101
|
Liu X, Xing Y. In situ growth of NiCo-MOF and the derived NiCo 2O 4/NiCo 2O 4/Ni foam composite with a wire-penetrated-cage hierarchical architecture for an efficient oxygen evolution reaction. Dalton Trans 2023. [PMID: 37997777 DOI: 10.1039/d3dt02985a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A NiCo2O4/NiCo2O4/Ni foam (NCO/NCO/NF) hybrid composite with a wire-penetrated-cage hierarchical structure was synthesized by in situ growth of bimetallic NiCo metal-organic frameworks (NiCo-MOF) on a NiCo layered double hydroxide (NiCo-LDH) nanowire-modified Ni foam (NF) surface and subsequent heat treatment in air. The NCO/NCO/NF hybrid composite shows higher specific surface area and more active sites than its individual components. The wire-penetrated-cage hierarchical structure of NCO/NCO/NF and the synergistic coupling of NCO hollow nanocages (NCO HNCs), NCO nanowires (NCO NWs) and NF provide a fast electron transfer path, improve the conductivity, accelerate the kinetic reaction rate, and enhance the structural stability. When assessed as an electrode for the oxygen evolution reaction (OER), the NCO/NCO/NF hybrid composite exhibits a low overpotential of 310 mV at 10 mA cm-2 and current density retention of 91% after a 100 h oxidation reaction, which indicates that it has excellent catalytic activity and durability in the electrocatalytic OER.
Collapse
Affiliation(s)
- Xianchun Liu
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China.
| | - Yan Xing
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China.
| |
Collapse
|
102
|
Haghverdi Khamene S, van Helvoirt C, Tsampas MN, Creatore M. Electrochemical Activation of Atomic-Layer-Deposited Nickel Oxide for Water Oxidation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:22570-22582. [PMID: 38037639 PMCID: PMC10683065 DOI: 10.1021/acs.jpcc.3c05002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
NiO-based electrocatalysts, known for their high activity, stability, and low cost in alkaline media, are recognized as promising candidates for the oxygen evolution reaction (OER). In parallel, atomic layer deposition (ALD) is actively researched for its ability to provide precise control over the synthesis of ultrathin electrocatalytic films, including film thickness, conformality, and chemical composition. This study examines how NiO bulk and surface properties affect the electrocatalytic performance for the OER while focusing on the prolonged electrochemical activation process. Two ALD methods, namely, plasma-assisted and thermal ALD, are employed as tools to deposit NiO films. Cyclic voltammetry analysis of ∼10 nm films in 1.0 M KOH solution reveals a multistep electrochemical activation process accompanied by phase transformation and delamination of activated nanostructures. The plasma-assisted ALD NiO film exhibits three times higher current density at 1.8 V vs RHE than its thermal ALD counterpart due to enhanced β-NiOOH formation during activation, thereby improving the OER activity. Additionally, the rougher surface formed during activation enhanced the overall catalytic activity of the films. The goal is to unravel the relationship between material properties and the performance of the resulting OER, specifically focusing on how the design of the material by ALD can lead to the enhancement of its electrocatalytic performance.
Collapse
Affiliation(s)
- Sina Haghverdi Khamene
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- DIFFER—Dutch
Institute For Fundamental Energy Research, Eindhoven 5612 AJ, The Netherlands
| | - Cristian van Helvoirt
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Mihalis N. Tsampas
- DIFFER—Dutch
Institute For Fundamental Energy Research, Eindhoven 5612 AJ, The Netherlands
| | - Mariadriana Creatore
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems (EIRES), Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
103
|
Liu J, Qi J, Yu W, Hu X, Qiao S, Shang J, Liu L, Zhao Z, Tang L, Zhang W. Nonreducing Ambient Atmosphere: Pulsed Electric Current Treatment of Co/Ni Doped Perovskite Oxides to Achieve Exsolution Enhanced Electrochemical Performance. J Phys Chem Lett 2023; 14:9690-9697. [PMID: 37874672 DOI: 10.1021/acs.jpclett.3c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Exsolution of metal nanoparticles (NPs) on the surface of perovskite oxides is a promising approach for developing advanced catalytic materials through a "bottom-up" design strategy. Under a nonreducing ambient atmosphere utilizing pulsed electric current (PEC) treatment to promote the exsolution of perovskite oxides effectively overcomes the limitations inherent in conventional high-temperature vapor phase reduction (HTVPR) in situ exsolution methods. This paper presents the successful synthesis of (La0.7Sr0.3)0.8Ti0.93Ni0.07O3 (LSTN) perovskite oxide and (La0.7Sr0.3)0.8Ti0.93Co0.07O3 (LSTC) perovskite oxide using the sol-gel method, followed by PEC treatment at 600 V, 3 Hz, and 90 s. Utilizing various characterization techniques to confirm that PEC treatment can promote the exsolution of Co and Ni NPs under a nonreducing ambient atmosphere, the results indicated that the exsolved perovskite oxides exhibited significantly improved electrochemical properties. Furthermore, compared to the LSTN-PEC, LSTC-PEC demonstrates a lower onset potential of 1.504 V, a Tafel slope of 87.16 mV dec-1, lower impedance, higher capacitance, superior catalytic activity, and long-term stability.
Collapse
Affiliation(s)
- Juntao Liu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Jingang Qi
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Wenwen Yu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Xin Hu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Sifan Qiao
- School of Materials Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Jian Shang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Liang Liu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Zuofu Zhao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Lidan Tang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Wei Zhang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
- School of Materials Science and Engineering, and Electror Microscopy Center, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
104
|
Xu Y, Xie R, Li Q, Feng J, Luo H, Ye Q, Guo Z, Cao Y, Palma M, Chai G, Titirici MM, Jones CR. Pyridine Functionalized Carbon Nanotubes: Unveiling the Role of External Pyridinic Nitrogen Sites for Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302795. [PMID: 37415517 DOI: 10.1002/smll.202302795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Pyridinic nitrogen has been recognized as the primary active site in nitrogen-doped carbon electrocatalysts for the oxygen reduction reaction (ORR), which is a critical process in many renewable energy devices. However, the preparation of nitrogen-doped carbon catalysts comprised of exclusively pyridinic nitrogen remains challenging, as well as understanding the precise ORR mechanisms on the catalyst. Herein, a novel process is developed using pyridyne reactive intermediates to functionalize carbon nanotubes (CNTs) exclusively with pyridine rings for ORR electrocatalysis. The relationship between the structure and ORR performance of the prepared materials is studied in combination with density functional theory calculations to probe the ORR mechanism on the catalyst. Pyridinic nitrogen can contribute to a more efficient 4-electron reaction pathway, while high level of pyridyne functionalization result in negative structural effects, such as poor electrical conductivity, reduced surface area, and small pore diameters, that suppressed the ORR performance. This study provides insights into pyridine-doped CNTs-functionalized for the first time via pyridyne intermediates-as applied in the ORR and is expected to serve as valuable inspiration in designing high-performance electrocatalysts for energy applications.
Collapse
Affiliation(s)
- Yue Xu
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Ruikuan Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qi Li
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jingyu Feng
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Hui Luo
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Qingyu Ye
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Zhenyu Guo
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Ye Cao
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Matteo Palma
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Guoliang Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | | | - Christopher R Jones
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
105
|
Pham TH, Shen TH, Ko Y, Zhong L, Lombardo L, Luo W, Horike S, Tileli V, Züttel A. Elucidating the Mechanism of Fe Incorporation in In Situ Synthesized Co-Fe Oxygen-Evolving Nanocatalysts. J Am Chem Soc 2023; 145:23691-23701. [PMID: 37862452 PMCID: PMC10623561 DOI: 10.1021/jacs.3c08099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/22/2023]
Abstract
Ni- and Co-based catalysts with added Fe demonstrate promising activity in the oxygen evolution reaction (OER) during alkaline water electrolysis, with the presence of Fe in a certain quantity being crucial for their enhanced performance. The mode of incorporation, local placement, and structure of Fe ions in the host catalyst, as well as their direct/indirect contribution to enhancing the OER activity, remain under active investigation. Herein, the mechanism of Fe incorporation into a Co-based host was investigated using an in situ synthesized Co-Fe catalyst in an alkaline electrolyte containing Co2+ and Fe3+. Fe was found to be uniformly incorporated, which occurs solely after the anodic deposition of the Co host structure and results in exceptional OER activity with an overpotential of 319 mV at 10 mA cm-2 and a Tafel slope of 28.3 mV dec-1. Studies on the lattice structure, chemical oxidation states, and mass changes indicated that Fe is incorporated into the Co host structure by replacing the Co3+ sites with Fe3+ from the electrolyte. Operando Raman measurements revealed that the presence of doped Fe in the Co host structure reduces the transition potential of the in situ Co-Fe catalyst to the OER-active phase CoO2. The findings of our facile synthesis of highly active and stable Co-Fe particle catalysts provide a comprehensive understanding of the role of Fe in Co-based electrocatalysts, covering aspects that include the incorporation mode, local structure, placement, and mechanistic role in enhancing the OER activity.
