101
|
Elizalde M, Urtasun R, Azkona M, Latasa MU, Goñi S, García-Irigoyen O, Uriarte I, Segura V, Collantes M, Di Scala M, Lujambio A, Prieto J, Ávila MA, Berasain C. Splicing regulator SLU7 is essential for maintaining liver homeostasis. J Clin Invest 2014; 124:2909-20. [PMID: 24865429 DOI: 10.1172/jci74382] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/28/2014] [Indexed: 12/13/2022] Open
Abstract
A precise equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. Maintaining this balance is particularly important for the liver, a highly differentiated organ with systemic metabolic functions that is endowed with unparalleled regenerative potential. Carcinogenesis in the liver develops as the result of hepatocellular de-differentiation and uncontrolled proliferation. Here, we identified SLU7, which encodes a pre-mRNA splicing regulator that is inhibited in hepatocarcinoma, as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Additionally, loss of SLU7 also increased hepatocellular proliferation and induced a switch to a tumor-like glycolytic phenotype. Slu7 governed the splicing and/or expression of multiple genes essential for hepatocellular differentiation, including serine/arginine-rich splicing factor 3 (Srsf3) and hepatocyte nuclear factor 4α (Hnf4α), and was critical for cAMP-regulated gene transcription. Together, out data indicate that SLU7 is central regulator of hepatocyte identity and quiescence.
Collapse
|
102
|
Shim JH, Kang HJ, Han S, Lee YJ, Lee SG, Yu E, Lee HC. Prognostic value of hepatocyte nuclear factors 4α and 1α identified by tissue microarray in resectable hepatocellular carcinoma. J Gastroenterol Hepatol 2014; 29:524-32. [PMID: 23981200 DOI: 10.1111/jgh.12371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM This study aimed to investigate the prognostic value of expression of hepatocyte nuclear factors (HNFs) involved in hepatic gene transcription in patients undergoing curative resection for hepatocellular carcinoma (HCC). METHODS We performed immunohistochemical analyses on microarrays of the tumors and matched adjacent tissue using antibodies against HNF1α, HNF1β, HNF4α, and α-fetoprotein (AFP). We evaluated the prognostic value of biomarker expression using Cox regression and the Kaplan-Meier method in a training cohort of 220 patients and conducted an independent validation in 232 patients. We also determined whether measurement of HNFs improved risk prediction beyond the use of established factors, using net reclassification improvement (NRI). RESULTS Post-surgical recurrence and hepatic death were predicted by intratumoral HNF4α underexpression in both cohorts. In the training cohort they were also predicted by peritumoral HNF1α positivity. A pooled cohort analysis showed that these predictors were independently associated with early but not late-phase recurrence, and resultant mortality. Intratumoral expression levels of HNF4α were correlated with those of HNF1α, HNF1β, and AFP (P < 0.05). Similarly, HNF1α expression in peritumoral tissue was correlated with that of other markers (P < 0.05). There was no significant correlation between expression of HNF4α in tumors and HNF1α in peritumoral tissue. Adding combinations of intratumoral HNF4α and peritumoral HNF1α to 2-year recurrence and 5-year mortality models including known clinicopathological prognostic factors significantly improved the NRI indexes (39% and 44%, respectively; P < 0.05). CONCLUSIONS Immunohistological activation of intratumoral HNF4α and depletion of peritumoral HNF1α have prognostic significance for delayed recurrence and death after HCC resection.
