101
|
Sheldon RA, Brady D, Bode ML. The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 2020; 11:2587-2605. [PMID: 32206264 PMCID: PMC7069372 DOI: 10.1039/c9sc05746c] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
- Department of Biotechnology , Delft University of Technology , Delft , The Netherlands
| | - Dean Brady
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| | - Moira L Bode
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| |
Collapse
|
102
|
|
103
|
Drienovská I, Roelfes G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 2020. [DOI: 10.1038/s41929-019-0410-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
104
|
Wang Z, Matthews H. Translational incorporation of modified phenylalanines and tyrosines during cell-free protein synthesis. RSC Adv 2020; 10:11013-11023. [PMID: 35495348 PMCID: PMC9050441 DOI: 10.1039/d0ra00655f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 01/22/2023] Open
Abstract
Inherent promiscuity of bacterial translation is demonstrated by mass spectrometric quantification of the translational incorporation of ring-substituted phenylalanines and tyrosines bearing fluoro-, hydroxyl-, methyl-, chloro- and nitro-groups in an E. coli-derived cell-free system. Competitive studies using the cell-free system show that the aminoacyl-tRNA synthetases (aaRS) have at least two orders of magnitude higher specificity for the native substrate over these structural analogues, which correlates with studies on the purified synthetase. E. coli wild-type translational machinery utilizes a range of nonproteinogenic amino acids for protein synthesis with incorporation levels greater than 95%.![]()
Collapse
Affiliation(s)
- Zhongqiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| | | |
Collapse
|
105
|
Neubacher S, Saya JM, Amore A, Grossmann TN. In Situ Cyclization of Proteins (INCYPRO): Cross-Link Derivatization Modulates Protein Stability. J Org Chem 2019; 85:1476-1483. [PMID: 31790232 PMCID: PMC7011175 DOI: 10.1021/acs.joc.9b02490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Protein macrocyclization represents a very efficient
strategy to
increase the stability of protein tertiary structures. Here, we describe
a panel of novel C3-symmetric tris-electrophilic agents and their
use for the cyclization of proteins. These electrophiles are reacted
with a protein domain harboring three solvent-exposed cysteine residues,
resulting in the in situ cyclization of the protein (INCYPRO). We
observe a clear dependency of cross-linking rates on the electrophilicity.
All nine obtained cross-linked protein versions show considerably
increased thermal stability (up to 29 °C increased melting temperature)
when compared to that of the linear precursor. Most interestingly,
the degree of stabilization correlates with the hydrophilicity of
the cross-link. These results will support the development of novel
cross-linked proteins and enable a more rational design process.
Collapse
Affiliation(s)
- Saskia Neubacher
- Department of Chemistry & Pharmaceutical Sciences , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Jordy M Saya
- Department of Chemistry & Pharmaceutical Sciences , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Alessia Amore
- Department of Chemistry & Pharmaceutical Sciences , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Tom N Grossmann
- Department of Chemistry & Pharmaceutical Sciences , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
106
|
Watkins EJ, Almhjell PJ, Arnold FH. Direct Enzymatic Synthesis of a Deep-Blue Fluorescent Noncanonical Amino Acid from Azulene and Serine. Chembiochem 2019; 21:80-83. [PMID: 31513332 DOI: 10.1002/cbic.201900497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/21/2022]
Abstract
We report a simple, one-step enzymatic synthesis of the blue fluorescent noncanonical amino acid β-(1-azulenyl)-l-alanine (AzAla). By using an engineered tryptophan synthase β-subunit (TrpB), stereochemically pure AzAla can be synthesized at scale starting from commercially available azulene and l-serine. Mutation of a universally conserved catalytic glutamate in the active site to glycine has only a modest effect on native activity with indole but abolishes activity on azulene, suggesting that this glutamate activates azulene for nucleophilic attack by stabilization of the aromatic ion.
Collapse
Affiliation(s)
- Ella J Watkins
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Patrick J Almhjell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Frances H Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.,Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| |
Collapse
|
107
|
Chen X, Ye F, Luo X, Liu X, Zhao J, Wang S, Zhou Q, Chen G, Wang P. Histidine-Specific Peptide Modification via Visible-Light-Promoted C–H Alkylation. J Am Chem Soc 2019; 141:18230-18237. [DOI: 10.1021/jacs.9b09127] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoping Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xueyi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
108
|
Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar Drugs 2019; 17:md17100544. [PMID: 31547548 PMCID: PMC6835263 DOI: 10.3390/md17100544] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
The microorganisms that evolved at low temperatures express cold-adapted enzymes endowed with unique catalytic properties in comparison to their mesophilic homologues, i.e., higher catalytic efficiency, improved flexibility, and lower thermal stability. Cold environments are therefore an attractive research area for the discovery of enzymes to be used for investigational and industrial applications in which such properties are desirable. In this work, we will review the literature on cold-adapted enzymes specifically focusing on those discovered in the bioprospecting of polar marine environments, so far largely neglected because of their limited accessibility. We will discuss their existing or proposed biotechnological applications within the framework of the more general applications of cold-adapted enzymes.
