101
|
Myosin II in Cancer Cells Shapes the Immune Microenvironment. Trends Mol Med 2019; 25:257-259. [PMID: 30871808 DOI: 10.1016/j.molmed.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
Tumor migration is driven by actomyosin contractility. A recent publication by Georgouli et al. (Cell 2019;176:757-774) describes how crosstalk between the cell migration machinery and tumor-associated macrophages (TAMs) shapes the microenvironment to promote tumor growth. Indirectly targeting TAMs by inhibiting the motility of tumor cells could hinder metastatic spread.
Collapse
|
102
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
103
|
Xiao Z, Chen M, Yang J, Yang C, Lü X, Tian H, Liu C. [MTBP regulates migration and invasion of prostate cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:6-12. [PMID: 30692060 DOI: 10.12122/j.issn.1673-4254.2019.01.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the role of MTBP in regulating the migration and invasion of human prostate cancer cells. METHODS The baseline expressions of MTBP in 3 different human prostate cancer cells lines (22RV1, DU145 and Lncap) were detected using Western blotting. The cells were transfected with a small interfering RNA (siRNA) for MTBP knockdown or MTBP plasmid for MTBP overexpression, and 48 h later, the cells were examined for MTBP expression with Western blotting; the changes in the migration abilities of the cells were evaluated using wound healing assay and Transwell assay, and the cell invasiveness was assessed using Matrigel Transwell assay. The expression of E-cadherin protein, a marker of epithelial mesenchymal transition (EMT), was detected using Western blotting. RESULTS MTBP expression was the highest in DU145 cells followed by Lncap cells, and was the lowest in 22RV1 cells, indicating a positive correlation of MTBP expression with the level of malignancy of human prostate cancer cells. Transfection of the cells with siRNA or MTBP plasmids efficiently lowered or enhanced the expressions of MTBP in human prostate cancer cells. Wound healing assay showed that inhibition of MTBP expression decreased the migration ability of the prostate cancer cells, and MTBP overexpression significantly promoted the migration of the cells (P < 0.01). Transwell assay showed that MTBP knockdown significantly lowered the migration and invasion ability of the cells, while MTBP overexpression markedly increased the number of migrating and invading cells (P < 0.01); Western blotting results showed that MTBP knockdown increased the expression of E-cadherin protein, and MTBP overexpression decreased E-cadherin expression in the prostate cancer cells. CONCLUSIONS MTBP overexpression promotes the migration and invasion of human prostate cancer cells possibly relation to the induction of EMT.
Collapse
Affiliation(s)
- Zhuoyu Xiao
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Mingkun Chen
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jiankun Yang
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cheng Yang
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xianyuan Lü
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hu Tian
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cundong Liu
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
104
|
Georgouli M, Herraiz C, Crosas-Molist E, Fanshawe B, Maiques O, Perdrix A, Pandya P, Rodriguez-Hernandez I, Ilieva KM, Cantelli G, Karagiannis P, Mele S, Lam H, Josephs DH, Matias-Guiu X, Marti RM, Nestle FO, Orgaz JL, Malanchi I, Fruhwirth GO, Karagiannis SN, Sanz-Moreno V. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell 2019; 176:757-774.e23. [PMID: 30712866 PMCID: PMC6370915 DOI: 10.1016/j.cell.2018.12.038] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/24/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
Abstract
ROCK-Myosin II drives fast rounded-amoeboid migration in cancer cells during metastatic dissemination. Analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity are predominant in the invasive fronts of primary tumors in proximity to CD206+CD163+ tumor-associated macrophages and vessels. Proteomic analysis shows that ROCK-Myosin II activity in amoeboid cancer cells controls an immunomodulatory secretome, enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages support an abnormal vasculature, which ultimately facilitates tumor progression. Mechanistically, amoeboid cancer cells perpetuate their behavior via ROCK-Myosin II-driven IL-1α secretion and NF-κB activation. Using an array of tumor models, we show that high Myosin II activity in tumor cells reprograms the innate immune microenvironment to support tumor growth. We describe an unexpected role for Myosin II dynamics in cancer cells controlling myeloid function via secreted factors.
