik Hernandez
- University of California San Francisco, San Francisco, California
| | | | - Andrew J. Armstrong
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University, Durham, North Carolina
| | - Rana R. McKay
- University of California San Diego, La Jolla, California
| | | | | | - Pedro C. Barata
- Tulane University, New Orleans, Louisiana
- University Hospitals Seidman Cancer Center, Cleveland, Ohio
| |
Collapse
|
123
|
Militaru FC, Militaru V, Crisan N, Bocsan IC, Udrea AA, Catana A, Kutasi E, Militaru MS. Molecular basis and therapeutic targets in prostate cancer: A comprehensive review. BIOMOLECULES & BIOMEDICINE 2023; 23:760-771. [PMID: 37021836 PMCID: PMC10494850 DOI: 10.17305/bb.2023.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Prostate cancer is one of the most significant causes of morbidity and mortality in male patients. The incidence increases with age, and it is higher among African Americans. The occurrence of prostate cancer is associated with many risk factors, including genetic and hereditary predisposition. The most common genetic syndromes associated with prostate cancer risk are BRCA-associated hereditary breast and ovarian cancer (HBOC) and Lynch syndrome. Local-regional therapy, i.e., surgery is beneficial in early-stage prostate cancer management. Advanced and metastatic prostate cancers require systemic therapies, including hormonal inhibition, chemotherapy, and targeted agents. Most prostate cancers can be treated by targeting the androgen-receptor pathway and decreasing androgen production or binding to androgen receptors (AR). Castration-resistant prostate cancer (CRPC) usually involves the PI3K/AKT/mTOR pathway and requires targeted therapy. Specific molecular therapy can target mutated cell lines in which DNA defect repair is altered, caused by mutations of BRCA2, partner and localizer of BRCA2 (PALB2), and phosphatase and tensin homolog (PTEN) or the transmembrane protease serine 2-ERG (TMPRSS2-ERG) fusion. Most benefits were demonstrated in cyclin dependent-kinase 12 (CDK12) mutated cell lines when treated with anti-programmed cell death protein 1 (PD1) therapy. Therapies targeting p53 and AKT are the subject of ongoing clinical trials. Many genetic defects are listed as diagnostic, prognostic, and clinically actionable markers in prostate cancer. Androgen receptor splice variant 7 (AR-V7) is an important oncogenic driver and an early diagnostic and prognostic marker, as well as a therapeutic target in hormone-resistant CRPC. This review summarizes the pathophysiological mechanisms and available targeted therapies for prostate cancer.
Collapse
Affiliation(s)
- Florentina Claudia Militaru
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Medisprof Cancer Center, Cluj-Napoca, Romania
| | - Valentin Militaru
- Medisprof Cancer Center, Cluj-Napoca, Romania
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Clinical County Hospital, Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea Catana
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Institute of Oncology I. Chiricuta, Cluj-Napoca, Romania
| | - Eniko Kutasi
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mariela Sanda Militaru
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
124
|
Hougen HY, Graf RP, Li G, Quintanilha JC, Lin DI, Ross JS, Punnen S, Mahal BA. Clinical and Genomic Factors Associated with Greater Tumor Mutational Burden in Prostate Cancer. EUR UROL SUPPL 2023; 55:45-49. [PMID: 37662703 PMCID: PMC10470357 DOI: 10.1016/j.euros.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor mutational burden (TMB) is a biomarker that predicts response to immune checkpoint inhibitor therapy. We currently lack a comprehensive understanding of how genomic and clinical factors correlate with TMB. We used a clinicogenomic database to assess independent predictors of TMB levels. The study included 2740 prostate cancer specimens from prostate gland (51.6%), lymph nodes (14.6%), and bone (10.4%). Androgen deprivation therapy use beyond 24 mo was weakly associated with high TMB (fold-change estimate [FCE] 1.14, 95% confidence interval [CI] 1.03-1.26; p = 0.009). In comparison to the prostate gland, metastases in the bladder (FCE 1.20, 95% CI 1.02-1.42; p = 0.029), liver (FCE 1.26, 95% CI 1.10-1.43; p < 0.001), and other locations (FCE 1.26, 95% CI 1.11-1.43; p < 0.001) were associated with high TMB. Microsatellite instability high (FCE 8.46, 95% CI 6.42-11.15; p < 0.001) and intermediate (FCE 1.77, 95% CI 1.46-2.14; p < 0.001) status were associated with greater TMB. Altered genes associated with greater TMB included MLH1 (FCE 1.81; p = 0.004), MSH2 (FCE 1.87; p < 0.001), MSH6 (FCE 1.92; p < 0.001), BRCA2 (FCE 1.69; p < 0.001), CDK12 (FCE 1.40; p < 0.001), MRE11 (FCE 2.28; p = 0.016), and PALB2 (FCE 2.08; p < 0.001). Our study demonstrates that TMB is relatively stable over lines of therapies and can be used to guide treatment at diagnosis or in later lines for patients with metastatic prostate cancer. Patient summary The number of genetic mutations in a tumor (tumor mutational burden, TMB) may help in predicting a patient's response to immunotherapy in advanced prostate cancer. We evaluated clinical and genetic factors that may affect TMB. We found that metastases in the bladder and liver are more likely to have high TMB than the primary tumor. Some individual genes are associated with high TMB. No prior treatment type was strongly associated with TMB, suggesting that TMB can be used to guide treatment at any time point.These data were presented at the American Society of Clinical Oncology 2023 Genitourinary Cancers Symposium.