Collapse
|
109
|
Kubyshkin V. Stabilization of the triple helix in collagen mimicking peptides. Org Biomol Chem 2019; 17:8031-8047. [PMID: 31464337 DOI: 10.1039/c9ob01646e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Collagen mimics are peptides designed to reproduce structural features of natural collagen. A triple helix is the first element in the hierarchy of collagen folding. It is an assembly of three parallel peptide chains stabilized by packing and interchain hydrogen bonds. In this review we summarize the existing chemical approaches towards stabilization of this structure including the most recent developments. Currently proposed methods include manipulation of the amino acid composition, application of unnatural amino acid analogues, stimuli-responsive modifications, chain tethering approaches, peptide amphiphiles, modifications that target interchain interactions and more. This ability to manipulate the triple helix as a supramolecular self-assembly contributes to our understanding of the collagen folding. It also provides essential information needed to design collagen-based biomaterials of the future.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, University of Manitoba, Dysart Rd. 144, R3T 2N2, Winnipeg, Manitoba, Canada.
| |
Collapse
|
110
|
Santos-Moreno J, Schaerli Y. Changing the biological Rosetta stone: the (commercial) potential of recoded microbes. Microb Biotechnol 2019; 13:11-13. [PMID: 31370095 PMCID: PMC7663967 DOI: 10.1111/1751-7915.13466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
111
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
112
|
Burke AJ, Lovelock SL, Frese A, Crawshaw R, Ortmayer M, Dunstan M, Levy C, Green AP. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature 2019; 570:219-223. [PMID: 31132786 DOI: 10.1038/s41586-019-1262-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
The combination of computational design and laboratory evolution is a powerful and potentially versatile strategy for the development of enzymes with new functions1-4. However, the limited functionality presented by the genetic code restricts the range of catalytic mechanisms that are accessible in designed active sites. Inspired by mechanistic strategies from small-molecule organocatalysis5, here we report the generation of a hydrolytic enzyme that uses Nδ-methylhistidine as a non-canonical catalytic nucleophile. Histidine methylation is essential for catalytic function because it prevents the formation of unreactive acyl-enzyme intermediates, which has been a long-standing challenge when using canonical nucleophiles in enzyme design6-10. Enzyme performance was optimized using directed evolution protocols adapted to an expanded genetic code, affording a biocatalyst capable of accelerating ester hydrolysis with greater than 9,000-fold increased efficiency over free Nδ-methylhistidine in solution. Crystallographic snapshots along the evolutionary trajectory highlight the catalytic devices that are responsible for this increase in efficiency. Nδ-methylhistidine can be considered to be a genetically encodable surrogate of the widely employed nucleophilic catalyst dimethylaminopyridine11, and its use will create opportunities to design and engineer enzymes for a wealth of valuable chemical transformations.
Collapse
Affiliation(s)
- Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Sarah L Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Amina Frese
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Rebecca Crawshaw
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Mary Ortmayer
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Mark Dunstan
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Colin Levy
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
113
|
Luo SH, Yang K, Lin JY, Gao JJ, Wu XY, Wang ZY. Synthesis of amino acid derivatives of 5-alkoxy-3,4-dihalo-2(5H)-furanones and their preliminary bioactivity investigation as linkers. Org Biomol Chem 2019; 17:5138-5147. [PMID: 31073571 DOI: 10.1039/c9ob00736a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of amino acid derivatives are successfully synthesized via a metal-free C-N coupling reaction of 5-alkoxy-3,4-dihalo-2(5H)-furanones and amino acids. Their structures are well characterized with 1H NMR, 13C NMR, ESI-MS and elemental analysis. As potential linkers of the 2(5H)-furanone unit with other drug moieties containing a hydroxyl or amino group, the effect of amino acids is investigated by comparison with other 2(5H)-furanone compounds by constructing C-O/C-S bonds. The preliminary results of the biological activity assay by the MTT method on a series of cancer cell lines in vitro reveal that the introduction of amino acids basically has no toxic effect. This can lead to these 2(5H)-furanone derivatives being further well-linked with other bioactive moieties with amino or hydroxy groups as expected. Thus, the biological activity assay gives a direction for the design of bioactive 2(5H)-furanones based on these amino acid linkers.
