101
|
The natural, peptaibolic peptide SPF-5506-A4 adopts a β-bend spiral structure, shows low hemolytic activity and targets membranes through formation of large pores. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:882-9. [PMID: 25796141 DOI: 10.1016/j.bbapap.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
Abstract
The medium-length fungal peptaibol SPF-5506-A(4) has been shown to inhibit formation of the Aβ peptide involved in Alzheimer''s disease. As Aβ is a cleavage-product from the membrane-bound APP protein, we hypothesized that SPF-5506-A(4)'s activity might be linked to membrane interactions in general. Here we describe the synthesis, structure and membrane interactions of SPF-5506-A4. The challenging synthesis was carried out on solid phase and a detailed conformational analysis in solution revealed a β-bend ribbon spiral core structure with flexible termini. Investigations of its membrane activity revealed low hemolytic activity, limited inhibition of both Gram-positive and Gram-negative cell growth and a preference for an overall negatively charged membrane surface mimicking the bacterial cell surface. SPF-5506-A(4) is the first peptaibol to be shown to facilitate leakage of large (4.6 nm diameter) fluorescence-labeled dextran from vesicles while leaving the vesicles intact. We conclude that SPF-5506-A(4) follows the toroidal pore model in its mode of action.
Collapse
|
102
|
Liu D, Lin H, Proksch P, Tang X, Shao Z, Lin W. Microbacterins A and B, new peptaibols from the deep sea actinomycete Microbacterium sediminis sp. nov. YLB-01(T). Org Lett 2015; 17:1220-3. [PMID: 25675340 DOI: 10.1021/acs.orglett.5b00172] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two new peptaibols, namely microbacterins A (1) and B (2), were isolated from the deep sea inhabited actinomycete Microbacterium sediminis spp. nov. YLB-01(T). The sequences of the amino acid residues were determined on the basis of intensive NMR and ESI-MS/MS spectroscopic analysis, in addition to the Marfey's method and CD and optical rotation data for the configurational assignment. Both 1 and 2 exhibited significant cytotoxic activities against a panel of human tumor cell lines.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, P.R. China
| | | | | | | | | | | |
Collapse
|
103
|
Liu D, Lin H, Proksch P, Tang X, Shao Z, Lin W. Microbacterins A and B, New Peptaibols from the Deep Sea Actinomycete Microbacterium sediminis sp. nov. YLB-01(T). Org Lett 2015. [DOI: 10.1021/acs.orglett.5b00172 pmid: 25675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Hong Lin
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Peter Proksch
- Institute
für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Geb.26.23, 40225 Düsseldorf, Germany
| | - Xixiang Tang
- Key
Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, P. R. China
| | - Zhongze Shao
- Key
Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, Xiamen 361005, P. R. China
| | - Wenhan Lin
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
104
|
Vertical ordering sensitivity of solid supported DPPC membrane to alamethicin and the related loss of cell viability. Biochim Biophys Acta Gen Subj 2015; 1850:759-68. [PMID: 25597953 DOI: 10.1016/j.bbagen.2015.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/23/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Experimental studies of antimicrobial peptides interacting with lipid membranes recently attracted growing interest due to their numerous biomedical applications. However, the influence of such peptides on the structural organisation of lipid membranes in connection with the actual cell response still remains an elusive issue. METHODS X-ray diffraction was employed on detecting the sensitivity of the periodical spacing of dipalmitoyl-phosphatidyl-choline stacked as solid-supported bilayers to the presence of varying amounts of the peptide alamethicin in a wide range of peptide-to-lipid molar ratios. These results were then correlated with the effects of alamethicin on biological membranes in vitro as observed by optical microscopy and microculture tetrazolium assay on the tumour cells HeLa to provide a comprehensive and quantitative analysis of these effects, based on a dose-response relationship. RESULTS The experiments allowed correlating the periodical spacing and the peptide-to-lipid molar ratio on alamethicin-dipalmitoyl-phosphatidyl-choline samples. Two different trends of periodical spacing vs. peptide-to-lipid molar ratio clearly appeared at low and high hydration levels, showing intriguing non-linear profiles. Unexpected correspondences were observed between the peptide-to-lipid molar ratio range where the changes in dipalmitoyl-phosphatidyl-choline structure occur and the alamethicin doses which alter the viability and the plasma membrane morphology of HeLa. CONCLUSIONS Alamethicin might induce either mechanical or phase changes on dipalmitoyl-phosphatidyl-choline bilayers. Such easily accessible ordering information was well-calibrated to predict the alamethicin doses necessary to trigger cell death through plasma membrane alterations. GENERAL SIGNIFICANCE This benchmark combined study may be valuable to predict bioeffects of several antimicrobial peptides of biomedical relevance.
Collapse
|
105
|
Pott T, Gerbeaud C, Barbier N, Méléard P. Melittin modifies bending elasticity in an unexpected way. Chem Phys Lipids 2015; 185:99-108. [DOI: 10.1016/j.chemphyslip.2014.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/28/2014] [Accepted: 05/18/2014] [Indexed: 12/22/2022]
|
106
|
Bechinger B. The SMART model: Soft Membranes Adapt and Respond, also Transiently, in the presence of antimicrobial peptides. J Pept Sci 2014; 21:346-55. [PMID: 25522713 DOI: 10.1002/psc.2729] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
Biophysical and structural studies of peptide-lipid interactions, peptide topology and dynamics have changed our view on how antimicrobial peptides insert and interact with membranes. Clearly, both the peptides and the lipids are highly dynamic, change and mutually adapt their conformation, membrane penetration and detailed morphology on a local and a global level. As a consequence, the peptides and lipids can form a wide variety of supramolecular assemblies in which the more hydrophobic sequences preferentially, but not exclusively, adopt transmembrane alignments and have the potential to form oligomeric structures similar to those suggested by the transmembrane helical bundle model. In contrast, charged amphipathic sequences tend to stay intercalated at the membrane interface where they cause pronounced disruptions of the phospholipid fatty acyl packing. At increasing local or global concentrations, the peptides result in transient membrane openings, rupture and ultimately lysis. Depending on peptide-to-lipid ratio, lipid composition and environmental factors (temperature, buffer composition, ionic strength, etc.), the same peptide sequence can result in a variety of those responses. Therefore, the SMART model has been introduced to cover the full range of possibilities. With such a view in mind, novel antimicrobial compounds have been designed from amphipathic polymers, peptide mimetics, combinations of ultra-short polypeptides with hydrophobic anchors or small designer molecules.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
107
|
Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
108
|
Bills G, Li Y, Chen L, Yue Q, Niu XM, An Z. New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics. Nat Prod Rep 2014; 31:1348-75. [PMID: 25156669 DOI: 10.1039/c4np00046c] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are a primary modality for fungal peptidic natural product assembly and are responsible for some of the best known, most useful, and most destructive fungal metabolites. Through genome sequencing and computer-assisted recognition of modular motifs of catalytic domains, one can now confidently identify most NRPS biosynthetic genes of a fungal strain. The biosynthetic gene clusters responsible for two of the most important classes of NRP fungal derived drugs, cyclosporine and the echinocandins, have been recently characterized by genomic sequencing and annotation. Complete biosynthetic gene clusters for the pneumocandins and echinocandins have been mapped at the genetic level and functionally characterized to some extent. Genomic sequencing of representative strains of most of the variants in the echinocandin family, including the wild-type of the three fungal strains employed for industrial-scale production of caspofungin, micafungin and anidulofungin, has enabled characterization of the basic architecture of the echinocandin NRPS pathways. A comparative analysis of how pathway genes cause variations in lipoinitiation, biosynthesis of the non-proteinogenic amino acids, amino acid substitutions, and hydroxylations and sulfonations of the core peptide and contribute to the molecular diversity of the family is presented. We also review new information on the natural functions of NRPs, the differences between fungal and bacterial NRPSs, and functional characterization of selected NRPS gene clusters. Continuing discovery of the new fungal nonribosomal peptides has contributed new structural diversity and potential insights into their biological functions among other natural peptides and peptaibiotics. We therefore provide an update on new peptides, depsipeptides and peptaibols discovered in the Fungi since 2009.