Collapse
Affiliation(s)
- Helen Y. Hougen
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
| | | | - Gerald Li
- Foundation Medicine, Inc., Cambridge, MA, USA
| | | | | | - Jeffrey S. Ross
- Foundation Medicine, Inc., Cambridge, MA, USA
- Departments of Pathology, Urology and Oncology, Upstate Medical University, Syracuse, NY, USA
| | - Sanoj Punnen
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Brandon A. Mahal
- Departments of Pathology, Urology and Oncology, Upstate Medical University, Syracuse, NY, USA
- Department of Radiation Oncology, University of Miami, Miami, FL, USA
| |
Collapse
|
125
|
Kasi PM, Bucheit LA, Liao J, Starr J, Barata P, Klempner SJ, Gandara D, Shergill A, Madeira da Silva L, Weipert C, Zhang N, Pretz C, Hardin A, Kiedrowski LA, Odegaard JI. Pan-Cancer Prevalence of Microsatellite Instability-High (MSI-H) Identified by Circulating Tumor DNA and Associated Real-World Clinical Outcomes. JCO Precis Oncol 2023; 7:e2300118. [PMID: 37769226 DOI: 10.1200/po.23.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
PURPOSE Immune checkpoint inhibitors are approved for advanced solid tumors with microsatellite instability-high (MSI-H). Although several technologies can assess MSI-H status, detection and outcomes with circulating tumor DNA (ctDNA)-detected MSI-H are lacking. As such, we examined pan-cancer MSI-H prevalence across 21 cancers and outcomes after ctDNA-detected MSI-H. METHODS Patients with advanced cancer who had ctDNA testing (Guardant360) from October 1, 2018, to June 30, 2022, were retrospectively assessed for prevalence. GuardantINFORM, which includes anonymized genomic and structured payer claims data, was queried to assess outcomes. Patients who initiated new treatment within 90 days of MSI-H detection were sorted into immunotherapy included in treatment (IO) or no immunotherapy included (non-IO) groups. Real-world time to treatment discontinuation (rwTTD) and real-world time to next treatment (rwTTNT) were assessed in months as proxies of progression-free survival (PFS); real-world overall survival (rwOS) was assessed in months. Cox regression tests analyzed differences. Colorectal cancer, non-small-cell lung cancer (NSCLC), prostate cancer, gastroesophageal cancer, and uterine cancer (UC) were assessed independently; all other cancers were grouped. RESULTS In total, 1.4% of 171,881 patients had MSI-H detected. Of 770 patients with outcomes available, rwTTD and rwTTNT were significantly longer for patients who received IO compared with non-IO for all cancers (P ≤ .05; hazard ratio [HR] range, 0.31-0.52 and 0.25-0.54, respectively) except NSCLC. rwOS had limited follow-up for all cohorts except UC (IO 39 v non-IO 23 months; HR, 0.18; P = .004); however, there was a consistent trend toward prolonged OS in IO-treated patients. CONCLUSION These data support use of a well-validated ctDNA assay to detect MSI-H across solid tumors and suggest prolonged PFS in patients treated with IO-containing regimens after detection. Tumor-agnostic, ctDNA-based MSI testing may be reliable for rapid decision making.
Collapse
Affiliation(s)
| | | | | | | | - Pedro Barata
- Case Western Reserve University/University Hospitals, Cleveland, OH
| | | | - David Gandara
- UC Davis Comprehensive Cancer Center, Sacramento, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Hope TA, Antonarakis ES, Bodei L, Calais J, Iravani A, Jacene H, Koo PJ, Morgans AK, Osborne JR, Tagawa ST, Taplin ME, Sartor O, Morris MJ. SNMMI Consensus Statement on Patient Selection and Appropriate Use of 177Lu-PSMA-617 Radionuclide Therapy. J Nucl Med 2023; 64:1417-1423. [PMID: 37290800 DOI: 10.2967/jnumed.123.265952] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California;
| | | | - Lisa Bodei
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Amir Iravani
- Department of Radiology, University of Washington, Seattle, Washington
| | - Heather Jacene
- Department of Radiology, Brigham and Women's Hospital, and Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Phillip J Koo
- Banner M.D. Anderson Cancer Center, Phoenix, Arizona
| | - Alicia K Morgans
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joseph R Osborne
- Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Scott T Tagawa
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mary-Ellen Taplin
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Michael J Morris
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
127
|
Wang N, Khan S, Elo LL. VarSCAT: A computational tool for sequence context annotations of genomic variants. PLoS Comput Biol 2023; 19:e1010727. [PMID: 37566612 PMCID: PMC10446208 DOI: 10.1371/journal.pcbi.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/23/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The sequence contexts of genomic variants play important roles in understanding biological significances of variants and potential sequencing related variant calling issues. However, methods for assessing the diverse sequence contexts of genomic variants such as tandem repeats and unambiguous annotations have been limited. Herein, we describe the Variant Sequence Context Annotation Tool (VarSCAT) for annotating the sequence contexts of genomic variants, including breakpoint ambiguities, flanking bases of variants, wildtype/mutated DNA sequences, variant nomenclatures, distances between adjacent variants, tandem repeat regions, and custom annotation with user customizable options. Our analyses demonstrate that VarSCAT is more versatile and customizable than the currently available methods or strategies for annotating variants in short tandem repeat (STR) regions or insertions and deletions (indels) with breakpoint ambiguity. Variant sequence context annotations of high-confidence human variant sets with VarSCAT revealed that more than 75% of all human individual germline and clinically relevant indels have breakpoint ambiguities. Moreover, we illustrate that more than 80% of human individual germline small variants in STR regions are indels and that the sizes of these indels correlated with STR motif sizes. VarSCAT is available from https://github.com/elolab/VarSCAT.
Collapse
Affiliation(s)
- Ning Wang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
128
|
Fountzilas E, Kouspou M, Eliades A, Papadopoulou K, Bournakis E, Goussia A, Tsiatas M, Achilleos A, Tsangaras K, Billioud G, Loizides C, Lemesios C, Kypri E, Ioannides M, Koumbaris G, Levva S, Vakalopoulos I, Paliouras A, Pervana S, Koinis F, Bumci R, Christopoulou A, Meditskou S, Psyrri A, Boukovinas I, Visvikis A, Karavasilis V, Koukoulis GK, Kotsakis A, Giannakis D, Fountzilas G, Patsalis PC. Investigation of Clinically Significant Molecular Aberrations in Patients with Prostate Cancer: Implications for Personalized Treatment, Prognosis and Genetic Testing. Int J Mol Sci 2023; 24:11834. [PMID: 37511593 PMCID: PMC10380890 DOI: 10.3390/ijms241411834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The data on tumor molecular profiling of European patients with prostate cancer is limited. Our aim was to evaluate the prevalence and prognostic and predictive values of gene alterations in unselected patients with prostate cancer. The presence of gene alterations was assessed in patients with histologically confirmed prostate cancer using the ForeSENTIA® Prostate panel (Medicover Genetics), targeting 36 clinically relevant genes and microsatellite instability testing. The primary endpoint was the prevalence of gene alterations in homologous recombination repair (HRR) genes. Overall, 196 patients with prostate cancer were evaluated (median age 72.2 years, metastatic disease in 141 (71.9%) patients). Gene alterations were identified in 120 (61%) patients, while alteration in HRR genes were identified in 34 (17.3%) patients. The most commonly mutated HRR genes were ATM (17, 8.7%), BRCA2 (9, 4.6%) and BRCA1 (4, 2%). The presence of HRR gene alterations was not associated with advanced stage (p = 0.21), age at diagnosis (p = 0.28), Gleason score (p = 0.17) or overall survival (HR 0.72; 95% CI: 0.41-1.26; p = 0.251). We identified clinically relevant somatic gene alterations in European patients with prostate cancer. These molecular alterations have prognostic significance and therapeutic implications and/or may trigger genetic testing in selected patients. In the era of precision medicine, prospective research on the predictive role of these alterations for innovative treatments or their combinations is warranted.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Hospital, 55236 Thessaloniki, Greece