Collapse
Affiliation(s)
- Shi-He Luo
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China. and School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Kai Yang
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China. and College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi province 341000, P. R. China.
| | - Jian-Yun Lin
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.
| | - Juan-Juan Gao
- College of Sports and Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi province 341000, P. R. China
| | - Xin-Yan Wu
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.
| | - Zhao-Yang Wang
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China. and School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
114
|
In-Cell Synthesis of Bioorthogonal Alkene Tag S-Allyl-Homocysteine and Its Coupling with Reprogrammed Translation. Int J Mol Sci 2019; 20:ijms20092299. [PMID: 31075919 PMCID: PMC6539321 DOI: 10.3390/ijms20092299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, we report our initial results on in situ biosynthesis of S-allyl-l-homocysteine (Sahc) by simple metabolic conversion of allyl mercaptan in Escherichia coli, which served as the host organism endowed with a direct sulfhydration pathway. The intracellular synthesis we describe in this study is coupled with the direct incorporation of Sahc into proteins in response to methionine codons. Together with O-acetyl-homoserine, allyl mercaptan was added to the growth medium, followed by uptake and intracellular reaction to give Sahc. Our protocol efficiently combined the in vivo synthesis of Sahc via metabolic engineering with reprogrammed translation, without the need for a major change in the protein biosynthesis machinery. Although the system needs further optimisation to achieve greater intracellular Sahc production for complete protein labelling, we demonstrated its functional versatility for photo-induced thiol-ene coupling and the recently developed phosphonamidate conjugation reaction. Importantly, deprotection of Sahc leads to homocysteine-containing proteins-a potentially useful approach for the selective labelling of thiols with high relevance in various medical settings.
Collapse
|
115
|
Narancic T, Almahboub SA, O’Connor KE. Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67. [DOI: 10.1007/s11274-019-2642-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
|
116
|
Jin X, Park OJ, Hong SH. Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications. Appl Microbiol Biotechnol 2019; 103:2947-2958. [PMID: 30790000 PMCID: PMC6449208 DOI: 10.1007/s00253-019-09690-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022]
Abstract
The natural genetic code only allows for 20 standard amino acids in protein translation, but genetic code reprogramming enables the incorporation of non-standard amino acids (NSAAs). Proteins containing NSAAs provide enhanced or novel properties and open diverse applications. With increased attention to the recent advancements in synthetic biology, various improved and novel methods have been developed to incorporate single and multiple distinct NSAAs into proteins. However, various challenges remain in regard to NSAA incorporation, such as low yield and misincorporation. In this review, we summarize the recent efforts to improve NSAA incorporation by utilizing orthogonal translational system optimization, cell-free protein synthesis, genomically recoded organisms, artificial codon boxes, quadruplet codons, and orthogonal ribosomes, before closing with a discussion of the emerging applications of NSAA incorporation.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Oh-Jin Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
117
|
Kofoed C, Riesenberg S, Šmolíková J, Meldal M, Schoffelen S. Semisynthesis of an Active Enzyme by Quantitative Click Ligation. Bioconjug Chem 2019; 30:1169-1174. [PMID: 30883092 DOI: 10.1021/acs.bioconjchem.9b00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The incorporation of clickable noncanonical amino acids (ncAAs) has proven to an invaluable tool in chemical biology and protein science research. Nevertheless, the number of examples in which the method is used for preparative purposes is extremely limited. We report the synthesis of an active enzyme by quantitative, Cu(I)-catalyzed ligation of two inactive protein halves, expressed and equipped with an azide and alkyne moiety, respectively, through ncAA incorporation. The reported quantitative conversion is exceptional given the large size of the protein fragments and the fact that no linker or excess of either of the polypeptides was used. The triazole bridge formed between the ncAA side chains was shown to effectively mimic a natural protein loop, providing an enzyme with the same activity as its natural counterpart. We envision that this strategy, termed split-click protein chemistry, can be used for the production of proteins that are difficult to express as full-length entities. It also paves the way for the design of new proteins with tailor-made functionalities.
Collapse
Affiliation(s)
- Christian Kofoed
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Stephan Riesenberg
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Jaroslava Šmolíková
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Sanne Schoffelen
- Center for Evolutionary Chemical Biology, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| |
Collapse
|
118
|
Abstract
Many artificial enzymes that catalyze redox reactions have important energy, environmental, and medical applications. Native metalloenzymes use a set of redox-active amino acids and cofactors as redox centers, with a potential range between -700 and +800 mV versus standard hydrogen electrode (SHE, all reduction potentials are versus SHE). The redox potentials and the orientation of redox centers in native metalloproteins are optimal for their redox chemistry. However, the limited number and potential range of native redox centers challenge the design and optimization of novel redox chemistry in metalloenzymes. Artificial metalloenzymes use non-native redox centers and could go far beyond the natural range of redox potentials for novel redox chemistry. In addition to designing protein monomers, strategies for increasing the electron transfer rate in self-assembled protein complexes and protein-electrode or -nanomaterial interfaces will be discussed. Redox reactions in proteins occur on redox active amino acid residues (Tyr, Trp, Met, Cys, etc.) and cofactors (iron sulfur clusters, flavin, heme, etc.). The redox potential of these redox centers cover a ∼1.5 V range and is optimized for their specific functions. Despite recent progress, tuning the redox potential for amino acid residues or cofactors remains challenging. Many redox-active unnatural amino acids (UAAs) can be incorporated into protein via genetic codon expansion. Their redox potentials extend the range of physiologically relevant potentials. Indeed, installing new redox cofactors with fined-tuned redox potentials is essential for designing novel redox enzymes. By combining UAA and redox cofactor incorporation, we harnessed light energy to reduce CO2 in a fluorescent protein, mimicking photosynthetic apparatus in nature. Manipulating the position and reduction potential of redox centers inside proteins is important for optimizing the electron transfer rate and the activity of artificial enzymes. Learning from the native electron transfer complex, protein-protein interactions can be enhanced by increasing the electrostatic interaction between proteins. An artificial oxidase showed close to native enzyme activity with optimized interaction with electron transfer partner and increased electron transfer efficiency. In addition to the de novo design of protein-protein interaction, protein self-assembly methods using scaffolds, such as proliferating cell nuclear antigen, to efficiently anchor enzymes and their redox partners. The self-assembly process enhances electron transfer efficiency and enzyme activity by bringing redox centers into close proximity of each other. In addition to protein self-assembly, protein-electrode or protein-nanomaterial self-assembly can also promote efficient electron transfer from inorganic materials to enzyme active sites. Such hybrid systems combine the efficiency of enzyme reactions and the robustness of electrodes or nanomaterials, often with advantageous catalytic activities. By combining these strategies, we can not only mimic some of nature's most fascinating reactions, such as photosynthesis and aerobic respiration, but also transcend nature toward environmental, energy, and health applications.
