101
|
Arabidopsis Plasma Membrane ATPase AHA5 Is Negatively Involved in PAMP-Triggered Immunity. Int J Mol Sci 2022; 23:ijms23073857. [PMID: 35409217 PMCID: PMC8998810 DOI: 10.3390/ijms23073857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Plants evolve a prompt and robust immune system to defend themselves against pathogen infections. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is the first battle layer activated upon the PAMP’s perception, which leads to multiple defense responses. The plasma membrane (PM) H+-ATPases are the primary ion pumps to create and maintain the cellular membrane potential that is critical for various essential biological processes, including plant growth, development, and defense. This study discovered that the PM H+-ATPase AHA5 is negatively involved in Arabidopsis PTI against the virulent pathogen Pseudomonas syringae pvr. tomato (Pto) DC3000 infection. The aha5 mutant plants caused the reduced stomata opening upon the Pto infection, which was associated with the salicylic acid (SA) pathway. In addition, the aha5 mutant plants caused the increased levels of callose deposition, defense-related gene expression, and SA accumulation. Our results also indicate that the PM H+-ATPase activity of AHA5 probably mediates the coupling of H2O2 generation and the apoplast alkalization in PTI responses. Moreover, AHA5 was found to interact with a vital defense regulator, RPM1-interacting protein 4 (RIN4), in vitro and in vivo, which might also be critical for its function in PTI. In summary, our studies show that AHA5 functions as a novel and critical component that is negatively involved in PTI by coordinating different defense responses during the Arabidopsis–Pto DC3000 interaction.
Collapse
|
102
|
Zhang M, Shi H, Li N, Wei N, Tian Y, Peng J, Chen X, Zhang L, Zhang M, Dong H. Aquaporin OsPIP2;2 links the H2O2 signal and a membrane-anchored transcription factor to promote plant defense. PLANT PHYSIOLOGY 2022; 188:2325-2341. [PMID: 34958388 PMCID: PMC8968290 DOI: 10.1093/plphys/kiab604] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
To overcome pathogen infection, plants deploy a highly efficient innate immune system, which often uses hydrogen peroxide (H2O2), a versatile reactive oxygen species, to activate downstream defense responses. H2O2 is a potential substrate of aquaporins (AQPs), the membrane channels that facilitate the transport of small compounds across plasma membranes or organelle membranes. To date, however, the functional relationship between AQPs and H2O2 in plant immunity is largely undissected. Here, we report that the rice (Oryza sativa) AQP OsPIP2;2 transports pathogen-induced apoplastic H2O2 into the cytoplasm to intensify rice resistance against various pathogens. OsPIP2;2-transported H2O2 is required for microbial molecular pattern flg22 to activate the MAPK cascade and to induce the downstream defense responses. In response to flg22, OsPIP2;2 is phosphorylated at the serine residue S125, and therefore gains the ability to transport H2O2. Phosphorylated OsPIP2;2 also triggers the translocation of OsmaMYB, a membrane-anchored MYB transcription factor, into the plant cell nucleus to impart flg22-induced defense responses against pathogen infection. On the contrary, if OsPIP2;2 is not phosphorylated, OsmaMYB remains associated with the plasma membrane, and plant defense responses are no longer induced. These results suggest that OsPIP2;2 positively regulates plant innate immunity by mediating H2O2 transport into the plant cell and mediating the translocation of OsmaMYB from plasma membrane to nucleus.