- Medical Oncology, German Oncology Center, European University Cyprus, Limassol 3036, Cyprus
| | - Maria Kouspou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2417, Cyprus
| | | | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelos Bournakis
- Oncology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Oncologic Clinical Trials and Research Clinic, Metropolitan General Hospital, 15562 Athens, Greece
| | - Anna Goussia
- Department of Pathology, Faculty of Medicine, Ioannina University Hospital, 45500 Ioannina, Greece
- Department of Pathology, German Oncology Center, Limassol 4108, Cyprus
| | - Marinos Tsiatas
- Department of Oncology, Athens Medical Center, 15125 Marousi, Greece
| | | | | | | | | | | | | | | | | | - Sofia Levva
- Medical Oncology, Bioclinic of Thessaloniki, 54622 Thessaloniki, Greece
| | - Ioannis Vakalopoulos
- First Department of Urology, School of Medicine, Aristotle University of Thessaloniki, "G. Gennimatas" General Hospital, 54124 Thessaloniki, Greece
| | | | - Stavroula Pervana
- Department of Pathology, Papageorgiou Hospital, 56429 Thessaloniki, Greece
| | - Filippos Koinis
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece
| | - Redi Bumci
- Department of Pathology, Faculty of Medicine, Ioannina University Hospital, 45500 Ioannina, Greece
| | | | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Attikon University Hospital, Faculty of Medicine, National and Kapodistrian University of Athens School of Medicine, 12462 Athens, Greece
| | | | - Anastasios Visvikis
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, 14564 Athens, Greece
| | | | - George K Koukoulis
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece
| | - Dimitrios Giannakis
- Department of Urology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Medical Oncology, German Oncology Center, Limassol 4108, Cyprus
| | - Philippos C Patsalis
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2417, Cyprus
- Medicover Genetics, Nicosia 2409, Cyprus
| |
Collapse
|
129
|
Li T, Qian X, Liu J, Xue F, Luo J, Yao G, Yan J, Liu X, Xiao B, Li J. Radiotherapy plus immune checkpoint inhibitor in prostate cancer. Front Oncol 2023; 13:1210673. [PMID: 37546397 PMCID: PMC10403272 DOI: 10.3389/fonc.2023.1210673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
The immune checkpoint inhibitor (ICI) is a promising strategy for treating cancer. However, the efficiency of ICI monotherapy is limited, which could be mainly attributed to the tumor microenvironment of the "cold" tumor. Prostate cancer, a type of "cold" cancer, is the most common cancer affecting men's health. Radiotherapy is regarded as one of the most effective prostate cancer treatments. In the era of immune therapy, the enhanced antigen presentation and immune cell infiltration caused by radiotherapy might boost the therapeutic efficacy of ICI. Here, the rationale of radiotherapy combined with ICI was reviewed. Also, the scheme of radiotherapy combined with immune checkpoint blockades was suggested as a potential option to improve the outcome of patients with prostate cancer.
Collapse
Affiliation(s)
- Tianjie Li
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Urology, Beijing Tsinghua Changung Hospital, Beijing, China
| | - Xinye Qian
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jinyang Liu
- School of Medical, Tsinghua University, Beijing, China
| | - Feng Xue
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jing Luo
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guanqun Yao
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun Yan
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaodong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo Xiao
- Department of Urology, Beijing Tsinghua Changung Hospital, Beijing, China
| | - Jianxing Li
- Department of Urology, Beijing Tsinghua Changung Hospital, Beijing, China
| |
Collapse
|
130
|
Grypari IM, Tzelepi V, Gyftopoulos K. DNA Damage Repair Pathways in Prostate Cancer: A Narrative Review of Molecular Mechanisms, Emerging Biomarkers and Therapeutic Targets in Precision Oncology. Int J Mol Sci 2023; 24:11418. [PMID: 37511177 PMCID: PMC10380086 DOI: 10.3390/ijms241411418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) has a distinct molecular signature, including characteristic chromosomal translocations, gene deletions and defective DNA damage repair mechanisms. One crucial pathway involved is homologous recombination deficiency (HRD) and it is found in almost 20% of metastatic castrate-resistant PCa (mCRPC). Inherited/germline mutations are associated with a hereditary predisposition to early PCa development and aggressive behavior. BRCA2, ATM and CHECK2 are the most frequently HRD-mutated genes. BRCA2-mutated tumors have unfavorable clinical and pathological characteristics, such as intraductal carcinoma. PARP inhibitors, due to the induction of synthetic lethality, have been therapeutically approved for mCRPC with HRD alterations. Mutations are detected in metastatic tissue, while a liquid biopsy is utilized during follow-up, recognizing acquired resistance mechanisms. The mismatch repair (MMR) pathway is another DNA repair mechanism implicated in carcinogenesis, although only 5% of metastatic PCa is affected. It is associated with aggressive disease. PD-1 inhibitors have been used in MMR-deficient tumors; thus, the MMR status should be tested in all metastatic PCa cases. A surrogate marker of defective DNA repair mechanisms is the tumor mutational burden. PDL-1 expression and intratumoral lymphocytes have ambivalent predictive value. Few experimental molecules have been so far proposed as potential biomarkers. Future research may further elucidate the role of DNA damage pathways in PCa, revealing new therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
131
|
Jang A, Lanka SM, Jaeger EB, Lieberman A, Huang M, Sartor AO, Mendiratta P, Brown JR, Garcia JA, Farmer T, Sudhaman S, Mahmood T, Pajak N, Calhoun M, Dutta P, ElNaggar A, Liu MC, Barata PC. Longitudinal Monitoring of Circulating Tumor DNA to Assess the Efficacy of Immune Checkpoint Inhibitors in Patients With Advanced Genitourinary Malignancies. JCO Precis Oncol 2023; 7:e2300131. [PMID: 37467457 DOI: 10.1200/po.23.00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE Circulating tumor DNA (ctDNA) detection in blood has emerged as a prognostic and predictive biomarker demonstrating improved assessment of treatment response in patients receiving immune checkpoint inhibitors (ICIs). Here, we performed a pilot study to support the role of ctDNA for longitudinal treatment response monitoring in patients with advanced genitourinary (GU) malignancies receiving ICIs. MATERIALS AND METHODS Patients with histologically confirmed advanced GU malignancies were prospectively enrolled. All eligible patients received ICI treatment for at least 12 weeks, followed by serial collection of blood samples every 6-8 weeks and conventional scans approximately every 12 weeks until disease progression. ctDNA analysis was performed using Signatera, a tumor-informed multiplex-polymerase chain reaction next-generation sequencing assay. Overall, the objective response rate (ORR) was reported and its association with ctDNA status was evaluated. Concordance rate between ctDNA dynamics and conventional imaging was also assessed. RESULTS ctDNA analysis was performed on 98 banked plasma samples from 20 patients (15 renal, four urothelial, and one prostate). The median follow-up from the time of initiation of ICI to progressive disease (PD) or data cutoff was 67.7 weeks (range, 19.6-169.6). The ORR was 70% (14/20). Eight patients ultimately developed PD. The overall concordance between ctDNA dynamics and radiographic response was observed in 83% (15/18) of patients. Among the three patients with discordant results, two developed CNS metastases and one progressed with extracranial systemic disease while ctDNA remained undetectable. CONCLUSION In this pilot study, longitudinal ctDNA analysis for monitoring response to ICI in patients with advanced GU tumors was feasible. Larger prospective studies are warranted to validate the utility of ctDNA as an ICI response monitoring tool in patients with advanced GU malignancies.
