101
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
102
|
Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol 2015; 13:63. [PMID: 26248466 PMCID: PMC4528719 DOI: 10.1186/s12915-015-0168-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Insulators play a central role in gene regulation, chromosomal architecture and genome function in higher eukaryotes. To learn more about how insulators carry out their diverse functions, we have begun an analysis of the Drosophila CTCF (dCTCF). CTCF is one of the few insulator proteins known to be conserved from flies to man. Results In the studies reported here we have focused on the identification and characterization of two dCTCF protein interaction modules. The first mediates dCTCF multimerization, while the second mediates dCTCF–CP190 interactions. The multimerization domain maps in the N-terminus of the dCTCF protein and likely mediates the formation of tetrameric complexes. The CP190 interaction module encompasses a sequence ~200 amino acids long that spans the C-terminal and mediates interactions with the N-terminal BTB domain of the CP190 protein. Transgene rescue experiments showed that a dCTCF protein lacking sequences critical for CP190 interactions was almost as effective as wild type in rescuing the phenotypic effects of a dCTCF null allele. The mutation did, however, affect CP190 recruitment to specific Drosophila insulator elements and had a modest effect on dCTCF chromatin association. A protein lacking the N-terminal dCTCF multimerization domain incompletely rescued the zygotic and maternal effect lethality of the null and did not rescue the defects in Abd-B regulation evident in surviving adult dCTCF mutant flies. Finally, we show that elimination of maternally contributed dCTCF at the onset of embryogenesis has quite different effects on development and Abd-B regulation than is observed when the homozygous mutant animals develop in the presence of maternally derived dCTCF activity. Conclusions Our results indicate that dCTCF–CP190 interactions are less critical for the in vivo functions of the dCTCF protein than the N-terminal dCTCF–dCTCF interaction domain. We also show that the phenotypic consequences of dCTCF mutations differ depending upon when and how dCTCF activity is lost. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0168-7) contains supplementary material, which is available to authorized users.
Collapse
|
103
|
Abstract
Chromatin, once thought to serve only as a means to package DNA, is now recognized as a major regulator of gene activity. As a result of the wide range of methods used to describe the numerous levels of chromatin organization, the terminology that has emerged to describe these organizational states is often imprecise and sometimes misleading. In this review, we discuss our current understanding of chromatin architecture and propose terms to describe the various biochemical and structural states of chromatin.
Collapse
Affiliation(s)
- Liron Even-Faitelson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | | | - Zahra Baghestani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - David P Bazett-Jones
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
104
|
Abstract
Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains' organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization.
Collapse
|
105
|
Abstract
Female mammalian cells compensate dosage of X-linked gene expression through the inactivation of one of their two X chromosomes. X chromosome inactivation (XCI) in eutherians is dependent on the non-coding RNA Xist that is up-regulated from the future inactive X chromosome, coating it and recruiting factors involved in silencing and altering its chromatin state. Xist lies within the X-inactivation center (Xic), a region on the X that is required for XCI, and is regulated in cis by elements on the X chromosome and in trans by diffusible factors. In this review, we summarize the latest results in cis- and trans-regulation of the Xic. We discuss how the organization of the Xic in topologically associating domains is important for XCI (cis-regulation) and how proteins in the pluripotent state and upon development or differentiation of embryonic stem cells control proper inactivation of one X chromosome (trans-regulation).
Collapse
|
106
|
Maksimenko O, Gasanov NB, Georgiev P. Regulatory Elements in Vectors for Efficient Generation of Cell Lines Producing Target Proteins. Acta Naturae 2015; 7:15-26. [PMID: 26483956 PMCID: PMC4610161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date, there has been an increasing number of drugs produced in mammalian cell cultures. In order to enhance the expression level and stability of target recombinant proteins in cell cultures, various regulatory elements with poorly studied mechanisms of action are used. In this review, we summarize and discuss the potential mechanisms of action of such regulatory elements.
Collapse
Affiliation(s)
- O. Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - N. B. Gasanov
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - P. Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| |
Collapse
|
107
|
Cattoni DI, Valeri A, Le Gall A, Nollmann M. A matter of scale: how emerging technologies are redefining our view of chromosome architecture. Trends Genet 2015; 31:454-64. [PMID: 26113398 DOI: 10.1016/j.tig.2015.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
Abstract
The 3D folding of the genome and its relation to fundamental processes such as gene regulation, replication, and segregation remains one of the most puzzling and exciting questions in genetics. In this review, we describe how the use of new technologies is starting to revolutionize the field of chromosome organization, and to shed light on the mechanisms of transcription, replication, and repair. In particular, we concentrate on recent studies using genome-wide methods, single-molecule technologies, and super-resolution microscopy (SRM). We summarize some of the main concerns when employing these techniques, and discuss potential new and exciting perspectives that illuminate the connection between 3D genomic organization and gene regulation.