Collapse
Affiliation(s)
- Mirella Georgouli
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Cecilia Herraiz
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Eva Crosas-Molist
- Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK; Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Bruce Fanshawe
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK; Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, St. Thomas Hospital, King's College London, London SE1 7EH, UK
| | - Oscar Maiques
- Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK; Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Anna Perdrix
- Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK; Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK; Tumour-Stroma Interactions in Cancer Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pahini Pandya
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Irene Rodriguez-Hernandez
- Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK; Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Kristina M Ilieva
- St John's Institute of Dermatology, King's College London and National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, UK
| | - Gaia Cantelli
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Panagiotis Karagiannis
- St John's Institute of Dermatology, King's College London and National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, UK; Department of Oncology, Haematology and Stem Cell Transplantation, University Hospital of Hamburg Eppendorf, Hamburg 20246, Germany
| | - Silvia Mele
- St John's Institute of Dermatology, King's College London and National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, UK
| | - Hoyin Lam
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Debra H Josephs
- St John's Institute of Dermatology, King's College London and National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, UK; School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Xavier Matias-Guiu
- Departments of Pathology Hospital U Arnau de Vilanova and Hospital U de Bellvitge, IRBLLEIDA, IDIBELL, University of Lleida, CIBERONC, Lleida, Spain
| | - Rosa M Marti
- Department of Dermatology, Hospital U Arnau de Vilanova, IRBLLEIDA, University of Lleida, CIBERONC, Lleida, Spain
| | - Frank O Nestle
- St John's Institute of Dermatology, King's College London and National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, UK
| | - Jose L Orgaz
- Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK; Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Ilaria Malanchi
- Tumour-Stroma Interactions in Cancer Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, St. Thomas Hospital, King's College London, London SE1 7EH, UK
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, King's College London and National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK; Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
105
|
Liu F, Ma D, Chen W, Chen X, Qian Y, Zhao Y, Hu T, Yin R, Zhu Y, Zhang Y, Zhang Y, Zhao W. Gold Nanoparticles Suppressed Proliferation, Migration, and Invasion in Papillary Thyroid Carcinoma Cells via Downregulation of CCT3. JOURNAL OF NANOMATERIALS 2019; 2019:1-12. [DOI: 10.1155/2019/1687340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Emerging evidences have demonstrated that gold nanoparticles (AuNPs) have been used for cancer treatment. The aim of this study was to investigate the effects and molecular mechanisms of AuNPs on papillary thyroid carcinoma (PTC) cells (BCPAP and TPC-1). Characterizations of AuNPs were detected by UV-Vis spectra, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Cell proliferation and apoptosis, migration, and invasion of PTC cells were evaluated by MTT, flow cytometry, wound healing, and transwell assays, respectively. Furthermore, qRT-PCR and western blot assays were performed to assess the protein expressions related to apoptosis and migration including caspase-3, caspase-9, Bax, Bcl-2, MMP-2, and MMP-9. The study revealed that AuNPs significantly suppressed cell viability, migration, and invasion and remarkably induced apoptosis of BCPAP and TPC-1 cells compared with the control group. Moreover, AuNPs negatively regulated the expression of CCT3 and silencing of CCT3 obviously promoted the proliferation, migration, and invasion inhibition and apoptosis induction of PTC cells combined with AuNPs. Collectively, these results highlighted the potential application of AuNPs in PTC target therapy.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Dawei Ma
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Wei Chen
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xinyuan Chen
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yichun Qian
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yanbin Zhao
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Tingting Hu
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yan Zhu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 201009, China
| | - Yuan Zhang
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Wei Zhao
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
106
|
Liu R, Mu LM, Bai J, Du YF, Xie Y, Lu WL. Development of double strand RNA mPEI nanoparticles and application in treating invasive breast cancer. RSC Adv 2019; 9:13186-13200. [PMID: 35520771 PMCID: PMC9063785 DOI: 10.1039/c9ra01889a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
dsRNA mPEI nanoparticles entered cytoplasm and lysosomal escape occurred. dsRNA was released to form a dsRNA–RISC complex. Then, remaining sense strand bound to mRNA, forming a new structure. Thus, mRNA was cleared and translation was inhibited.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Natural and Biomimetic Drugs
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Li-Min Mu
- State Key Laboratory of Natural and Biomimetic Drugs
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Jing Bai
- State Key Laboratory of Natural and Biomimetic Drugs
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Ya-Fei Du
- State Key Laboratory of Natural and Biomimetic Drugs
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| |
Collapse
|
107
|
Bowlt Blacklock K, Birand Z, Biasoli D, Fineberg E, Murphy S, Flack D, Bass J, Di Palma S, Blackwood L, McKay J, Whitbread T, Fox R, Eve T, Beaver S, Starkey M. Identification of molecular genetic contributants to canine cutaneous mast cell tumour metastasis by global gene expression analysis. PLoS One 2018; 13:e0208026. [PMID: 30566430 PMCID: PMC6300220 DOI: 10.1371/journal.pone.0208026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cutaneous mast cell tumours are one of the most common canine cancers. Approximately 25% of the tumours metastasise. Activating c-kit mutations are present in about 20% of tumours, but metastases occur in the absence of mutations. Tumour metastasis is associated with significantly diminished survival in spite of adjuvant chemotherapy. Available prognostic tests do not reliably predict whether a tumour will metastasise. In this study we compared the global expression profiles of 20 primary cutaneous mast cell tumours that metastasised with those of 20 primary tumours that did not metastasise. The objective was to identify genes associated with mast cell tumour metastatic progression that may represent targets for therapeutic intervention and biomarkers for prediction of tumour metastasis. Canine Gene 1.1 ST Arrays were employed for genome-wide expression analysis of formalin-fixed, paraffin-embedded biopsies of mast cell tumours borne by dogs that either died due to confirmed mast cell tumour metastasis, or were still alive more than 1000 days post-surgery. Decreased gene expression in the metastasising tumours appears to be associated with a loss of cell polarity, reduced cell-cell and cell-ECM adhesion, and increased cell deformability and motility. Dysregulated gene expression may also promote extracellular matrix and base membrane degradation, suppression of cell cycle arrest and apoptosis, and angiogenesis. Down-regulation of gene expression in the metastasising tumours may be achieved at least in part by small nucleolar RNA-derived RNA and microRNA-effected gene silencing. Employing cross-validation, a linear discriminant analysis-based classifier featuring 19 genes that displayed two-fold differences in expression between metastasising and non-metastasising tumours was estimated to classify metastasising and non-metastasising tumours with accuracies of 90-100% and 70-100%, respectively. The differential expression of 9 of the discriminator genes was confirmed by quantitative reverse transcription-PCR.