Collapse
Affiliation(s)
- Albert Jang
- Tulane University School of Medicine, New Orleans, LA
| | - Sree M Lanka
- Tulane University School of Medicine, New Orleans, LA
| | | | | | - Minqi Huang
- Tulane University School of Medicine, New Orleans, LA
| | | | | | - Jason R Brown
- University Hospitals Seidman Cancer Center, Cleveland, OH
| | - Jorge A Garcia
- University Hospitals Seidman Cancer Center, Cleveland, OH
| | | | | | | | | | | | | | | | | | - Pedro C Barata
- Tulane University School of Medicine, New Orleans, LA
- University Hospitals Seidman Cancer Center, Cleveland, OH
| |
Collapse
|
132
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
133
|
Marshall CH. Acting on Actionable Mutations in Metastatic Prostate Cancer. J Clin Oncol 2023; 41:3295-3299. [PMID: 37098244 PMCID: PMC10414732 DOI: 10.1200/jco.23.00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/27/2023] Open
Abstract
The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in Journal of Clinical Oncology, to patients seen in their own clinical practice.Approximately a quarter of men with metastatic castration-resistant prostate cancer have genomic alterations within the homologous recombination repair pathway with poly (ADP-ribose) polymerase (PARP) inhibitors as corresponding treatment options. How to incorporate genomic information and associated therapeutic options into treatment decision making and sequencing of therapies in prostate cancer remains challenging. Men with BRCA2 alterations seem to derive the most benefit from PARP inhibitors, and although early treatment in combination with standard therapies has not yet shown an overall survival benefit, there may be other benefits to incorporating PARP inhibitors early for some men.
Collapse
|
134
|
Koti M, Bivalacqua T, Black PC, Cathomen T, Galsky MD, Gulley JL, Ingersoll MA, Kamat AM, Kassouf W, Siemens DR, Gao J. Adaptive Immunity in Genitourinary Cancers. Eur Urol Oncol 2023; 6:263-272. [PMID: 37069029 DOI: 10.1016/j.euo.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023]
Abstract
CONTEXT While urothelial and renal cell cancers have exhibited modest responses to novel immune checkpoint inhibitors targeting the programmed death ligand 1 and its receptor, response rates in patients with prostate cancer have remained poor. The factors underlying suboptimal outcomes observed in patients treated with novel immunotherapies are still to be resolved. OBJECTIVE To review the literature and describe the key adaptive immune physiological events associated with cancer progression and therapeutic response in genitourinary (GU) cancers. EVIDENCE ACQUISITION We performed a nonsystematic, collaborative narrative review to highlight recent advancements leading to the current state of knowledge on the critical mediators of antitumor adaptive immunity to GU cancers. Further, we discuss the findings on the pre- and post-treatment immunological events that either are unique to each of the three cancer types or exhibit overlapping clinical associations. EVIDENCE SYNTHESIS Aging-associated immune function decline is a major factor underlying poor outcomes observed in patients treated with both conventional and novel immunotherapies. Other cancer immunobiological aspects associated with suboptimal responses in GU cancers include the overall tumor mutational burden, mutations in specific tumor suppressor/DNA damage repair genes (KDM6A, PTEN, STAG2, TP53, ATM, and BRCA2), and abundance of multiple functional states of adaptive immune cells and their spatiotemporal localization within the tumor immune microenvironment. Understanding these mechanisms may potentially lead to the development of prognostic and predictive biomarkers such as immune cell infiltration profiles and tertiary lymphoid structures (TLSs) that associate with variable clinical outcomes depending on the nature of the novel immunotherapeutic approach. Implementation of newer immune-monitoring technologies and improved preclinical modeling systems will augment our understanding of the host and tumor intrinsic factors contributing to the variability of responses to immunotherapies. CONCLUSIONS Despite the tremendous progress made in the understanding of dynamic and static adaptive immune elements within the tumor immune landscape, several knowledge gaps remain. A comprehensive knowledge thus gained will lead to precision immunotherapy, improved drug sequencing, and a therapeutic response. PATIENT SUMMARY We performed a collaborative review by a diverse group of experts in the field to examine our understanding of the events and crosstalk between cancer cells and the patient's immune system that are associated with responses to novel immunotherapies. An evolving understanding of tumor-intrinsic and host-related immune alterations, both before and after therapy, will aid in the discovery of promising markers of responses to immunotherapy as well as the development of unique therapeutic approaches for the management of genitourinary cancers.
Collapse
Affiliation(s)
- Madhuri Koti
- Department of Biomedical and Molecular Sciences, Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| | - Trinity Bivalacqua
- Department of Urology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Faculty of Medicine & Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthew D Galsky
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Molly A Ingersoll
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, 75014, France; Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Ashish M Kamat
- Department of Urology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wassim Kassouf
- Division of Urology, McGill University Health Center, Montreal, QC, Canada
| | - D Robert Siemens
- Department of Urology, Queen's University School of Medicine, Kingston, ON, Canada
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
135
|
Jaworski D, Brzoszczyk B, Szylberg Ł. Recent Research Advances in Double-Strand Break and Mismatch Repair Defects in Prostate Cancer and Potential Clinical Applications. Cells 2023; 12:1375. [PMID: 37408208 DOI: 10.3390/cells12101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related death in men worldwide. Recent research advances have emphasized the critical roles of mismatch repair (MMR) and double-strand break (DSB) in prostate cancer development and progression. Here, we provide a comprehensive review of the molecular mechanisms underlying DSB and MMR defects in prostate cancer, as well as their clinical implications. Furthermore, we discuss the promising therapeutic potential of immune checkpoint inhibitors and PARP inhibitors in targeting these defects, particularly in the context of personalized medicine and further perspectives. Recent clinical trials have demonstrated the efficacy of these novel treatments, including Food and Drugs Association (FDA) drug approvals, offering hope for improved patient outcomes. Overall, this review emphasizes the importance of understanding the interplay between MMR and DSB defects in prostate cancer to develop innovative and effective therapeutic strategies for patients.