Collapse
Affiliation(s)
- Yang Yu
- Department of Biochemical Engineering and Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
119
|
Mayer C. Selection, Addiction and Catalysis: Emerging Trends for the Incorporation of Noncanonical Amino Acids into Peptides and Proteins in Vivo. Chembiochem 2019; 20:1357-1364. [PMID: 30618145 PMCID: PMC6563710 DOI: 10.1002/cbic.201800733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Expanding the genetic code of organisms by incorporating noncanonical amino acids (ncAAs) into target proteins through the suppression of stop codons in vivo has profoundly impacted how we perform protein modification or detect proteins and their interaction partners in their native environment. Yet, with genetic code expansion strategies maturing over the past 15 years, new applications that make use—or indeed repurpose—these techniques are beginning to emerge. This Concept article highlights three of these developments: 1) The incorporation of ncAAs for the biosynthesis and selection of bioactive macrocyclic peptides with novel ring architectures, 2) synthetic biocontainment strategies based on the addiction of microorganisms to ncAAs, and 3) enzyme design strategies, in which ncAAs with unique functionalities enable the catalysis of new‐to‐nature reactions. Key advances in all three areas are presented and potential future applications discussed.
Collapse
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
120
|
Schneider T, Gavrilova I, Budisa N. Synthesis of a new metal chelating amino acid: Terpyridyl-alanine. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
121
|
Reetz MT. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts? Acc Chem Res 2019; 52:336-344. [PMID: 30689339 DOI: 10.1021/acs.accounts.8b00582] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition metal catalysts mediate a wide variety of chemo-, stereo-, and regioselective transformations, and therefore play a pivotal role in modern synthetic organic chemistry. Steric and electronic effects of ligands provide organic chemists with an exceedingly useful tool. More than four decades ago, chemists began to think about a different approach, namely, embedding achiral ligand/metal moieties covalently or noncovalently in protein hosts with formation of artificial metalloenzymes. While structurally fascinating, this approach led in each case only to a single (bio)catalyst, with its selectivity and activity being a matter of chance. In order to solve this fundamental problem, my group proposed in 2000-2002 the idea of directed evolution of artificial metalloenzymes. In earlier studies, we had already demonstrated that directed evolution of enzymes constitutes a viable method for enhancing and inverting the stereoselectivity of enzymes as catalysts in organic chemistry. We speculated that it should also be possible to manipulate selectivity and activity of artificial metalloenzymes, which would provide organic chemists with a tool for optimizing essentially any transition metal catalyzed reaction type. In order to put this vision into practice, we first turned to the Whitesides system for artificial metalloenzyme formation, comprising a biotinylated diphosphine/Rh moiety, which is anchored noncovalently to avidin or streptavidin. Following intensive optimization, proof of principle was finally demonstrated in 2006, which opened the door to a new research area. This personal Account critically assesses these early studies as well as subsequent efforts from my group focusing on different protein scaffolds, and includes briefly some of the most important current contributions of other groups. Two primary messages emerge: First, since organic chemists continue to be extremely good at designing and implementing man-made transition metal catalysts, often on a large scale, those scientists that are active in the equally intriguing field of directed evolution of artificial metalloenzymes should be moderate when generalizing claims. All factors required for a truly viable catalytic system need to be considered, especially activity and ease of upscaling. Second, the most exciting and thus far very rare cases of directed evolution of artificial metalloenzymes are those that focus on selective transformations that are not readily possible using state of the art transition metal catalysts.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim Germany
| |
Collapse
|
122
|
Mayer C, Dulson C, Reddem E, Thunnissen AWH, Roelfes G. Directed Evolution of a Designer Enzyme Featuring an Unnatural Catalytic Amino Acid. Angew Chem Int Ed Engl 2019; 58:2083-2087. [PMID: 30575260 PMCID: PMC6519144 DOI: 10.1002/anie.201813499] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 11/15/2022]
Abstract
The impressive rate accelerations that enzymes display in nature often result from boosting the inherent catalytic activities of side chains by their precise positioning inside a protein binding pocket. Such fine-tuning is also possible for catalytic unnatural amino acids. Specifically, the directed evolution of a recently described designer enzyme, which utilizes an aniline side chain to promote a model hydrazone formation reaction, is reported. Consecutive rounds of directed evolution identified several mutations in the promiscuous binding pocket, in which the unnatural amino acid is embedded in the starting catalyst. When combined, these mutations boost the turnover frequency (kcat ) of the designer enzyme by almost 100-fold. This results from strengthening the catalytic contribution of the unnatural amino acid, as the engineered designer enzymes outperform variants, in which the aniline side chain is replaced with a catalytically inactive tyrosine residue, by more than 200-fold.