Collapse
Affiliation(s)
- Mou Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Haotian Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ningning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Nana Wei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yan Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jinfeng Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiaochen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Liyuan Zhang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
| | | | | |
Collapse
|
103
|
Chen R, Tu Z, He C, Nie X, Li K, Fei S, Song B, Nie B, Xie C. Susceptibility factor StEXA1 interacts with StnCBP to facilitate potato virus Y accumulation through the stress granule-dependent RNA regulatory pathway in potato. HORTICULTURE RESEARCH 2022; 9:uhac159. [PMID: 36204208 PMCID: PMC9531334 DOI: 10.1093/hr/uhac159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/22/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses recruit multiple host factors for translation, replication, and movement in the infection process. The loss-of-function mutation of the susceptibility genes will lead to the loss of susceptibility to viruses, which is referred to as 'recessive resistance'. Essential for potexvirus Accumulation 1 (EXA1) has been identified as a susceptibility gene required for potexvirus, lolavirus, and bacterial and oomycete pathogens. In this study, EXA1 knockdown in potato (StEXA1) was found to confer novel resistance to potato virus Y (PVY, potyvirus) in a strain-specific manner. It significantly compromised PVYO accumulation but not PVYN:O and PVYNTN. Further analysis revealed that StEXA1 is associated with the HC-Pro of PVY through a member of eIF4Es (StnCBP). HC-ProO and HC-ProN, two HC-Pro proteins from PVYO and PVYN, exhibited strong and weak interactions with StnCBP, respectively, due to their different spatial conformation. Moreover, the accumulation of PVYO was mainly dependent on the stress granules (SGs) induced by StEXA1 and StnCBP, whereas PVYN:O and PVYNTN could induce SGs by HC-ProN independently through an unknown mechanism. These results could explain why StEXA1 or StnCBP knockdown conferred resistance to PVYO but not to PVYN:O and PVYNTN. In summary, our results for the first time demonstrate that EXA1 can act as a susceptibility gene for PVY infection. Finally, a hypothetical model was proposed for understanding the mechanism by which StEXA1 interacts with StnCBP to facilitate PVY accumulation in potato through the SG-dependent RNA regulatory pathway.
Collapse
Affiliation(s)
- Ruhao Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, E3B 4Z7,
Canada
| | - Kun Li
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sitian Fei
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
104
|
The Protein Phosphatase GhAP2C1 Interacts Together with GhMPK4 to Synergistically Regulate the Immune Response to Fusarium oxysporum in Cotton. Int J Mol Sci 2022; 23:ijms23042014. [PMID: 35216128 PMCID: PMC8876771 DOI: 10.3390/ijms23042014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
The plant mitogen-activated protein kinase (MAPK) cascade plays an important role in mediating responses to biotic and abiotic stresses and is the main pathway through which extracellular stimuli are transduced intracellularly as signals. Our previous research showed that the GhMKK6-GhMPK4 cascade signaling pathway plays an important role in cotton immunity. To further analyze the role and regulatory mechanism of the GhMKK6-GhMPK4 cascade signaling pathway in cotton resistance to Fusarium wilt, we functionally analyzed GhMPK4. Our results show that silencing GhMPK4 reduces cotton tolerance to Fusarium wilt and reduces the expression of several resistance genes. Further experiments revealed that GhMPK4 is similar to GhMKK6, both of whose overexpression cause unfavorable cotton immune response characteristics. By using a yeast two-hybrid screening library and performing a bioinformatics analysis, we screened and identified a negative regulator of the MAPK kinase-protein phosphatase AP2C1. Through the functional analysis of AP2C1, it was found that, after being silenced, GhAP2C1 increased resistance to Fusarium wilt, but GhAP2C1 overexpression caused sensitivity to Fusarium wilt. These findings show that GhAP2C1 interacts together with GhMPK4 to regulate the immune response of cotton to Fusarium oxysporum, which provides important data for functionally analyzing and studying the feedback regulatory mechanism of the MAPK cascade and helps to clarify the regulatory mechanism through which the MAPK cascade acts in response to pathogens.
Collapse
|
105
|
Xie Q, Wang Q, Xu X. Firefly Luciferase Complementation-Based Analysis of Dynamic Protein-Protein Interactions Under Diurnal and Circadian Conditions in Arabidopsis. Methods Mol Biol 2022; 2398:205-213. [PMID: 34674178 DOI: 10.1007/978-1-0716-1912-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Split firefly luciferase complementation assay (FLCA) is one of the most widely used sensitive and reliable methods for the analysis of constitutive and dynamic protein-protein interactions (PPIs). Here, we report a method for long-term in vivo detects plant protein-protein interactions in Arabidopsis F1 hybrids via Topcount™ Microplate Scintillation Counter or Deep-Cooled CCD camera. Following these protocols, we successfully detected time-dependent PPIs of EARLY FLOWERING 3 (ELF3) and EARLY FLOWERING 4 (ELF4); both of them with LUX ARRHYTHMO (LUX) belong to an evening complex which has been found to play a key role in circadian rhythms, flowering, and growth.