Collapse
Affiliation(s)
- Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Bartosz Brzoszczyk
- Department of Urology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| |
Collapse
|
136
|
Noori M, Fayyaz F, Rezaei N. Impact of Helicobacter pylori infection on the efficacy of immune checkpoint inhibitors for cancer treatment: a meta-analysis. Immunotherapy 2023; 15:657-667. [PMID: 37140002 DOI: 10.2217/imt-2022-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Aim: The present systematic review and meta-analysis was designed to assess the impact of Helicobacter pylori infection on the efficacy of immune checkpoint inhibitors (ICIs). Materials & methods: PubMed, Scopus, Web of Science and EMBASE databases were systematically searched up to 1 February 2023. Results: Three studies comprising 263 patients treated with ICIs were included. The results of pooled analysis showed that H. pylori infection was associated with reduced overall survival and progression-free survival. Furthermore, the rate of progressive disease after administration of ICIs was higher in H. pylori-positive patients relative to H. pylori-negative patients. Conclusion: H. pylori infection status is a novel potential response biomarker for predicting the efficacy of ICIs in different cancers.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
137
|
Herberts C, Wyatt AW, Nguyen PL, Cheng HH. Genetic and Genomic Testing for Prostate Cancer: Beyond DNA Repair. Am Soc Clin Oncol Educ Book 2023; 43:e390384. [PMID: 37207301 DOI: 10.1200/edbk_390384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant progress has been made in genetic and genomic testing for prostate cancer across the disease spectrum. Molecular profiling is increasingly relevant for routine clinical management, fueled in part by advancements in testing technology and integration of biomarkers into clinical trials. In metastatic prostate cancer, defects in DNA damage response genes are now established predictors of benefit to US Food and Drug Administration-approved poly (ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors, and trials are actively investigating these and other targeted treatment strategies in earlier disease states. Excitingly, opportunities for molecularly informed management beyond DNA damage response genes are also maturing. Germline genetic variants (eg, BRCA2 or MSH2/6) and polygenic germline risk scores are being investigated to inform cancer screening and active surveillance in at-risk carriers. RNA expression tests have recently gained traction in localized prostate cancer, enabling patient risk stratification and tailored treatment intensification via radiotherapy and/or androgen deprivation therapy for localized or salvage treatment. Finally, emerging minimally invasive circulating tumor DNA technology promises to enhance biomarker testing in advanced disease pending additional methodological and clinical validation. Collectively, genetic and genomic tests are rapidly becoming indispensable tools for informing the optimal clinical management of prostate cancer.
Collapse
Affiliation(s)
- Cameron Herberts
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul L Nguyen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| | - Heather H Cheng
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
138
|
Nourmohammadi Abadchi S, Sena LA, Antonarakis ES, Pritchard CC, Eshleman JR, Konnick EQ, Salipante SJ, Shenderov E, Lotan TL. MLH1 Loss in Primary Prostate Cancer. JCO Precis Oncol 2023; 7:e2200611. [PMID: 37196219 PMCID: PMC10309570 DOI: 10.1200/po.22.00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 03/17/2023] [Indexed: 05/19/2023] Open
Abstract
PURPOSE Among mismatch repair-deficient (MMRd) prostate cancers, loss of MLH1 is relatively uncommon and few cases have been reported in detail. METHODS Here, we describe the molecular features of two cases of primary prostate cancer with MLH1 loss detected by immunohistochemistry, and in one case, confirmed via transcriptomic profiling. RESULTS Both cases were microsatellite stable on standard polymerase chain reaction (PCR)-based microsatellite instability (MSI) testing, but showed evidence of MSI on a newer PCR-based long mononucleotide repeat (LMR) assay and by next-generation sequencing. Germline testing was negative for Lynch syndrome-associated mutations in both cases. Targeted or whole-exome tumor sequencing using multiple commercial/academic platforms (Foundation, Tempus, JHU, and UW-OncoPlex) showed modestly elevated, though variable, tumor mutation burden estimates (2.3-10 mutations/Mb) consistent with MMRd, but without identifiable pathogenic single-nucleotide or indel mutations in MLH1. Copy-number analysis confirmed biallelic MLH1 loss in one case and monoallelic MLH1 loss in the second case, without evidence of MLH1 promoter hypermethylation in either. The second patient was treated with single-agent pembrolizumab and demonstrated a short-lived prostate-specific antigen response. CONCLUSION These cases highlight the challenges in identifying MLH1-deficient prostate cancers using standard MSI testing and commercial sequencing panels, and support the utility of immunohistochemical assays and LMR- or sequencing-based MSI testing for detection of MMRd prostate cancers.
Collapse
Affiliation(s)
| | - Laura A. Sena
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Emmanuel S. Antonarakis
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - James R. Eshleman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Eric Q. Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Eugene Shenderov
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
139
|
Madan RA, Redman JM, Karzai F, Dahut WL, Cordes L, Fakhrejahani F, Vu T, Sheikh N, Schlom J, Gulley JL. Avelumab in Men With Metastatic Castration-Resistant Prostate Cancer, Enriched for Patients Treated Previously With a Therapeutic Cancer Vaccine. J Immunother 2023; 46:145-151. [PMID: 36821354 PMCID: PMC10072211 DOI: 10.1097/cji.0000000000000459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023]
Abstract
Therapeutic cancer vaccines including sipuleucel- T , a prostatic acid phosphatase (PAP) targeted vaccine that improves survival in metastatic castration-resistant prostate cancer (mCRPC), can produce immune responses that translate to clinical benefit. The effects of sequential checkpoint inhibitors after therapeutic vaccine on immune responses are unknown. Avelumab is an anti-programmed death ligand-1 monoclonal antibody evaluated in patients with mCRPC in the JAVELIN solid tumor phase 1 trial expansion cohort, enriched for patients with a previous therapeutic prostate cancer-targeted vaccine. mCRPC patients received intravenous avelumab 10 mg/kg every 2 weeks with imaging every 6 weeks. Peripheral blood T-cell responses to PAP and to PA2024, the peptide containing PAP utilized by the vaccine, were evaluated pre and posttreatment. Eighteen patients enrolled, and previous treatments included abiraterone or enzalutamide in 14 (78%), therapeutic cancer vaccine in 14 (78%), and chemotherapy in 4 (22%). Avelumab had a manageable safety profile. There were no sustained prostate specific antigen decreases. Of 17 patients evaluable for best overall response by RECISTv1.1, 12 had stable disease (SD) and 5 had progressive disease. Seven patients had SD for >24 weeks posttreatment. Fourteen patients had previously received therapeutic cancer vaccines. Eleven (79%) had SD as the best overall response. Of these 14 patients, 9 had previously received sipuleucel T . Analysis of antigen-specific T-cell responses pre and postavelumab treatment did not demonstrate changes in interferon-γ production or proliferation in response to PAP or PA2024. This unplanned analysis does not support the use of sequential therapeutic cancer vaccine therapy followed by programmed death ligand-1 inhibition in mCRPC.