Collapse
Affiliation(s)
| | - Zeynep Birand
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | | | | | - Sue Murphy
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Debs Flack
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Joyce Bass
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | | | - Laura Blackwood
- Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Jenny McKay
- IDEXX Laboratories, Ltd, Wetherby, United Kingdom
| | | | - Richard Fox
- Finn Pathologists, Harleston, United Kingdom
| | - Tom Eve
- Finn Pathologists, Harleston, United Kingdom
| | - Stuart Beaver
- Nationwide Laboratory Services, Poulton-le-Fylde, United Kingdom
| | - Mike Starkey
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| |
Collapse
|
108
|
Birch JL, Strathdee K, Gilmour L, Vallatos A, McDonald L, Kouzeli A, Vasan R, Qaisi AH, Croft DR, Crighton D, Gill K, Gray CH, Konczal J, Mezna M, McArthur D, Schüttelkopf AW, McConnell P, Sime M, Holmes WM, Bower J, McKinnon HJ, Drysdale M, Olson MF, Chalmers AJ. A Novel Small-Molecule Inhibitor of MRCK Prevents Radiation-Driven Invasion in Glioblastoma. Cancer Res 2018; 78:6509-6522. [PMID: 30279244 DOI: 10.1158/0008-5472.can-18-1697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/10/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable primary brain tumor that causes severe neurologic, cognitive, and psychologic symptoms. Symptoms are caused and exacerbated by the infiltrative properties of GBM cells, which enable them to pervade the healthy brain and disrupt normal function. Recent research has indicated that although radiotherapy (RT) remains the most effective component of multimodality therapy for patients with GBM, it can provoke a more infiltrative phenotype in GBM cells that survive treatment. Here, we demonstrate an essential role of the actin-myosin regulatory kinase myotonic dystrophy kinase-related CDC42-binding kinase (MRCK) in mediating the proinvasive effects of radiation. MRCK-mediated invasion occurred via downstream signaling to effector molecules MYPT1 and MLC2. MRCK was activated by clinically relevant doses per fraction of radiation, and this activation was concomitant with an increase in GBM cell motility and invasion. Furthermore, ablation of MRCK activity either by RNAi or by inhibition with the novel small-molecule inhibitor BDP-9066 prevented radiation-driven increases in motility both in vitro and in a clinically relevant orthotopic xenograft model of GBM. Crucially, treatment with BDP-9066 in combination with RT significantly increased survival in this model and markedly reduced infiltration of the contralateral cerebral hemisphere.Significance: An effective new strategy for the treatment of glioblastoma uses a novel, anti-invasive chemotherapeutic to prevent infiltration of the normal brain by glioblastoma cells.Cancer Res; 78(22); 6509-22. ©2018 AACR.
Collapse
Affiliation(s)
- Joanna L Birch
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| | - Karen Strathdee
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lesley Gilmour
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Antoine Vallatos
- Glasgow Experimental MRI Centre, University of Glasgow, Glasgow, United Kingdom
| | - Laura McDonald
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Ariadni Kouzeli
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richa Vasan
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Daniel R Croft
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Diane Crighton
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Kathryn Gill
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Christopher H Gray
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Jennifer Konczal
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Mokdad Mezna
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Duncan McArthur
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Alexander W Schüttelkopf
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Patricia McConnell
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Mairi Sime
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - William M Holmes
- Glasgow Experimental MRI Centre, University of Glasgow, Glasgow, United Kingdom
| | - Justin Bower
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Heather J McKinnon
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Martin Drysdale
- CRUK Beatson Drug Discovery Programme, Beatson Institute of Cancer Research, Glasgow, United Kingdom
| | - Michael F Olson
- CRUK Beatson Institute of Cancer Research, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anthony J Chalmers
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
109
|
Ju RJ, Stehbens SJ, Haass NK. The Role of Melanoma Cell-Stroma Interaction in Cell Motility, Invasion, and Metastasis. Front Med (Lausanne) 2018; 5:307. [PMID: 30460237 PMCID: PMC6232165 DOI: 10.3389/fmed.2018.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
The importance of studying cancer cell invasion is highlighted by the fact that 90% of all cancer-related mortalities are due to metastatic disease. Melanoma metastasis is driven fundamentally by aberrant cell motility within three-dimensional or confined environments. Within this realm of cell motility, cytokines, growth factors, and their receptors are crucial for engaging signaling pathways, which both mediate crosstalk between cancer, stromal, and immune cells in addition to interactions with the surrounding microenvironment. Recently, the study of the mechanical biology of tumor cells, stromal cells and the mechanics of the microenvironment have emerged as important themes in driving invasion and metastasis. While current anti-melanoma therapies target either the MAPK signaling pathway or immune checkpoints, there are no drugs available that specifically inhibit motility and thus invasion and dissemination of melanoma cells during metastasis. One of the reasons for the lack of so-called "migrastatics" is that, despite decades of research, the precise biology of metastatic disease is still not fully understood. Metastatic disease has been traditionally lumped into a single classification, however what is now emergent is that the biology of melanoma metastasis is highly diverse, heterogeneous and exceedingly dynamic-suggesting that not all cases are created equal. The following mini-review discusses melanoma heterogeneity in the context of the emergent theme of mechanobiology and how it influences the tumor-stroma crosstalk during metastasis. Thus, highlighting future therapeutic options for migrastatics and mechanomedicines in the prevention and treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Robert J. Ju
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Samantha J. Stehbens
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Nikolas K. Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
110
|
Bui L, Shen Q, Hill T, Bhuiyan SH, Barakat R, Saavedra V, Kong C, Battiste JD, Kim YT. Microchannel device for proteomic analysis of migrating cancer cells. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aacd5f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
111
|
Hill D, Chen L, Snaar-Jagalska E, Chaudhry B. Embryonic zebrafish xenograft assay of human cancer metastasis. F1000Res 2018; 7:1682. [PMID: 30473782 PMCID: PMC6234738 DOI: 10.12688/f1000research.16659.2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer metastasis is the most important prognostic factor determining patient survival, but currently there are very few drugs or therapies that specifically inhibit the invasion and metastasis of cancer cells. Currently, human cancer metastasis is largely studied using transgenic and immunocompromised mouse xenograft models, which are useful for analysing end-point tumour growth but are unable to accurately and reliably monitor in vivo invasion, intravasation, extravasation or secondary tumour formation of human cancer cells. Furthermore, limits in our ability to accurately monitor early stages of tumour growth and detect micro-metastases likely results in pain and suffering to the mice used for cancer xenograft experiments. Zebrafish ( Danio rerio) embryos, however, offer many advantages as a model system for studying the complex, multi-step processes involved during cancer metastasis. This article describes a detailed method for the analysis of human cancer cell invasion and metastasis in zebrafish embryos before they reach protected status at 5 days post fertilisation. Results demonstrate that human cancer cells actively invade within a zebrafish microenvironment, and form metastatic tumours at secondary tissue sites, suggesting that the mechanisms involved during the different stages of metastasis are conserved between humans and zebrafish, supporting the use of zebrafish embryos as a viable model of human cancer metastasis. We suggest that the embryonic zebrafish xenograft model of human cancer is a tractable laboratory model that can be used to understand cancer biology, and as a direct replacement of mice for the analysis of drugs that target cancer invasion and metastasis.