Collapse
Affiliation(s)
- Gerald Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Centre at Houston, Houston, Texas 77054, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Zhang M, Zhao J, Zheng J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. SOFT MATTER 2014; 10:7425-7451. [PMID: 25105988 DOI: 10.1039/c4sm00907j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antimicrobial and amyloid peptides do not share common sequences, typical secondary structures, or normal biological activity but both the classes of peptides exhibit membrane-disruption ability to induce cell toxicity. Different membrane-disruption mechanisms have been proposed for antimicrobial and amyloid peptides, individually, some of which are not exclusive to either peptide type, implying that certain common principles may govern the folding and functions of different cytolytic peptides and associated membrane disruption mechanisms. Particularly, some antimicrobial and amyloid peptides have been identified to have dual complementary amyloid and antimicrobial properties, suggesting a potential functional link between amyloid and antimicrobial peptides. Given that some similar structural and membrane-disruption characteristics exist between the two classes of peptides, this review summarizes major findings, recent advances, and future challenges related to antimicrobial and amyloid peptides and strives to illustrate the similarities, differences, and relationships in the sequences, structures, and membrane interaction modes between amyloid and antimicrobial peptides, with a special focus on direct interactions of the peptides with the membranes. We hope that this review will stimulate further research at the interface of antimicrobial and amyloid peptides - which has been studied less intensively than either type of peptides - to decipher a possible link between both amyloid pathology and antimicrobial activity, which can guide drug design and peptide engineering to influence peptide-membrane interactions important in human health and diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | |
Collapse
|
110
|
Bencsik O, Papp T, Berta M, Zana A, Forgó P, Dombi G, Andersson MA, Salkinoja-Salonen M, Vágvölgyi C, Szekeres A. Ophiobolin A from Bipolaris oryzae perturbs motility and membrane integrities of porcine sperm and induces cell death on mammalian somatic cell lines. Toxins (Basel) 2014; 6:2857-71. [PMID: 25251540 PMCID: PMC4179164 DOI: 10.3390/toxins6092857] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022] Open
Abstract
Bipolaris oryzae is a phytopathogenic fungus causing a brown spot disease in rice, and produces substance that strongly perturbs motility and membrane integrities of boar spermatozoa. The substance was isolated from the liquid culture of the fungal strain using extraction and a multi-step semi-preparative HPLC procedures. Based on the results of mass spectrometric and 2D NMR techniques, the bioactive molecule was identified as ophiobolin A, a previously described sesterterpene-type compound. The purified ophiobolin A exhibited strong motility inhibition and viability reduction on boar spermatozoa. Furthermore, it damaged the sperm mitochondria significantly at sublethal concentration by the dissipation of transmembrane potential in the mitochondrial inner membrane, while the plasma membrane permeability barrier remained intact. The study demonstrated that the cytotoxicity of ophiobolin A toward somatic cell lines is higher by 1–2 orders of magnitude compared to other mitochondriotoxic mycotoxins, and towards sperm cells unique by replacing the progressive motility by shivering tail beating at low exposure concentration.
Collapse
Affiliation(s)
- Ottó Bencsik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| | - Máté Berta
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| | - Annamária Zana
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, Szeged H-6720, Hungary.
| | - Péter Forgó
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, Szeged H-6720, Hungary.
| | - György Dombi
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, Szeged H-6720, Hungary.
| | - Maria A Andersson
- Department of Food and Environmental Sciences, Viikinkaari 9, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Mirja Salkinoja-Salonen
- Department of Food and Environmental Sciences, Viikinkaari 9, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| |
Collapse
|
111
|
Castro TG, Micaêlo NM. Conformational and thermodynamic properties of non-canonical α,α-dialkyl glycines in the peptaibol Alamethicin: molecular dynamics studies. J Phys Chem B 2014; 118:9861-70. [PMID: 25091499 DOI: 10.1021/jp505400q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we investigate the structure, dynamic and thermodynamic properties of noncanonical disubstituted amino acids (α,α-dialkyl glycines), also known as non-natural amino acids, in the peptaibol Alamethicin. The amino acids under study are Aib (α-amino isobutyric acid or α-methyl alanine), Deg (α,α-diethyl glycine), Dpg (α,α-dipropyl glycine), Dibg (α,α-di-isobutyl glycine), Dhg (α,α-dihexyl glycine), DΦg (α,α-diphenyl glycine), Dbzg (α,α-dibenzyl glycine), Ac6c (α,α-cyclohexyl glycine), and Dmg (α,α-dihydroxymethyl glycine). It is hypothesized that these amino acids are able to induce well-defined secondary structure in peptidomimetics. To test this hypothesis, new peptidomimetics of Alamethicin were constructed by replacing the native Aib positions of Alamethicin by one or more new α,α-dialkyl glycines. Dhg and Ac6c demonstrated the capacity to induce well-defined α-helical structures. Dhg and Ac6c also promote the thermodynamic stabilization of these peptides in a POPC model membrane and are better alternatives to the Aib in Alamethicin. These noncanonical amino acids also improved secondary structure properties, revealing preorganization in water and maintenance of α helical structure in POPC. We show that it is possible to optimize the helicity and thermodynamic properties of native Alamethicin, and we suggest that these amino acids could be incorporated in other peptides with similar structural effect.