Collapse
Affiliation(s)
- Ravi A. Madan
- Genitourinary Malignancies Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jason M. Redman
- Genitourinary Malignancies Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Fatima Karzai
- Genitourinary Malignancies Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - William L. Dahut
- Genitourinary Malignancies Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa Cordes
- Genitourinary Malignancies Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Farhad Fakhrejahani
- Genitourinary Malignancies Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James L. Gulley
- Genitourinary Malignancies Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
140
|
Patel L, Pritchard CC. Molecular testing of DNA damage response pathways in prostate cancer patients. Curr Opin Oncol 2023; 35:224-230. [PMID: 36966502 DOI: 10.1097/cco.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
PURPOSE OF REVIEW Personalizing prostate cancer therapy requires germline and tumor molecular tests that predict who will respond to specific treatments and who may not. The review covers molecular testing of DNA damage response pathways, the first biomarker-driven precision target with clinical utility for treatment selection in patients with castration resistant prostate cancer (CRPC). RECENT FINDINGS Recurrent somatic and germline variants cause deficiency of the mismatch repair (MMR) or homologous recombination (HR) pathways in about a quarter of CRPC patients. In prospective clinical trials, patients with deleterious variants in the MMR pathway more frequently experience a therapeutic response to immune checkpoint inhibitors (ICI). Similarly, somatic and germline events affecting HR predict response to poly(ADP) ribose polymerase inhibitor (PARPi) therapy. Molecular testing of these pathways currently involves assaying for loss of function variants in individual genes and for the genome-wide consequences of repair deficiency. SUMMARY DNA damage response pathways are the first major area of molecular genetic testing in CRPC settings and offer insights into this new paradigm. Our hope is that eventually an arsenal of molecularly-guided therapies will be developed across many pathways to enable precision medicine options for most men with prostate cancer.
Collapse
Affiliation(s)
- Lalit Patel
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| |
Collapse
|
141
|
Zhao Q, Liang G, Guo B, Wang W, Yang C, Chen D, Yang F, Xiao H, Xing N. Polyphotosensitizer-Based Nanoparticles with Michael Addition Acceptors Inhibiting GST Activity and Cisplatin Deactivation for Enhanced Chemotherapy and Photodynamic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300175. [PMID: 36930173 PMCID: PMC10161037 DOI: 10.1002/advs.202300175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Glutathione S-transferase (GST), which is a key enzyme in the conjugation reaction of glutathione (GSH), is overexpressed in cancer cells, leading to cisplatin deactivation and ultimately drug resistance. In addition, many tumors are immune "cold tumors," limiting the application of immune checkpoint inhibitors. Herein, a reactive oxygen species (ROS)-responsive polyphotosensitizer-based nanoparticle (NP2) with Michael addition acceptors inhibiting GST activity and cisplatin deactivation is designed. Under the 808 nm light irradiation, on the one hand, the Michael addition acceptor in NP2 can react with GST and inhibit its activity, thereby decreasing the GSH conjugation and reducing the GSH-mediated deactivation of cisplatin and improving its chemotherapeutic effect. On the other hand, NP2+L induces more ROS production in prostate tumor cells, which can further induce type II immunogenic cell death (ICD) and stimulate a stronger antitumor immune response. It is found that NP2 under the 808 nm light irradiation (NP2+L) can increase PD-L1 expression on the surface of prostate cancer cells. Subsequently, NP2+L combined with PD-L1 treatment is found to simultaneously enhance the efficacies of chemotherapy and photodynamic immunotherapy in prostate tumors, providing a new paradigm for the clinical multimodal treatment of tumors.
Collapse
Affiliation(s)
- Qinxin Zhao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boda Guo
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenkuan Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, 030013, China
| |
Collapse
|
142
|
Gillette CM, Yette GA, Cramer SD, Graham LS. Management of Advanced Prostate Cancer in the Precision Oncology Era. Cancers (Basel) 2023; 15:2552. [PMID: 37174018 PMCID: PMC10177563 DOI: 10.3390/cancers15092552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Prostate cancer (PC) is the second leading cause of cancer death in men in the United States. While diversified and improved treatment options for aggressive PC have improved patient outcomes, metastatic castration-resistant prostate cancer (mCRPC) remains incurable and an area of investigative therapeutic interest. This review will cover the seminal clinical data supporting the indication of new precision oncology-based therapeutics and explore their limitations, present utility, and potential in the treatment of PC. Systemic therapies for high-risk and advanced PC have experienced significant development over the past ten years. Biomarker-driven therapies have brought the field closer to the goal of being able to implement precision oncology therapy for every patient. The tumor agnostic approval of pembrolizumab (a PD-1 inhibitor) marked an important advancement in this direction. There are also several PARP inhibitors indicated for patients with DNA damage repair deficiencies. Additionally, theranostic agents for both imaging and treatment have further revolutionized the treatment landscape for PC and represent another advancement in precision medicine. Radiolabeled prostate-specific membrane antigen (PSMA) PET/CT is rapidly becoming a standard of care for diagnosis, and PSMA-targeted radioligand therapies have gained recent FDA approval for metastatic prostate cancer. These advances in precision-based oncology are detailed in this review.
Collapse
Affiliation(s)
- Claire M. Gillette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Laura S. Graham
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
143
|
Fang B, Wei Y, Pan J, Zhang T, Ye D, Zhu Y. Mismatch repair gene germline mutations in patients with prostate cancer. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:133-138. [PMID: 37283096 PMCID: PMC10409913 DOI: 10.3724/zdxbyxb-2022-0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/10/2022] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the prevalence of pathogenic germline mutations of mismatch repair (MMR) genes in prostate cancer patients and its relationship with clinicopathological characteristics. METHODS Germline sequencing data of 855 prostate cancer patients admitted in Fudan University Shanghai Cancer Center from 2018 to 2022 were retrospectively analyzed. The pathogenicity of mutations was assessed according to the American College of Medical Genetics and Genomics (ACMG) standard guideline, Clinvar and Intervar databases. The clinicopathological characteristics and responses to castration treatment were compared among patients with MMR gene mutation (MMR+ group), patients with DNA damage repair (DDR) gene germline pathogenic mutation without MMR gene (DDR+MMR- group) and patients without DDR gene germline pathogenic mutation (DDR- group). RESULTS Thirteen (1.52%) MMR+ patients were identified in 855 prostate cancer patients, including 1 case with MLH1 gene mutation, 6 cases with MSH2 gene mutation, 4 cases with MSH6 gene mutation and 2 cases with PMS2 gene mutation. 105 (11.9%) patients were identified as DDR gene positive (except MMR gene), and 737 (86.2%) patients were DDR gene negative. Compared with DDR- group, MMR+ group had lower age of onset (P<0.05) and initial prostate-specific antigen (PSA) (P<0.01), while no significant differences were found between the two groups in Gleason score and TMN staging (both P>0.05). The median time to castration resistance was 8 months (95%CI: 6 months-not achieved), 16 months (95%CI: 12-32 months) and 24 months (95%CI: 21-27 months) for MMR+ group, DDR+MMR- group and DDR- group, respectively. The time to castration resistance in MMR+ group was significantly shorter than that in DDR+MMR- group and DDR- group (both P<0.01), while there was no significant difference between DDR+MMR- group and DDR- group (P>0.05). CONCLUSIONS MMR gene mutation testing is recommended for prostate cancer patients with early onset, low initial PSA, metastasis or early resistance to castration therapy.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China.