Collapse
Affiliation(s)
- Ju Hyun Shim
- Department of Gastroenterology, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
103
|
Yin C, Wang PQ, Xu WP, Yang Y, Zhang Q, Ning BF, Zhang PP, Zhou WP, Xie WF, Chen WS, Zhang X. Hepatocyte nuclear factor-4α reverses malignancy of hepatocellular carcinoma through regulating miR-134 in the DLK1-DIO3 region. Hepatology 2013; 58:1964-76. [PMID: 23775631 DOI: 10.1002/hep.26573] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/30/2013] [Indexed: 12/27/2022]
Abstract
UNLABELLED Hepatocyte nuclear factor-4α (HNF4α) is a dominant transcriptional regulator of hepatocyte differentiation and hepatocellular carcinogenesis. There is striking suppression of hepatocellular carcinoma (HCC) by HNF4α, although the mechanisms by which HNF4α reverses HCC malignancy are largely unknown. Herein, we demonstrate that HNF4α administration to HCC cells resulted in elevated levels of 28 mature microRNAs (miRNAs) from the miR-379-656 cluster, which is located in the delta-like 1 homolog (DLK1) -iodothyronine deiodinase 3 (DIO3) locus on human chromosome 14q32. Consistent with the reduction of HNF4α, these miRNAs were down-regulated in human HCC tissue. HNF4α regulated the transcription of the miR-379-656 cluster by directly binding to its response element in the DLK1-DIO3 region. Interestingly, several miRNAs in this cluster inhibited proliferation and metastasis of HCC cells in vitro. As a representative miRNA in this cluster, miR-134 exerted a dramatically suppressive effect on HCC malignancy by down-regulating the oncoprotein, KRAS. Moreover, miR-134 markedly diminished HCC tumorigenicity and displayed a significant antitumor effect in vivo. In addition, inhibition of endogenous miR-134 partially reversed the suppressive effects of HNF4α on KRAS expression and HCC malignancy. Furthermore, a positive correlation between HNF4α and miR-134 levels was observed during hepatocarcinogenesis in rats, and decreases in miR-134 levels were significantly associated with the aggressive behavior of human HCCs. CONCLUSION Our data highlight the importance of the miR-379-656 cluster in the inhibitory effect of HNF4α on HCC, and suggest that regulation of the HNF4α-miRNA cascade may have beneficial effects in the treatment of HCC.
Collapse
Affiliation(s)
- Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
105
|
Yao D, Peng S, Dai C. The role of hepatocyte nuclear factor 4alpha in metastatic tumor formation of hepatocellular carcinoma and its close relationship with the mesenchymal-epithelial transition markers. BMC Cancer 2013; 13:432. [PMID: 24059685 PMCID: PMC3852538 DOI: 10.1186/1471-2407-13-432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022] Open
Abstract
Background Mesenchymal–epithelial transition (MET) is now suggested to participate in the process of metastatic tumor formation. However, in hepatocellular carcinoma (HCC) the process is still not well revealed. Methods Paraffin-embedded tissue samples were obtained from 13 patients with HCC in Shengjing Hospital of China Medical University. The expression of E-cadherin, Fibronectin, N-cadherin, Vimentin, Hepatocyte nuclear factor 4alpha (HNF4alpha), Snail and Slug was assessed in primary tumors and their corresponding metastases by immunohistochemical staining. Next, the expression of HNF4alpha and E-cadherin in four HCC cell lines was examined. Furthermore, SK-Hep-1 cells were transfected with human HNF4alpha expression vector, and the change of E-cadherin expression was assessed. Results 45.2% (14/31) of the lesions in the metastases showed increased E-cadherin expression compared with the primaries, suggesting the possible occurrence of MET in metastatic tumor formation of HCC, as re-expression of E-cadherin is proposed to be the important hallmark of MET. The occurrence of MET was also confirmed by the reduced expression of Fibronectin (54.8%, 17/31), N-cadherin (38.7%, 12/31) and Vimentin (61.3%, 19/31) in the metastases. 45.2% (14/31) of the lesions in the metastases also showed increased HNF4alpha expression, and 67.7% (21/31) and 48.4% (15/31) of metastases showed decreased Snail and Slug expression respectively. Statistical results showed that the expression of HNF4alpha was positively related with that of E-cadherin, and negatively correlated with that of Snail, Slug and Fibronectin, suggesting that the expression change of the MET markers in the metastatic lesions might be associated with HNF4alpha. Among the four HCC cell lines, both HNF4alpha and E-cadherin expressed high in Hep3B and Huh-7 cells, but low in SK-Hep-1 and Bel-7402 cells. Furthermore, the expression of E-cadherin increased accordingly when SK-Hep-1 cells were transfected with human HNF4alpha expression vector, further confirming the role of HNF4alpha in the regulation of E-cadherin expression. Conclusions Our clinical observations and experimental data indicate that HNF4alpha might play a crucial role in the metastatic tumor formation of HCC, and the mechanism may be related with the process of phenotype transition.