Collapse
Affiliation(s)
- Thi Ha
My Pham
- Laboratory
of Materials for Renewable Energy (LMER), Institute of Chemical Sciences
and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL), Valais/Wallis, Energypolis, CH-1951 Sion, Switzerland
- Empa
Materials Science & Technology, CH-8600 Dübendorf, Switzerland
| | - Tzu-Hsien Shen
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Youngdon Ko
- Laboratory
of Materials for Renewable Energy (LMER), Institute of Chemical Sciences
and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL), Valais/Wallis, Energypolis, CH-1951 Sion, Switzerland
- Empa
Materials Science & Technology, CH-8600 Dübendorf, Switzerland
| | - Liping Zhong
- Laboratory
of Materials for Renewable Energy (LMER), Institute of Chemical Sciences
and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL), Valais/Wallis, Energypolis, CH-1951 Sion, Switzerland
- Empa
Materials Science & Technology, CH-8600 Dübendorf, Switzerland
| | - Loris Lombardo
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Wen Luo
- School
of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Satoshi Horike
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Vasiliki Tileli
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Andreas Züttel
- Laboratory
of Materials for Renewable Energy (LMER), Institute of Chemical Sciences
and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL), Valais/Wallis, Energypolis, CH-1951 Sion, Switzerland
- Empa
Materials Science & Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
106
|
Zhao S, Ran S, Shi N, Liu M, Sun W, Yu Y, Zhu Z. Structural Design Induced Electronic Optimization in Single-Phase MoCoP Nanocrystal for Boosting Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302414. [PMID: 37420333 DOI: 10.1002/smll.202302414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Indexed: 07/09/2023]
Abstract
Structural and compositional design of multifunctional materials is critical for electrocatalysis, but their rational modulation and effective synthesis remain a challenge. Herein, a controllable one-pot synthesis for construction of trifunctional sites and preparation of porous structures is adopted for synthesizing dispersed MoCoP sites on N, P codoped carbonized substance. This tunable synthetic strategy also endorses the exploration of the electrochemical activities of Mo (Co)-based unitary, Mo/Co-based dual and MoCo-based binary metallic sites. Eventually benefiting from the structural regulation, MoCoP-NPC shows excellent oxygen reduction abilities with a half-wave potential of 0.880 V, and outstanding oxygen evolution and hydrogen evolution performance with an overpotential of 316 mV and 91 mV, respectively. MoCoP-NPC-based Zn-air battery achieves excellent cycle stability for 300 h and a high open-circuit voltage of 1.50 V. When assembled in a water-splitting device, MoCoP-NPC reaches 10 mA cm-2 at 1.65 V. Theoretical calculations demonstrate that the Co atom in the single-phase MoCoP has a low energy barrier for oxygen evolution reaction (OER) owing to the migration of Co 3d orbital toward the Fermi level. This work shows a simplified method for controllable preparation of prominent trifunctional catalysts.
Collapse
Affiliation(s)
- Songlin Zhao
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Siyi Ran
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ning Shi
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Maolin Liu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of, Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Ying Yu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhihong Zhu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
107
|
Kormányos A, Dong Q, Xiao B, Li T, Savan A, Jenewein K, Priamushko T, Körner A, Böhm T, Hutzler A, Hu L, Ludwig A, Cherevko S. Stability of high-entropy alloys under electrocatalytic conditions. iScience 2023; 26:107775. [PMID: 37736046 PMCID: PMC10509299 DOI: 10.1016/j.isci.2023.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
High-entropy alloys are claimed to possess superior stability due to thermodynamic contributions. However, this statement mostly lies on a hypothetical basis. In this study, we use on-line inductively coupled plasma mass spectrometer to investigate the dissolution of five representative electrocatalysts in acidic and alkaline media and a wide potential window targeting the most important applications. To address both model and applied systems, we synthesized thin films and carbon-supported nanoparticles ranging from an elemental (Pt) sample to binary (PtRu), ternary (PtRuIr), quaternary (PtRuIrRh), and quinary (PtRuIrRhPd) alloy samples. For certain metals in the high-entropy alloy under alkaline conditions, lower dissolution was observed. Still, the improvement was not striking and can be rather explained by the lowered concentration of elements in the multinary alloys instead of the synergistic effects of thermodynamics. We postulate that this is because of dissolution kinetic effects, which are always present under electrocatalytic conditions, overcompensating thermodynamic contributions.
Collapse
Affiliation(s)
- Attila Kormányos
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058 Erlangen, Germany
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi sq. 1, 6720 Szeged, Hungary
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, United States
| | - Bin Xiao
- Materials Discovery and Interfaces, Institute for Materials, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, United States
| | - Alan Savan
- Materials Discovery and Interfaces, Institute for Materials, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ken Jenewein
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Tatiana Priamushko
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058 Erlangen, Germany
| | - Andreas Körner
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058 Erlangen, Germany
| | - Thomas Böhm
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058 Erlangen, Germany
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, United States
- Center for Materials Innovation, University of Maryland, College Park, MD 20742, United States
| | - Alfred Ludwig
- Materials Discovery and Interfaces, Institute for Materials, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
108
|
Song S, Shao Z, Zhu Q, Hou X, Zheng B. Constructing the coordination environment of Se-O in Cu 2-xSe for electrochemical hydrogen evolution. Chem Commun (Camb) 2023; 59:12589-12592. [PMID: 37791432 DOI: 10.1039/d3cc04054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this work, a Se-O bond is introduced by a simple oxidation method to realize the structural transformation from Cu2-xSe to Cu2O(SeO3) for enhanced electrocatalytic hydrogen evolution reaction (HER). The experiment and calculation results showed that Cu2O(SeO3) facilitated charge transfer and possessed a small barrier during the HER.
Collapse
Affiliation(s)
- Shuhua Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, China
| | - Xiangyan Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, China
| | - Beining Zheng
- College of Physics, Jilin University, Qianjin Street 2699, Changchun 130012, P.R China.
| |
Collapse
|
109
|
Risch M. Reporting activities for the oxygen evolution reaction. Commun Chem 2023; 6:221. [PMID: 37838815 PMCID: PMC10576816 DOI: 10.1038/s42004-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Affiliation(s)
- Marcel Risch
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109, Berlin, Germany.
| |
Collapse
|
110
|
Li L, Tang X, Wu B, Huang B, Yuan K, Chen Y. Advanced Architectures of Air Electrodes in Zinc-Air Batteries and Hydrogen Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308326. [PMID: 37823716 DOI: 10.1002/adma.202308326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/05/2023] [Indexed: 10/13/2023]
Abstract
The air electrode is an essential component of air-demanding energy storage/conversion devices, such as zinc-air batteries (ZABs) and hydrogen fuel cells (HFCs), which determines the output power and stability of the devices. Despite atom-level modulation in catalyst design being recently achieved, the air electrodes have received much less attention, causing a stagnation in the development of air-demanding equipment. Herein, the evolution of air electrodes for ZABs and HFCs from the early stages to current requirements is reviewed. In addition, the operation mechanism and the corresponding electrocatalytic mechanisms of ZABs are summarized. In particular, by clarifying the air electrode interfaces of ZABs at different scales, several approaches to improve the air electrode in rechargeable ZABs are reviewed, including innovative electrode structures and bifunctional oxygen catalysts. Afterward, the operating mechanisms of proton-exchange-membrane fuel cells (PEMFCs) and anion-exchange-membrane fuel cells (AEMFCs) are explained. Subsequently, the strategies employed to enhance the efficiency of the membrane electrode assembly (MEA) in PEMFCs and AEMFCs, respectively, are highlighted and discussed in detail. Last, the prospects for air electrodes in ZABs and HFCs are considered by discussing the main challenges. The aim of this review is to facilitate the industrialization of ZABs and HFCs.
Collapse
Affiliation(s)
- Longbin Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Xiannong Tang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Bing Wu
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Bingyu Huang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
111
|
Wang Y, Yang P, Gong Y, Xiao Z, Xiao W, Xin L, Wu Z, Wang L. CoNiFe alloy nanoparticles encapsulated into nitrogen-doped carbon nanotubes toward superior electrocatalytic overall water splitting in alkaline freshwater/seawater under large-current density. J Chem Phys 2023; 159:134701. [PMID: 37787139 DOI: 10.1063/5.0168354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023] Open
Abstract
Developing bifunctional catalysts for overall water splitting with high activity and durability at high current density remains a challenge. In an attempt to overcome this bottleneck, in this work, unique CoNiFe-layered double hydroxide nanoflowers are in situ grown on nickel-iron (NiFe) foam through a corrosive approach and following a chemical vapor deposition process to generate nitrogen-doped carbon nanotubes at the presence of melamine (CoNiFe@NCNTs). The coupling effects between various metal species act a key role in accelerating the reaction kinetics. Moreover, the in situ formed NCNTs also favor promoting electrocatalytic activity and stability. For oxygen evolution reaction it requires low overpotentials of 330 and 341 mV in 1M KOH and 1M KOH + seawater to drive 500 mA cm-2. Moreover, water electrolysis can be operated with CoNiFe@NCNTs as both anode and cathode with small voltages of 1.95 and 1.93 V to achieve 500 mA cm-2 in 1M KOH and 1M KOH + seawater, respectively.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Pengfei Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuecheng Gong
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Zhenyu Xiao
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, 210037 Jiangsu, China
| | - Liantao Xin
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Zexing Wu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong, China
| |
Collapse
|
112
|
Zhang J, Li S, Liu X, Zheng H, Zhang W, Cao R. Co 3 O 4 Supported on β-Mo 2 C with Different Interfaces for Electrocatalytic Oxygen Evolution Reaction. CHEMSUSCHEM 2023; 16:e202300709. [PMID: 37452007 DOI: 10.1002/cssc.202300709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Interface engineering is an effective strategy for improving the activity of catalysts in electrocatalytic oxygen evolution reaction (OER). Herein, Co3 O4 supported on β-Mo2 C with different interfaces were investigated for electrocatalytic OER. The morphological diversity of β-Mo2 C supports allowed different Co3 O4 -Mo2 C interactions. Various techniques characterized the composition and microstructure of the interface in the composites. Due to the strong interaction between Co3 O4 nanoparticles and β-Mo2 C nanobelts with opposing surface potentials, compact interface was observed between Co3 O4 active species and β-Mo2 C nanobelt support. The compact interface enhanced the conductivity of the material and also regulated the interfacial electron redistribution of Mo and Co atoms, promoting the charge transfer process during OER. In addition, the surface loading of Co3 O4 can effectively improve the hydrophilicity of the surface. β-Mo2 C has the capability in dissociating H2 O molecules. Thus, an example has been carefully demonstrated for interface engineering in electrocatalytic OER.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
113
|
Buckingham MA, Skelton JM, Lewis DJ. Synthetic Strategies toward High Entropy Materials: Atoms-to-Lattices for Maximum Disorder. CRYSTAL GROWTH & DESIGN 2023; 23:6998-7009. [PMID: 37808901 PMCID: PMC10557048 DOI: 10.1021/acs.cgd.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Indexed: 10/10/2023]
Abstract
High-entropy materials are a nascent class of materials that exploit a high configurational entropy to stabilize multiple elements in a single crystal lattice and to yield unique physical properties for applications in energy storage, catalysis, and thermoelectric energy conversion. Initially, the synthesis of these materials was conducted by approaches requiring high temperatures and long synthetic time scales. However, successful homogeneous mixing of elements at the atomic level within the lattice remains challenging, especially for the synthesis of nanomaterials. The use of atom-up synthetic approaches to build crystal lattices atom by atom, rather than the top-down alteration of extant crystalline lattices, could lead to faster, lower-temperature, and more sustainable approaches to obtaining high entropy materials. In this Perspective, we discuss some of these state-of-the-art atom-up synthetic approaches to high entropy materials and contrast them with more traditional approaches.