Collapse
Affiliation(s)
- Qiguang Xie
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China.
- College of Biological Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| | - Qiao Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaodong Xu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Biological Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
106
|
Pi L, Yin Z, Duan W, Wang N, Zhang Y, Wang J, Dou D. A G-type lectin receptor-like kinase regulates the perception of oomycete apoplastic expansin-like proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:183-201. [PMID: 34825772 DOI: 10.1111/jipb.13194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 05/27/2023]
Abstract
Phytophthora capsici is one of the most harmful pathogens in agriculture, which threatens the safe production of multiple crops and causes serious economic losses worldwide. Here, we identified a P. capsici expansin-like protein, PcEXLX1, by liquid chromatography-tandem mass spectrometry from Nicotiana benthamiana apoplastic fluid infected with P. capsici. Clustered regularly interspaced short palindromic repeats/crispr associated protein 9 (CRISPR/Cas9)-mediated PcEXLX1 knockout mutants exhibited significantly enhanced virulence, while the overexpression of PcEXLX1 impaired the virulence. Prokaryotically expressed PcEXLX1 activated multiple plant immune responses, which were BRI1-associated kinase 1 (BAK1)- and suppressor of BIR1-1 (SOBIR1)-dependent. Furthermore, overexpression of PcEXLX1 homologs in N. benthamiana could also increase plant resistance to P. capsici. A G-type lectin receptor-like kinase from N. benthamiana, expansin-regulating kinase 1 (ERK1), was shown to regulate the perception of PcEXLX1 and positively mediate the plant resistance to P. capsici. These results reveal that the expansin-like protein, PcEXLX1, is a novel apoplastic effector with plant immunity-inducing activity of oomycetes, perception of which is regulated by the receptor-like kinase, ERK1.
Collapse
Affiliation(s)
- Lei Pi
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Yin
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yifan Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
107
|
Wu G, Jia Z, Ding K, Zheng H, Lu Y, Lin L, Peng J, Rao S, Wang A, Chen J, Yan F. Turnip mosaic virus co-opts the vacuolar sorting receptor VSR4 to promote viral genome replication in plants by targeting viral replication vesicles to the endosome. PLoS Pathog 2022; 18:e1010257. [PMID: 35073383 PMCID: PMC8812904 DOI: 10.1371/journal.ppat.1010257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection. A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host endomembrane system to produce a membranous replication organelle. Recent reports suggest that the late endosome (LE) serves as a replication site for the potyvirus Turnip mosaic virus (TuMV), but the mechanism(s) by which TuMV replication vesicles target LE are far from being fully elucidated. Identification of the host factors involved in this transport process could lead to new strategies to combat TuMV infection. In this report, we provide evidence that TuMV replication depends on functional vesicle transport from cis-Golgi to the enlarged LE pathway that is mediated by a specific VSR family member, VSR4, from Arabidopsis. Knock out of VSR4 impaired the targeting of TuMV replication vesicles to enlarged LE and suppressed viral infection, and this process depends on the specific interaction between VSR4 and the viral replication vesicle-forming protein 6K2. We also showed that N-glycosylation of VSR4 modulates the targeting of TuMV replication vesicles to enlarged LE and enhances viral infection, thus contributing to our understanding of how TuMV manipulates host factors in order to establish optimal infection. These results may have implications for the role of VSR in other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kaida Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JC); (FY)
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JC); (FY)
| |
Collapse
|
108
|
Yu M, Zhou Z, Liu X, Yin D, Li D, Zhao X, Li X, Li S, Chen R, Lu L, Yang D, Tang D, Zhu L. The OsSPK1-OsRac1-RAI1 defense signaling pathway is shared by two distantly related NLR proteins in rice blast resistance. PLANT PHYSIOLOGY 2021; 187:2852-2864. [PMID: 34597396 PMCID: PMC8644225 DOI: 10.1093/plphys/kiab445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/23/2021] [Indexed: 06/09/2023]