Collapse
Affiliation(s)
- Diego I Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Alessandro Valeri
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Antoine Le Gall
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
108
|
Serra F, Di Stefano M, Spill YG, Cuartero Y, Goodstadt M, Baù D, Marti-Renom MA. Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett 2015; 589:2987-95. [PMID: 25980604 DOI: 10.1016/j.febslet.2015.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Chromosomes are large polymer molecules composed of nucleotides. In some species, such as humans, this polymer can sum up to meters long and still be properly folded within the nuclear space of few microns in size. The exact mechanisms of how the meters long DNA is folded into the nucleus, as well as how the regulatory machinery can access it, is to a large extend still a mystery. However, and thanks to newly developed molecular, genomic and computational approaches based on the Chromosome Conformation Capture (3C) technology, we are now obtaining insight on how genomes are spatially organized. Here we review a new family of computational approaches that aim at using 3C-based data to obtain spatial restraints for modeling genomes and genomic domains.
Collapse
Affiliation(s)
- François Serra
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Marco Di Stefano
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Yannick G Spill
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Yasmina Cuartero
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Michael Goodstadt
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Davide Baù
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Marc A Marti-Renom
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
109
|
A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation. Nat Commun 2015; 6:6966. [PMID: 25923108 PMCID: PMC4421845 DOI: 10.1038/ncomms7966] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/20/2015] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor-α (ER)-positive breast cancer cells undergo hormone-independent proliferation after deprivation of oestrogen, leading to endocrine therapy resistance. Up-regulation of the ER gene (ESR1) is critical for this process, but the underlying mechanisms remain unclear. Here we show that the combination of transcriptome and fluorescence in situ hybridization analyses revealed that oestrogen deprivation induced a cluster of noncoding RNAs that defined a large chromatin domain containing the ESR1 locus. We termed these RNAs as Eleanors (ESR1 locus enhancing and activating noncoding RNAs). Eleanors were present in ER-positive breast cancer tissues and localized at the transcriptionally active ESR1 locus to form RNA foci. Depletion of one Eleanor, upstream (u)-Eleanor, impaired cell growth and transcription of intragenic Eleanors and ESR1 mRNA, indicating that Eleanors cis-activate the ESR1 gene. Eleanor-mediated gene activation represents a new type of locus control mechanism and plays an essential role in the adaptation of breast cancer cells. Estrogen-receptor-positive breast cancer cells undergo hormone-independent proliferation after long-term oestrogen deprivation and become resistant to endocrine therapies. Here, the authors report a cluster of noncoding RNAs important for this adaptation process.
Collapse
|
110
|
Abstract
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.
Collapse
|
111
|
Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett 2015; 589:2869-76. [PMID: 25913784 DOI: 10.1016/j.febslet.2015.04.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
Abstract
Hox genes encode transcription factors necessary for patterning the major developing anterior to posterior embryonic axis. In addition, during vertebrate evolution, various subsets of this gene family were co-opted along with the emergence of novel body structures, such as the limbs or the external genitalia. The morphogenesis of these axial structures thus relies in part upon the precisely controlled transcription of specific Hox genes, a mechanism involving multiple long-range enhancers. Recently, it was reported that such regulatory mechanisms were largely shared between different developing tissues, though with some specificities, suggesting the recruitment of ancestral regulatory modalities from one tissue to another. The analysis of chromatin architectures at HoxD and HoxA loci revealed the existence of two flanking topologically associating domains (TADs), precisely encompassing the adjacent regulatory landscapes. Here, we discuss the function of these TADs in the control of Hox gene regulation and we speculate about their capacity to serve as structural frameworks for the emergence of novel enhancers. In this view, TADs may have been used as genomic niches to evolve pleiotropic regulations found at many developmental loci.
Collapse
|
112
|
Gorkin DU, Leung D, Ren B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 2015; 14:762-75. [PMID: 24905166 DOI: 10.1016/j.stem.2014.05.017] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It can be convenient to think of the genome as simply a string of nucleotides, the linear order of which encodes an organism's genetic blueprint. However, the genome does not exist as a linear entity within cells where this blueprint is actually utilized. Inside the nucleus, the genome is organized in three-dimensional (3D) space, and lineage-specific transcriptional programs that direct stem cell fate are implemented in this native 3D context. Here, we review principles of 3D genome organization in mammalian cells. We focus on the emerging relationship between genome organization and lineage-specific transcriptional regulation, which we argue are inextricably linked.
Collapse
Affiliation(s)
- David U Gorkin
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Danny Leung
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, Institute of Genome Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
113
|
Risca VI, Greenleaf WJ. Unraveling the 3D genome: genomics tools for multiscale exploration. Trends Genet 2015; 31:357-72. [PMID: 25887733 DOI: 10.1016/j.tig.2015.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
A decade of rapid method development has begun to yield exciting insights into the 3D architecture of the metazoan genome and the roles it may play in regulating transcription. Here we review core methods and new tools in the modern genomicist's toolbox at three length scales, ranging from single base pairs to megabase-scale chromosomal domains, and discuss the emerging picture of the 3D genome that these tools have revealed. Blind spots remain, especially at intermediate length scales spanning a few nucleosomes, but thanks in part to new technologies that permit targeted alteration of chromatin states and time-resolved studies, the next decade holds great promise for hypothesis-driven research into the mechanisms that drive genome architecture and transcriptional regulation.