Collapse
Affiliation(s)
- David Hill
- Institute of Cellular Medicine, Newcastle University, UK, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Genetic Medicine, Newcastle University, UK, Newcastle upon Tyne, NE1 3BZ, UK
| | | | | | - Bill Chaudhry
- Institute of Genetic Medicine, Newcastle University, UK, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
112
|
Hill D, Chen L, Snaar-Jagalska E, Chaudhry B. Embryonic zebrafish xenograft assay of human cancer metastasis. F1000Res 2018; 7:1682. [PMID: 30473782 DOI: 10.12688/f1000research.16659.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/24/2022] Open
Abstract
Cancer metastasis is the most important prognostic factor determining patient survival, but currently there are very few drugs or therapies that specifically inhibit the invasion and metastasis of cancer cells. Currently, human cancer metastasis is largely studied using transgenic and immunocompromised mouse xenograft models, which are useful for analysing end-point tumour growth but are unable to accurately and reliably monitor in vivo invasion, intravasation, extravasation or secondary tumour formation of human cancer cells. Furthermore, limits in our ability to accurately monitor early stages of tumour growth and detect micro-metastases likely results in pain and suffering to the mice used for cancer xenograft experiments. Zebrafish ( Danio rerio) embryos, however, offer many advantages as a model system for studying the complex, multi-step processes involved during cancer metastasis. This article describes a detailed method for the analysis of human cancer cell invasion and metastasis in zebrafish embryos before they reach protected status at 5 days post fertilisation. Results demonstrate that human cancer cells actively invade within a zebrafish microenvironment, and form metastatic tumours at secondary tissue sites, suggesting that the mechanisms involved during the different stages of metastasis are conserved between humans and zebrafish, supporting the use of zebrafish embryos as a viable model of human cancer metastasis. We suggest that the embryonic zebrafish xenograft model of human cancer is a tractable laboratory model that can be used to understand cancer biology, and as a direct replacement of mice for the analysis of drugs that target cancer invasion and metastasis.
Collapse
Affiliation(s)
- David Hill
- Institute of Cellular Medicine, Newcastle University, UK, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Genetic Medicine, Newcastle University, UK, Newcastle upon Tyne, NE1 3BZ, UK
| | | | | | - Bill Chaudhry
- Institute of Genetic Medicine, Newcastle University, UK, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
113
|
Chen X, Xiong D, Yang H, Ye L, Mei S, Wu J, Chen S, Shang X, Wang K, Huang L. Long noncoding RNA OPA-interacting protein 5 antisense transcript 1 upregulated SMAD3 expression to contribute to metastasis of cervical cancer by sponging miR-143-3p. J Cell Physiol 2018; 234:5264-5275. [PMID: 30341904 DOI: 10.1002/jcp.27336] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES SMAD3 is pivotal in the biology functions of various tumors. This study is aiming to study the relationship among SMAD3, long noncoding RNAs (lncRNAs) OPA-interacting protein 5 antisense transcript 1 (OIP5-AS1), and miR-143-3p, and their effects on cervical cancer. METHODS In our research, real-time polymerase chain reaction and western blot assay were conducted to detect the expression level of messenger RNA and protein in tumor tissues and cells. Transfection of lncRNA OIP5-AS1, miR-143-3p, or SMAD3 was performed to investigate their potential effects on the function of cell as well as the relationship among them in cervical cell lines via 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) together with transwell assays or dual-luciferase reporter assay respectively. RESULTS SMAD3, lncRNA OIP5-AS1 expression is significantly enhanced in cervical cancer tissues and cell lines, but miR-143-3p was inhibited. LncRNA OIP5-AS1 is demonstrated to mediate the physiological process of cervical cancer cells. Moreover, silencing SMAD3 via siRNA suppressed cell number, viability, migration and invasion, whereas overexpression of OIP5-AS1 promoted these abilities. Furthermore, lncRNA OIP5-AS1 exert its function via sponging miR-143-3p to regulate SMAD3 expression. CONCLUSIONS LncRNA OIP5-AS1 promoted SMAD3 expression via mediating miR-143-3p to promote migration and invasion of cervical cancer cells.