Collapse
Affiliation(s)
- Mark A. Buckingham
- Department
of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Jonathan M. Skelton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - David J. Lewis
- Department
of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| |
Collapse
|
114
|
Praveen AE, Mishra V, Ganguli S, Chandrasekar A, Mahalingam V. Phosphorus-Induced One-Step Synthesis of NiCo 2S 4 Electrode Material for Efficient Hydrazine-Assisted Hydrogen Production. Inorg Chem 2023; 62:16149-16160. [PMID: 37729545 DOI: 10.1021/acs.inorgchem.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rational control of the reaction parameters is highly important for synthesizing active electrocatalysts. NiCo2S4 is an excellent spinel-based electrocatalyst that is usually prepared through a two-step synthesis. Herein, a one-step hydrothermal route is reported to synthesize P-incorporated NiCo2S4. We discovered that the inclusion of P caused formation of the NiCo2S4 phase in a single step. Computational studies were performed to comprehend the mechanism of phase formation and to examine the energetics of lattice formation. Upon incorporation of the optimum amount of P, the stability of the NiCo2S4 lattice was found to increase steadily. In addition, the Bader charges on both the metal atoms Co and Ni in NiCo2S4 and P-incorporated NiCo2S4 were compared. The results show that replacing S with the optimal amount of P leads to a reduction in charge on both metal atoms, which can contribute to a more stable lattice formation. Further, the electrochemical performance of the as-synthesized materials was evaluated. Among the as-synthesized nickel cobalt sulfides, P-incorporated NiCo2S4 exhibits excellent activity toward hydrazine oxidation with an onset potential of 0.15 V vs RHE without the assistance of electrochemically active substrates like Ni or Co foam. In addition to the facile synthesis method, P-incorporated NiCo2S4 requires a very low cell voltage of 0.24 V to attain a current density of 10 mA cm-2 for hydrazine-assisted hydrogen production in a two-electrode cell. The free energy profile of the stepwise HzOR has been investigated in detail. The computational results suggested that HzOR on P-incorporated NiCo2S4 was more feasible than HzOR on NiCo2S4, and these findings corroborate the experimental evidence.
Collapse
Affiliation(s)
- Athma E Praveen
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Viplove Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sagar Ganguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
- Ångström Laboratory, Department of Chemistry, Uppsala University, SE-75120 Uppsala, Sweden
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
115
|
Wang C, Wang Q, Du X, Zhang X. Controlled synthesis of M doped NiVS (M = Co, Ce and Cr) as a robust electrocatalyst for urea electrolysis. Dalton Trans 2023; 52:13161-13168. [PMID: 37656128 DOI: 10.1039/d3dt02586a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Urea electrolysis can be used to treat wastewater containing urea and alleviate the energy crisis, so it is one of the best ways to solve environmental and energy problems. This paper reports the synthesis of M doped NiVS (M = Co, Ce and Cr) composites by a simple hydrothermal process for the first time. What is noteworthy is that the Ce-NiVS material as a catalytic electrode requires only 141 mV overpotential for the hydrogen evolution reaction (HER) and 1.291 V potential for the urea oxidation reaction (UOR) at a current density of 10 mA cm-2 in 1.0 M KOH and 0.5 M urea mixed alkaline solution. Using Ce-NiVS/NF as both the anode and cathode for urea electrolysis, a current density of 10 mA cm-2 is driven by a voltage of only 1.55 V, which is better than most previous catalysts. Experimental results demonstrate that the excellent catalytic activity of Ce-NiVS materials is due to the formation of a large number of active sites and the improvement of conductivity due to doping with Ce. Density functional theory calculation shows that the VS4 material has a small Gibbs free energy of hydrogen adsorption, which plays a major role in the hydrogen production process, and Ce-NiS has a higher density of states (DOS) near the Fermi level, indicating that Ce-NiS has better electronic conductivity. The synergistic catalysis of VS4 and Ce-NiS promoted the hydrogen production performance of the Ce-NiVS material. This work provides guidance for the optimization and design of low-cost electrocatalysts to replace expensive precious metal-based electrocatalysts for overall urea electrolysis.
Collapse
Affiliation(s)
- Chao Wang
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Qirun Wang
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China
| |
Collapse
|
116
|
Yu Q, Zhang Z, Liu H, Kang X, Ge S, Li S, Gan L, Liu B. Why do platinum catalysts show diverse electrocatalytic performance? FUNDAMENTAL RESEARCH 2023; 3:804-808. [PMID: 38933303 PMCID: PMC11197565 DOI: 10.1016/j.fmre.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
As one of the best electrocatalysts for the hydrogen evolution reaction, platinum catalysts are a benchmark for the performance evaluation of new catalysts. However, platinum catalysts reported in the literature show diverse electrocatalytic performances, resulting in the lack of a common reference standard. In this study, we investigated several factors that affect the performance of platinum catalysts by performing experimental measurements and data processing. These factors included the solution resistance, electrolyte temperature, loading quantity, catalyst microstructure, and normalization method of the current density. Finally, we recommended criteria for the performance evaluation of electrocatalysts.
Collapse
Affiliation(s)
- Qiangmin Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhiyuan Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Heming Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xin Kang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyu Ge
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shaohai Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lin Gan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
117
|
Meng F, Wu Q, Elouarzaki K, Luo S, Sun Y, Dai C, Xi S, Chen Y, Lin X, Fang M, Wang X, Mandler D, Xu ZJ. Essential role of lattice oxygen in methanol electrochemical refinery toward formate. SCIENCE ADVANCES 2023; 9:eadh9487. [PMID: 37624888 PMCID: PMC10456837 DOI: 10.1126/sciadv.adh9487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Developing technologies based on the concept of methanol electrochemical refinery (e-refinery) is promising for carbon-neutral chemical manufacturing. However, a lack of mechanism understanding and material properties that control the methanol e-refinery catalytic performances hinders the discovery of efficient catalysts. Here, using 18O isotope-labeled catalysts, we find that the oxygen atoms in formate generated during the methanol e-refinery reaction can originate from the catalysts' lattice oxygen and the O-2p-band center levels can serve as an effective descriptor to predict the catalytic performance of the catalysts, namely, the formate production rates and Faradaic efficiencies. Moreover, the identified descriptor is consolidated by additional catalysts and theoretical mechanisms from density functional theory. This work provides direct experimental evidence of lattice oxygen participation and offers an efficient design principle for the methanol e-refinery reaction to formate, which may open up new research directions in understanding and designing electrified conversions of small molecules.
Collapse
Affiliation(s)
- Fanxu Meng
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Qian Wu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kamal Elouarzaki
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Songzhu Luo
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuanmiao Sun
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chencheng Dai
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Singapore 627833, Singapore
| | - Yubo Chen
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xinlong Lin
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Daniel Mandler
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Zhichuan J. Xu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
118
|
Li FS, Fang YW, Wu YT, Wu SW, Ho SZ, Chen CY, Chiang CY, Chen YC, Liu HJ. Self-Enhancement of Water Electrolysis by Electrolyte-Poled Ferroelectric Catalyst. ACS NANO 2023; 17:16274-16286. [PMID: 37530418 DOI: 10.1021/acsnano.3c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Efficient and durable electrocatalysts with superior activity are needed for the production of green hydrogen with a high yield and low energy consumption. Electrocatalysts based on transition metal oxides hold dominance due to their abundant natural resources, regulable physical properties, and good adaptation to a solution. In numerous oxide catalyst materials, ferroelectrics, possessing semiconducting characteristics and switchable spontaneous polarization, have been considered promising photoelectrodes for solar water splitting. However, few investigations noted their potential as electrocatalysts. In this study, we report an efficient electrocatalytic electrode made of a BiFeO3/nickel foam heterostructure, which displays a smaller overpotential and higher current density than the blank nickel foam electrode. Moreover, when in contact with an alkaline solution, the bond between hydroxyls and the BiFeO3 surface induces a large area of upward self-polarization, lowering the adsorption energy of subsequent adsorbates and facilitating oxygen and hydrogen evolution reaction. Our work demonstrates an infrequent pathway of using functional semiconducting materials for exploiting highly efficient electrocatalytic electrodes.