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China.
| |
Collapse
|
144
|
Diop MK, Molina OE, Birlea M, LaRue H, Hovington H, Têtu B, Lacombe L, Bergeron A, Fradet Y, Trudel D. Leukocytic Infiltration of Intraductal Carcinoma of the Prostate: An Exploratory Study. Cancers (Basel) 2023; 15:cancers15082217. [PMID: 37190147 DOI: 10.3390/cancers15082217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive histological subtype of prostate cancer (PCa) detected in approximately 20% of radical prostatectomy (RP) specimens. As IDC-P has been associated with PCa-related death and poor responses to standard treatment, the purpose of this study was to explore the immune infiltrate of IDC-P. Hematoxylin- and eosin-stained slides from 96 patients with locally advanced PCa who underwent RP were reviewed to identify IDC-P. Immunohistochemical staining of CD3, CD8, CD45RO, FoxP3, CD68, CD163, CD209 and CD83 was performed. For each slide, the number of positive cells per mm2 in the benign tissues, tumor margins, cancer and IDC-P was calculated. Consequently, IDC-P was found in a total of 33 patients (34%). Overall, the immune infiltrate was similar in the IDC-P-positive and the IDC-P-negative patients. However, FoxP3+ regulatory T cells (p < 0.001), CD68+ and CD163+ macrophages (p < 0.001 for both) and CD209+ and CD83+ dendritic cells (p = 0.002 and p = 0.013, respectively) were less abundant in the IDC-P tissues compared to the adjacent PCa. Moreover, the patients were classified as having immunologically "cold" or "hot" IDC-P, according to the immune-cell densities averaged in the total IDC-P or in the immune hotspots. The CD68/CD163/CD209-immune hotspots predicted metastatic dissemination (p = 0.014) and PCa-related death (p = 0.009) in a Kaplan-Meier survival analysis. Further studies on larger cohorts are necessary to evaluate the clinical utility of assessing the immune infiltrate of IDC-P with regards to patient prognosis and the use of immunotherapy for lethal PCa.
Collapse
Affiliation(s)
- Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (axe Cancer) and Institut du Cancer de Montréal, 900 Saint-Denis, Montréal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Oscar Eduardo Molina
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
| | - Mirela Birlea
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (axe Cancer) and Institut du Cancer de Montréal, 900 Saint-Denis, Montréal, QC H2X 0A9, Canada
| | - Hélène LaRue
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
| | - Hélène Hovington
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
| | - Bernard Têtu
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
- Department of Pathology, CHU de Québec-Université Laval, 11 Côte du Palais, Québec, QC G1R 2J6, Canada
| | - Louis Lacombe
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, 2325 rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Alain Bergeron
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, 2325 rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Yves Fradet
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, 2325 rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (axe Cancer) and Institut du Cancer de Montréal, 900 Saint-Denis, Montréal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, 1051 Sanguinet, Montréal, QC H2X 0C1, Canada
| |
Collapse
|
145
|
Wang J, Tao L, Liu Y, Liu H, Shen X, Tao L. Identification and validation of DLX4 as a prognostic and diagnostic biomarker for clear cell renal cell carcinoma. Oncol Lett 2023; 25:146. [PMID: 36936018 PMCID: PMC10018244 DOI: 10.3892/ol.2023.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 03/04/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a lethal cancer, and biomarkers for exact diagnosis and predicting prognosis are urgently needed. The present study aimed to determine the roles of distal-less homeobox (DLX) family genes in ccRCC. The clinicopathological and mRNA expression data of patients with ccRCC were derived from The Cancer Genome Atlas database. Kaplan-Meier curves, univariate and multivariate Cox hazard analyses, in addition to receiver operator characteristic curves were used to evaluate the prognostic and diagnostic values. A single-sample gene set enrichment analysis was used to quantify the infiltration levels of immune cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were conducted to examine the expression levels of DLX4 in tumor and adjacent tissue; the results demonstrated that DLX4 was highly expressed in ccRCC tissues compared with normal renal tissues. Furthermore, DLX4 expression was associated with tumor stage and grade. High proportions of males, advanced pathological stage, higher tumor grade and T, N and M stage were also observed in the high DLX4 expression group. Patients with the high DLX4 expression levels tended to have lower overall survival and disease-free survival rates compared with those with low DLX4 expression. DLX4 expression also showed favorable diagnostic efficiency in ccRCC patients. Based on functional enrichment analysis, cell cycle related pathways, epithelial-mesenchymal transition, glycolysis and inflammatory response were associated with the expression levels of DLX4. Furthermore, DLX4 expression was revealed to be associated with tumor immunosuppressive microenvironment. Overall, the expression level of DLX4 may be considered a novel prognostic indicator in ccRCC and a specific diagnostic biomarker for patients with ccRCC.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Liangjun Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yingqing Liu
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Heqian Liu
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Xudong Shen
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Lingsong Tao
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
- Correspondence to: Dr Lingsong Tao, Department of Urology, The Second People's Hospital of Wuhu, 259 JiuHuaShan Avenue, Wuhu, Anhui 241000, P.R. China, E-mail:
| |
Collapse
|
146
|
Conway JR, Tewari AK, Camp SY, Han S, Crowdis J, He MX, Nyame YA, AlDubayan SH, Schultz N, Szallasi Z, Pomerantz MM, Freedman ML, Fong L, Nelson PS, Brown M, Salari K, Allen EV. Analysis of evolutionary dynamics and clonal architecture in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533974. [PMID: 36993558 PMCID: PMC10055322 DOI: 10.1101/2023.03.23.533974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The extent to which clinical and genomic characteristics associate with prostate cancer clonal architecture, tumor evolution, and therapeutic response remains unclear. Here, we reconstructed the clonal architecture and evolutionary trajectories of 845 prostate cancer tumors with harmonized clinical and molecular data. We observed that tumors from patients who self-reported as Black had more linear and monoclonal architectures, despite these men having higher rates of biochemical recurrence. This finding contrasts with prior observations relating polyclonal architecture to adverse clinical outcomes. Additionally, we utilized a novel approach to mutational signature analysis that leverages clonal architecture to uncover additional cases of homologous recombination and mismatch repair deficiency in primary and metastatic tumors and link the origin of mutational signatures to specific subclones. Broadly, prostate cancer clonal architecture analysis reveals novel biological insights that may be immediately clinically actionable and provide multiple opportunities for subsequent investigation. Statement of significance Tumors from patients who self-reported as Black demonstrate linear and monoclonal evolutionary trajectories yet experience higher rates of biochemical recurrence. In addition, analysis of clonal and subclonal mutational signatures identifies additional tumors with potentially actionable alterations such as deficiencies in mismatch repair and homologous recombination.