Collapse
Affiliation(s)
- Xing Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Hospital of Blood Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huichun Yang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Liya Ye
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shuangshuang Mei
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jinhong Wu
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shanshan Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xianwen Shang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Kai Wang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Lingfei Huang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
114
|
Tamborindeguy MT, Matte BF, Ramos GDO, Alves AM, Bernardi L, Lamers ML. NADPH-oxidase-derived ROS alters cell migration by modulating adhesions dynamics. Biol Cell 2018; 110:225-236. [DOI: 10.1111/boc.201800011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Maurício Tavares Tamborindeguy
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Center of Biotechnology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Bibiana Franzen Matte
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Grasieli de Oliveira Ramos
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- School of Dentistry; University of Oeste de Santa Catarina; Joaçaba SC Brazil
| | - Alessandro Menna Alves
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- School of Dentistry; University Center Univates; Lajeado RS Brazil
| | - Lisiane Bernardi
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Marcelo Lazzaron Lamers
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Department of Morphological Sciences, Institute of Basic Health Sciences; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
115
|
Role of Transglutaminase 2 in Migration of Tumor Cells and How Mouse Models Fit. Med Sci (Basel) 2018; 6:medsci6030070. [PMID: 30200219 PMCID: PMC6164270 DOI: 10.3390/medsci6030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
A search for the "magic bullet", a molecule, the targeting abilities of which could stop the migration of tumor cells, is currently underway, but remains in the early stages. There are still many unknowns regarding the cell migration. The main approach is the employment of mouse models, that are sources of valuable information, but still cannot answer all of the questions. One of the molecules of interest is Transglutaminase 2 (TG2). It is a well-described molecule involved in numerous pathways and elevated in metastatic tumors. The question remains whether mice and humans can give the same answer considering TG2.
Collapse
|
116
|
Koya Y, Liu W, Yamakita Y, Senga T, Shibata K, Yamashita M, Nawa A, Kikkawa F, Kajiyama H. Hematopoietic lineage cell-specific protein 1 (HS1), a hidden player in migration, invasion, and tumor formation, is over-expressed in ovarian carcinoma cells. Oncotarget 2018; 9:32609-32623. [PMID: 30220969 PMCID: PMC6135686 DOI: 10.18632/oncotarget.25975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic lineage cell-specific protein 1 (HS1), which is the hematopoietic homolog of cortactin, is an actin-binding protein and Lyn substrate. It is upregulated in several cancers and its expression level is associated with increased cell migration, metastasis, and poor prognosis. Here we investigated the expression and roles of HS1 in ovarian carcinoma cells. We analyzed the expression of HS1 in 171 ovarian cancer specimens and determined the association between HS1 expression and clinicopathological characteristics, including patient outcomes. In patients with stage II-IV disease, positive HS1 expression was associated with significantly worse overall survival than negative expression (P < 0.05). HS1 was localized in invadopodia in some ovarian cancer cells and was required for invadopodia formation. Migration and invasion of ovarian cancer cells were suppressed by down-regulation of HS1, but increased in cells that over-expressed exogenous HS1. Furthermore, ovarian cancer cells that expressed HS1 shRNA exhibited reduced tumor formation in a mouse xenograft model. Finally, we found that tyrosine phosphorylation of HS1 was essential for cell migration and invasion. These findings show that HS1 is a useful biomarker for the prognosis of patients with ovarian carcinoma and is a critical regulator of cytoskeleton remodeling involved in cell migration and invasion.
Collapse
Affiliation(s)
- Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Wenting Liu
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Yoshihiko Yamakita
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | | | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University, Banbuntane Hotokukai Hospital, Nakagawa-ku, Nagoya, Japan
| | - Mamoru Yamashita
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
117
|
Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR, Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res 2018; 7. [PMID: 30135716 DOI: 10.12688/f1000research.15064.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Tumour metastasis is a dynamic and systemic process. It is no longer seen as a tumour cell-autonomous program but as a multifaceted and complex series of events, which is influenced by the intrinsic cellular mutational burden of cancer cells and the numerous bidirectional interactions between malignant and non-malignant cells and fine-tuned by the various extrinsic cues of the extracellular matrix. In cancer biology, metastasis as a process is one of the most technically challenging aspects of cancer biology to study. As a result, new platforms and technologies are continually being developed to better understand this process. In this review, we discuss some of the recent advances in metastasis and how the information gleaned is re-shaping our understanding of metastatic dissemination.
Collapse
Affiliation(s)
- Jessica L Chitty
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Elysse C Filipe
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| |
Collapse
|
118
|
Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR, Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res 2018; 7. [PMID: 30135716 PMCID: PMC6073095 DOI: 10.12688/f1000research.15064.2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tumour metastasis is a dynamic and systemic process. It is no longer seen as a tumour cell-autonomous program but as a multifaceted and complex series of events, which is influenced by the intrinsic cellular mutational burden of cancer cells and the numerous bidirectional interactions between malignant and non-malignant cells and fine-tuned by the various extrinsic cues of the extracellular matrix. In cancer biology, metastasis as a process is one of the most technically challenging aspects of cancer biology to study. As a result, new platforms and technologies are continually being developed to better understand this process. In this review, we discuss some of the recent advances in metastasis and how the information gleaned is re-shaping our understanding of metastatic dissemination.