Collapse
Affiliation(s)
- Feng-Shuo Li
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yue-Wen Fang
- Fisika Aplikatua Saila, Gipuzkoako Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Europa Plaza 1, 20018 Donostia/San Sebastián, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), Manuel de Lardizabal Pasealekua 5, 20018 Donostia/San Sebastián, Spain
| | - Yi-Ting Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shu-Wei Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Sheng-Zhu Ho
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Yen Chen
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Ching-Yu Chiang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yi-Chun Chen
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Heng-Jui Liu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
119
|
Akbari N, Nandy S, Chae KH, Najafpour MM. Dynamic Changes of an Anodized FeNi Alloy during the Oxygen Evolution Reaction under Alkaline Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11807-11818. [PMID: 37556847 DOI: 10.1021/acs.langmuir.3c01540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
An efficient and durable oxygen evolution reaction (OER) catalyst is necessary for the water-splitting process toward energy conversion. The OER through water oxidation reactions could provide electrons for H2O, CO2, and N2 reduction and produce valuable compounds. Herein, the FeNi (1:1 Ni/Fe) alloy as foam, after anodizing at 50 V in a two-electrode system in KOH solution (1.0 M), was characterized by Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-angle annular dark-field imaging (HAADF)-scanning transmission electron microscopy (STEM) and used as an efficient and durable OER electrocatalyst in KOH solution (1.0 M). The overpotential for the onset of the OER based on extrapolation of the Tafel plot was 225 mV. The overpotentials for the current densities of 10 and 30 mA/cm2 are observed at 270 and 290 mV, respectively. In addition, a low Tafel slope is observed, 38.0 mV per decade, for the OER. To investigate the mechanism of the OER, in situ surface-enhanced Raman spectroscopy was used to detect FeNi hydroxide and characteristic peaks of H2O. Impurities in KOH can adsorb onto the electrode surface during the OER. Peaks corresponding to Ni(III) (hydr)oxide and FeO42- can be detected during the OER, but high-valent FeNi (hydr)oxides are unstable and reduce under the open circle potential. Metal hydroxide transformations during the OER and anion adsorption should be carefully considered. In addition, Fe3O4 may convert to γ-Fe2O3 during the OER. This study aims to offer logical perspectives on the dynamic changes that occur during the OER under alkaline conditions in an anodized FeNi alloy. These changes encompass variations in morphology, surface oxidation, the generation of high-valent species, and phase conversion during the OER.
Collapse
Affiliation(s)
- Nader Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
120
|
Zhu W, Yao F, Cheng K, Zhao M, Yang CJ, Dong CL, Hong Q, Jiang Q, Wang Z, Liang H. Direct Dioxygen Radical Coupling Driven by Octahedral Ruthenium-Oxygen-Cobalt Collaborative Coordination for Acidic Oxygen Evolution Reaction. J Am Chem Soc 2023; 145:17995-18006. [PMID: 37550082 DOI: 10.1021/jacs.3c05556] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolyzers given its harsh oxidative and corrosive environments. Herein, we suggest an effective strategy to greatly enhance both the acidic OER activity and stability of Co3O4 spinel by atomic Ru selective substitution on the octahedral Co sites. The resulting highly symmetrical octahedral Ru-O-Co collaborative coordination with strong electron coupling effect enables the direct dioxygen radical coupling OER pathway. Indeed, both experiments and theoretical calculations reveal a thermodynamically breakthrough heterogeneous diatomic oxygen mechanism. Additionally, the active Ru-O-Co units are well-maintained upon the acidic OER thanks to the electron transfer from surrounding electron-enriched tetrahedral Co atoms via bridging oxygen bonds that suppresses the overoxidation and thus dissolution of active Ru and Co species. Consequently, the prepared catalyst, even with a low Ru mass loading of ca. 42.8 μg cm-2, exhibits an attractive acidic OER performance with a low overpotential of 200 mV and a low potential decay rate of 0.45 mV h-1 at 10 mA cm-2. Our work suggests an effective strategy to significantly enhance both the acidic OER activity and stability of low-cost electrocatalysts.
Collapse
Affiliation(s)
- Weijie Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fen Yao
- Key Laboratory of Preparation and Applications of Environmentally Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Kangjuan Cheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mengting Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng-Jie Yang
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Qiming Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhoucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hanfeng Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
121
|
Sun W, Fang Y, Sun G, Dai C, Liu Y, Zhang J, Zhu Y, Wang J. Ruthenium-Manganese Solid Solution Oxide with Enhanced Performance for Acidic and Alkaline Oxygen Evolution Reaction. Chem Asian J 2023; 18:e202300440. [PMID: 37378545 DOI: 10.1002/asia.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Proton exchange membrane water electrolysers and alkaline exchange membrane water electrolysers for hydrogen production suffer from sluggish kinetics and the limited durability of the electrocatalyst toward oxygen evolution reaction (OER). Herein, a rutile Ru0.75 Mn0.25 O2-δ solid solution oxide featured with a hierarchical porous structure has been developed as an efficient OER electrocatalyst in both acidic and alkaline electrolyte. Specifically, compared with commercial RuO2 , the catalyst displays a superior reaction kinetics with small Tafel slope of 54.6 mV dec-1 in 0.5 M H2 SO4 , thus allowing a low overpotential of 237 and 327 mV to achieve the current density of 10 and 100 mA cm-2 , respectively, which is attributed to the enhanced electrochemically active surface area from the porous structure and the increased intrinsic activity owing to the regulated Ru>4+ proportion with Mn incorporation. Additionally, the sacrificial dissolution of Mn relieves the leaching of active Ru species, leading to the extended OER durability. Besides, the Ru0.75 Mn0.25 O2-δ catalyst also shows a highly improved OER performance in alkaline electrolyte, rendering it a versatile catalyst for water splitting.
Collapse
Affiliation(s)
- Wen Sun
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ying Fang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Gaoming Sun
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Congfu Dai
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yana Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jiguang Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yunfeng Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
122
|
Fang C, Zhou J, Zhang L, Wan W, Ding Y, Sun X. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat Commun 2023; 14:4449. [PMID: 37488102 PMCID: PMC10366111 DOI: 10.1038/s41467-023-40177-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
Dual-atom catalysts, particularly those with heteronuclear active sites, have the potential to outperform the well-established single-atom catalysts for oxygen evolution reaction, but the underlying mechanistic understanding is still lacking. Herein, a large-scale density functional theory is employed to explore the feasibility of *O-*O coupling mechanism, which can circumvent the scaling relationship with improving the catalytic performance of N-doped graphene supported Fe-, Co-, Ni-, and Cu-containing heteronuclear dual-atom catalysts, namely, M'M@NC. Based on the constructed activity maps, a rationally designed descriptor can be obtained to predict homonuclear catalysts. Seven heteronuclear and four homonuclear dual-atom catalysts possess high activities that outperform the minimum theoretical overpotential. The chemical and structural origin in favor of *O-*O coupling mechanism thus leading to enhanced reaction activity have been revealed. This work not only provides additional insights into the fundamental understanding of reaction mechanisms, but also offers a guideline for the accelerated discovery of efficient catalysts.
Collapse
Affiliation(s)
- Cong Fang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
| | - Jian Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenchao Wan
- Max-Plank Institute for Chemical Energy Conversion, Mülheim an der Ruhr, 45470, Germany
| | - Yuxiao Ding
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
- Shandong Energy Institute, 266101, Qingdao, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
123
|
Wang Y, Gong N, Liu H, Ma W, Hippalgaonkar K, Liu Z, Huang Y. Ordering-Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High-Entropy Intermetallic Pt 4 FeCoCuNi. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302067. [PMID: 37165532 DOI: 10.1002/adma.202302067] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Disordered solid-solution high-entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high-entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt4 FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single-particle level, and it agrees with macroscopic analysis by selected-area electron diffraction and X-ray diffraction. The electrocatalytic performance of Pt4 FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt4 FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9-fold and 5.6-fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long-term stability than both partially ordered and disordered Pt4 FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering-dependent structure-property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys.
Collapse
Affiliation(s)
- Yong Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Na Gong
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Hongfei Liu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Wei Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kedar Hippalgaonkar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
124
|
Nazari M, Ghaemmaghami M. Approach to Evaluation of Electrocatalytic Water Splitting Parameters, Reflecting Intrinsic Activity: Toward the Right Pathway. CHEMSUSCHEM 2023; 16:e202202126. [PMID: 36867113 DOI: 10.1002/cssc.202202126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/03/2023] [Indexed: 06/10/2023]
Abstract
The development of transition metal-based non-precious-metal electrocatalysts for energy storage and conversion systems has received a lot of interest recently. To further this subject in the proper way given the development of electrocatalysts, a fair comparison of their respective performance is necessary. This Review investigates the parameters used for the comparison of electrocatalyst activity. Significant evaluation criteria employed in electrochemical water splitting studies are the overpotential at defined current density usually at 10 mA per geometric surface area, Tafel slope, exchange current density, mass activity, specific activity and turnover frequency (TOF). This Review will discuss how to identify the specific activity and TOF by electrochemical and non-electrochemical methods to represent intrinsic activity as well as the benefits and uncertainties of each technique, ensuring that each method is applied correctly when calculating intrinsic activity metrics.
