101
|
Abstract
Micro- and nano-motors are emerging as novel drug delivery platforms, offering advantages such as rapid drug transport, high tissue penetration and motion controllability. They can be propelled and/or guided by endogenous (i.e., chemotaxis) or exogenous stimuli (e.g., ultrasound, magnetic fields, light) toward the area of interest. Moreover, such stimuli can be used to trigger the release of a therapeutic payload when the motor reaches certain location in order to improve the drug targeting. In this review article, we highlight medically oriented micro-/nano-motors, in particular the ones created for targeted drug delivery, and discuss their current limitations and possibilities toward in vivo applications.
Collapse
|
102
|
Ning H, Zhang Y, Zhu H, Ingham A, Huang G, Mei Y, Solovev AA. Geometry Design, Principles and Assembly of Micromotors. MICROMACHINES 2018; 9:E75. [PMID: 30393351 PMCID: PMC6187850 DOI: 10.3390/mi9020075] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023]
Abstract
Discovery of bio-inspired, self-propelled and externally-powered nano-/micro-motors, rotors and engines (micromachines) is considered a potentially revolutionary paradigm in nanoscience. Nature knows how to combine different elements together in a fluidic state for intelligent design of nano-/micro-machines, which operate by pumping, stirring, and diffusion of their internal components. Taking inspirations from nature, scientists endeavor to develop the best materials, geometries, and conditions for self-propelled motion, and to better understand their mechanisms of motion and interactions. Today, microfluidic technology offers considerable advantages for the next generation of biomimetic particles, droplets and capsules. This review summarizes recent achievements in the field of nano-/micromotors, and methods of their external control and collective behaviors, which may stimulate new ideas for a broad range of applications.
Collapse
Affiliation(s)
- Huanpo Ning
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Yan Zhang
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Hong Zhu
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Andreas Ingham
- Department of Biology, University of Copenhagen, 5 Ole Maaløes Vej, DK-2200, 1165 København, Denmark.
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| |
Collapse
|
103
|
Hansen-Bruhn M, de Ávila BEF, Beltrán-Gastélum M, Zhao J, Ramírez-Herrera DE, Angsantikul P, Vesterager Gothelf K, Zhang L, Wang J. Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound-Propelled Nanomotors. Angew Chem Int Ed Engl 2018; 57:2657-2661. [PMID: 29325201 DOI: 10.1002/anie.201713082] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Direct and rapid intracellular delivery of a functional Cas9/sgRNA complex using ultrasound-powered nanomotors is reported. The Cas9/sgRNA complex is loaded onto the nanomotor surface through a reversible disulfide linkage. A 5 min ultrasound treatment enables the Cas9/sgRNA-loaded nanomotors to directly penetrate through the plasma membrane of GFP-expressing B16F10 cells. The Cas9/sgRNA is released inside the cells to achieve highly effective GFP gene knockout. The acoustic Cas9/sgRNA-loaded nanomotors display more than 80 % GFP knockout within 2 h of cell incubation compared to 30 % knockout using static nanowires. More impressively, the nanomotors enable highly efficient knockout with just 0.6 nm of the Cas9/sgRNA complex. This nanomotor-based intracellular delivery method thus offers an attractive route to overcome physiological barriers for intracellular delivery of functional proteins and RNAs, thus indicating considerable promise for highly efficient therapeutic applications.
Collapse
Affiliation(s)
- Malthe Hansen-Bruhn
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Jing Zhao
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | - Pavimol Angsantikul
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kurt Vesterager Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Liangfang Zhang
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Joseph Wang
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
104
|
Hansen‐Bruhn M, de Ávila BE, Beltrán‐Gastélum M, Zhao J, Ramírez‐Herrera DE, Angsantikul P, Vesterager Gothelf K, Zhang L, Wang J. Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound‐Propelled Nanomotors. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malthe Hansen‐Bruhn
- University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | | | | | - Jing Zhao
- University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | | | | | - Kurt Vesterager Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | - Liangfang Zhang
- University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Joseph Wang
- University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
105
|
Tu Y, Peng F, Wilson DA. Motion Manipulation of Micro- and Nanomotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28841755 DOI: 10.1002/adma.201701970] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/23/2017] [Indexed: 05/05/2023]
Abstract
Inspired by the self-migration of microorganisms in nature, artificial micro- and nanomotors can mimic this fantastic behavior by converting chemical fuel or external energy into mechanical motion. These self-propelled micro- and nanomotors, designed either by top-down or bottom-up approaches, are able to achieve different applications, such as environmental remediation, sensing, cargo/sperm transportation, drug delivery, and even precision micro-/nanosurgery. For these various applications, especially biomedical applications, regulating on-demand the motion of micro- and nanomotors is quite essential. However, it remains a continuing challenge to increase the controllability over motors themselves. Here, we will discuss the recent advancements regarding the motion manipulation of micro- and nanomotors by different approaches.