Collapse
Affiliation(s)
- Tarsila G Castro
- Departamento de Química, Escola de Ciências, Universidade do Minho , Largo do Paço, Braga 4704-553, Portugal
| | | |
Collapse
|
112
|
Milov AD, Samoilova RI, Tsvetkov YD, Peggion C, Formaggio F, Toniolo C. Peptides on the Surface. PELDOR Data for Spin-Labeled Alamethicin F50/5 Analogues on Organic Sorbent. J Phys Chem B 2014; 118:7085-90. [DOI: 10.1021/jp503691n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alexander D. Milov
- V.V.
Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
| | - Rimma I. Samoilova
- V.V.
Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
| | - Yuri D. Tsvetkov
- V.V.
Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
| | - Cristina Peggion
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Fernando Formaggio
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Claudio Toniolo
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| |
Collapse
|
113
|
Bortolus M, Dalzini A, Toniolo C, Hahm KS, Maniero AL. Interaction of hydrophobic and amphipathic antimicrobial peptides with lipid bicelles. J Pept Sci 2014; 20:517-25. [PMID: 24863176 DOI: 10.1002/psc.2645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 02/03/2023]
Abstract
Bicelles are model membrane systems that can be macroscopically oriented in a magnetic field at physiological temperature. The macroscopic orientation of bicelles allows to detect, by means of magnetic resonance spectroscopies, small changes in the order of the bilayer caused by solutes interacting with the membrane. These changes would be hardly detectable in isotropic systems such as vesicles or micelles. The aim of this work is to show that bicelles represent a convenient tool to investigate the behavior of antimicrobial peptides (AMPs) interacting with membranes, using electron paramagnetic resonance (EPR) spectroscopy. We performed the EPR experiments on spin-labeled bicelles using various AMPs of different length, charge, and amphipathicity: alamethicin, trichogin GA IV, magainin 2, HP(2-20), and HPA3. We evaluated the changes in the order parameter of the spin-labeled lipids as a function of the peptide-to-lipid ratio. We show that bicelles labeled at position 5 of the lipid chains are very sensitive to the perturbation induced by the AMPs even at low peptide concentrations. Our study indicates that peptides that are known to disrupt the membrane by different mechanisms (i.e., alamethicin vs magainin 2) show very distinct trends of the order parameter as a function of peptide concentration. Therefore, spin-labeled bicelles proved to be a good system to evaluate the membrane disruption mechanism of new AMPs.
Collapse
Affiliation(s)
- Marco Bortolus
- Department of Chemistry, University of Padova, via Marzolo 1, Padova, 35131, Italy
| | | | | | | | | |
Collapse
|
114
|
Wang KF, Nagarajan R, Camesano TA. Antimicrobial peptide alamethicin insertion into lipid bilayer: A QCM-D exploration. Colloids Surf B Biointerfaces 2014; 116:472-81. [DOI: 10.1016/j.colsurfb.2014.01.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 11/30/2022]
|
115
|
Wiedman G, Fuselier T, He J, Searson PC, Hristova K, Wimley WC. Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide. J Am Chem Soc 2014; 136:4724-31. [PMID: 24588399 PMCID: PMC3985440 DOI: 10.1021/ja500462s] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Peptides that self-assemble, at low concentration, into bilayer-spanning pores which allow the passage of macromolecules would be beneficial in multiple areas of biotechnology. However, there are few, if any, natural or designed peptides that have this property. Here we show that the 26-residue peptide "MelP5", a synthetically evolved gain-of-function variant of the bee venom lytic peptide melittin identified in a high-throughput screen for small molecule leakage, enables the passage of macromolecules across bilayers under conditions where melittin and other pore-forming peptides do not. In surface-supported bilayers, MelP5 forms unusually high conductance, equilibrium pores at peptide:lipid ratios as low as 1:25000. The increase in bilayer conductance due to MelP5 is dramatically higher, per peptide, than the increase due to the parent sequence of melittin or other peptide pore formers. Here we also develop two novel assays for macromolecule leakage from vesicles, and we use them to characterize MelP5 pores in bilayers. We show that MelP5 allows the passage of macromolecules across vesicle membranes at peptide:lipid ratios as low as 1:500, and under conditions where neither osmotic lysis nor gross vesicle destabilization occur. The macromolecule-sized, equilibrium pores formed by MelP5 are unique as neither melittin nor other pore-forming peptides release macromolecules significantly under the same conditions. MelP5 thus appears to belong to a novel functional class of peptide that could form the foundation of multiple potential biotechnological applications.