Abstract
Resistance (R) proteins are important components of plant innate immunity. Most known R proteins are nucleotide-binding site leucine-rich repeat (NLR) proteins. Although a number of signaling components downstream of NLRs have been identified, we lack a general understanding of the signaling pathways. Here, we used the interaction between rice (Oryza sativa) and Magnaporthe oryzae to study signaling of rice NLRs in response to blast infection. We found that in blast resistance mediated by the NLR PIRICULARIA ORYZAE RESISTANCE IN DIGU 3 (PID3), the guanine nucleotide exchange factor OsSPK1 works downstream of PID3. OsSPK1 activates the small GTPase OsRac1, which in turn transduces the signal to the transcription factor RAC IMMUNITY1 (RAI1). Further investigation revealed that the three signaling components also play important roles in disease resistance mediated by the distantly related NLR protein Pi9, suggesting that the OsSPK1-OsRac1-RAI1 signaling pathway could be conserved across rice NLR-induced blast resistance. In addition, we observed changes in RAI1 levels during blast infection, which led to identification of OsRPT2a, a subunit of the 19S regulatory particle of the 26S proteasome. OsRPT2a seemed to be responsible for RAI1 turnover in a 26S proteasome-dependent manner. Collectively, our results suggest a defense signaling route that might be common to NLR proteins in response to blast infection.
Collapse
Affiliation(s)
- Minxiang Yu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350019, China
| | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Liu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Dedong Yin
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Renjie Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dewei Yang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350019, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
109
|
Wang Z, Wang L, Han L, Cheng Z, Liu X, Wang S, Liu L, Chen J, Song W, Zhao J, Zhou Z, Zhang X. HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation. PLANT PHYSIOLOGY 2021; 187:1619-1635. [PMID: 34618075 PMCID: PMC8566225 DOI: 10.1093/plphys/kiab377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
Warty fruit in cucumber (Cucumis sativus L.) is an important quality trait that greatly affects fruit appearance and market value. The cucumber wart consists of fruit trichomes (spines) and underlying tubercules, in which the existence of spines is prerequisite for tubercule formation. Although several regulators have been reported to mediate spine or tubercule formation, the direct link between spine and tubercule development remains unknown. Here, we found that the basic Helix-Loop-Helix (bHLH) gene HECATE2 (CsHEC2) was highly expressed in cucumber fruit peels including spines and tubercules. Knockout of CsHEC2 by the CRISPR/Cas9 system resulted in reduced wart density and decreased cytokinin (CTK) accumulation in the fruit peel, whereas overexpression of CsHEC2 led to elevated wart density and CTK level. CsHEC2 is directly bound to the promoter of the CTK hydroxylase-like1 gene (CsCHL1) that catalyzes CTK biosynthesis, and activated CsCHL1 expression. Moreover, CsHEC2 physically interacted with GLABROUS3 (CsGL3, a key spine regulator) and Tuberculate fruit (CsTu, a core tubercule formation factor), and such interactions further enhanced CsHEC2-mediated CsCHL1 expression. These data suggested that CsHEC2 promotes wart formation by acting as an important cofactor for CsGL3 and CsTu to directly stimulate CTK biosynthesis in cucumber. Thus, CsHEC2 can serve as a valuable target for molecular breeding of cucumber varieties with different wart density requirements.
Collapse
Affiliation(s)
- Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Liming Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shaoyun Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Liu Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
110
|
A rice QTL GS3.1 regulates grain size through metabolic-flux distribution between flavonoid and lignin metabolons without affecting stress tolerance. Commun Biol 2021; 4:1171. [PMID: 34620988 PMCID: PMC8497587 DOI: 10.1038/s42003-021-02686-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.