Collapse
Affiliation(s)
- Mahrokh Nazari
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran, Iran
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran, Iran
| |
Collapse
|
125
|
Ji B, Gou J, Zheng Y, Pu X, Wang Y, Kidkhunthod P, Tang Y. Coordination Chemistry of Large-Sized Yttrium Single-Atom Catalysts for Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300381. [PMID: 36917928 DOI: 10.1002/adma.202300381] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Indexed: 06/16/2023]
Abstract
Although being transition metals, the Fenton-inactive group 3-4 elements (Sc, Y, La, Ti, Zr, and Hf) can easily lose all the outermost s and d electrons, leaving behind ionic sites with nearly empty outermost orbitals that are stable but inactive for oxygen involved catalysis. Here, it is demonstrated that the dynamic coordination network can turn these commonly inactive ionic sites into platinum-like catalytic centers for the oxygen reduction reaction (ORR). Using density functional theory calculations, a macrocyclic ligand coordinated yttrium single-atom (YN4 ) moiety is identified, which is originally ORR inactive because of the too strong binding of hydroxyl intermediate, while it can be activated by an axial ligand X through the covalency competition between YX and YOH bonds. Strikingly, it is also found that the binding force of the axially coordinated ligand is an effective descriptor, and the chlorine ligand is screened out with an optimal binding force that behaves self-adaptively to facilitate each ORR intermediate steps by dynamically changing its YCl covalency. These experiments validate that the as-designed YN4 -Cl moieties embedded within the carbon framework exhibit a high half-wave potential (E1/2 = 0.85 V) in alkaline media, the same as that of the commercial Pt/C catalyst .
Collapse
Affiliation(s)
- Bifa Ji
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiali Gou
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiuhao Pu
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yehai Wang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
126
|
Ramírez AR, Heidari S, Vergara A, Aguilera MV, Preuss P, Camarada MB, Fischer A. Rhenium-Based Electrocatalysts for Water Splitting. ACS MATERIALS AU 2023; 3:177-200. [PMID: 38089137 PMCID: PMC10176616 DOI: 10.1021/acsmaterialsau.2c00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/28/2024]
Abstract
Due to the contamination and global warming problems, it is necessary to search for alternative environmentally friendly energy sources. In this area, hydrogen is a promising alternative. Hydrogen is even more promising, when it is obtained through water electrolysis operated with renewable energy sources. Among the possible devices to perform electrolysis, proton exchange membrane (PEM) electrolyzers appear as the most promising commercial systems for hydrogen production in the coming years. However, their massification is affected by the noble metals used as electrocatalysts in their electrodes, with high commercial value: Pt at the cathode where the hydrogen evolution reaction occurs (HER) and Ru/Ir at the anode where the oxygen evolution reaction (OER) happens. Therefore, to take full advantage of the PEM technology for green H2 production and build up a mature PEM market, it is imperative to search for more abundant, cheaper, and stable catalysts, reaching the highest possible activities at the lowest overpotential with the longest stability under the harsh acidic conditions of a PEM. In the search for new electrocatalysts and considering the predictions of a Trasatti volcano plot, rhenium appears to be a promising candidate for HER in acidic media. At the same time, recent studies provide evidence of its potential as an OER catalyst. However, some of these reports have focused on chemical and photochemical water splitting and have not always considered acidic media. This review summarizes rhenium-based electrocatalysts for water splitting under acidic conditions: i.e., potential candidates as cathode materials. In the various sections, we review the mechanism concepts of electrocatalysis, evaluation methods, and the different rhenium-based materials applied for the HER in acidic media. As rhenium is less common for the OER, we included a section about its use in chemical and photochemical water oxidation and as an electrocatalyst under basic conditions. Finally, concluding remarks and perspectives are given about rhenium for water splitting.
Collapse
Affiliation(s)
- Andrés
M. R. Ramírez
- Centro
de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería
y Tecnología, Universidad Mayor, Camino La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
- Universidad
Mayor, Núcleo Química y Bioquímica, Facultad
de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino
La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
| | - Sima Heidari
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FMF
− Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Ana Vergara
- Centro
de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería
y Tecnología, Universidad Mayor, Camino La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
| | - Miguel Villicaña Aguilera
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
| | - Paulo Preuss
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
| | - María B. Camarada
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
- Centro Investigación
en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Anna Fischer
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FMF
− Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Cluster
of Excellence livMatS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
127
|
Zhang H, Gu H, Shi G, Yu K, Yang C, Tong H, Zhao S, Chang M, Zhu C, Chen C, Zhang L. Two-Dimensional Covalent Framework Derived Nonprecious Transition Metal Single-Atomic-Site Electrocatalyst toward High-Efficiency Oxygen Reduction. NANO LETTERS 2023; 23:3803-3809. [PMID: 37103954 DOI: 10.1021/acs.nanolett.3c00133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Designing an active, stable, and nonprecious metal catalyst substitute for Pt in the oxygen reduction reaction (ORR) is highly demanded for energy-efficient and cost-effective prototype devices. Single-atomic-site catalysts (SASCs) have been widely concerning because of their maximum atomic utilization and precise structural regulation. Despite being challenging, the controllable synthesis of SASCs is crucial for optimizing ORR activity. Here, we demonstrate an ultrathin organometallic framework template-assisted pyrolysis strategy to synthesize SASCs with a unique two-dimensional (2D) architecture. Electrochemical measurements revealed that Fe-SASCs displayed an excellent ORR activity in an alkaline media, having a half-wave potential and a diffusion-limited current density comparable to those of commercial Pt/C. Remarkably, the durability and methanol tolerance of Fe-SASCs were even superior to those of Pt/C. Furthermore, Fe-SASCs displayed a maximum power density of 142 mW cm-2 with a current density of 235 mA cm-2 as a cathode catalyst in a zinc-air battery, showing its great potential for practical applications.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Huoliang Gu
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Guoshuai Shi
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ke Yu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chunlei Yang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Haonan Tong
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Siwen Zhao
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Mingwei Chang
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Chenyuan Zhu
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liming Zhang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
128
|
Foroughi F, Tintor M, Faid AY, Sunde S, Jerkiewicz G, Coutanceau C, Pollet BG. In Situ Sonoactivation of Polycrystalline Ni for the Hydrogen Evolution Reaction in Alkaline Media. ACS APPLIED ENERGY MATERIALS 2023; 6:4520-4529. [PMID: 37181247 PMCID: PMC10170477 DOI: 10.1021/acsaem.2c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
In this investigation, we report on the development of a method for activating polycrystalline metallic nickel (Ni(poly)) surfaces toward the hydrogen evolution reaction (HER) in N2-saturated 1.0 M KOH aqueous electrolyte through continuous and pulsed ultrasonication (24 kHz, 44 ± 1.40 W, 60% acoustic amplitude, ultrasonic horn). It is found that ultrasonically activated Ni shows an improved HER activity with a much lower overpotential of -275 mV vs RHE at -10.0 mA cm-2 when compared to nonultrasonically activated Ni. It was observed that the ultrasonic pretreatment is a time-dependent process that gradually changes the oxidation state of Ni and longer ultrasonication times result in higher HER activity as compared to untreated Ni. This study highlights a straightforward strategy for activating nickel-based materials by ultrasonic treatment for the electrochemical water splitting reaction.
Collapse
Affiliation(s)
- Faranak Foroughi
- Hydrogen
Energy and Sonochemistry Research Group, Department of Energy and
Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Marina Tintor
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Alaa Y. Faid
- Electrochemistry
Research Group, Department of Materials Science and Engineering, Faculty
of Natural Sciences, Norwegian University
of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Svein Sunde
- Electrochemistry
Research Group, Department of Materials Science and Engineering, Faculty
of Natural Sciences, Norwegian University
of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Gregory Jerkiewicz
- Hydrogen
Energy and Sonochemistry Research Group, Department of Energy and
Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Christophe Coutanceau
- Hydrogen
Energy and Sonochemistry Research Group, Department of Energy and
Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
- Catalysis
and Non-Conventional Medium group, IC2MP, UMR CNRS 7285, Université de Poitiers, 4 Rue Michel Brunet, 86073 Cedex 9 Poitiers, France
- French
Research Network on Hydrogen (FRH2), Research Federation n°2044
CNRS, BP 32229, 44322 Nantes CEDEX 3, France
- Green Hydrogen
Lab, Institute for Hydrogen Research, Université
du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Bruno G. Pollet
- Hydrogen
Energy and Sonochemistry Research Group, Department of Energy and
Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
- Green Hydrogen
Lab, Institute for Hydrogen Research, Université
du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| |
Collapse
|
129
|
Zhang D, Li M, Yong X, Song H, Waterhouse GIN, Yi Y, Xue B, Zhang D, Liu B, Lu S. Construction of Zn-doped RuO 2 nanowires for efficient and stable water oxidation in acidic media. Nat Commun 2023; 14:2517. [PMID: 37130878 PMCID: PMC10154325 DOI: 10.1038/s41467-023-38213-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
Oxygen evolution reaction catalysts capable of working efficiently in acidic media are highly demanded for the commercialization of proton exchange membrane water electrolysis. Herein, we report a Zn-doped RuO2 nanowire array electrocatalyst with outstanding catalytic performance for the oxygen evolution reaction under acidic conditions. Overpotentials as low as 173, 304, and 373 mV are achieved at 10, 500, and 1000 mA cm-2, respectively, with robust stability reaching to 1000 h at 10 mA cm-2. Experimental and theoretical investigations establish a clear synergistic effect of Zn dopants and oxygen vacancies on regulating the binding configurations of oxygenated adsorbates on the active centers, which then enables an alternative Ru-Zn dual-site oxide path of the reaction. Due to the change of reaction pathways, the energy barrier of rate-determining step is reduced, and the over-oxidation of Ru active sites is alleviated. As a result, the catalytic activity and stability are significantly enhanced.