Collapse
Affiliation(s)
- Jessica L Chitty
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Elysse C Filipe
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| |
Collapse
|
119
|
张 佳, 胡 国, 刘 磊, 陈 伙, 李 丹, 梁 卫. [Silencing of SLP-2 inhibits the migration and invasion of cervical cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:812-817. [PMID: 33168500 PMCID: PMC6765530 DOI: 10.3969/j.issn.1673-4254.2018.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of SLP-2 silencing on the migration and invasion of human cervical cancer cells and explore the mechanism. METHODS Small interfering RNA (siRNA) was used to knockdown the expression of SLP-2 in Hela cells and Siha cells. At 48 h after the transfection, the cells were examined for SLP-2 expression with Western blotting, and wound healing assay and Transwell assay were used to evaluate the changes in the cell migration; Matrigel Transwell assay was used to evaluate the changes in the invasion ability of the cells. The expressions of E-cadherin, β-catenin, vimentin and Twist in Hela and Siha cells following the transfection were detected with Western blotting. RESULTS Compared with the control cells, siRNA transfection significantly lowered the expression of SLP-2 and suppressed the migration and invasion ability of Hela cells and Siha cells (P < 0.01). Silencing SLP-2 induced obvious up-regulation of epithelial cell phenotype proteins E-cadherin and β-catenin, down- regulated the expression of interstitial cell phenotype protein vimentin, and lowered the expression of Twist in the cells. CONCLUSIONS Silencing SLP-2 via siRNA transfection can inhibit epithelial-mesenchymal transition of human cervical cancer cells and lower their migration and invasion abilities possibly in relation with downregulated expression of Twist.
Collapse
Affiliation(s)
- 佳露 张
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 国林 胡
- 清远市人民医院肿瘤内科,广东 清远 511500Department of Oncology, Qingyuan People's Hospital, Qingyuan 511500, China
| | - 磊 刘
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 伙娣 陈
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 丹娟 李
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 卫江 梁
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
120
|
Silencing of casein kinase 1 delta reduces migration and metastasis of triple negative breast cancer cells. Oncotarget 2018; 9:30821-30836. [PMID: 30112110 PMCID: PMC6089398 DOI: 10.18632/oncotarget.25738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
The casein kinase 1 delta (CSNK1D) is a conserved serine/threonine protein kinase that regulates diverse cellular processes including cell cycle progression, circadian rhythm, and neurite outgrowth. Aberrant expression of CSNK1D is described in several cancer types including breast cancer, where it is amplified in about 30% of triple negative breast (TNBC). Here, we have investigated the function of CSNK1D in triple negative cancer cell migration and metastasis. By using immunohistochemistry and in situ hybridization, we found that CNSK1D is highly expressed in primary tumor cells and in tumor cells invading lymphatic nodes compared to non-metastatic tumors. In vitro, knock-down of CSNK1D expression with specific shRNAs in the breast cancer cell line MDA-MB-231 markedly inhibited cancer cell proliferation, invasion and migration and affected the expression of the tight junction proteins claudin 1, occludin and the junction adhesion molecule A. In vivo, the inactivation of CSNK1D reduced lung metastasis in MDA-MB-231 breast cancer xenografts. Altogether, our results indicate that the downregulation of CSNK1D expression inhibits the proliferation and reduces the migration and the metastasis of breast cancer cells. As numerous inhibitors of CSNK1D are currently under development, this might represent an attractive therapeutic target for the treatment of TNBC.
Collapse
|
121
|
Salo T, Dourado MR, Sundquist E, Apu EH, Alahuhta I, Tuomainen K, Vasara J, Al-Samadi A. Organotypic three-dimensional assays based on human leiomyoma-derived matrices. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0482. [PMID: 29158312 PMCID: PMC5717437 DOI: 10.1098/rstb.2016.0482] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Alongside cancer cells, tumours exhibit a complex stroma containing a repertoire of cells, matrix molecules and soluble factors that actively crosstalk between each other. Recognition of this multifaceted concept of the tumour microenvironment (TME) calls for authentic TME mimetics to study cancer in vitro. Traditionally, tumourigenesis has been investigated in non-human, three-dimensional rat type I collagen containing organotypic discs or by means of mouse sarcoma-derived gel, such as Matrigel®. However, the molecular compositions of these simplified assays do not properly simulate human TME. Here, we review the main properties and benefits of using human leiomyoma discs and their matrix Myogel for in vitro assays. Myoma discs are practical for investigating the invasion of cancer cells, as are cocultures of cancer and stromal cells in a stiff, hypoxic TME mimetic. Myoma discs contain soluble factors and matrix molecules commonly present in neoplastic stroma. In Transwell, IncuCyte, spheroid and sandwich assays, cancer cells move faster and form larger colonies in Myogel than in Matrigel®. Additionally, Myogel can replace Matrigel® in hanging-drop and tube-formation assays. Myogel also suits three-dimensional drug testing and extracellular vesicle interactions. To conclude, we describe the application of our myoma-derived matrices in 3D in vitro cancer assays. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.