Collapse
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Christopher Dulson
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Eswar Reddem
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Andy‐Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| |
Collapse
|
123
|
Mayer C, Dulson C, Reddem E, Thunnissen AMWH, Roelfes G. Directed Evolution of a Designer Enzyme Featuring an Unnatural Catalytic Amino Acid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Christopher Dulson
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Eswar Reddem
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| |
Collapse
|
124
|
Robalo JR, Vila Verde A. Unexpected trends in the hydrophobicity of fluorinated amino acids reflect competing changes in polarity and conformation. Phys Chem Chem Phys 2019; 21:2029-2038. [DOI: 10.1039/c8cp07025c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hydration free energy of fluorinated amino acids is calculated with molecular simulations and explained with an analytical model.
Collapse
Affiliation(s)
- João R. Robalo
- Max Planck Institute for Colloids and Interfaces
- Department of Theory & Bio-systems
- Science Park
- Potsdam 14424
- Germany
| | - Ana Vila Verde
- Max Planck Institute for Colloids and Interfaces
- Department of Theory & Bio-systems
- Science Park
- Potsdam 14424
- Germany
| |
Collapse
|
125
|
Won Y, Jeon H, Pagar AD, Patil MD, Nadarajan SP, Flood DT, Dawson PE, Yun H. In vivo biosynthesis of tyrosine analogs and their concurrent incorporation into a residue-specific manner for enzyme engineering. Chem Commun (Camb) 2019; 55:15133-15136. [DOI: 10.1039/c9cc08503c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A cellular system for the in vivo biosynthesis of Tyr-analogs and their concurrent incorporation into target proteins is reported.
Collapse
Affiliation(s)
- Yumi Won
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Mahesh D. Patil
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | | | - Dillon T. Flood
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Philip E. Dawson
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Hyungdon Yun
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| |
Collapse
|
126
|
Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation. Genes (Basel) 2018; 10:genes10010017. [PMID: 30597824 PMCID: PMC6356944 DOI: 10.3390/genes10010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023] Open
Abstract
The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution. Here, we present the strategies that have been utilized to fundamentally alter the genetic code in its decoding rules or its molecular representation and anticipate future avenues in the pursuit of robust biocontainment.
Collapse
|
127
|
Schnepel C, Kemker I, Sewald N. One-Pot Synthesis of d-Halotryptophans by Dynamic Stereoinversion Using a Specific l-Amino Acid Oxidase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Schnepel
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| | - Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| |
Collapse
|
128
|
Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ. Extending the application of biocatalysis to meet the challenges of drug development. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0055-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
129
|
Boville CE, Scheele RA, Koch P, Brinkmann-Chen S, Buller AR, Arnold FH. Engineered Biosynthesis of β-Alkyl Tryptophan Analogues. Angew Chem Int Ed Engl 2018; 57:14764-14768. [PMID: 30215880 DOI: 10.1002/anie.201807998] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Indexed: 11/12/2022]
Abstract
Noncanonical amino acids (ncAAs) with dual stereocenters at the α and β positions are valuable precursors to natural products and therapeutics. Despite the potential applications of such bioactive β-branched ncAAs, their availability is limited due to the inefficiency of the multistep methods used to prepare them. Herein we report a stereoselective biocatalytic synthesis of β-branched tryptophan analogues using an engineered variant of Pyrococcus furiosus tryptophan synthase (PfTrpB), PfTrpB7E6 . PfTrpB7E6 is the first biocatalyst to synthesize bulky β-branched tryptophan analogues in a single step, with demonstrated access to 27 ncAAs. The molecular basis for the efficient catalysis and broad substrate tolerance of PfTrpB7E6 was explored through X-ray crystallography and UV/Vis spectroscopy, which revealed that a combination of active-site and remote mutations increase the abundance and persistence of a key reactive intermediate. PfTrpB7E6 provides an operationally simple and environmentally benign platform for the preparation of β-branched tryptophan building blocks.