Collapse
Affiliation(s)
- Dafeng Zhang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Mengnan Li
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Xue Yong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
- Department of Chemistry, The University of Sheffield, Sheffield, S3 7HF, UK
| | - Haoqiang Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | | | - Yunfei Yi
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Bingjie Xue
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Dongliang Zhang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Baozhong Liu
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China.
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China.
| |
Collapse
|
130
|
Ran J, Chen L, Wang D, Talebian-Kiakalaieh A, Jiao Y, Adel Hamza M, Qu Y, Jing L, Davey K, Qiao SZ. Atomic-Level Regulated 2D ReSe 2 : A Universal Platform Boostin Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210164. [PMID: 36828483 DOI: 10.1002/adma.202210164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Indexed: 05/12/2023]
Abstract
Solar hydrogen (H2 ) generation via photocatalytic water splitting is practically promising, environmentally benign, and sustainably carbon neutral. It is important therefore to understand how to controllably engineer photocatalysts at the atomic level. In this work, atomic-level engineering of defected ReSe2 nanosheets (NSs) is reported to significantly boost photocatalytic H2 evolution on various semiconductor photocatalysts including TiO2 , CdS, ZnIn2 S4 , and C3 N4 . Advanced characterizations, such as atomic-resolution aberration-corrected scanning transmission electron microscopy (AC-STEM), synchrotron-based X-ray absorption near edge structure (XANES), in situ X-ray photoelectron spectroscopy (XPS), transient-state surface photovoltage (SPV) spectroscopy, and transient-state photoluminescence (PL) spectroscopy, together with theoretical computations confirm that the strongly coupled ReSe2 /TiO2 interface and substantial atomic-level active sites of defected ReSe2 NSs result in the significantly raised activity of ReSe2 /TiO2 . This work not only for the first time realizes the atomic-level engineering of ReSe2 NSs as a versatile platform to significantly raise the activities on different photocatalysts, but, more importantly, underscores the immense importance of atomic-level synthesis and exploration on 2D materials for energy conversion and storage.
Collapse
Affiliation(s)
- Jingrun Ran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ling Chen
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Deyu Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Amin Talebian-Kiakalaieh
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Mahmoud Adel Hamza
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Yang Qu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, China
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
131
|
Jeskey J, Chen Y, Kim S, Xia Y. EDTA-Assisted Synthesis of Nitrogen-Doped Carbon Nanospheres with Uniform Sizes for Photonic and Electrocatalytic Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3024-3032. [PMID: 37063592 PMCID: PMC10100536 DOI: 10.1021/acs.chemmater.3c00341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
We report a robust method for the facile synthesis of N-doped carbon nanospheres with uniform and tunable sizes. Instead of involving a surfactant or other templates, this synthesis relies on the incorporation of ethylenediaminetetraacetic acid (EDTA) into the emulsion droplets of phenolic resin oligomers. The EDTA provides a high density of surface charges to effectively increase the electrostatic repulsion between the droplets and thereby prevent them from coalescing into irregular structures during polymerization-induced hardening. The EDTA-loaded polymer nanospheres are highly uniform in terms of both size and shape for easy crystallization into opaline structures. While maintaining good uniformity, the diameters of the resultant N-doped carbon nanospheres can be readily tuned from 100 to 375 nm, allowing for the fabrication of opaline lattices with brilliant structural colors. The EDTA also serves as an additional nitrogen source to promote the formation of graphitic-N, making the N-doped carbon nanospheres highly active, metal-free bifunctional electrocatalysts toward oxygen reduction and oxygen evolution reactions.
Collapse
Affiliation(s)
- Jacob Jeskey
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Yidan Chen
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sujin Kim
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
132
|
Barrio J, Pedersen A, Sarma SC, Bagger A, Gong M, Favero S, Zhao CX, Garcia-Serres R, Li AY, Zhang Q, Jaouen F, Maillard F, Kucernak A, Stephens IEL, Titirici MM. FeNC Oxygen Reduction Electrocatalyst with High Utilization Penta-Coordinated Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211022. [PMID: 36739474 DOI: 10.1002/adma.202211022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Atomic Fe in N-doped carbon (FeNC) electrocatalysts for oxygen (O2 ) reduction at the cathode of proton exchange membrane fuel cells are the most promising alternative to platinum-group-metal catalysts. Despite recent progress on atomic FeNC O2 reduction, their controlled synthesis and stability for practical applications remain challenging. A two-step synthesis approach has recently led to significant advances in terms of Fe-loading and mass activity; however, the Fe utilization remains low owing to the difficulty of building scaffolds with sufficient porosity that electrochemically exposes the active sites. Herein, this issue is addressed by coordinating Fe in a highly porous nitrogen-doped carbon support (≈3295 m2 g-1 ), prepared by pyrolysis of inexpensive 2,4,6-triaminopyrimidine and a Mg2+ salt active site template and porogen. Upon Fe coordination, a high electrochemical active site density of 2.54 × 1019 sites gFeNC -1 and a record 52% FeNx electrochemical utilization based on in situ nitrite stripping are achieved. The Fe single atoms are characterized pre- and post-electrochemical accelerated stress testing by aberration-corrected high-angle annular dark field scanning transmission electron microscopy, showing no Fe clustering. Moreover, ex situ X-ray absorption spectroscopy and low-temperature Mössbauer spectroscopy suggest the presence of penta-coordinated Fe sites, which are further studied by density functional theory calculations.
Collapse
Affiliation(s)
- Jesús Barrio
- Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Angus Pedersen
- Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Saurav Ch Sarma
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alexander Bagger
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mengjun Gong
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Silvia Favero
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chang-Xin Zhao
- Department of Chemical Engineering, Tsinghua University, 1 Tsinghua Road, Beijing, 100084, P. R. China
| | - Ricardo Garcia-Serres
- Chemistry and Biology of Metals Laboratory, CNRS, CEA, IRIG, University Grenoble Alpes, 17 Rue Des Martyrs, Grenoble, 38000, France
| | - Alain Y Li
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Qiang Zhang
- Department of Chemical Engineering, Tsinghua University, 1 Tsinghua Road, Beijing, 100084, P. R. China
| | - Frédéric Jaouen
- Institute of Molecular Chemistry and Materials Sciences, CNRS, ENSCM, University of Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Frédéric Maillard
- Laboratory of Electrochemistry and Physico-Chemistry of Materials and Interfaces (LEPMI), CNRS, University Savoie Mont-Blanc, Grenoble-INP, University Grenoble Alpes, Grenoble, 38000, France
| | - Anthony Kucernak
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Ifan E L Stephens
- Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
133
|
Kante M, Weber ML, Ni S, van den Bosch ICG, van der Minne E, Heymann L, Falling LJ, Gauquelin N, Tsvetanova M, Cunha DM, Koster G, Gunkel F, Nemšák S, Hahn H, Velasco Estrada L, Baeumer C. A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation. ACS NANO 2023; 17:5329-5339. [PMID: 36913300 PMCID: PMC10061923 DOI: 10.1021/acsnano.2c08096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.
Collapse
Affiliation(s)
- Mohana
V. Kante
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Moritz L. Weber
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shu Ni
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Iris C. G. van den Bosch
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Emma van der Minne
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Lisa Heymann
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Lorenz J. Falling
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicolas Gauquelin
- Electron
Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, Antwerpen BE-2020, Belgium
- NANOlab Center
of Excellence, University of Antwerp, Antwerpen BE-2020, Belgium
| | - Martina Tsvetanova
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Daniel M. Cunha
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Gertjan Koster
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Felix Gunkel
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Slavomír Nemšák
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Physics and Astronomy, University of
California Davis, Davis, California 95616, United States
| | - Horst Hahn
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
- Department
of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Leonardo Velasco Estrada
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
- Department
of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
- Universidad
Nacional de Colombia sede de La Paz, La Paz, Cesar 202010, Colombia
| | - Christoph Baeumer
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| |
Collapse
|
134
|
Chen J, Aliasgar M, Zamudio FB, Zhang T, Zhao Y, Lian X, Wen L, Yang H, Sun W, Kozlov SM, Chen W, Wang L. Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution. Nat Commun 2023; 14:1711. [PMID: 36973303 PMCID: PMC10042996 DOI: 10.1038/s41467-023-37404-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Membrane-based alkaline water electrolyser is promising for cost-effective green hydrogen production. One of its key technological obstacles is the development of active catalyst-materials for alkaline hydrogen-evolution-reaction (HER). Here, we show that the activity of platinum towards alkaline HER can be significantly enhanced by anchoring platinum-clusters onto two-dimensional fullerene nanosheets. The unusually large lattice distance (~0.8 nm) of the fullerene nanosheets and the ultra-small size of the platinum-clusters (~2 nm) leads to strong confinement of platinum clusters accompanied by pronounced charge redistributions at the intimate platinum/fullerene interface. As a result, the platinum-fullerene composite exhibits 12 times higher intrinsic activity for alkaline HER than the state-of-the-art platinum/carbon black catalyst. Detailed kinetic and computational investigations revealed the origin of the enhanced activity to be the diverse binding properties of the platinum-sites at the interface of platinum/fullerene, which generates highly active sites for all elementary steps in alkaline HER, particularly the sluggish Volmer step. Furthermore, encouraging energy efficiency of 74% and stability were achieved for alkaline water electrolyser assembled using platinum-fullerene composite under industrially relevant testing conditions.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Mohammed Aliasgar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Fernando Buendia Zamudio
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Tianyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Yilin Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Xu Lian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Lan Wen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore.