Collapse
|
111
|
Liang X, Bao Y, Zhang M, Du D, Rao S, Li Y, Wang X, Xu G, Zhou Z, Shen D, Chang Q, Duan W, Ai G, Lu J, Zhou JM, Dou D. A Phytophthora capsici RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 232:264-278. [PMID: 34157161 DOI: 10.1111/nph.17573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Receptor-like cytoplasmic kinase subfamily VII (RLCK-VII) proteins are the central immune kinases in plant pattern-recognition receptor (PRR) complexes, and they orchestrate a complex array of defense responses against bacterial and fungal pathogens. However, the role of RLCK-VII in plant-oomycete pathogen interactions has not been established. Phytophthora capsici is a notorious oomycete pathogen that infects many agriculturally important vegetables. Here, we report the identification of RXLR25, an RXLR effector that is required for the virulence of P. capsici. In planta expression of RXLR25 significantly enhanced plants' susceptibility to Phytophthora pathogens. Microbial pattern-induced immune activation in Arabidopsis was severely impaired by RXLR25. We further showed that RXLR25 interacts with RLCK-VII proteins. Using nine rlck-vii high-order mutants, we observed that RLCK-VII-6 and RLCK-VII-8 members are required for resistance to P. capsici. The RLCK-VII-6 members are specifically required for Phytophthora culture filtrate (CF)-induced immune responses. RXLR25 directly targets RLCK-VII proteins such as BIK1, PBL8, and PBL17 and inhibits pattern-induced phosphorylation of RLCK-VIIs to suppress downstream immune responses. This study identified a key virulence factor for P. capsici, and the results revealed the importance of RLCK-VII proteins in plant-oomycete interactions.
Collapse
Affiliation(s)
- Xiangxiu Liang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yazhou Bao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Meixiang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dandan Du
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shaofei Rao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yixin Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaodan Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Chang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gan Ai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
112
|
Qian D, Xiong S, Li M, Tian L, Qing Qu L. OsFes1C, a potential nucleotide exchange factor for OsBiP1, is involved in the ER and salt stress responses. PLANT PHYSIOLOGY 2021; 187:396-408. [PMID: 34618140 PMCID: PMC8418431 DOI: 10.1093/plphys/kiab263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 05/25/2023]
Abstract
The endoplasmic reticulum (ER) quality control system monitors protein homeostasis and relies on the activity of many molecular chaperones. Binding immunoglobulin protein (BiP) is a major ER luminal chaperone that is involved in most functions of the organelle. BiP activity is tightly regulated by nucleotide exchange factors (NEFs). However, information about NEFs in plants is limited. We obtained a Fes1-like protein (OsFes1C) through isobaric tags for relative and absolute quantitation-based proteomics analysis of ER-stressed rice (Oryza sativa) seeds. Unlike its homologs in yeast and mammals, which are located in the cytosol and respond to heat stress, OsFes1C is an ER membrane protein and responds to ER and salt stresses. OsFes1C interacts directly with OsBiP1 and the interaction is inhibited by ATP but promoted by ADP, suggesting that OsFes1C acts as a potential NEF of OsBiP1 in vivo. Overexpression or suppression of OsFes1C led to hypersensitivity to ER stress and affected the growth of rice. Furthermore, we established that OsFes1C directly interacts with a putative salt response protein and is involved in the salt response. Taken together, our study marks an important step toward elucidating the functional mechanisms of an identified ER stress response factor in rice.