Collapse
|
147
|
Hawkins C(M, Barata PC, Cotogno P, Davis G, Jaeger E, Ledet E, Miller P, Lewis B, Sartor O, Layton J. Black Patients with Metastatic Castrate-Resistant Prostate Cancer Have a Shorter Time Interval Between PSA and Clinical Progression on Novel Hormonal Therapies plus Avelumab. Oncologist 2023; 28:276-e158. [PMID: 36210487 PMCID: PMC10020796 DOI: 10.1093/oncolo/oyac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/09/2022] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Black men are at higher risk for prostate cancer death. Previous studies showed a benefit of different therapies, including immune-based therapy, for Black men with metastatic prostate cancer. We sought to explore the efficacy of the PD-L1 inhibitor avelumab in Black men with metastatic castrate-resistant prostate cancer (mCRPC) progressing after abiraterone or enzalutamide. METHODS This pilot phase II study enrolled self-identified Black patients who developed mCRPC on next-generation hormonal therapies (NHTs) abiraterone acetate or enzalutamide (NCT03770455). Enrolled patients received avelumab 10mg/kg IV every 2 weeks while remaining on the same NHTs. The primary endpoint of our study was ≥ 50% reduction in prostate specific antigen (PSA) at ≥8 weeks. RESULTS A total of eight patients were enrolled. The median duration on NHTs prior to enrollment was 364 days (95% CI, 260.9-467.1). The median time to initiate avelumab was 8 days (3-14). With a median follow-up of 196 days, no patients achieved the primary endpoint. The median time to PSA progression was 35 days (95 CI%, 0-94.8) and the median time to radiographic and/or clinical progression was 44 days (95 CI%, 0-118.5). The study was closed prematurely due to safety concerns related to the rapid clinical progression observed in the patients enrolled on study. CONCLUSION In conclusion, the addition of avelumab to NHT did not demonstrate clinical activity in Black men with new mCRPC. The unexpected short interval between PSA and radiographic and/or clinical progression observed in this study has potential clinical implications.ClinicalTrials.gov Identifier: NCT03770455 (IND number 139559).
Collapse
Affiliation(s)
| | - Pedro C Barata
- Corresponding author: Pedro C. Barata, MD, University Hospitals Seidman Cancer Center, 11100 Euclid Ave, Cleveland, OH 44106, USA. Tel.: +1 216-844-3951.
| | - Patrick Cotogno
- Tulane Office of Clinical Research, Tulane School of Medicine, New Orleans, LA, USA
| | - Gaynelle Davis
- Tulane Office of Clinical Research, Tulane School of Medicine, New Orleans, LA, USA
| | - Ellen Jaeger
- Tulane Office of Clinical Research, Tulane School of Medicine, New Orleans, LA, USA
| | - Elisa Ledet
- Tulane Office of Clinical Research, Tulane School of Medicine, New Orleans, LA, USA
| | - Patrick Miller
- Tulane Office of Clinical Research, Tulane School of Medicine, New Orleans, LA, USA
| | - Brian Lewis
- Tulane School of Medicine, New Orleans, LA, USA
| | | | | |
Collapse
|
148
|
A Five Glutamine-Associated Signature Predicts Prognosis of Prostate Cancer and Links Glutamine Metabolism with Tumor Microenvironment. J Clin Med 2023; 12:jcm12062243. [PMID: 36983244 PMCID: PMC10056698 DOI: 10.3390/jcm12062243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Glutamine has been recognized as an important amino acid that provide a variety of intermediate products to fuel biosynthesis. Glutamine metabolism participates in the progression of the tumor via various mechanisms. However, glutamine-metabolism-associated signatures and its significance in prostate cancer are still unclear. In this current study, we identified five genes associated with glutamine metabolism by univariate and Lasso regression analysis and constructed a model to predict the biochemical recurrence free survival (BCRFS) of PCa. Further validation of the prognostic risk model demonstrated a good efficacy in predicting the BCRFS in PCa patients. Interestingly, based on the CIBERSORTx, ssGSEA and ESTIMATE algorithms predictions, we noticed a distinct immune cell infiltration and immune pathway pattern in the prediction of the two risk groups stratified by the risk model. Drug sensitivity prediction revealed that patients in the high-risk group were more suitable for chemotherapy. Last but not least, glutamine deprivation significantly inhibited cell growth in GLUL or ASNS knock down prostate cancer cell lines. Therefore, we proposed a novel prognostic model by using glutamine metabolism genes for PCa patients and identified potential mechanism of PCa progression through glutamine-related tumor microenvironment remodeling.
Collapse
|
149
|
Ritch EJ, Herberts C, Warner EW, Ng SWS, Kwan EM, Bacon JVW, Bernales CQ, Schönlau E, Fonseca NM, Giri VN, Maurice-Dror C, Vandekerkhove G, Jones SJM, Chi KN, Wyatt AW. A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes. NPJ Precis Oncol 2023; 7:27. [PMID: 36914848 PMCID: PMC10011564 DOI: 10.1038/s41698-023-00366-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency.
Collapse
Affiliation(s)
- Elie J Ritch
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Evan W Warner
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Edmond M Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jack V W Bacon
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elena Schönlau
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Veda N Giri
- Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | | | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. .,Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
150
|
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, Offermann A, Pantel K, Schuele R, Taubert H, Wach S, Perner S, Werner S, Aigner A. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 2023; 20:158-178. [PMID: 36451039 DOI: 10.1038/s41585-022-00677-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/02/2022]
Abstract
Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.
Collapse
Affiliation(s)
- Verena Sailer
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gunhild von Amsberg
- Department of Oncology and Hematology, University Cancer Center Hamburg Eppendorf and Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University Hospital Heidelberg and National Center for Tumour Diseases, Heidelberg, Germany
| | - Jutta Kirfel
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Lieb
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Eric Metzger
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Anne Offermann
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Klaus Pantel
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Roland Schuele
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Helge Taubert
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Perner
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Werner
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Medical Faculty, Leipzig, Germany.
| |
Collapse
|