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, Singapore, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, Singapore, Singapore.
| |
Collapse
|
135
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
136
|
Funaki S, Kawawaki T, Okada T, Takemae K, Hossain S, Niihori Y, Naito T, Takagi M, Shimazaki T, Kikkawa S, Yamazoe S, Tachikawa M, Negishi Y. Improved activity for the oxygen evolution reaction using a tiara-like thiolate-protected nickel nanocluster. NANOSCALE 2023; 15:5201-5208. [PMID: 36789780 DOI: 10.1039/d2nr06952k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Practical electrochemical water splitting and carbon-dioxide reduction are desirable for a sustainable energy society. In particular, facilitating the oxygen evolution reaction (OER, the reaction at the anode) will increase the efficiency of these reactions. Nickel (Ni) compounds are excellent OER catalysts under basic conditions, and atomically precise Ni clusters have been actively studied to understand their complex reaction mechanisms. In this study, we evaluated the geometric/electronic structure of tiara-like metal nanoclusters [Nin(PET)2n; n = 4, 5, 6, where PET refers to phenylethanethiolate] with the same SR ligand. The geometric structure of Ni5(SR)10 was determined for the first time using single-crystal X-ray diffraction. Additionally, combined electrochemical measurements and X-ray absorption fine structure measurements revealed that Ni5(SR)10 easily forms an OER intermediate and therefore exhibits a high specific activity.
Collapse
Affiliation(s)
- Sota Funaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tomoshige Okada
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kana Takemae
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiki Niihori
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takumi Naito
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Makito Takagi
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Tomomi Shimazaki
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masanori Tachikawa
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
137
|
Liu Y, Wu J, Zhang Y, Jin X, Li J, Xi X, Deng Y, Jiao S, Lei Z, Li X, Cao R. Ensemble Effect of Ruthenium Single-Atom and Nanoparticle Catalysts for Efficient Hydrogen Evolution in Neutral Media. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36905349 DOI: 10.1021/acsami.2c20863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogen evolution reaction (HER) plays a key role in electrochemical water splitting, which is a sustainable way for hydrogen production. The kinetics of HER is sluggish in neutral media that requires noble metal catalysts to alleviate energy consumption during the HER process. Here, we present a catalyst comprising a ruthenium single atom (Ru1) and nanoparticle (Run) loaded on the nitrogen-doped carbon substrate (Ru1-Run/CN), which exhibits excellent activity and superior durability for neutral HER. Benefiting from the synergistic effect between single atoms and nanoparticles in the Ru1-Run/CN, the catalyst exhibits a very low overpotential down to 32 mV at a current density of 10 mA cm-2 while maintaining excellent stability up to 700 h at a current density of 20 mA cm-2 during the long-term test. Computational calculations reveal that, in the Ru1-Run/CN catalyst, the existence of Ru nanoparticles affects the interactions between Ru single-atom sites and reactants and thus improves the catalytic activity of HER. This work highlights the ensemble effect of electrocatalysts for HER and could shed light on the rational design of efficient catalysts for other multistep electrochemical reactions.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianghua Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuchen Zhang
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xu Jin
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Xiaoke Xi
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shuhong Jiao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhanwu Lei
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiyu Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
138
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
139
|
Wu YH, Mehta H, Willinger E, Yuwono JA, Kumar PV, Abdala PM, Wach A, Kierzkowska A, Donat F, Kuznetsov DA, Müller CR. Altering Oxygen Binding by Redox-Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System. Angew Chem Int Ed Engl 2023; 62:e202217186. [PMID: 36538473 PMCID: PMC10108258 DOI: 10.1002/anie.202217186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal-substituted manganese oxide (spinel) nanoparticles, Mn3 O4 :M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn3 O4 :M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δf H°(MO), and the Lewis acidity of the M2+ substituent. Incorporation of elements M with low Δf H°(MO) enhances the oxygen binding strength in Mn3 O4 :M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox-inactive elements.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Harshit Mehta
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Jodie A Yuwono
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.,College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Anna Wach
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Agnieszka Kierzkowska
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
140
|
Yang Y, Yang QN, Yang YB, Guo PF, Feng WX, Jia Y, Wang K, Wang WT, He ZH, Liu ZT. Enhancing Water Oxidation of Ru Single Atoms via Oxygen-Coordination Bonding with NiFe Layered Double Hydroxide. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Yang Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Qian-Nan Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Yi-Bin Yang
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Peng-Fei Guo
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Wan-Xin Feng
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Yan Jia
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Kuan Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Wei-Tao Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Zhen-Hong He
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Zhao-Tie Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
| |
Collapse
|
141
|
Dhanasekaran T, Bovas A, Radhakrishnan TP. Hydrogel Polymer-PBA Nanocomposite Thin Film-Based Bifunctional Catalytic Electrode for Water Splitting: The Unique Role of the Polymer Matrix in Enhancing the Electrocatalytic Efficiency. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6687-6696. [PMID: 36695812 DOI: 10.1021/acsami.2c18006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel approach to efficient bifunctional catalytic electrodes for water splitting is developed, based on a counterintuitive choice of an insulating hydrogel polymer (chitosan, CS)-Prussian blue analogue (PBA, KCoFe) nanocomposite thin film on nickel foam. The polymer matrix in KCoFe-CS enables the formation of framelike structures of the non-noble metal-based catalyst nanocrystals, in addition to improving their stability. An optimized cycling protocol leads to a substantial enhancement of the electrocatalytic efficiency for oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER), achieving relatively low overpotentials of 272 and 320 mV (@ 10 and 20 mA cm-2) and 146 mV (@ 10 mA cm-2), respectively, reduced Tafel slopes, and increased Faradaic efficiencies of 98 and 96%; the overpotentials estimated based on the electrochemically active surface area show similar trends. The polymer encapsulation and the cycling protocol are key to the realization of the desirable combination of enhanced efficiency and stability demonstrated up to 50 h for both OER and HER. Detailed characterizations of the postcycling catalytic electrode show that favorable morphological changes of the polymer matrix with concomitant reduction in the PBA nanocrystal size lead to the enhanced activity. The bifunctional activity of the catalytic electrode is demonstrated by the stable water splitting achieved with a 20 mA cm-2 current density at 1.55 V. The present study unravels the utility of hydrogel polymer matrices (without the use of binders like Nafion) in realizing sustainable water splitting electrocatalysts with high stability and efficiency, through the combined effect of confining the electrolyte within and favorably modifying the catalyst nanoparticles and the nanocomposite morphology.
Collapse
Affiliation(s)
| | - Anu Bovas
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - T P Radhakrishnan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
142
|
Cui Z, Sheng W. Thoughts about Choosing a Proper Counter Electrode. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zipei Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092, P.R. China
| | - Wenchao Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092, P.R. China
| |
Collapse
|
143
|
Wang C, Zhu D, Bi H, Zhang Z, Zhu J. Synthesis of Nitrogen and Phosphorus/Sulfur Co-Doped Carbon Xerogels for the Efficient Electrocatalytic Reduction of p-Nitrophenol. Int J Mol Sci 2023; 24:ijms24032432. [PMID: 36768750 PMCID: PMC9916709 DOI: 10.3390/ijms24032432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Carbon xerogels co-doped with nitrogen (N) and phosphorus (P) or sulfur (S) were synthesized and employed as catalysts for the electrocatalytic reduction of p-nitrophenol (p-NP). The materials were prepared by first synthesizing N-doped carbon xerogels (NDCX) via the pyrolysis of organic gels, and then introducing P or S atoms to the NDCX by a vapor deposition method. The materials were characterized by various measurements including X-ray diffraction, N2 physisorption, Transmission electron microscopy, Fourier Infrared spectrometer, and X-ray photoelectron spectra, which showed that N atoms were successfully doped to the carbon xerogels, and the co-doping of P or S atoms affected the existing status of N atoms. Cyclic voltammetry (CV) scanning manifested that the N and P co-doped materials, i.e., P-NDCX-1.0, was the most suitable catalyst for the reaction, showing an overpotential of -0.569 V (vs. Ag/AgCl) and a peak slop of 695.90 μA/V. The material was also stable in the reaction and only a 14 mV shift in the reduction peak overpotential was observed after running for 100 cycles.