Collapse
Affiliation(s)
- Gregory Wiedman
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Taylor Fuselier
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Jing He
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Peter C. Searson
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kalina Hristova
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - William C. Wimley
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
116
|
Ben Haj Salah K, Inguimbert N. Efficient Microwave-Assisted One Shot Synthesis of Peptaibols Using Inexpensive Coupling Reagents. Org Lett 2014; 16:1783-5. [DOI: 10.1021/ol5003253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khoubaib Ben Haj Salah
- Université de Perpignan Via Domitia, Centre de Recherche Insulaire
et Observatoire de l’Environnement (CRIOBE) USR CNRS 3278,
Centre de Phytopharmacie, batiment T, 58 avenue P. Alduy, 66860 Perpignan, France
| | - Nicolas Inguimbert
- Université de Perpignan Via Domitia, Centre de Recherche Insulaire
et Observatoire de l’Environnement (CRIOBE) USR CNRS 3278,
Centre de Phytopharmacie, batiment T, 58 avenue P. Alduy, 66860 Perpignan, France
| |
Collapse
|
117
|
Milov AD, Tsvetkov YD, Bortolus M, Maniero AL, Gobbo M, Toniolo C, Formaggio F. Synthesis and conformational properties of a TOAC doubly spin-labeled analog of the medium-length, membrane active peptaibiotic ampullosporin a as revealed by cd, fluorescence, and EPR spectroscopies. Biopolymers 2014; 102:40-8. [DOI: 10.1002/bip.22362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander D. Milov
- Institute of Chemical Kinetics and Combustion; Novosibirsk 630090 Russian Federation
| | - Yuri D. Tsvetkov
- Institute of Chemical Kinetics and Combustion; Novosibirsk 630090 Russian Federation
| | - Marco Bortolus
- Department of Chemical Sciences; University of Padova; 35131 Padova Italy
| | - Anna Lisa Maniero
- Department of Chemical Sciences; University of Padova; 35131 Padova Italy
| | - Marina Gobbo
- Department of Chemical Sciences; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry; Padova Unit, CNR 35131 Padova Italy
| | - Claudio Toniolo
- Department of Chemical Sciences; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry; Padova Unit, CNR 35131 Padova Italy
| | - Fernando Formaggio
- Department of Chemical Sciences; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry; Padova Unit, CNR 35131 Padova Italy
| |
Collapse
|
118
|
Wang J, McIvor MJ, Elliott CT, Karoonuthaisiri N, Segatori L, Biswal SL. Rapid Detection of Pathogenic Bacteria and Screening of Phage-Derived Peptides Using Microcantilevers. Anal Chem 2014; 86:1671-8. [DOI: 10.1021/ac403437x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinghui Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Mary Josephine McIvor
- Institute for
Global Food Security, School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Christopher T. Elliott
- Institute for
Global Food Security, School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Nitsara Karoonuthaisiri
- Institute for
Global Food Security, School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathumthani 12120, Thailand
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
119
|
Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B. Recent results in alamethicin research. Chem Biodivers 2013; 10:744-71. [PMID: 23681724 DOI: 10.1002/cbdv.201200390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 12/20/2022]
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged.
| | | | | | | | | |
Collapse
|
120
|
Bortolus M, De Zotti M, Formaggio F, Maniero AL. Alamethicin in bicelles: Orientation, aggregation, and bilayer modification as a function of peptide concentration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2620-7. [DOI: 10.1016/j.bbamem.2013.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
121
|
Orcel U, De Poli M, De Zotti M, Clayden J. The N-Terminal Nonapeptide of Cephaibols A and C: A Naturally Occurring Example of Mismatched Helical Screw-Sense Control. Chemistry 2013; 19:16357-65. [DOI: 10.1002/chem.201302648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 12/14/2022]
|
122
|
Geörg M, Maudsdotter L, Tavares R, Jonsson AB. Meningococcal resistance to antimicrobial peptides is mediated by bacterial adhesion and host cell RhoA and Cdc42 signalling. Cell Microbiol 2013; 15:1938-54. [PMID: 23834289 DOI: 10.1111/cmi.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/06/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP-mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL-37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL-37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion-induced LL-37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol-rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion-induced resistance. Our data highlight the importance of Rho GTPase-dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL-37.
Collapse
Affiliation(s)
- Miriam Geörg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
123
|
Krauson AJ, He J, Wimley WC. Determining the mechanism of membrane permeabilizing peptides: identification of potent, equilibrium pore-formers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1625-32. [PMID: 22365969 DOI: 10.1016/j.bbamem.2012.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/30/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
To enable selection and characterization of highly potent pore-forming peptides, we developed a set of novel assays to probe 1) the potency of peptide pores at very low peptide concentration; 2) the presence or absence of pores in membranes after equilibration; 3) the interbilayer exchangeability of pore-forming peptides; and 4) the degree to which pore-forming peptides disrupt the bilayer organization at equilibrium. Here, we use these assays to characterize, in parallel, six membrane-permeabilizing peptides belonging to multiple classes. We tested the antimicrobial peptides LL37 and dermaseptin S1, the well-known natural lytic peptides melittin and alamethicin, and the very potent lentivirus lytic peptides LLP1 and LLP2 from the cytoplasmic domain of HIV GP41. The assays verified that that the antimicrobial peptides are not potent pore formers, and form only transient permeabilization pathways in bilayers which are not detectable at equilibrium. The other peptides are far more potent and form pores that are still detectable in vesicles after many hours. Among the peptides studies, alamethicin is unique in that it is very potent, readily exchanges between vesicles, and disturbs the local bilayer structure even at very low concentration. The equally potent LLP peptides do not exchange readily and do not perturb the bilayer at equilibrium. Comparison of these classes of pore forming peptides in parallel using the set of assays we developed demonstrates our ability to detect differences in their mechanism of action. Importantly, these assays will be very useful in high-throughput screening where highly potent pore-forming peptides can be selected based on their mechanism of action.
Collapse
Affiliation(s)
- Aram J Krauson
- Department of Biochemistry SL43, Tulane University School of Medicine, New Orleans, 1A 70112, USA
| | | | | |
Collapse
|
124
|
Pradeille N, Tzouros M, Möhle K, Linden A, Heimgartner H. Total synthesis of the peptaibols hypomurocin A3 and hypomurocin A5, and their conformation analysis. Chem Biodivers 2013; 9:2528-58. [PMID: 23161633 DOI: 10.1002/cbdv.201200285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Indexed: 11/06/2022]
Abstract
The total syntheses of hypomurocin A3 and hypomuricin A5 (HM A3 and HM A5, resp.) in solution phase are described. These syntheses have been successfully achieved by applying the 'azirine/oxazolone method' to introduce the two Aib-Pro units into the backbone of these undecapeptaibols in one step with methyl 2,2-dimethyl-2H-azirine-3-prolinate as the 'Aib-Pro synthon'. The coupling of Z-protected (Z=(benzyloxy)carbonyl) amino acids or peptide acids with amino acid tert-butyl esters and of peptide segments was carried out according to the TBTU (=O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate) and HOBt (=1-hydroxybenzotriazole) protocol. Purification by reversed-phase HPLC gave the peptides in pure form. The products were characterized by optical rotation, NMR and IR spectroscopy, mass spectrometry, and elemental analysis. The crystal structures of HM A3 and of an octapeptide fragment of HM A5 could be obtained. An NMR analysis was also carried out with HM A3 and HM A5 to determine their conformations in solution. A global structural comparison between the three sequences of HM A1, HM A3, and HM A5 was performed, as well as the HPLC correlation of the natural HM A family and the synthetic samples.