Collapse
Affiliation(s)
- Christina E Boville
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - Remkes A Scheele
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - Philipp Koch
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| |
Collapse
|
130
|
Boville CE, Scheele RA, Koch P, Brinkmann-Chen S, Buller AR, Arnold FH. Engineered Biosynthesis of β-Alkyl Tryptophan Analogues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807998] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Christina E. Boville
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| | - Remkes A. Scheele
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| | - Philipp Koch
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| | - Andrew R. Buller
- Department of Chemistry; University of Wisconsin; 1101 University Avenue Madison WI 53706 USA
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| |
Collapse
|
131
|
Ing NL, El-Naggar MY, Hochbaum AI. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. J Phys Chem B 2018; 122:10403-10423. [DOI: 10.1021/acs.jpcb.8b07431] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
132
|
Abstract
In the period 1985 to 1995 applications of biocatalysis, driven by the need for more sustainable manufacture of chemicals and catalytic, (enantio)selective methods for the synthesis of pharmaceutical intermediates, largely involved the available hydrolases. This was followed, in the next two decades, by revolutionary developments in protein engineering and directed evolution for the optimisation of enzyme function and performance that totally changed the biocatalysis landscape. In the same period, metabolic engineering and synthetic biology revolutionised the use of whole cell biocatalysis in the synthesis of commodity chemicals by fermentation. In particular, developments in the enzymatic enantioselective synthesis of chiral alcohols and amines are highlighted. Progress in enzyme immobilisation facilitated applications under harsh industrial conditions, such as in organic solvents. The emergence of biocatalytic or chemoenzymatic cascade processes, often with co-immobilised enzymes, has enabled telescoping of multi-step processes. Discovering and inventing new biocatalytic processes, based on (meta)genomic sequencing, evolving enzyme promiscuity, chemomimetic biocatalysis, artificial metalloenzymes, and the introduction of non-canonical amino acids into proteins, are pushing back the limits of biocatalysis function. Finally, the integral role of biocatalysis in developing a biobased carbon-neutral economy is discussed.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
133
|
Zirconocene-catalysed biodiesel synthesis from vegetable oil with high free fatty acid contents. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
134
|
Pelay‐Gimeno M, Bange T, Hennig S, Grossmann TN. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme. Angew Chem Int Ed Engl 2018; 57:11164-11170. [PMID: 29847004 PMCID: PMC6120448 DOI: 10.1002/anie.201804506] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. Thus far, macrocyclization approaches utilize a very limited structural diversity, which complicates the design process. Herein, we report an approach that enables cyclization through the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface-exposed cysteine residues, which are reacted with a triselectrophile, resulting in the in situ cyclization of the protein (INCYPRO). A bicyclic version of sortase A was designed that exhibits increased tolerance towards thermal as well as chemical denaturation, and proved to be efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain, resulting in up to 24 °C increased thermal stability.
Collapse
Affiliation(s)
- Marta Pelay‐Gimeno
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tanja Bange
- Department of Mechanistic Cell BiologyMax-Planck Institute of Molecular PhysiologyOtto-Hahn-Str. 1144227DortmundGermany
- Department for Systems ChronobiologyLMU MunichGoethe-Str. 3180336MunichGermany
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
135
|
Zhou J, Wang Y, Chen J, Xu M, Yang T, Zheng J, Zhang X, Rao Z. Rational Engineering of Bacillus cereus
Leucine Dehydrogenase Towards α-keto Acid Reduction for Improving Unnatural Amino Acid Production. Biotechnol J 2018; 14:e1800253. [DOI: 10.1002/biot.201800253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junping Zhou
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Yaling Wang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Jiajie Chen
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Junxian Zheng
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| |
Collapse
|
136
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
137
|
Zou H, Li L, Zhang T, Shi M, Zhang N, Huang J, Xian M. Biosynthesis and biotechnological application of non-canonical amino acids: Complex and unclear. Biotechnol Adv 2018; 36:1917-1927. [PMID: 30063950 DOI: 10.1016/j.biotechadv.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
Compared with the better-studied canonical amino acids, the distribution, metabolism and functions of natural non-canonical amino acids remain relatively obscure. Natural non-canonical amino acids have been mainly discovered in plants as secondary metabolites that perform diversified physiological functions. Due to their specific characteristics, a broader range of natural and artificial non-canonical amino acids have recently been applied in the development of functional materials and pharmaceutical products. With the rapid development of advanced methods in biotechnology, non-canonical amino acids can be incorporated into peptides, proteins and enzymes to improve the function and performance relative to their natural counterparts. Therefore, biotechnological application of non-canonical amino acids in artificial bio-macromolecules follows the central goal of synthetic biology to: create novel life forms and functions. However, many of the non-canonical amino acids are synthesized via chemo- or semi-synthetic methods, and few non-canonical amino acids can be synthesized using natural in vivo pathways. Therefore, further research is needed to clarify the metabolic pathways and key enzymes of the non-canonical amino acids. This will lead to the discovery of more candidate non-canonical amino acids, especially for those that are derived from microorganisms and are naturally bio-compatible with chassis strains for in vivo biosynthesis. In this review, we summarize representative natural and artificial non-canonical amino acids, their known information regarding associated metabolic pathways, their characteristics and their practical applications. Moreover, this review summarizes current barriers in developing in vivo pathways for the synthesis of non-canonical amino acids, as well as other considerations, future trends and potential applications of non-canonical amino acids in advanced biotechnology.