Collapse
Affiliation(s)
- Viviana I Risca
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
114
|
Abstract
Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors choreograph gene expression at each stage of differentiation by interacting with cofactors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease, and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac transcription factors, cis-regulatory elements, and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| | - Elphège P Nora
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| | - Benoit G Bruneau
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| |
Collapse
|
115
|
Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol Cell 2015; 58:216-31. [PMID: 25818644 DOI: 10.1016/j.molcel.2015.02.023] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/09/2015] [Accepted: 02/19/2015] [Indexed: 12/28/2022]
Abstract
Chromosomes of metazoan organisms are partitioned in the interphase nucleus into discrete topologically associating domains (TADs). Borders between TADs are formed in regions containing active genes and clusters of architectural protein binding sites. The transcription of most genes is repressed after temperature stress in Drosophila. Here we show that temperature stress induces relocalization of architectural proteins from TAD borders to inside TADs, and this is accompanied by a dramatic rearrangement in the 3D organization of the nucleus. TAD border strength declines, allowing for an increase in long-distance inter-TAD interactions. Similar but quantitatively weaker effects are observed upon inhibition of transcription or depletion of individual architectural proteins. Heat shock-induced inter-TAD interactions result in increased contacts among enhancers and promoters of silenced genes, which recruit Pc and form Pc bodies in the nucleolus. These results suggest that the TAD organization of metazoan genomes is plastic and can be reconfigured quickly.
Collapse
|
116
|
Trussart M, Serra F, Baù D, Junier I, Serrano L, Marti-Renom MA. Assessing the limits of restraint-based 3D modeling of genomes and genomic domains. Nucleic Acids Res 2015; 43:3465-77. [PMID: 25800747 PMCID: PMC4402535 DOI: 10.1093/nar/gkv221] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/22/2015] [Indexed: 12/24/2022] Open
Abstract
Restraint-based modeling of genomes has been recently explored with the advent of Chromosome Conformation Capture (3C-based) experiments. We previously developed a reconstruction method to resolve the 3D architecture of both prokaryotic and eukaryotic genomes using 3C-based data. These models were congruent with fluorescent imaging validation. However, the limits of such methods have not systematically been assessed. Here we propose the first evaluation of a mean-field restraint-based reconstruction of genomes by considering diverse chromosome architectures and different levels of data noise and structural variability. The results show that: first, current scoring functions for 3D reconstruction correlate with the accuracy of the models; second, reconstructed models are robust to noise but sensitive to structural variability; third, the local structure organization of genomes, such as Topologically Associating Domains, results in more accurate models; fourth, to a certain extent, the models capture the intrinsic structural variability in the input matrices and fifth, the accuracy of the models can be a priori predicted by analyzing the properties of the interaction matrices. In summary, our work provides a systematic analysis of the limitations of a mean-field restrain-based method, which could be taken into consideration in further development of methods as well as their applications.
Collapse
Affiliation(s)
- Marie Trussart
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - François Serra
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Davide Baù
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Ivan Junier
- Universitat Pompeu Fabra (UPF), Barcelona, Spain Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Luís Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marc A Marti-Renom
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
117
|
Farré M, Robinson TJ, Ruiz-Herrera A. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. Bioessays 2015; 37:479-88. [PMID: 25739389 DOI: 10.1002/bies.201400174] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/23/2022]
Abstract
Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders.
Collapse
Affiliation(s)
- Marta Farré
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Barcelona, Spain
| | | | | |
Collapse
|
118
|
Abstract
The eukaryotic genome adopts in the cell nucleus a 3-dimensional configuration that varies with cell types, developmental stages and environmental condition as well as between normal and pathological states. Understanding genome function will therefore require the elucidation of the structure-function relationship of the cell nucleus as a complex, dynamic biological system, referred to as the nucleome. This exciting and timely task calls for a multi-faceted, interdisciplinary and multi-national effort. We propose the establishment of an International Nucleome Consortium to coordinate this effort worldwide.
Collapse
Affiliation(s)
- Satoshi Tashiro
- a Institute for Radiation Biology and Medicine ; Hiroshima University ; Minamiku , Hiroshima , Japan
| | | |
Collapse
|
119
|
Maeshima K, Kaizu K, Tamura S, Nozaki T, Kokubo T, Takahashi K. The physical size of transcription factors is key to transcriptional regulation in chromatin domains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064116. [PMID: 25563431 DOI: 10.1088/0953-8984/27/6/064116] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
120
|
Helliwell CA, Anderssen RS, Robertson M, Finnegan EJ. How is FLC repression initiated by cold? TRENDS IN PLANT SCIENCE 2015; 20:76-82. [PMID: 25600480 DOI: 10.1016/j.tplants.2014.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 05/07/2023]
Abstract
Vernalization is the promotion of flowering in response to prolonged exposure to low temperatures. In Arabidopsis, FLOWERING LOCUS C (FLC), a suppressor of flowering, is repressed by low temperatures but the mechanism leading to the initial decrease in FLC transcription remains a mystery. No mutants that block the repression of FLC at low temperatures have been identified to date. If the failure to identify such a mutant is assumed to imply that no such mutant exists, then it follows that the first response to the drop in temperature is physical, not genetic. In this Opinion article we propose that the drop in temperature first causes a simple change in the topology of the chromatin polymer, which in turn initiates the repression of FLC transcription.