Collapse
Affiliation(s)
- Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland .,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland.,Helsinki University Hospital, Helsinki 0014, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Campinas 13414-903, Brazil
| | - Mauricio Rocha Dourado
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Campinas 13414-903, Brazil
| | - Elias Sundquist
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Ehsanul Hoque Apu
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Ilkka Alahuhta
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Katja Tuomainen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| | - Jenni Vasara
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| |
Collapse
|
122
|
Zhou X, Sun L, Jing D, Xu G, Zhang J, Lin L, Zhao J, Yao Z, Lin H. Galectin-9 Expression Predicts Favorable Clinical Outcome in Solid Tumors: A Systematic Review and Meta-Analysis. Front Physiol 2018; 9:452. [PMID: 29765332 PMCID: PMC5939667 DOI: 10.3389/fphys.2018.00452] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Background and Objective: Galectin-9 (Gal-9) is one of the galectin family members which are known as proteins with β-galactoside-binding affinity. Accumulative evidence suggest that Gal-9 plays multifaceted roles in tumor biology. However, the prognostic significance of Gal-9 in solid cancer patients remains controversial. The objective of the study was to clarify the prognostic significance of Gal-9 in solid tumors via meta-analysis. Methods: We searched PubMed, Embase and the Cochrane library for studies that report the correlation between Gal-9 expression and prognosis or clinicopathological parameters in solid cancer patients from inception to October 2017, with no language restriction. We calculated pooled hazard ratio (HR) and 95% confidence interval (CI) to investigate the prognostic significance of Gal-9 expression in solid tumors. We also calculated Odds ratio (OR) to explore the association between Gal-9 expression and clinicopathological features. Results: We included Fourteen studies with 2326 patients in our meta-analysis. The synthetic results revealed that high Gal-9 expression indicated improved overall survival (OS; HR = 0.70, 95% CI = 0.51-0.71, P = 0.006) but had no correlation with disease-free survival (DFS)/recurrence-free survival (RFS) (HR = 0.85, 95% CI = 0.51-1.41, P = 0.527) in solid tumors. In stratified analyses, high Gal-9 expression was significantly correlated with improved OS in hepatocellular carcinoma and colon cancer and with improved DFS/RFS in gastric cancer and non-small cell lung cancer. In addition, ethnicity and the method of data extraction didn't affect the positive prognostic values of high Gal-9 expression. Moreover, high Gal-9 expression was significantly correlated with a smaller depth of invasion (TI/TII vs. TIII/TIV, OR = 2.80, 95% CI = 1.97-3.96, P < 0.001), an earlier histopathological stage (I/II vs. III/IV, OR = 3.00, 95% CI = 2.04-4.42, P < 0.001), negative lymph node metastasis (Presence vs. Absence, OR = 0.47, 95% CI = 0.25-0.89, P = 0.020) and negative distal tumor metastasis (Presence vs. Absence, OR = 13.85, 95% CI = 3.50-54.76, P < 0.001). Conclusion: Gal-9 expression indicates beneficial outcome in patients with solid tumors and is correlated with the pathogenesis of solid tumors. Gal-9 may serve as a prognostic biomarker and an emerging therapeutic target against solid tumors.
Collapse
Affiliation(s)
- Xiaoxiang Zhou
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Jing
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinmei Zhang
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Li Lin
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Jingjing Zhao
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Zhuoran Yao
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfeng Lin
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| |
Collapse
|
123
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular Mechanisms Driving Cholangiocarcinoma Invasiveness: An Overview. Gene Expr 2018; 18:31-50. [PMID: 29070148 PMCID: PMC5860940 DOI: 10.3727/105221617x15088670121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of invasive functions by tumor cells is a first and crucial step toward the development of metastasis, which nowadays represents the main cause of cancer-related death. Cholangiocarcinoma (CCA), a primary liver cancer originating from the biliary epithelium, typically develops intrahepatic or lymph node metastases at early stages, thus preventing the majority of patients from undergoing curative treatments, consistent with their very poor prognosis. As in most carcinomas, CCA cells gradually adopt a motile, mesenchymal-like phenotype, enabling them to cross the basement membrane, detach from the primary tumor, and invade the surrounding stroma. Unfortunately, little is known about the molecular mechanisms that synergistically orchestrate this proinvasive phenotypic switch. Autocrine and paracrine signals (cyto/chemokines, growth factors, and morphogens) permeating the tumor microenvironment undoubtedly play a prominent role in this context. Moreover, a number of recently identified signaling systems are currently drawing attention as putative mechanistic determinants of CCA cell invasion. They encompass transcription factors, protein kinases and phosphatases, ubiquitin ligases, adaptor proteins, and miRNAs, whose aberrant expression may result from either stochastic mutations or the abnormal activation of upstream pro-oncogenic pathways. Herein we sought to summarize the most relevant molecules in this field and to discuss their mechanism of action and potential prognostic relevance in CCA. Hopefully, a deeper knowledge of the molecular determinants of CCA invasiveness will help to identify clinically useful biomarkers and novel druggable targets, with the ultimate goal to develop innovative approaches to the management of this devastating malignancy.
Collapse
Affiliation(s)
- Simone Brivio
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Massimiliano Cadamuro
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- ‡Department of Molecular Medicine, University of Padua, Padua, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Mario Strazzabosco
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| |
Collapse
|
124
|
Tornin J, Hermida-Prado F, Padda RS, Gonzalez MV, Alvarez-Fernandez C, Rey V, Martinez-Cruzado L, Estupiñan O, Menendez ST, Fernandez-Nevado L, Astudillo A, Rodrigo JP, Lucien F, Kim Y, Leong HS, Garcia-Pedrero JM, Rodriguez R. FUS-CHOP Promotes Invasion in Myxoid Liposarcoma through a SRC/FAK/RHO/ROCK-Dependent Pathway. Neoplasia 2017; 20:44-56. [PMID: 29190494 PMCID: PMC5747526 DOI: 10.1016/j.neo.2017.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/13/2023] Open
Abstract
Deregulated SRC/FAK signaling leads to enhanced migration and invasion in many types of tumors. In myxoid and round cell liposarcoma (MRCLS), an adipocytic tumor characterized by the expression of the fusion oncogene FUS-CHOP, SRC have been found as one of the most activated kinases. Here we used a cell-of-origin model of MRCLS and an MRCLS cell line to thoroughly characterize the mechanisms of cell invasion induced by FUS-CHOP using in vitro (3D spheroid invasion assays) and in vivo (chicken chorioallantoic membrane model) approaches. FUS-CHOP expression activated SRC-FAK signaling and increased the invasive ability of MRCLS cells. In addition, FAK expression was found to significantly correlate with tumor aggressiveness in sarcoma patient samples. The involvement of SRC/FAK activation in FUS-CHOP-mediated invasion was further confirmed using the SRC inhibitor dasatinib, the specific FAK inhibitor PF-573228, and FAK siRNA. Notably, dasatinib and PF573228 could also efficiently block the invasion of cancer stem cell subpopulations. Downstream of SRC/FAK signaling, we found that FUS-CHOP expression increases the levels of the RHO/ROCK downstream effector phospho-MLC2 (T18/S19) and that this activation was prevented by dasatinib or PF573228. Moreover, the ROCK inhibitor RKI-1447 was able to completely abolish invasion in FUS-CHOP-expressing cells. These data uncover the involvement of SRC/FAK/RHO/ROCK signaling axis in FUS-CHOP-mediated invasion, thus providing a rationale for testing inhibitors of this pathway as potential novel antimetastatic agents for MRCLS treatment.