Collapse
Affiliation(s)
- Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Lei Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tongtong Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingling Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
138
|
A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat Chem 2018; 10:946-952. [PMID: 29967395 DOI: 10.1038/s41557-018-0082-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 05/15/2018] [Indexed: 11/08/2022]
Abstract
Creating designer enzymes with the ability to catalyse abiological transformations is a formidable challenge. Efforts toward this goal typically consider only canonical amino acids in the initial design process. However, incorporating unnatural amino acids that feature uniquely reactive side chains could significantly expand the catalytic repertoire of designer enzymes. To explore the potential of such artificial building blocks for enzyme design, here we selected p-aminophenylalanine as a potentially novel catalytic residue. We demonstrate that the catalytic activity of the aniline side chain for hydrazone and oxime formation reactions is increased by embedding p-aminophenylalanine into the hydrophobic pore of the multidrug transcriptional regulator from Lactococcus lactis. Both the recruitment of reactants by the promiscuous binding pocket and a judiciously placed aniline that functions as a catalytic residue contribute to the success of the identified artificial enzyme. We anticipate that our design strategy will prove rewarding to significantly expand the catalytic repertoire of designer enzymes in the future.
Collapse
|
139
|
Pelay-Gimeno M, Bange T, Hennig S, Grossmann TN. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Pelay-Gimeno
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Tanja Bange
- Department of Mechanistic Cell Biology; Max-Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
- Department for Systems Chronobiology; LMU Munich; Goethe-Str. 31 80336 Munich Germany
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Tom N. Grossmann
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
140
|
Flood DT, Yan NL, Dawson PE. Post-Translational Backbone Engineering through Selenomethionine-Mediated Incorporation of Freidinger Lactams. Angew Chem Int Ed Engl 2018; 57:8697-8701. [PMID: 29797386 DOI: 10.1002/anie.201804885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/16/2018] [Indexed: 11/11/2022]
Abstract
Amino-γ-lactam (Agl) bridged dipeptides, commonly known as Freidinger lactams, have been shown to constrain peptide backbone topology and stabilize type II' β-turns. The utility of these links as peptide constraints has inspired new approaches to their incorporation into complex peptides and peptoids, all of which require harsh reaction conditions or protecting groups that limit their use on unprotected peptides and proteins. Herein, we employ a mild and selective alkylation of selenomethionine in acidic aqueous solution, followed by immobilization of the alkylated peptide on to bulk reverse-phase C18 silica and base-induced lactamization in DMSO. The utilization of selenomethionine, which is readily introduced by synthesis or expression, and the mild conditions enable selective backbone engineering in complex peptide and protein systems.
Collapse
Affiliation(s)
- Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
141
|
Flood DT, Yan NL, Dawson PE. Post‐Translational Backbone Engineering through Selenomethionine‐Mediated Incorporation of Freidinger Lactams. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dillon T. Flood
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Nicholas L. Yan
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Philip E. Dawson
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
142
|
Hernández K, Szekrenyi A, Clapés P. Nucleophile Promiscuity of Natural and Engineered Aldolases. Chembiochem 2018; 19:1353-1358. [DOI: 10.1002/cbic.201800135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Karel Hernández
- Department of Chemical Biology and Molecular Modelling; Catalonia Institute for Advanced Chemistry IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Anna Szekrenyi
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Pere Clapés
- Department of Chemical Biology and Molecular Modelling; Catalonia Institute for Advanced Chemistry IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
143
|
Schneider T, Kubyshkin V, Budisa N. Synthesis of a Photo-Caged DOPA Derivative by Selective Alkylation of 3,4-Dihydroxybenzaldehyde. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tobias Schneider
- Institute of Chemistry; Technical University of Berlin; Müller-Breslau-Str., 10 10623 Berlin Germany
| | - Vladimir Kubyshkin
- Institute of Chemistry; Technical University of Berlin; Müller-Breslau-Str., 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institute of Chemistry; Technical University of Berlin; Müller-Breslau-Str., 10 10623 Berlin Germany
| |
Collapse
|
144
|