Collapse
Affiliation(s)
- Chris A Helliwell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia
| | | | - Masumi Robertson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia
| | - E Jean Finnegan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia.
| |
Collapse
|
121
|
Nicht-kodierende Mutationen. MED GENET-BERLIN 2015. [DOI: 10.1007/s11825-014-0033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zusammenfassung
Trotz der enormen Fortschritte genomweiter Analyseverfahren bleiben über 40 % der Patienten in der Humangenetik ohne molekulare Diagnose. Dies könnte unter anderem an der Tatsache liegen, dass Varianten im nicht-kodierenden Teil des Genoms bisher außer Acht gelassen wurden. In den letzten Jahren wurden entscheidende Fortschritte in der Analyse und Annotierung von cis-regulatorischen Elementen gemacht. Diese Daten können nun gezielt genutzt werden, um regulatorische Mutationen zu identifizieren und zu bewerten. Zudem konnte gezeigt werden, dass das menschliche Genom in Domänen eingeteilt ist, die über Chromatinstrukturen eine dreidimensionale regulatorisch aktive Architektur einnehmen. Mutationen oder strukturelle Aberrationen können diese Struktur verändern und damit zum Funktionsverlust oder zur Fehlexpression von benachbarten Genen führen. All diese Erkenntnisse können zur Interpretation von nicht-kodierenden Varianten eingesetzt werden.
Collapse
|
122
|
Tsujimura T, Klein FA, Langenfeld K, Glaser J, Huber W, Spitz F. A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes. PLoS Genet 2015; 11:e1004897. [PMID: 25569170 PMCID: PMC4288730 DOI: 10.1371/journal.pgen.1004897] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022] Open
Abstract
Despite the well-documented role of remote enhancers in controlling developmental gene expression, the mechanisms that allocate enhancers to genes are poorly characterized. Here, we investigate the cis-regulatory organization of the locus containing the Tfap2c and Bmp7 genes in vivo, using a series of engineered chromosomal rearrangements. While these genes lie adjacent to one another, we demonstrate that they are independently regulated by distinct sets of enhancers, which in turn define non-overlapping regulatory domains. Chromosome conformation capture experiments reveal a corresponding partition of the locus in two distinct structural entities, demarcated by a discrete transition zone. The impact of engineered chromosomal rearrangements on the topology of the locus and the resultant gene expression changes indicate that this transition zone functionally organizes the structural partition of the locus, thereby defining enhancer-target gene allocation. This partition is, however, not absolute: we show that it allows competing interactions across it that may be non-productive for the competing gene, but modulate expression of the competed one. Altogether, these data highlight the prime role of the topological organization of the genome in long-distance regulation of gene expression. The specificity of enhancer-gene interactions is fundamental to the execution of gene regulatory programs underpinning embryonic development and cell differentiation. However, our understanding of the mechanisms conferring specificity to enhancers and target gene interactions is limited. In this study, we characterize the cis-regulatory organization of a large genomic locus consisting of two developmental genes, Tfap2c and Bmp7. We show that this locus is structurally partitioned into two distinct domains by the constitutive action of a discrete transition zone located between the two genes. This separation restricts selectively the functional action of enhancers to the genes present within the same domain. Interestingly, the effects of this region as a boundary are relative, as it allows some competing interactions to take place across domains. We show that these interactions modulate the functional output of a brain enhancer on its primary target gene resulting in the spatial restriction of its expression domain. These results support a functional link between topological chromatin domains and allocation of enhancers to genes. They further show that a precise adjustment of chromatin interaction levels fine-tunes gene regulation by long-range enhancers.
Collapse
Affiliation(s)
- Taro Tsujimura
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Felix A. Klein
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Katja Langenfeld
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Juliane Glaser
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
123
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
124
|
Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS, Paquette D, Dostie J, Bickmore WA. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev 2014; 28:2778-91. [PMID: 25512564 PMCID: PMC4265680 DOI: 10.1101/gad.251694.114] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/30/2014] [Indexed: 01/28/2023]
Abstract
Although important for gene regulation, most studies of genome organization use either fluorescence in situ hybridization (FISH) or chromosome conformation capture (3C) methods. FISH directly visualizes the spatial relationship of sequences but is usually applied to a few loci at a time. The frequency at which sequences are ligated together by formaldehyde cross-linking can be measured genome-wide by 3C methods, with higher frequencies thought to reflect shorter distances. FISH and 3C should therefore give the same views of genome organization, but this has not been tested extensively. We investigated the murine HoxD locus with 3C carbon copy (5C) and FISH in different developmental and activity states and in the presence or absence of epigenetic regulators. We identified situations in which the two data sets are concordant but found other conditions under which chromatin topographies extrapolated from 5C or FISH data are not compatible. We suggest that products captured by 3C do not always reflect spatial proximity, with ligation occurring between sequences located hundreds of nanometers apart, influenced by nuclear environment and chromatin composition. We conclude that results obtained at high resolution with either 3C methods or FISH alone must be interpreted with caution and that views about genome organization should be validated by independent methods.