Collapse
Affiliation(s)
- Nicolas Pradeille
- Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
125
|
Krauson AJ, He J, Wimley AW, Hoffmann AR, Wimley WC. Synthetic molecular evolution of pore-forming peptides by iterative combinatorial library screening. ACS Chem Biol 2013; 8:823-31. [PMID: 23394375 DOI: 10.1021/cb300598k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We previously reported the de novo design of a combinatorial peptide library that was subjected to high-throughput screening to identify membrane-permeabilizing antimicrobial peptides that have β-sheet-like secondary structure. Those peptides do not form discrete pores in membranes but instead partition into membrane interfaces and cause transient permeabilization by membrane disruption, but only when present at high concentration. In this work, we used a consensus sequence from that initial screen as a template to design an iterative, second generation library. In the 24-26-residue, 16,200-member second generation library we varied six residues. Two diad repeat motifs of alternating polar and nonpolar amino acids were preserved to maintain a propensity for non-helical secondary structure. We used a new high-throughput assay to identify members that self-assemble into equilibrium pores in synthetic lipid bilayers. This screen was done at a very stringent peptide to lipid ratio of 1:1000 where most known membrane-permeabilizing peptides, including the template peptide, are not active. In a screen of 10,000 library members we identified 16 (~0.2%) that are equilibrium pore-formers at this high stringency. These rare and highly active peptides, which share a common sequence motif, are as potent as the most active pore-forming peptides known. Furthermore, they are not α-helical, which makes them unusual, as most of the highly potent pore-forming peptides are amphipathic α-helices. Here we demonstrate that this synthetic molecular evolution-based approach, taken together with the new high-throughput tools we have developed, enables the identification, refinement, and optimization of unique membrane active peptides.
Collapse
Affiliation(s)
- Aram J. Krauson
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| | - Jing He
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| | - Andrew W. Wimley
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| | - Andrew R. Hoffmann
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| | - William C. Wimley
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| |
Collapse
|
126
|
Noshiro D, Sonomura K, Yu HH, Imanishi M, Asami K, Futaki S. Construction of a Ca(2+)-gated artificial channel by fusing alamethicin with a calmodulin-derived extramembrane segment. Bioconjug Chem 2013; 24:188-95. [PMID: 23272973 DOI: 10.1021/bc300468x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using native chemical ligation, we constructed a Ca(2+)-gated fusion channel protein consisting of alamethicin and the C-terminal domain of calmodulin. At pH 5.4 and in the absence of Ca(2+), this fusion protein yielded a burst-like channel current with no discrete channel conductance levels. However, Ca(2+) significantly lengthened the specific channel open state and increased the mean channel current, while Mg(2+) produced no significant changes in the channel current. On the basis of 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescent measurement, Ca(2+)-stimulated gating may be related to an increased surface hydrophobicity of the extramembrane segment of the fusion protein.
Collapse
Affiliation(s)
- Daisuke Noshiro
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
127
|
|
128
|
Bobone S, Roversi D, Giordano L, De Zotti M, Formaggio F, Toniolo C, Park Y, Stella L. The Lipid Dependence of Antimicrobial Peptide Activity Is an Unreliable Experimental Test for Different Pore Models. Biochemistry 2012; 51:10124-6. [DOI: 10.1021/bi3015086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sara Bobone
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Daniela Roversi
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Lorenzo Giordano
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marta De Zotti
- ICB,
Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Fernando Formaggio
- ICB,
Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Claudio Toniolo
- ICB,
Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Yoonkyung Park
- Department
of Biotechnology and
Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea
| | - Lorenzo Stella
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
129
|
Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proc Natl Acad Sci U S A 2012; 109:21223-7. [PMID: 23236158 DOI: 10.1073/pnas.1201559110] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present direct visualization of pores formed by alamethicin (Alm) in a matrix of phospholipids using electrochemical scanning tunneling microscopy (EC-STM). High-resolution EC-STM images show individual peptide molecules forming channels. The channels are not dispersed randomly in the monolayer but agglomerate forming 2D nanocrystals with a hexagonal lattice in which the average channel-channel distance is 1.90 ± 0.1 nm. The STM images suggest that each Alm is shared between the two adjacent channels. Every channel consists of six Alm molecules. Three or four of these molecules have the hydrophilic group oriented toward the center of the channel allowing for water column formation inside the channel. The dimensions of the central pore in the images are consistent with the dimension of the water column in a model of hexameric pore proposed in the literature. The images obtained in this work validate the barrel-stave model of the pore formed in phospholipid membranes by amphiphatic peptides. They also provide direct evidence for cluster formation by such pores.
Collapse
|
130
|
Bobone S, Gerelli Y, De Zotti M, Bocchinfuso G, Farrotti A, Orioni B, Sebastiani F, Latter E, Penfold J, Senesi R, Formaggio F, Palleschi A, Toniolo C, Fragneto G, Stella L. Membrane thickness and the mechanism of action of the short peptaibol trichogin GA IV. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1013-24. [PMID: 23220179 DOI: 10.1016/j.bbamem.2012.11.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV (GAIV) is an antimicrobial peptide of the peptaibol family, like the extensively studied alamethicin (Alm). GAIV acts by perturbing membrane permeability. Previous data have shown that pore formation is related to GAIV aggregation and insertion in the hydrophobic core of the membrane. This behavior is similar to that of Alm and in agreement with a barrel-stave mechanism, in which transmembrane oriented peptides aggregate to form a channel. However, while the 19-amino acid long Alm has a length comparable to the membrane thickness, GAIV comprises only 10 amino acids, and its helix is about half the normal bilayer thickness. Here, we report the results of neutron reflectivity measurements, showing that GAIV inserts in the hydrophobic region of the membrane, causing a significant thinning of the bilayer. Molecular dynamics simulations of GAIV/membrane systems were also performed. For these studies we developed a novel approach for constructing the initial configuration, by embedding the short peptide in the hydrophobic core of the bilayer. These calculations indicated that in the transmembrane orientation GAIV interacts strongly with the polar phospholipid headgroups, drawing them towards its N- and C-termini, inducing membrane thinning and becoming able to span the bilayer. Finally, vesicle leakage experiments demonstrated that GAIV activity is significantly higher with thinner membranes, becoming similar to that of Alm when the bilayer thickness is comparable to its size. Overall, these data indicate that a barrel-stave mechanism of pore formation might be possible for GAIV and for similarly short peptaibols despite their relatively small size.