Collapse
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
106
|
Itel F, Schattling PS, Zhang Y, Städler B. Enzymes as key features in therapeutic cell mimicry. Adv Drug Deliv Rev 2017; 118:94-108. [PMID: 28916495 DOI: 10.1016/j.addr.2017.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022]
Abstract
Cell mimicry is a nature inspired concept that aims to substitute for missing or lost (sub)cellular function. This review focuses on the latest advancements in the use of enzymes in cell mimicry for encapsulated catalysis and artificial motility in synthetic bottom-up assemblies with emphasis on the biological response in cell culture or more rarely in animal models. Entities across the length scale from nano-sized enzyme mimics, sub-micron sized artificial organelles and self-propelled particles (swimmers) to micron-sized artificial cells are discussed. Although the field remains in its infancy, the primary aim of this review is to illustrate the advent of nature-mimicking artificial molecules and assemblies on their way to become a complementary alternative to their role models for diverse biomedical purposes.
Collapse
Affiliation(s)
- Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark.
| |
Collapse
|
107
|
Tu Y, Peng F, White PB, Wilson DA. Redox-Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angew Chem Int Ed Engl 2017; 56:7620-7624. [PMID: 28489266 PMCID: PMC5488187 DOI: 10.1002/anie.201703276] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/02/2017] [Indexed: 12/05/2022]
Abstract
The development of artificial nanomotor systems that are stimuli-responsive is still posing many challenges. Herein, we demonstrate the self-assembly of a redox-responsive stomatocyte nanomotor system, which can be used for triggered drug release under biological reducing conditions. The redox sensitivity was introduced by incorporating a disulfide bridge between the hydrophilic poly(ethylene glycol) block and the hydrophobic polystyrene block. When incubated with the endogenous reducing agent glutathione at a concentration comparable to that within cells, the external PEG shells of these stimuli-responsive nanomotors are cleaved. The specific bowl-shaped stomatocytes aggregate after the treatment with glutathione, leading to the loss of motion and triggered drug release. These novel redox-responsive nanomotors can not only be used for remote transport but also for drug delivery, which is promising for future biomedical applications.
Collapse
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Fei Peng
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Paul B. White
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
108
|
Llopis-Lorente A, de Luis B, García-Fernández A, Díez P, Sánchez A, Dolores Marcos M, Villalonga R, Martínez-Máñez R, Sancenón F. Au–Mesoporous silica nanoparticles gated with disulfide-linked oligo(ethylene glycol) chains for tunable cargo delivery mediated by an integrated enzymatic control unit. J Mater Chem B 2017; 5:6734-6739. [DOI: 10.1039/c7tb02045g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acetylcholinesterase-functionalized Au–mesoporous silica capped with a thiol-responsive gate is reported.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universitat Politècnica de València-Universitat de València
- Spain
- Departamento de Química
- Universitat Politècnica de València
| | - Beatriz de Luis
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universitat Politècnica de València-Universitat de València
- Spain
- Departamento de Química
- Universitat Politècnica de València
| | - Alba García-Fernández
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universitat Politècnica de València-Universitat de València
- Spain
- Departamento de Química
- Universitat Politècnica de València
| | - Paula Díez
- Nanosensors & Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040 Madrid
| | - Alfredo Sánchez
- Nanosensors & Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040 Madrid
| | - M. Dolores Marcos
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universitat Politècnica de València-Universitat de València
- Spain
- Departamento de Química
- Universitat Politècnica de València
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040 Madrid
| | - Ramón Martínez-Máñez
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universitat Politècnica de València-Universitat de València
- Spain
- Departamento de Química
- Universitat Politècnica de València
| | - Félix Sancenón
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universitat Politècnica de València-Universitat de València
- Spain
- Departamento de Química
- Universitat Politècnica de València
| |
Collapse
|