Collapse
Affiliation(s)
- Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Soizik Berlivet
- Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montréal, Québec H3G1Y6, Canada
| | - Ragnhild Eskeland
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | | | | | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| |
Collapse
|
125
|
Le Dily F, Baù D, Pohl A, Vicent GP, Serra F, Soronellas D, Castellano G, Wright RHG, Ballare C, Filion G, Marti-Renom MA, Beato M. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev 2014; 28:2151-62. [PMID: 25274727 PMCID: PMC4180976 DOI: 10.1101/gad.241422.114] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C (chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques, we found that the borders of the ∼ 2000 TADs in these cells are largely maintained after hormone treatment and that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as "regulons" to enable spatially proximal genes to be coordinately transcribed in response to hormones.
Collapse
Affiliation(s)
- François Le Dily
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain; Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
| | - Davide Baù
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
| | - Andy Pohl
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Guillermo P Vicent
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - François Serra
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
| | - Daniel Soronellas
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Giancarlo Castellano
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain; Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Roni H G Wright
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Cecilia Ballare
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Guillaume Filion
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Marc A Marti-Renom
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Miguel Beato
- Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain;
| |
Collapse
|
126
|
Dekker J. Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenetics Chromatin 2014; 7:25. [PMID: 25435919 PMCID: PMC4247682 DOI: 10.1186/1756-8935-7-25] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/15/2014] [Indexed: 01/19/2023] Open
Abstract
Genetic and epigenetic inheritance through mitosis is critical for dividing cells to maintain their state. This process occurs in the context of large-scale re-organization of chromosome conformation during prophase leading to the formation of mitotic chromosomes, and during the reformation of the interphase nucleus during telophase and early G1. This review highlights how recent studies over the last 5 years employing chromosome conformation capture combined with classical models of chromosome organization based on decades of microscopic observations, are providing new insights into the three-dimensional organization of chromatin inside the interphase nucleus and within mitotic chromosomes. One striking observation is that interphase genome organization displays cell type-specific features that are related to cell type-specific gene expression, whereas mitotic chromosome folding appears universal and tissue invariant. This raises the question of whether or not there is a need for an epigenetic memory for genome folding. Herein, the two different folding states of mammalian genomes are reviewed and then models are discussed wherein instructions for cell type-specific genome folding are locally encoded in the linear genome and transmitted through mitosis, e.g., as open chromatin sites with or without continuous binding of transcription factors. In the next cell cycle these instructions are used to re-assemble protein complexes on regulatory elements which then drive three-dimensional folding of the genome from the bottom up through local action and self-assembly into higher order levels of cell type-specific organization. In this model, no explicit epigenetic memory for cell type-specific chromosome folding is required.
Collapse
Affiliation(s)
- Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605-0103 USA
| |
Collapse
|
127
|
Ay F, Bunnik EM, Varoquaux N, Vert JP, Noble WS, Le Roch KG. Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum: gene regulation via histone modifications, nucleosome positioning and nuclear architecture in P. falciparum. Bioessays 2014; 37:182-94. [PMID: 25394267 DOI: 10.1002/bies.201400145] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
128
|
Gómez-Díaz E, Corces VG. Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol 2014; 24:703-11. [PMID: 25218583 DOI: 10.1016/j.tcb.2014.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Abstract
The relation between alterations in chromatin structure and changes in gene expression during cell differentiation has served as a paradigm to understand the link between genome organization and function. Yet, the factors involved and the mechanisms by which the 3D organization of the nucleus is established remain poorly understood. The use of Chromosome Conformation-Capture (3C)-based approaches has resulted in a new appreciation of the role of architectural proteins in the establishment of 3D genome organization. Architectural proteins orchestrate higher-order chromatin organization through the establishment of interactions between regulatory elements across multiple spatial scales. The regulation of these proteins, their interaction with DNA, and their co-occurrence in the genome, may be responsible for the plasticity of 3D chromatin architecture that dictates cell and time-specific blueprints of gene expression.