Collapse
Affiliation(s)
- S Bobone
- Department of Chemical Sciences and Technologies, University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Güell I, Ferre R, Sørensen KK, Badosa E, Ng-Choi I, Montesinos E, Bardají E, Feliu L, Jensen KJ, Planas M. Multivalent display of the antimicrobial peptides BP100 and BP143. Beilstein J Org Chem 2012; 8:2106-17. [PMID: 23243472 PMCID: PMC3520567 DOI: 10.3762/bjoc.8.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/07/2012] [Indexed: 12/25/2022] Open
Abstract
Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, we describe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptides KKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol (cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followed by coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtained in high purities (90–98%) and in good yields (42–64%). These compounds were tested against plant and human pathogenic bacteria and screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteria analyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively, were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest that preassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of the activity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassembly is critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect.
Collapse
Affiliation(s)
- Imma Güell
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Noshiro D, Asami K, Futaki S. Control of leakage activities of alamethicin analogs by metals: Side chain-dependent adverse gating response to Zn2+. Bioorg Med Chem 2012; 20:6870-6. [DOI: 10.1016/j.bmc.2012.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
133
|
Mikkola R, Andersson MA, Kredics L, Grigoriev PA, Sundell N, Salkinoja-Salonen MS. 20-Residue and 11-residue peptaibols from the fungusTrichoderma longibrachiatumare synergistic in forming Na+/K+-permeable channels and adverse action towards mammalian cells. FEBS J 2012; 279:4172-90. [DOI: 10.1111/febs.12010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 01/19/2023]
Affiliation(s)
- Raimo Mikkola
- Department of Food and Environmental Science; University of Helsinki; Finland
| | - Maria A. Andersson
- Department of Food and Environmental Science; University of Helsinki; Finland
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics; University of Szeged; Hungary
| | | | - Nina Sundell
- Department of Food and Environmental Science; University of Helsinki; Finland
| | | |
Collapse
|
134
|
Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 2012; 52:522-9. [PMID: 24293705 DOI: 10.1007/s12088-012-0308-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022] Open
Abstract
Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.
Collapse
|
135
|
Ayers S, Ehrmann BM, Adcock AF, Kroll DJ, Carcache de Blanco EJ, Shen Q, Swanson SM, Falkinham JO, Wani MC, Mitchell SM, Pearce CJ, Oberlies NH. Peptaibols from two unidentified fungi of the order Hypocreales with cytotoxic, antibiotic, and anthelmintic activities. J Pept Sci 2012; 18:500-10. [PMID: 22744757 PMCID: PMC3494480 DOI: 10.1002/psc.2425] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/11/2022]
Abstract
As part of an ongoing investigation of filamentous fungi for anticancer leads, an active culture was identified from the Mycosynthetix library (MSX 70741, of the order Hypocreales, Ascomycota). The fungal extract exhibited cytotoxic activity against the H460 (human nonsmall cell lung carcinoma) cell line, and bioactivity-directed fractionation yielded peptaibols 1-12 and harzianums A (13) and B (14). Structure elucidation of 1-12 was facilitated by high-resolution MS/MS using higher-energy collisional dissociation and by high field NMR (950 MHz). The absolute configuration was determined by Marfey's analysis of the individual amino acids; the time required for such analysis was decreased via the development of a 10-min ultra performance liquid chromatography method. The isolated peptaibols (1-12), along with three other peptaibols isolated and elucidated from a different fungus (MSX 57715) of the same order (15-17), were examined for activity in a suite of biological assays, including those for cytotoxic, antibacterial, and anthelmintic activities.
Collapse
Affiliation(s)
- Sloan Ayers
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Brandie M. Ehrmann
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Audrey F. Adcock
- Department of Pharmaceutical Sciences, BRITE, North Carolina Central University, Durham, NC, USA
| | - David J. Kroll
- Department of Pharmaceutical Sciences, BRITE, North Carolina Central University, Durham, NC, USA
| | - Esperanza J. Carcache de Blanco
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Qi Shen
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven M. Swanson
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mansukh C. Wani
- Natural Products Laboratory, Research Triangle Institute, P.O. Box 12194, Research Triangle Park, NC, USA
| | - Sheila M. Mitchell
- Mycosynthetix, Inc., 505 Meadowland Dr., Suite 103, Hillsborough, NC 27278
| | - Cedric J. Pearce
- Mycosynthetix, Inc., 505 Meadowland Dr., Suite 103, Hillsborough, NC 27278
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
136
|
Krauson AJ, He J, Wimley WC. Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening. J Am Chem Soc 2012; 134:12732-41. [PMID: 22731650 DOI: 10.1021/ja3042004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently developed an orthogonal, high-throughput assay to identify peptides that self-assemble into potent, equilibrium pores in synthetic lipid bilayers. Here, we use this assay as a high-throughput screen to select highly potent pore-forming peptides from a 7776-member rational combinatorial peptide library based on the sequence of the natural pore-forming peptide toxin melittin. In the library we varied ten critical residues in the melittin sequence, chosen to test specific structural hypotheses about the mechanism of pore formation. Using the new high-throughput assay, we screened the library for gain-of-function sequences at a peptide to lipid ratio of 1:1000 where native melittin is not active. More than 99% of the library sequences were also inactive under these conditions. A small number of library members (0.1%) were highly active. From these we identified 14 potent, gain-of-function, pore-forming sequences. These sequences differed from melittin in only 2-6 amino acids out of 26. Some native residues were highly conserved and others were consistently changed. The two factors that were essential for gain-of-function were the preservation of melittin's proline-dependent break in the middle of the helix and the improvement and extension the amphipathic nature of the α-helix. In particular the highly cationic carboxyl-terminal sequence of melittin, is consistently changed in the gain-of-function variants to a sequence that it is capable of participating in an extended amphipathic α-helix. The most potent variants reside in a membrane-spanning orientation, in contrast to the parent melittin, which is predominantly surface bound. This structural information, taken together with the high-throughput tools developed for this work, enable the identification, refinement and optimization of pore-forming peptides for many potential applications.
Collapse
Affiliation(s)
- Aram J Krauson
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | | | | |
Collapse
|
137
|
Balleza D. Mechanical properties of lipid bilayers and regulation of mechanosensitive function: from biological to biomimetic channels. Channels (Austin) 2012; 6:220-33. [PMID: 22790280 DOI: 10.4161/chan.21085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Material properties of lipid bilayers, including thickness, intrinsic curvature and compressibility regulate the function of mechanosensitive (MS) channels. This regulation is dependent on phospholipid composition, lateral packing and organization within the membrane. Therefore, a more complete framework to understand the functioning of MS channels requires insights into bilayer structure, thermodynamics and phospholipid structure, as well as lipid-protein interactions. Phospholipids and MS channels interact with each other mainly through electrostatic forces and hydrophobic matching, which are also crucial for antimicrobial peptides. They are excellent models for studying the formation and stabilization of membrane pores. Importantly, they perform equivalent responses as MS channels: (1) tilting in response to tension and (2) dissipation of osmotic gradients. Lessons learned from pore forming peptides could enrich our knowledge of mechanisms of action and evolution of these channels. Here, the current state of the art is presented and general principles of membrane regulation of mechanosensitive function are discussed.