Collapse
Affiliation(s)
- Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
113
|
Watkins JM, Ross-Elliott TJ, Shan X, Lou F, Dreyer B, Tunc-Ozdemir M, Jia H, Yang J, Oliveira CC, Wu L, Trusov Y, Schwochert TD, Krysan P, Jones AM. Differential regulation of G protein signaling in Arabidopsis through two distinct pathways that internalize AtRGS1. Sci Signal 2021; 14:14/695/eabe4090. [PMID: 34376571 DOI: 10.1126/scisignal.abe4090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In animals, endocytosis of a seven-transmembrane GPCR is mediated by arrestins to propagate or arrest cytoplasmic G protein-mediated signaling, depending on the bias of the receptor or ligand, which determines how much one transduction pathway is used compared to another. In Arabidopsis thaliana, GPCRs are not required for G protein-coupled signaling because the heterotrimeric G protein complex spontaneously exchanges nucleotide. Instead, the seven-transmembrane protein AtRGS1 modulates G protein signaling through ligand-dependent endocytosis, which initiates derepression of signaling without the involvement of canonical arrestins. Here, we found that endocytosis of AtRGS1 initiated from two separate pools of plasma membrane: sterol-dependent domains and a clathrin-accessible neighborhood, each with a select set of discriminators, activators, and candidate arrestin-like adaptors. Ligand identity (either the pathogen-associated molecular pattern flg22 or the sugar glucose) determined the origin of AtRGS1 endocytosis. Different trafficking origins and trajectories led to different cellular outcomes. Thus, in this system, compartmentation with its associated signalosome architecture drives biased signaling.
Collapse
Affiliation(s)
- Justin M Watkins
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy J Ross-Elliott
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaoyi Shan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fei Lou
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bernd Dreyer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Jia
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jing Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celio Cabral Oliveira
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luguang Wu
- School of Agriculture and Food Science, University of Queensland, St. Lucia, Queensland Q4072, Australia
| | - Yuri Trusov
- School of Agriculture and Food Science, University of Queensland, St. Lucia, Queensland Q4072, Australia
| | - Timothy D Schwochert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick Krysan
- Department of Horticulture, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
114
|
Hao J, Wang D, Wu Y, Huang K, Duan P, Li N, Xu R, Zeng D, Dong G, Zhang B, Zhang L, Inzé D, Qian Q, Li Y. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. MOLECULAR PLANT 2021; 14:1266-1280. [PMID: 33930509 DOI: 10.1016/j.molp.2021.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/05/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Regulation of seed size is a key strategy for improving crop yield and is also a basic biological question. However, the molecular mechanisms by which plants determine their seed size remain elusive. Here, we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. Interestingly, WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as an adaptor protein to recruit the transcriptional co-repressor. In contrary, OsbZIP47 restricts grain growth by decreasing cell proliferation. Further studies reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses confirm that GW2, WG1, and OsbZIP47 function in a common pathway to control grain growth. Taken together, our findings reveal a genetic and molecular framework for the control of grain size and weight by the GW2-WG1-OsbZIP47 regulatory module, providing new targets for improving seed size and weight in crops.
Collapse
Affiliation(s)
- Jianqin Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingbao Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
115
|
Zhang Y, Fernie AR. Metabolons, enzyme-enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. PLANT COMMUNICATIONS 2021; 2:100081. [PMID: 33511342 PMCID: PMC7816073 DOI: 10.1016/j.xplc.2020.100081] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
Metabolons are transient multi-protein complexes of sequential enzymes that mediate substrate channeling. They differ from multi-enzyme complexes in that they are dynamic, rather than permanent, and as such have considerably lower dissociation constants. Despite the fact that a huge number of metabolons have been suggested to exist in plants, most of these claims are erroneous as only a handful of these have been proven to channel metabolites. We believe that physical protein-protein interactions between consecutive enzymes of a pathway should rather be called enzyme-enzyme assemblies. In this review, we describe how metabolons are generally assembled by transient interactions and held together by both structural elements and non-covalent interactions. Experimental evidence for their existence comes from protein-protein interaction studies, which indicate that the enzymes physically interact, and direct substrate channeling measurements, which indicate that they functionally interact. Unfortunately, advances in cell biology and proteomics have far outstripped those in classical enzymology and flux measurements, rendering most reports reliant