Collapse
Affiliation(s)
| | - Victor G Corces
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
129
|
Maeshima K, Imai R, Hikima T, Joti Y. Chromatin structure revealed by X-ray scattering analysis and computational modeling. Methods 2014; 70:154-61. [PMID: 25168089 DOI: 10.1016/j.ymeth.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/23/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
It remains unclear how the 2m of human genomic DNA is organized in each cell. The textbook model has long assumed that the 11-nm-diameter nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, is folded into a 30-nm chromatin fiber. One of the classical models assumes that the 30-nm chromatin fiber is further folded helically to form a larger fiber. Small-angle X-ray scattering (SAXS) is a powerful method for investigating the bulk structure of interphase chromatin and mitotic chromosomes. SAXS can detect periodic structures in biological materials in solution. In our SAXS results, no structural feature larger than 11 nm was detected. Combining this with a computational analysis of "in silico condensed chromatin" made it possible to understand more about the X-ray scattering profiles and suggested that the chromatin in interphase nuclei and mitotic chromosomes essentially consists of irregularly folded nucleosome fibers lacking the 30-nm chromatin structure. In this article, we describe the experimental details of our SAXS and modeling systems. We also discuss other methods for investigating the chromatin structure in cells.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| | - Ryosuke Imai
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; XFEL Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
130
|
Benedetti F, Dorier J, Stasiak A. Effects of supercoiling on enhancer-promoter contacts. Nucleic Acids Res 2014; 42:10425-32. [PMID: 25123662 PMCID: PMC4176356 DOI: 10.1093/nar/gku759] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using Brownian dynamics simulations, we investigate here one of possible roles of supercoiling within topological domains constituting interphase chromosomes of higher eukaryotes. We analysed how supercoiling affects the interaction between enhancers and promoters that are located in the same or in neighbouring topological domains. We show here that enhancer–promoter affinity and supercoiling act synergistically in increasing the fraction of time during which enhancer and promoter stay in contact. This stabilizing effect of supercoiling only acts on enhancers and promoters located in the same topological domain. We propose that the primary role of recently observed supercoiling of topological domains in interphase chromosomes of higher eukaryotes is to assure that enhancers contact almost exclusively their cognate promoters located in the same topological domain and avoid contacts with very similar promoters but located in neighbouring topological domains.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015-Lausanne, Switzerland
| | - Julien Dorier
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015-Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015-Lausanne, Switzerland
| |
Collapse
|
131
|
Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 2014; 157:950-63. [PMID: 24813616 DOI: 10.1016/j.cell.2014.03.025] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/02/2013] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
A new level of chromosome organization, topologically associating domains (TADs), was recently uncovered by chromosome conformation capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model's predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation.
Collapse
Affiliation(s)
- Luca Giorgetti
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France
| | - Rafael Galupa
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France
| | - Elphège P Nora
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France
| | - Tristan Piolot
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France
| | - France Lam
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605-0103, USA
| | - Guido Tiana
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Via Celoria 16, 20133 Milano, Italy.
| | - Edith Heard
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France; Collège de France, 11 place Marcelin-Berthelot, Paris 75005, France.
| |
Collapse
|
132
|
Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour AA, Avner S, Henry C, Percevault F, Belaud-Rotureau MA, Huet S, Watrin E, Eeckhoute J, Legagneux V, Salbert G, Métivier R. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol 2014; 34:2418-36. [PMID: 24752895 PMCID: PMC4054307 DOI: 10.1128/mcb.00918-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/03/2013] [Accepted: 04/09/2014] [Indexed: 12/28/2022] Open
Abstract
Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur.
Collapse
Affiliation(s)
- Justine Quintin
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Christine Le Péron
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Gaëlle Palierne
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Maud Bizot
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Stéphanie Cunha
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Aurélien A Sérandour
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Stéphane Avner
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Catherine Henry
- Cytogenetics and Cellular Biology Department, CHU, Rennes, France
| | - Frédéric Percevault
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Cytogenetics and Cellular Biology Department, CHU, Rennes, France BIOSIT, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Sébastien Huet
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Erwan Watrin
- Equipe CC, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Jérôme Eeckhoute
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France INSERM U1011, Université Lille-Nord de France, Faculté de Médecine de Lille-Pôle Recherche, Lille, France
| | - Vincent Legagneux
- Equipe EGD, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Gilles Salbert
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Raphaël Métivier
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| |
Collapse
|
133
|
Chaligné R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett 2014; 588:2514-22. [PMID: 24937141 DOI: 10.1016/j.febslet.2014.06.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer.
Collapse
Affiliation(s)
- Ronan Chaligné
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, CNRS UMR3215, INSERM U934, 75248 Paris, France
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, CNRS UMR3215, INSERM U934, 75248 Paris, France.
| |
Collapse
|
134
|
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 2014; 36:746-56. [PMID: 24913292 PMCID: PMC4143967 DOI: 10.1002/bies.201400032] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
135
|
Schwarzer W, Spitz F. The architecture of gene expression: integrating dispersed cis-regulatory modules into coherent regulatory domains. Curr Opin Genet Dev 2014; 27:74-82. [PMID: 24907448 DOI: 10.1016/j.gde.2014.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023]
Abstract
Specificity and precision of expression are essential for the genes that regulate developmental processes. The specialized cis-acting modules, such as enhancers, that define gene expression patterns can be distributed across large regions, raising questions about the nature of the mechanisms that underline their action. Recent data has exposed the structural 3D context in which these long-range enhancers are operating. Here, we present how these studies shed new light on principles driving long-distance regulatory relationships. We discuss the molecular mechanisms that enable and accompany the action of long-range acting elements and the integration of multiple distributed regulatory inputs into the coherent and specific regulatory programs that are key to embryonic development.
Collapse
Affiliation(s)
- Wibke Schwarzer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
136
|
Noordermeer D, Leleu M, Schorderet P, Joye E, Chabaud F, Duboule D. Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. eLife 2014; 3:e02557. [PMID: 24843030 PMCID: PMC4017647 DOI: 10.7554/elife.02557] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels.DOI: http://dx.doi.org/10.7554/eLife.02557.001.