Collapse
Affiliation(s)
- Daniel Balleza
- Unidad de Biofísica, CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
138
|
Strandberg E, Tiltak D, Ehni S, Wadhwani P, Ulrich AS. Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1764-76. [DOI: 10.1016/j.bbamem.2012.02.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 02/07/2023]
|
139
|
Hjørringgaard CU, Vad BS, Matchkov VV, Nielsen SB, Vosegaard T, Nielsen NC, Otzen DE, Skrydstrup T. Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance. J Phys Chem B 2012; 116:7652-9. [PMID: 22676384 DOI: 10.1021/jp2098679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial resistance to classical antibiotics is a serious medical problem, which continues to grow. Small antimicrobial peptides represent a potential solution and are increasingly being developed as novel therapeutic agents. Many of these peptides owe their antibacterial activity to the formation of trans-membrane ion-channels resulting in cell lysis. However, to further develop the field of peptide antibiotics, a thorough understanding of their mechanism of action is needed. Alamethicin belongs to a class of peptides called peptaibols and represents one of these antimicrobial peptides. To examine the dynamics of assembly and to facilitate a thorough structural evaluation of the alamethicin ion-channels, we have applied click chemistry for the synthesis of templated alamethicin multimers covalently attached to cyclodextrin-scaffolds. Using oriented circular dichroism, calcein release assays, and single-channel current measurements, the α-helices of the templated multimers were demonstrated to insert into lipid bilayers forming highly efficient and remarkably stable ion-channels.
Collapse
Affiliation(s)
- Claudia U Hjørringgaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Ye S, Li H, Wei F, Jasensky J, Boughton AP, Yang P, Chen Z. Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change. J Am Chem Soc 2012; 134:6237-43. [PMID: 22420296 PMCID: PMC3328217 DOI: 10.1021/ja2110784] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes.
Collapse
Affiliation(s)
- Shuji Ye
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Hongchun Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Feng Wei
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Joshua Jasensky
- Department of Biophysics, University of Michigan, AnnArbor, MI 48109, USA
| | - Andrew P. Boughton
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| | - Pei Yang
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| | - Zhan Chen
- Department of Biophysics, University of Michigan, AnnArbor, MI 48109, USA
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| |
Collapse
|
141
|
Bechinger B, Salnikov ES. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids 2012; 165:282-301. [DOI: 10.1016/j.chemphyslip.2012.01.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
|
142
|
Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma – a genomic perspective. Microbiology (Reading) 2012; 158:35-45. [DOI: 10.1099/mic.0.053629-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Benjamin A. Horwitz
- Department of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
143
|
Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM. Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. MICROBIOLOGY-SGM 2011; 158:155-165. [PMID: 22075027 DOI: 10.1099/mic.0.052159-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Trichoderma virens genome harbours genes encoding 22 non-ribosomal peptide synthetases (NRPSs) with at least one complete module (containing adenylation, thiolation and condensation domains) and four PKS/NRPS (polyketide synthase/NRPS) hybrid enzymes. After a primary screen for expression of these 26 genes when mycelia of T. virens are in contact with maize roots, seven genes that are upregulated were selected for further study. Using homologous recombination, loss-of-function mutants in six of these were obtained (the seventh, tex2, was acquired from our previous studies). Plant assays in a hydroponics system revealed that all seven mutants retained the ability to internally colonize maize roots. However, a mutation in one of the PKS/NRPS hybrid genes impaired the ability of T. virens to induce the defence response gene pal (phenylalanine ammonia lyase), suggesting a putative role for the associated metabolite product in induced systemic resistance. Interestingly, the mutant retained its ability to induce another defence response gene aos (allene oxide synthase). We thus provide evidence that a PKS/NRPS hybrid enzyme is involved in Trichoderma-plant interactions resulting in induction of defence responses.
Collapse
Affiliation(s)
- Prasun K Mukherjee
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.,Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Natthiya Buensanteai
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Maria E Moran-Diez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Irina S Druzhinina
- Research Area Biotechnology and Microbiology, Working Group Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
144
|
Wilson MA, Wei C, Bjelkmar P, Wallace BA, Pohorille A. Molecular dynamics simulation of the antiamoebin ion channel: linking structure and conductance. Biophys J 2011; 100:2394-402. [PMID: 21575573 DOI: 10.1016/j.bpj.2011.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
Molecular-dynamics simulations were carried out to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistent with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive. The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be nonconducting. The conductance of the hexamer was estimated to be 115 ± 34 pS and 74 ± 20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis, we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K⁺ and Cl⁻ with their first solvation shells intact. The free energy barrier encountered by K⁺ is only 2.2 kcal/mol whereas Cl⁻ encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics.
Collapse
Affiliation(s)
- Michael A Wilson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
145
|
Harriss LM, Cronin B, Thompson JR, Wallace MI. Imaging Multiple Conductance States in an Alamethicin Pore. J Am Chem Soc 2011; 133:14507-9. [DOI: 10.1021/ja204275t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lydia M. Harriss
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Bríd Cronin
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - James R. Thompson
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Mark I. Wallace
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
146
|
De Zotti M, Biondi B, Peggion C, Park Y, Hahm KS, Formaggio F, Toniolo C. Synthesis, preferred conformation, protease stability, and membrane activity of heptaibin, a medium-length peptaibiotic. J Pept Sci 2011; 17:585-94. [PMID: 21495119 DOI: 10.1002/psc.1364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/18/2011] [Indexed: 11/11/2022]
Abstract
The medium-length peptaibiotics are characterized by a primary structure of 14-16 amino acid residues. Despite the interesting antibiotic and antifungal properties exhibited by these membrane-active peptides, their exact mechanism of action is still unknown. Here, we present our results on heptaibin, a 14-amino acid peptaibiotic found to exhibit antimicrobial activity against Staphylococcus aureus. We carried out the very challenging synthesis of heptaibin on solid phase and a detailed conformational analysis in solution. The peptaibiotic is folded in a mixed 3₁₀-/α-helix conformation which exhibits a remarkable amphiphilic character. We also find that it is highly stable toward degradation by proteolytic enzymes and nonhemolytic. Finally, fluorescence leakage experiments using small unilamellar vesicles of three different compositions revealed that heptaibin, although uncharged, is a selective compound for permeabilization of model membranes mimicking the overall negatively charged surface of Gram-positive bacteria. This latter finding is in agreement with the originally published antimicrobial activity data.