Collapse
Affiliation(s)
- Dianbo Yao
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China.
| | | | | |
Collapse
|
106
|
Global analysis of DNA methylation changes during progression of oral cancer. Oral Oncol 2013; 49:1033-42. [PMID: 24035722 DOI: 10.1016/j.oraloncology.2013.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Earlier studies involving a priori gene selection have identified promoter regions deregulated by DNA methylation changes in oral squamous cell cancers (OSCCs) and precancers. Interrogation of global DNA methylation patterns for such specimens has not been reported, though such analyses are needed to uncover novel molecular factors driving disease. MATERIALS AND METHODS We evaluated global DNA methylation patterns for 30 biopsies obtained from 10 patients undergoing surgical removal of an OSCC or carcinoma in situ (CIS). From a disease field in each patient, we collected (i) dysplastic, (ii) CIS or OSCC, and (iii) adjacent normal biopsies. DNA isolated from each biopsy was profiled for methylation status using the Illumina HumanMethylation27K platform. RESULTS Our data demonstrate that aberrant methylation of promoter CpG islands exists across oral precancer and OSCC genomes. Non-hierarchical clustering of all methylation data revealed distinct methylation patterns between the normal and the CIS/OSCC tissues (with results for dysplastic biopsies split between groups). Multiple genes exhibiting recurrent aberrant DNA methylation were found for both dysplastic and CIS/OSCC groups, and included enrichment for genes found in the WNT and MAPK signaling pathways. CONCLUSION In identifying aberrant DNA methylation at the earliest stages of oral precancer and finding recurring epigenetic disruption of specific genes/pathways across our analyzed cohort, we see evidence that CpG methylation changes may play a role in oral cancer progression and that global DNA methylation analyses may have significant utility in wider studies that seek to derive biomarkers or potentially druggable targets to improve oral cancer outcomes.
Collapse
|
107
|
Bonner C, Nyhan KC, Bacon S, Kyithar MP, Schmid J, Concannon CG, Bray IM, Stallings RL, Prehn JHM, Byrne MM. Identification of circulating microRNAs in HNF1A-MODY carriers. Diabetologia 2013; 56:1743-51. [PMID: 23674172 DOI: 10.1007/s00125-013-2939-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/25/2013] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS HNF1A-MODY is a monogenic form of diabetes caused by mutations in the HNF1A gene. Here we identify, for the first time, HNF1A-MODY-associated microRNAs (miRNAs) that can be detected in the serum of HNF1A-MODY carriers. METHODS An miRNA array was carried out in rat INS-1 insulinoma cells inducibly expressing the common human Pro291fsinsC-HNF1A frame shift mutation. Differentially expressed miRNAs were validated by quantitative real-time PCR. Expression of miRNAs in the serum of HNF1A-MODY carriers (n = 31), MODY-negative family members (n = 10) and individuals with type 2 diabetes mellitus (n = 17) was quantified by absolute real-time PCR analysis. RESULTS Inducible expression of Pro291fsinsC-HNF1A in INS-1 cells caused a significant upregulation of three miRNAs (miR-103, miR-224, miR-292-3p). The differential expression of two miRNAs (miR-103 and miR-224) was validated in vitro. Strongly elevated levels of miR-103 and miR-224 could be detected in the serum of HNF1A-MODY carriers compared with MODY-negative family controls. Serum levels of miR-103 distinguished HNF1A-MODY carriers from HbA1c-matched individuals with type 2 diabetes mellitus. CONCLUSIONS/INTERPRETATION Our study demonstrates that the pathophysiology of HNF1A-MODY is associated with the overexpression of miR-103 and miR-224. Furthermore, our study demonstrates that these miRNAs can be readily detected in the serum of HNF1A-MODY carriers.