Collapse
Affiliation(s)
- Daan Noordermeer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marion Leleu
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick Schorderet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Department of Molecular Biology, Harvard University, Boston, United States
| | - Elisabeth Joye
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fabienne Chabaud
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
137
|
Maeshima K, Imai R, Tamura S, Nozaki T. Chromatin as dynamic 10-nm fibers. Chromosoma 2014; 123:225-37. [PMID: 24737122 PMCID: PMC4031381 DOI: 10.1007/s00412-014-0460-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/01/2023]
Abstract
Since Flemming described a nuclear substance in the nineteenth century and named it “chromatin,” this substance has fascinated biologists. What is the structure of chromatin? DNA is wrapped around core histones, forming a nucleosome fiber (10-nm fiber). This fiber has long been assumed to fold into a 30-nm chromatin fiber and subsequently into helically folded larger fibers or radial loops. However, several recent studies, including our cryo-EM and X-ray scattering analyses, demonstrated that chromatin is composed of irregularly folded 10-nm fibers, without 30-nm chromatin fibers, in interphase chromatin and mitotic chromosomes. This irregular folding implies a chromatin state that is physically less constrained, which could be more dynamic compared with classical regular helical folding structures. Consistent with this, recently, we uncovered by single nucleosome imaging large nucleosome fluctuations in living mammalian cells (∼50 nm/30 ms). Subsequent computational modeling suggested that nucleosome fluctuation increases chromatin accessibility, which is advantageous for many “target searching” biological processes such as transcriptional regulation. Therefore, this review provides a novel view on chromatin structure in which chromatin consists of dynamic and disordered 10-nm fibers.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan,
| | | | | | | |
Collapse
|
138
|
Schwartz M, Hakim O. 3D view of chromosomes, DNA damage, and translocations. Curr Opin Genet Dev 2014; 25:118-25. [PMID: 24632298 DOI: 10.1016/j.gde.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/26/2013] [Indexed: 02/02/2023]
Abstract
The cell nucleus is a busy and organized organelle. In this megalopolis made of billions of nucleotides, protein factors find their target loci to exert nuclear functions such as transcription and replication. Remarkably, despite the lack of internal membrane barrier, the interlinked and tightly regulated nuclear processes occur in spatially organized fashion. These processes can lead to double-strand breaks (DSBs) that compromise the integrity of the genome. Moreover, in some cells like lymphocytes, DNA damage is also targeted within the context of immunoglobulin gene recombination. If not repaired correctly, DSBs can cause chromosomal rearrangements, including translocations which are etiological in numerous tumors. Therefore, the chromosomal locations of DSBs, as well as their spatial positioning, are important contributors to formation of chromosomal translocations at specific genomic loci. To obtain a mechanistic understanding of chromosomal translocations these parameters should be accounted for in a global and integrative fashion. In this review we will discuss recent findings addressing how genome architecture, DNA damage, and repair contribute to the genesis of chromosomal translocations.
Collapse
Affiliation(s)
- Michal Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel.
| |
Collapse
|
139
|
Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, Ettwiller L, Spitz F. Functional and topological characteristics of mammalian regulatory domains. Genome Res 2014; 24:390-400. [PMID: 24398455 PMCID: PMC3941104 DOI: 10.1101/gr.163519.113] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/19/2013] [Indexed: 01/04/2023]
Abstract
Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles.
Collapse
Affiliation(s)
- Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Veli Vural Uslu
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Taro Tsujimura
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sandra Ruf
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sonya Nassari
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Wibke Schwarzer
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Laurence Ettwiller
- Centre for Organismal Studies, University of Heidelberg, 69111 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
140
|
Maksimenko O, Georgiev P. Mechanisms and proteins involved in long-distance interactions. Front Genet 2014; 5:28. [PMID: 24600469 PMCID: PMC3927085 DOI: 10.3389/fgene.2014.00028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/25/2014] [Indexed: 12/28/2022] Open
Abstract
Due to advances in genome-wide technologies, consistent distant interactions within chromosomes of higher eukaryotes have been revealed. In particular, it has been shown that enhancers can specifically and directly interact with promoters by looping out intervening sequences, which can be up to several hundred kilobases long. This review is focused on transcription factors that are supposed to be involved in long-range interactions. Available data are in agreement with the model that several known transcription factors and insulator proteins belong to an abundant but poorly studied class of proteins that are responsible for chromosomal architecture.
Collapse
Affiliation(s)
- Oksana Maksimenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
141
|
Duggal G, Wang H, Kingsford C. Higher-order chromatin domains link eQTLs with the expression of far-away genes. Nucleic Acids Res 2014; 42:87-96. [PMID: 24089144 PMCID: PMC3874174 DOI: 10.1093/nar/gkt857] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022] Open
Abstract
Distal expression quantitative trait loci (distal eQTLs) are genetic mutations that affect the expression of genes genomically far away. However, the mechanisms that cause a distal eQTL to modulate gene expression are not yet clear. Recent high-resolution chromosome conformation capture experiments along with a growing database of eQTLs provide an opportunity to understand the spatial mechanisms influencing distal eQTL associations on a genome-wide scale. We test the hypothesis that spatial proximity contributes to eQTL-gene regulation in the context of the higher-order domain structure of chromatin as determined from recent Hi-C chromosome conformation experiments. This analysis suggests that the large-scale topology of chromatin is coupled with eQTL associations by providing evidence that eQTLs are in general spatially close to their target genes, occur often around topological domain boundaries and preferentially associate with genes across domains. We also find that within-domain eQTLs that overlap with regulatory elements such as promoters and enhancers are spatially more close than the overall set of within-domain eQTLs, suggesting that spatial proximity derived from the domain structure in chromatin plays an important role in the regulation of gene expression.