Baumann T, Schmitt FJ, Pelzer A, Spiering VJ, Freiherr von Sass GJ, Friedrich T, Budisa N. Engineering 'Golden' Fluorescence by Selective Pressure Incorporation of Non-canonical Amino Acids and Protein Analysis by Mass Spectrometry and Fluorescence. J Vis Exp 2018. [PMID: 29757279 PMCID: PMC6100899 DOI: 10.3791/57017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Fluorescent proteins are fundamental tools for the life sciences, in particular for fluorescence microscopy of living cells. While wild-type and engineered variants of the green fluorescent protein from Aequorea victoria (avGFP) as well as homologs from other species already cover large parts of the optical spectrum, a spectral gap remains in the near-infrared region, for which avGFP-based fluorophores are not available. Red-shifted fluorescent protein (FP) variants would substantially expand the toolkit for spectral unmixing of multiple molecular species, but the naturally occurring red-shifted FPs derived from corals or sea anemones have lower fluorescence quantum yield and inferior photo-stability compared to the avGFP variants. Further manipulation and possible expansion of the chromophore's conjugated system towards the far-red spectral region is also limited by the repertoire of 20 canonical amino acids prescribed by the genetic code. To overcome these limitations, synthetic biology can achieve further spectral red-shifting via insertion of non-canonical amino acids into the chromophore triad. We describe the application of SPI to engineer avGFP variants with novel spectral properties. Protein expression is performed in a tryptophan-auxotrophic E. coli strain and by supplementing growth media with suitable indole precursors. Inside the cells, these precursors are converted to the corresponding tryptophan analogs and incorporated into proteins by the ribosomal machinery in response to UGG codons. The replacement of Trp-66 in the enhanced "cyan" variant of avGFP (ECFP) by an electron-donating 4-aminotryptophan results in GdFP featuring a 108 nm Stokes shift and a strongly red-shifted emission maximum (574 nm), while being thermodynamically more stable than its predecessor ECFP. Residue-specific incorporation of the non-canonical amino acid is analyzed by mass spectrometry. The spectroscopic properties of GdFP are characterized by time-resolved fluorescence spectroscopy as one of the valuable applications of genetically encoded FPs in life sciences.
Collapse
Affiliation(s)
- Tobias Baumann
- Institute of Chemistry L 1, Department of Biocatalysis, Technical University of Berlin
| | - Franz-Josef Schmitt
- Institute of Chemistry PC 14, Department of Bioenergetics, Technical University of Berlin
| | - Almut Pelzer
- Institute of Chemistry L 1, Department of Biocatalysis, Technical University of Berlin
| | - Vivian Jeanette Spiering
- Institute of Chemistry TC 7, Department of Physical Chemistry/Molecular Material Sciences, Technical University of Berlin
| | | | - Thomas Friedrich
- Institute of Chemistry PC 14, Department of Bioenergetics, Technical University of Berlin;
| | - Nediljko Budisa
- Institute of Chemistry L 1, Department of Biocatalysis, Technical University of Berlin
| |
Collapse
|
145
|
García-Pindado J, Willemse T, Goss R, Maes BUW, Giralt E, Ballet S, Teixidó M. Bromotryptophans and their incorporation in cyclic and bicyclic privileged peptides. Biopolymers 2018. [DOI: 10.1002/bip.23112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Júlia García-Pindado
- Institute for Research in Biomedicine (IRB Barcelona), Chemistry and Molecular Pharmacology Program, Barcelona Institute of Science and Technology (BIST); Barcelona 08028 Spain
| | - Tom Willemse
- Research Group of Organic, Department of Chemistry; Vrije Universiteit Brussel; Brussels 1050 Belgium
- Research Group of Organic, Department of Bioengineering Sciences; Vrije Universiteit Brussel; Brussels 1050 Belgium
- Organic Synthesis; University of Antwerp; Antwerp B-2020 Belgium
| | - Rebecca Goss
- School of Chemistry and BSRC; University of St Andrews; St Andrews KY16 9ST United Kingdom
| | - Bert U. W. Maes
- Organic Synthesis; University of Antwerp; Antwerp B-2020 Belgium
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Chemistry and Molecular Pharmacology Program, Barcelona Institute of Science and Technology (BIST); Barcelona 08028 Spain
- Department of Inorganic and Organic Chemistry; University of Barcelona; Barcelona 08028 Spain
| | - Steven Ballet
- Research Group of Organic, Department of Chemistry; Vrije Universiteit Brussel; Brussels 1050 Belgium
- Research Group of Organic, Department of Bioengineering Sciences; Vrije Universiteit Brussel; Brussels 1050 Belgium
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Chemistry and Molecular Pharmacology Program, Barcelona Institute of Science and Technology (BIST); Barcelona 08028 Spain
| |
Collapse
|
146
|
Getting Momentum: From Biocatalysis to Advanced Synthetic Biology. Trends Biochem Sci 2018; 43:180-198. [DOI: 10.1016/j.tibs.2018.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 11/20/2022]
|
147
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
148
|
Kubyshkin V, Acevedo-Rocha CG, Budisa N. On universal coding events in protein biogenesis. Biosystems 2018; 164:16-25. [DOI: 10.1016/j.biosystems.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
|
149
|
Yu Y, Hu C, Xia L, Wang J. Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03754] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Yu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Cheng Hu
- Laboratory
of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Lin Xia
- Center
for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiangyun Wang
- Laboratory
of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
150
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|