purely on interactome studies. Recent developments in co-fractionation mass spectrometry will likely further exacerbate this bias. Given this, only dynamic enzyme-enzyme assemblies in which both physical and functional interactions have been demonstrated should be termed metabolons. We discuss the level of evidence for the manifold plant pathways that have been postulated to contain metabolons and then list examples in both primary and secondary metabolism for which strong evidence has been provided to support these claims. In doing so, we pay particular attention to experimental and mathematical approaches to study metabolons as well as complexities that arise in attempting to follow them. Finally, we discuss perspectives for improving our understanding of these fascinating but enigmatic interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
116
|
Ning Z, Hu K, Zhou Z, Zhao D, Tang J, Wang H, Li L, Ding C, Chen X, Yao G, Zhang H. IbERF71, with IbMYB340 and IbbHLH2, coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potato (Ipomoea batatas L.). PLANT CELL REPORTS 2021; 40:157-169. [PMID: 33084965 DOI: 10.1007/s00299-020-02621-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The transcription factor (TF) IbERF71 forms a novel complex, IbERF71-IbMYB340-IbbHLH2, to coregulate anthocyanin biosynthesis by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Purple-fleshed sweet potato (Ipomoea batatas L.) is very popular because of its abundant anthocyanins, which are natural pigments with multiple physiological functions. TFs involved in regulating anthocyanin biosynthesis have been identified in many plants. However, the molecular mechanism of anthocyanin biosynthesis in purple-fleshed sweet potatoes has rarely been examined. In this study, TF IbERF71 and its partners were screened by bioinformatics and RT-qPCR analysis. The results showed that the expression levels of IbERF71 and partners IbMYB340 and IbbHLH2 were higher in purple-fleshed sweet potatoes than in other colors and that the expression levels positively correlated with anthocyanin contents. Moreover, transient expression assays showed that cotransformation of IbMYB340+IbbHLH2 resulted in anthocyanin accumulation in tobacco leaves and strawberry receptacles, and additional IbERF71 significantly increased visual aspects. Furthermore, the combination of the three TFs significantly increased the expression levels of FvANS and FvGST, which are involved in anthocyanin biosynthesis and transport of strawberry receptacles. The dual-luciferase reporter system verified that cotransformation of the three TFs enhanced the transcription activity of IbANS1. In addition, yeast two-hybrid and firefly luciferase complementation assays revealed that IbMYB340 interacted with IbbHLH2 and IbERF71 but IbERF71 could not interact with IbbHLH2 in vitro. In summary, our findings provide novel evidence that IbERF71 and IbMYB340-IbbHLH2 form the regulatory complex IbERF71-IbMYB340-IbbHLH2 that coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Thus, the present study provides a new regulatory network of anthocyanin biosynthesis and strong insight into the color development of purple-fleshed sweet potatoes.
Collapse
Affiliation(s)
- Zhiyuan Ning
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Donglan Zhao
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lixia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen Ding
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaoyan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
117
|
Liu J, Wang Y, Cheng Y. The ESCRT-I components VPS28A and VPS28B are essential for auxin-mediated plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1617-1634. [PMID: 33058303 DOI: 10.1111/tpj.15024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The highly conserved endosomal sorting complex required for transport (ESCRT) pathway plays critical roles in endosomal sorting of ubiquitinated plasma membrane proteins for degradation. However, the functions of many components of the ESCRT machinery in plants remain unsolved. Here we show that the ESCRT-I subunits VPS28A and VPS28B are functionally redundant and required for embryonic development in Arabidopsis. We conducted a screen for genetic enhancers of pid, which is defective in auxin signaling and transport. We isolated a no--cotyledon in pid 104 (ncp104) mutant, which failed to develop cotyledons in a pid background. We discovered that ncp104 was a unique recessive gain-of-function allele of vps28a. VPS28A and VPS28B were expressed during embryogenesis and the proteins were localized to the trans-Golgi network/early endosome and post-Golgi/endosomal compartments, consistent with their functions in endosomal sorting and embryogenesis. The single vps28a and vps28b loss-of-function mutants did not display obvious developmental defects, but their double mutants showed abnormal cell division patterns and were arrested at the globular embryo stage. The vps28a vps28b double mutants showed altered auxin responses, disrupted PIN1-GFP expression patterns, and abnormal PIN1-GFP accumulation in small aberrant vacuoles. The ncp104 mutation may cause the VPS28A protein to become unstable and/or toxic. Taken together, our findings demonstrate that the ESCRT-I components VPS28A and VPS28B redundantly play essential roles in vacuole formation, endosomal sorting of plasma membrane proteins, and auxin-mediated plant development.