Collapse
Affiliation(s)
- Geet Duggal
- Lane Center for Computational Biology, Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh, PA, USA
| | - Hao Wang
- Lane Center for Computational Biology, Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh, PA, USA
| | - Carl Kingsford
- Lane Center for Computational Biology, Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh, PA, USA
| |
Collapse
|
142
|
Berlivet S, Paquette D, Dumouchel A, Langlais D, Dostie J, Kmita M. Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs. PLoS Genet 2013; 9:e1004018. [PMID: 24385922 PMCID: PMC3873244 DOI: 10.1371/journal.pgen.1004018] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/25/2013] [Indexed: 12/19/2022] Open
Abstract
HoxA genes exhibit central roles during development and causal mutations have been found in several human syndromes including limb malformation. Despite their importance, information on how these genes are regulated is lacking. Here, we report on the first identification of bona fide transcriptional enhancers controlling HoxA genes in developing limbs and show that these enhancers are grouped into distinct topological domains at the sub-megabase scale (sub-TADs). We provide evidence that target genes and regulatory elements physically interact with each other through contacts between sub-TADs rather than by the formation of discreet “DNA loops”. Interestingly, there is no obvious relationship between the functional domains of the enhancers within the limb and how they are partitioned among the topological domains, suggesting that sub-TAD formation does not rely on enhancer activity. Moreover, we show that suppressing the transcriptional activity of enhancers does not abrogate their contacts with HoxA genes. Based on these data, we propose a model whereby chromatin architecture defines the functional landscapes of enhancers. From an evolutionary standpoint, our data points to the convergent evolution of HoxA and HoxD regulation in the fin-to-limb transition, one of the major morphological innovations in vertebrates. Hox genes encode transcription factors with crucial roles during development. These genes are grouped in four different clusters names HoxA, B, C, and D. Mutations in genes of the HoxA and D clusters have been found in several human syndromes, affecting in some cases limb development. Despite their essential role and contrary to the genes of the HoxD cluster, little is known about how the HoxA genes are regulated. Here, we identified a large set of regulatory elements controlling HoxA genes during limb development. By studying spatial chromatin organization at the HoxA region, we found that the regulatory elements are spatially clustered regardless of their activity. Clustering of enhancers define tissue-specific chromatin domains that interact specifically with each other and with active genes in the limb. Our findings give support to the emerging concept that chromatin architecture defines the functional properties of genomes. Additionally, our study suggests a common constraint of the chromatin topology in the evolution of HoxA and HoxD regulation in the emergence of the hand/foot, which is one of the major morphological innovations in vertebrates.
Collapse
Affiliation(s)
- Soizik Berlivet
- Unité de génétique et développement, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Denis Paquette
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Annie Dumouchel
- Unité de génétique et développement, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - David Langlais
- Unité de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- * E-mail: (JD); (MK)
| | - Marie Kmita
- Unité de génétique et développement, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- * E-mail: (JD); (MK)
| |
Collapse
|
143
|
Chetverina D, Aoki T, Erokhin M, Georgiev P, Schedl P. Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks. Bioessays 2013; 36:163-72. [PMID: 24277632 DOI: 10.1002/bies.201300125] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulators play a central role in subdividing the chromosome into a series of discrete topologically independent domains and in ensuring that enhancers and silencers contact their appropriate target genes. In this review we first discuss the general characteristics of insulator elements and their associated protein factors. A growing collection of insulator proteins have been identified including a family of proteins whose expression is developmentally regulated. We next consider several unexpected discoveries that require us to completely rethink how insulators function (and how they can best be assayed). These discoveries also require a reevaluation of how insulators might restrict or orchestrate (by preventing or promoting) interactions between regulatory elements and their target genes. We conclude by connecting these new insights into the mechanisms of insulator action to dynamic changes in the three-dimensional topology of the chromatin fiber and the generation of specific patterns of gene activity during development and differentiation.
Collapse
Affiliation(s)
- Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
144
|
de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 2013; 502:499-506. [PMID: 24153303 DOI: 10.1038/nature12753] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/02/2013] [Indexed: 12/26/2022]
Abstract
How a complex animal can arise from a fertilized egg is one of the oldest and most fascinating questions of biology, the answer to which is encoded in the genome. Body shape and organ development, and their integration into a functional organism all depend on the precise expression of genes in space and time. The orchestration of transcription relies mostly on surrounding control sequences such as enhancers, millions of which form complex regulatory landscapes in the non-coding genome. Recent research shows that high-order chromosome structures make an important contribution to enhancer functionality by triggering their physical interactions with target genes.
Collapse
Affiliation(s)
- Wouter de Laat
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | | |
Collapse
|
145
|
Multiple Enhancers Regulate Hoxd Genes and the Hotdog LncRNA during Cecum Budding. Cell Rep 2013; 5:137-50. [DOI: 10.1016/j.celrep.2013.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/07/2013] [Accepted: 09/05/2013] [Indexed: 11/23/2022] Open
|