Collapse
Affiliation(s)
- Juan Tornin
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Francisco Hermida-Prado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Ranjit Singh Padda
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada
| | - M Victoria Gonzalez
- CIBER de Cáncer (CIBERONC), Madrid, Spain; Departamento de Cirugía, Universidad de Oviedo and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Veronica Rey
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Oscar Estupiñan
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Sofia T Menendez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Lucia Fernandez-Nevado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan P Rodrigo
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | | | - Yohan Kim
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada; Department of Urology, Mayo Clinic, Rochester, MN
| | - Hon S Leong
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada; Department of Urology, Mayo Clinic, Rochester, MN
| | - Juana Maria Garcia-Pedrero
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain.
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
125
|
Goto M, Osada S, Imagawa M, Nishizuka M. FAD104, a regulator of adipogenesis, is a novel suppressor of TGF-β-mediated EMT in cervical cancer cells. Sci Rep 2017; 7:16365. [PMID: 29180690 PMCID: PMC5703855 DOI: 10.1038/s41598-017-16555-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/15/2017] [Indexed: 01/05/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a biological process in which epithelial cells translate into a mesenchymal phenotype with invasive capacities, contributing to tumour progression, metastasis, and the acquisition of chemotherapy resistance. To identify new therapeutic targets for cancers, it is important to clarify the molecular mechanism of induction of EMT. We have previously reported that fad104, a positive regulator of adipocyte differentiation, suppressed the invasion and metastasis of melanoma and breast cancer cells. In this study, we showed that FAD104 functions as a novel suppressor of transforming growth factor-β (TGF-β)–mediated EMT in cervical cancer cells. Expression of FAD104 is upregulated during TGF-β–mediated EMT in human cervical cancer HeLa cells. Reduction of fad104 expression enhanced TGF-β–mediated EMT and migration in HeLa cells. Conversely, overexpression of FAD104 suppressed TGF-β–induced EMT. In addition, we showed that FAD104 negatively regulated phosphorylation of Smad2 and Smad3 but positively regulated phosphorylation of Smad1/5/8 via treatment with TGF-β. These findings demonstrate that FAD104 is a novel suppressor of TGF-β signalling and represses TGF-β–mediated EMT in cervical cancer cells.
Collapse
Affiliation(s)
- Motoharu Goto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Shigehiro Osada
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Masayoshi Imagawa
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Makoto Nishizuka
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
126
|
Roy R, Huang Y, Seckl MJ, Pardo OE. Emerging roles of hnRNPA1 in modulating malignant transformation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28791797 DOI: 10.1002/wrna.1431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins associated with complex and diverse biological processes such as processing of heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs, RNA splicing, transactivation of gene expression, and modulation of protein translation. hnRNPA1 is the most abundant and ubiquitously expressed member of this protein family and has been shown to be involved in multiple molecular events driving malignant transformation. In addition to selective mRNA splicing events promoting expression of specific protein variants, hnRNPA1 regulates the gene expression and translation of several key players associated with tumorigenesis and cancer progression. Here, we will summarize our current knowledge of the involvement of hnRNPA1 in cancer, including its roles in regulating cell proliferation, invasiveness, metabolism, adaptation to stress and immortalization. WIREs RNA 2017, 8:e1431. doi: 10.1002/wrna.1431 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yueyang Huang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
127
|
Pandya P, Orgaz JL, Sanz-Moreno V. Actomyosin contractility and collective migration: may the force be with you. Curr Opin Cell Biol 2017; 48:87-96. [PMID: 28715714 PMCID: PMC6137077 DOI: 10.1016/j.ceb.2017.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 06/23/2017] [Indexed: 01/21/2023]
Abstract
Collective migration relies on the ability of a multicellular co-ordinated unit to efficiently respond to physical changes in their surrounding matrix. Conversely, migrating cohorts physically alter their microenvironment using mechanical forces. During collective migration, actomyosin contractility acts as a central hub coordinating mechanosensing and mechanotransduction responses.
Collective cell migration is essential during physiological processes such as development or wound healing and in pathological conditions such as cancer dissemination. Cells migrating within multicellular tissues experiment different forces which play an intricate role during tissue formation, development and maintenance. How cells are able to respond to these forces depends largely on how they interact with the extracellular matrix. In this review, we focus on mechanics and mechanotransduction in collective migration. In particular, we discuss current knowledge on how cells integrate mechanical signals during collective migration and we highlight actomyosin contractility as a central hub coordinating mechanosensing and mechanotransduction responses.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|