Collapse
Affiliation(s)
- Jianyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanning Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
118
|
Wang D, Liang X, Bao Y, Yang S, Zhang X, Yu H, Zhang Q, Xu G, Feng X, Dou D. A malectin-like receptor kinase regulates cell death and pattern-triggered immunity in soybean. EMBO Rep 2020; 21:e50442. [PMID: 32924279 PMCID: PMC7645207 DOI: 10.15252/embr.202050442] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Plant cells can sense conserved molecular patterns through pattern recognition receptors (PRRs) and initiate pattern-triggered immunity (PTI). Details of the PTI signaling network are starting to be uncovered in Arabidopsis, but are still poorly understood in other species, including soybean (Glycine max). In this study, we perform a forward genetic screen for autoimmunity-related lesion mimic mutants (lmms) in soybean and identify two allelic mutants, which carry mutations in Glyma.13G054400, encoding a malectin-like receptor kinase (RK). The mutants exhibit enhanced resistance to both bacterial and oomycete pathogens, as well as elevated ROS production upon treatment with the bacterial pattern flg22. Overexpression of GmLMM1 gene in Nicotiana benthamiana severely suppresses flg22-triggered ROS production and oomycete pattern XEG1-induced cell death. We further show that GmLMM1 interacts with the flg22 receptor FLS2 and its co-receptor BAK1 to negatively regulate flg22-induced complex formation between them. Our study identifies an important component in PTI regulation and reveals that GmLMM1 acts as a molecular switch to control an appropriate immune activation, which may also be adapted to other PRR-mediated immune signaling in soybean.
Collapse
Affiliation(s)
- Dongmei Wang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyThe Innovative Academy of Seed DesignChinese Academy of SciencesChangchunChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiangxiu Liang
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yazhou Bao
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyThe Innovative Academy of Seed DesignChinese Academy of SciencesChangchunChina
| | - Xiong Zhang
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyThe Innovative Academy of Seed DesignChinese Academy of SciencesChangchunChina
| | - Qian Zhang
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Guangyuan Xu
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyThe Innovative Academy of Seed DesignChinese Academy of SciencesChangchunChina
| | - Daolong Dou
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
119
|
Wang FZ, Zhang N, Guo YJ, Gong BQ, Li JF. Split Nano luciferase complementation for probing protein-protein interactions in plant cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1065-1079. [PMID: 31755168 DOI: 10.1111/jipb.12891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 05/21/2023]
Abstract
Deciphering protein-protein interactions (PPIs) is fundamental for understanding signal transduction pathways in plants. The split firefly luciferase (Fluc) complementation (SLC) assay has been widely used for analyzing PPIs. However, concern has risen about the bulky halves of Fluc interfering with the functions of their fusion partners. Nano luciferase (Nluc) is the smallest substitute for Fluc with improved stability and luminescence. Here, we developed a dual-use system enabling the detection of PPIs through the Nluc-based SLC and co-immunoprecipitation assays. This was realized by coexpression of two proteins under investigation in fusion with the HA- or FLAG-tagged Nluc halves, respectively. We validated the robustness of this system by reproducing multiple previously documented PPIs in protoplasts or Agrobacterium-transformed plants. We next applied this system to evaluate the homodimerization of Arabidopsis CERK1, a coreceptor of fungal elicitor chitin, and its heterodimerization with other homologs in the absence or presence of chitin. Moreover, split fragments of Nluc were fused to two cytosolic ends of Arabidopsis calcium channels CNGC2 and CNGC4 to help sense the allosteric change induced by the bacterial elicitor flg22. Collectively, these results demonstrate the usefulness of the Nluc-based SLC assay for probing constitutive or inducible PPIs and protein allostery in plant cells.
Collapse
Affiliation(s)
- Feng-Zhu Wang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nannan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Bioengineering Institute, Guangzhou, 510316, China
| | - Yan-Jun Guo
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ben-Qiang Gong
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian-Feng Li
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|