Collapse
|
144
|
Wang Y, Wang X, Wei H, Huang J, Yin L, Zhu W, Zhuang Z. Unveiling the Metal Incorporation Effect of Steady-Active FeP Hydrogen Evolution Nanocatalysts for Water Electrolyzer. Chemistry 2023; 29:e202202858. [PMID: 36331543 DOI: 10.1002/chem.202202858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Metal phosphides are promising noble metal-free electrocatalysts for hydrogen evolution reaction (HER), but they usually suffer from inferior stability and thus are far from the device applications. We reported a facile and controllable synthetic method to prepare metal-incorporated M-FeP nanoparticles (M=Cr, Mn, Co, Fe, Ni, Cu, and Mo) with the guide of the density functional theory (DFT). The evaluated HER activity sequence was consistent with the DFT predictions, and cobalt was revealed to be the appropriate dopant. With the optimization of the Co/Fe ratio, the Fe0.67 Co0.33 P/C only required overpotentials of 67 mV and 129 mV to obtain the cathodic current density of 10 and 100 mA cm-2, respectively. It maintained the initial activity in the 10 h stability test, surpassing the other Co-FeP/C catalysts. Ex situ experiments demonstrated that the decreased element leaching and the increased surface phosphide content contributed to the high stability of the Fe0.67 Co0.33 P/C. A proton exchange membrane water electrolyzer was assembled using the Fe0.67 Co0.33 P/C as the cathodic catalyst. It showed a current density of 0.8 A cm-2 at the applied voltage of 2.0 V and retained the initial activity in the 1000 cycles' stability test, suggesting the potential application of the catalysts.
Collapse
Affiliation(s)
- Yongsheng Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China.,State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyu Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China.,International Clean Energy Research Office, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Hailong Wei
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junling Huang
- International Clean Energy Research Office, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Likun Yin
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
145
|
Zhang S, Hou JA, Hu J, Zhang CY. In situ Self-Catalyzed Growth of Manganese-Embedded 3D Flakes-Coated Carbon Rod as an Efficient Oxygen-Reduction Reaction Catalyst of Zinc-Air Batteries. Chemistry 2023; 29:e202202989. [PMID: 36322047 DOI: 10.1002/chem.202202989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Indexed: 12/12/2022]
Abstract
The in situ self-catalyzed growth of manganese-embedded 3D flakes-coated carbon rods (GFC) as an efficient oxygen-reduction reaction (ORR) catalyst of Zinc-air batteries is described for the first time. By optimizing the amount of Mn in the precursor, a series of 3D graphene-like flakes-coated carbon rods were synthesized. GFC with a doping amount of Mn of 10 % (GFC-10) exhibits excellent ORR performance with an onset potential of 0.94 V (vs. reversible hydrogen electrode). The Zinc-air battery is constructed with GFC-10 as the cathode catalyst, and it exhibits a peak power density of 128.9 mW cm-2 and a cycling stability of 75 h at a current density of 10 mA cm-2 , which are superior to the commercial 20 wt% Pt/C-based Zinc-air battery. Interestingly, the introduction of Mn facilitates the self-catalyzed growth of carbon rods, and the change of Mn amount can effectively regulate the morphology of materials. The improved ORR performance of the catalyst is ascribed to the synergistic effect of unique hierarchical porous structure, high-charge transport capacity, abundant carbon defects/edges and Mn-Nx sites. This research provides a new avenue to fabricating highly active Mn-based electrocatalysts for renewable energy systems.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Jin-An Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
146
|
Tan Z, Kong XY, Ng BJ, Soo HS, Mohamed AR, Chai SP. Recent Advances in Defect-Engineered Transition Metal Dichalcogenides for Enhanced Electrocatalytic Hydrogen Evolution: Perfecting Imperfections. ACS OMEGA 2023; 8:1851-1863. [PMID: 36687105 PMCID: PMC9850467 DOI: 10.1021/acsomega.2c06524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Switching to renewable, carbon-neutral sources of energy is urgent and critical for climate change mitigation. Despite how hydrogen production by electrolyzing water can enable renewable energy storage, current technologies unfortunately require rare and expensive platinum group metal electrocatalysts, which limit their economic viability. Transition metal dichalcogenides (TMDs) are low-cost, earth-abundant materials that possess the potential to replace platinum as the hydrogen evolution catalyst for water electrolysis, but so far, pristine TMDs are plagued by poor catalytic performances. Defect engineering is an attractive approach to enhance the catalytic efficiency of TMDs and is not subjected to the limitations of other approaches like phase engineering and surface structure engineering. In this minireview, we discuss the recent progress made in defect-engineered TMDs as efficient, robust, and low-cost catalysts for water splitting. The roles of chalcogen atomic defects in engineering TMDs for improvements to the hydrogen evolution reaction (HER) are summarized. Finally, we highlight our perspectives on the challenges and opportunities of defect engineering in TMDs for electrocatalytic water splitting. We hope to provide inspirations for designing the state-of-the-art catalysts for future breakthroughs in the electrocatalytic HER.
Collapse
Affiliation(s)
- Zheng
Hao Tan
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, 637371Singapore
| | - Xin Ying Kong
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, 637371Singapore
| | - Boon-Junn Ng
- Multidisciplinary
Platform of Advanced Engineering, Chemical Engineering Discipline,
School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500Selangor, Malaysia
| | - Han Sen Soo
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, 637371Singapore
| | - Abdul Rahman Mohamed
- Low
Carbon Economy (LCE) Group, School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300Nibong Tebal, Pulau Pinang, Malaysia
| | - Siang-Piao Chai
- Multidisciplinary
Platform of Advanced Engineering, Chemical Engineering Discipline,
School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500Selangor, Malaysia
| |
Collapse
|
147
|
Fu B, Tzitzios V, Zhang Q, Rodriguez B, Pissas M, Sofianos MV. Exploring the Magnetic and Electrocatalytic Properties of Amorphous MnB Nanoflakes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:300. [PMID: 36678053 PMCID: PMC9862160 DOI: 10.3390/nano13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) metal borides are a class of ceramic materials with diverse structural and topological properties. These diverse material properties of metal borides are what forms the basis of their interdisciplinarity and their applicability in various research fields. In this study, we highlight which fundamental and practical parameters need to be taken into consideration when designing nanomaterials for specific applications. A simple one-pot chemical reduction method was applied for the synthesis of manganese mono-boride nanoflakes at room temperature. How the specific surface area and boron-content of the as-synthesized manganese mono-boride nanoflakes influence their magnetic and electrocatalytic properties is reported. The sample with the highest specific surface area and boron content demonstrated the best magnetic and electrocatalytic properties in the HER. Whereas the sample with the lowest specific surface area and boron content exhibited the best electric conductivity and electrocatalytic properties in the OER.
Collapse
Affiliation(s)
- Boxiao Fu
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vasileios Tzitzios
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Qiancheng Zhang
- School of Physics, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brian Rodriguez
- School of Physics, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael Pissas
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Maria Veronica Sofianos
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
148
|
Fu L, Zhou J, Deng Q, Yang J, Li Q, Zhu Z, Wu K. Interfacial electron transfer in heterojunction nanofibers for highly efficient oxygen evolution reaction. NANOSCALE 2023; 15:677-686. [PMID: 36515280 DOI: 10.1039/d2nr05000e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Efficient catalysts for the oxygen evolution reaction (OER) are critical to the progress of electrochemical devices for clean energy conversion and storage. Although heterogeneous electrocatalysts have superior activity, it is a great challenge to elucidate electron transfer at surface catalytic sites and intrinsic mechanisms. Herein, we demonstrate a new type of heterostructure electrocatalyst in which Sr0.9Ce0.05Fe0.95Ru0.05O3 fibers are hybridized with in situ grown RuO2 nanoparticles (SCFR-RuO2). We investigate its unique structure, electron transfer mechanisms related to the highly OER activity by combining experimental and theoretical calculations. Remarkably, SCFR-RuO2 shows an optimized OER overpotential of 295 mV at 10 mA cm-2. The promoted electron transfer and OER kinetics are ascribed to the coupling of electronic effects at the SCFR-RuO2 heterostructure. A strong triangular relationship among overpotential-Tafel slope-work function is proposed to be a potential descriptor of OER activity in SCFR-RuO2. These insights provide guidelines for tuning the OER performance via modified work functions in perovskite electrocatalysts.
Collapse
Affiliation(s)
- Lei Fu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Jun Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Qinyuan Deng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Jiaming Yang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Qinghao Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Zihe Zhu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Kai Wu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
149
|
Jeon SS, Kang PW, Klingenhof M, Lee H, Dionigi F, Strasser P. Active Surface Area and Intrinsic Catalytic Oxygen Evolution Reactivity of NiFe LDH at Reactive Electrode Potentials Using Capacitances. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sun Seo Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - Phil Woong Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - Malte Klingenhof
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Berlin10623, Germany
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Berlin10623, Germany
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Berlin10623, Germany
| |
Collapse
|
150
|
Jiang W, Lehnert W, Shviro M. The Influence of Loadings and Substrates on the Performance of Nickel‐Based Catalysts for the Oxygen Evolution Reaction. ChemElectroChem 2023. [DOI: 10.1002/celc.202200991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wulyu Jiang
- Forschungszentrum Jülich GmbH Institute of Energy and Climate Research Electrochemical Process Engineering (IEK-14) 52425 Jülich Germany
- Faculty of Mechanical Engineering RWTH Aachen University 52056 Aachen Germany
| | - Werner Lehnert
- Forschungszentrum Jülich GmbH Institute of Energy and Climate Research Electrochemical Process Engineering (IEK-14) 52425 Jülich Germany
- Faculty of Mechanical Engineering RWTH Aachen University 52056 Aachen Germany
| | - Meital Shviro
- Forschungszentrum Jülich GmbH Institute of Energy and Climate Research Electrochemical Process Engineering (IEK-14) 52425 Jülich Germany
- Present address: Chemistry and Nanoscience Center National Renewable Energy Laboratory (NREL) Golden CO 80401 United States
| |
Collapse
|