Collapse
Affiliation(s)
- Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
147
|
Bechinger B. Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations. J Pept Sci 2011; 17:306-14. [DOI: 10.1002/psc.1343] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 01/09/2023]
|
148
|
Aidemark M, Tjellström H, Sandelius AS, Stålbrand H, Andreasson E, Rasmusson AG, Widell S. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC PLANT BIOLOGY 2010; 10:274. [PMID: 21156059 PMCID: PMC3017840 DOI: 10.1186/1471-2229-10-274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/14/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus Trichoderma viride. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (Nicotiana tabacum L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation. RESULTS Oxygen consumption experiments showed that added cellulase, already upon a limited cell wall digestion, induced a cellular resistance to alamethicin permeabilisation. This effect could not be elicited by xylanase or bacterial elicitors such as flg22 or elf18. The induction of alamethicin resistance was independent of novel protein synthesis. Also, the permeabilisation was unaffected by the membrane-depolarising agent FCCP. As judged by lipid analyses, isolated plasma membranes from cellulase-pretreated tobacco cells contained less negatively charged phospholipids (PS and PI), yet higher ratios of membrane lipid fatty acid to sterol and to protein, as compared to control membranes. CONCLUSION We suggest that altered membrane lipid composition as induced by cellulase activity may render the cells resistant to alamethicin. This induced resistance could reflect a natural process where the plant cells alter their sensitivity to membrane pore-forming agents secreted by Trichoderma spp. to attack other microorganisms, and thus adding to the beneficial effect that Trichoderma has for plant root growth. Furthermore, our data extends previous reports on artificial membranes on the importance of lipid packing and charge for alamethicin permeabilisation to in vivo conditions.
Collapse
Affiliation(s)
- Mari Aidemark
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| | - Henrik Tjellström
- Plant Biology Department, Michigan State University, East Lansing, 48824, MI, USA
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE-405 30 Göteborg, Sweden
| | - Anna Stina Sandelius
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE-405 30 Göteborg, Sweden
| | - Henrik Stålbrand
- Department of Biochemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish Agricultural University, P.O. Box 102, SE-230 53 Alnarp, Sweden
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| | - Susanne Widell
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| |
Collapse
|
149
|
Kruglov AG, Andersson MA, Mikkola R, Roivainen M, Kredics L, Saris NEL, Salkinoja-Salonen MS. Novel mycotoxin from Acremonium exuviarum is a powerful inhibitor of the mitochondrial respiratory chain complex III. Chem Res Toxicol 2010; 22:565-73. [PMID: 19193189 DOI: 10.1021/tx800317z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel mycotoxin named acrebol, consisting of two closely similar peptaibols (1726 and 1740 Da), was isolated from an indoor strain of the mitosporic ascomycete fungus Acremonium exuviarum. This paper describes the unique mitochondrial toxicity of acrebol, not earlier described for any peptaibol. Acrebol inhibited complex III of the respiratory chain of isolated rat liver mitochondria (1 mg of protein mL(-1)) with an IC(50) of approximately 80 ng mL(-1) (50 nM) after a short preincubation, and 350 ng mL(-1) caused immediate and complete inhibition. Acrebol thus is a complex III inhibitor almost as potent as antimycin A and myxothiazol but completely different in structure. Similarly to myxothiazol but in contrast to antimycin A, acrebol decreased the level of mitochondrial superoxide anion detectable by chemiluminescent probe 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazol[1,2-a]pyrazine-3-one. Unlike other peptaibols, acrebol in toxic concentrations did not increase the ionic and solute permeability of membranes of isolated rat liver mitochondria, did not induce disturbance of the ionic homeostasis or the osmotic balance of mitochondria, and did not release apoptogenic proteins like cytochrome c from the intermembrane space of mitochondria. In boar spermatozoa, acrebol inhibited the respiratory chain and caused ATP depletion by activation of the oligomycin-sensitive F(0)F(1)-ATPase, which resulted in the inhibition of the progressive movement. In mouse insulinoma MIN-6 cells, whose energy supply solely depends on oxidative phosphorylation, acrebol induced necrosis-like death. The pathophysiological relevance of these findings is discussed.
Collapse
Affiliation(s)
- Alexey G Kruglov
- Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
150
|
Maischak H, Zimmermann MR, Felle HH, Boland W, Mithöfer A. Alamethicin-induced electrical long distance signaling in plants. PLANT SIGNALING & BEHAVIOR 2010; 5:988-90. [PMID: 20724839 PMCID: PMC3115176 DOI: 10.4161/psb.5.8.12223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic signals induced by wounding and/or pathogen or herbivore attack may be realized by either chemical or mechanical signals. In plants a variety of electrical phenomena have been described and may be considered as signal-transducing events; such as variation potentials (VPs) and action potentials (APs) which propagate over long distances and hence are able to carry information from organ to organ. In addition, we recently described a new type of electrical long-distance signal that propagates systemically, i.e. from leaf to leaf, the 'system potential' (SP). This was possible only by establishing a non-invasive method with micro-electrodes positioned in sub-stomatal cavities of open stomata and recording apoplastic responses. Using this technical approach, we investigated the function of the peptaibole alamethicin (ALA), a channel-forming peptide from Trichoderma viride, which is widely used as agent to induce various physiological and defence responses in eukaryotic cells including plants. Although the ability of ALA to initiate changes in membrane potentials in plants has always been postulated it has never been demonstrated. Here we show that both local and long-distance electrical signals, namely depolarization, can be induced by ALA treatment.
Collapse
Affiliation(s)
- Heiko Maischak
- Bioorganische Chemie; Max-Planck-Institut für Chemische Ökologie; Jena, Germany
| | | | - Hubert H Felle
- Botanisches Institut I; Justus-Liebig-Universität; Gießen, Germany
| | - Wilhelm Boland
- Bioorganische Chemie; Max-Planck-Institut für Chemische Ökologie; Jena, Germany
| | - Axel Mithöfer
- Bioorganische Chemie; Max-Planck-Institut für Chemische Ökologie; Jena, Germany
| |
Collapse
|