Collapse
Affiliation(s)
- C Bonner
- Department of Physiology and Medical Physics, Royal College of Surgeons, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Walesky C, Edwards G, Borude P, Gunewardena S, O’Neil M, Yoo B, Apte U. Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents. Hepatology 2013; 57:2480-90. [PMID: 23315968 PMCID: PMC3669646 DOI: 10.1002/hep.26251] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/13/2012] [Indexed: 12/12/2022]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α), the master regulator of hepatocyte differentiation, has been recently shown to inhibit hepatocyte proliferation by way of unknown mechanisms. We investigated the mechanisms of HNF4α-induced inhibition of hepatocyte proliferation using a novel tamoxifen (TAM)-inducible, hepatocyte-specific HNF4α knockdown mouse model. Hepatocyte-specific deletion of HNF4α in adult mice resulted in increased hepatocyte proliferation, with a significant increase in liver-to-body-weight ratio. We determined global gene expression changes using Illumina HiSeq-based RNA sequencing, which revealed that a significant number of up-regulated genes following deletion of HNF4α were associated with cancer pathogenesis, cell cycle control, and cell proliferation. The pathway analysis further revealed that c-Myc-regulated gene expression network was highly activated following HNF4α deletion. To determine whether deletion of HNF4α affects cancer pathogenesis, HNF4α knockdown was induced in mice treated with the known hepatic carcinogen diethylnitrosamine (DEN). Deletion of HNF4α significantly increased the number and size of DEN-induced hepatic tumors. Pathological analysis revealed that tumors in HNF4α-deleted mice were well-differentiated hepatocellular carcinoma (HCC) and mixed HCC-cholangiocarcinoma. Analysis of tumors and surrounding normal liver tissue in DEN-treated HNF4α knockout mice showed significant induction in c-Myc expression. Taken together, deletion of HNF4α in adult hepatocytes results in increased hepatocyte proliferation and promotion of DEN-induced hepatic tumors secondary to aberrant c-Myc activation.
Collapse
Affiliation(s)
- Chad Walesky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Genea Edwards
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Prachi Borude
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
,Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS
| | - Maura O’Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS
| | - Byunggil Yoo
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
109
|
Dill MT, Tornillo L, Fritzius T, Terracciano L, Semela D, Bettler B, Heim MH, Tchorz JS. Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 2013; 57:1607-19. [PMID: 23175466 DOI: 10.1002/hep.26165] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCC) are the most common liver tumors and a leading cause for cancer-related death in men. Notch2 regulates cellular differentiation in the developing and adult liver. Although aberrant Notch signaling is implicated in various cancers, it is still unclear whether Notch2 regulates proliferation and differentiation in liver carcinogenesis and thereby contributes to HCC and CCC formation. Here, we investigated the oncogenic potential of constitutive Notch2 signaling in the liver. We show that liver-specific expression of the intracellular domain of Notch2 (N2ICD) in mice is sufficient to induce HCC formation and biliary hyperplasia. Specifically, constitutive N2ICD signaling in the liver leads to up-regulation of pro-proliferative genes and proliferation of hepatocytes and biliary epithelial cells (BECs). Using the diethylnitrosamine (DEN) HCC carcinogenesis model, we further show that constitutive Notch2 signaling accelerates DEN-induced HCC formation. DEN-induced HCCs with constitutive Notch2 signaling (DEN(N2ICD) HCCs) exhibit a marked increase in size, proliferation, and expression of pro-proliferative genes when compared with HCCs from DEN-induced control mice (DEN(ctrl) HCCs). Moreover, DEN(N2ICD) HCCs exhibit increased Sox9 messenger RNA (mRNA) levels and reduced Albumin and Alpha-fetoprotein mRNA levels, indicating that they are less differentiated than DEN(ctrl) HCCs. Additionally, DEN(N2ICD) mice develop large hepatic cysts, dysplasia of the biliary epithelium, and eventually CCC. CCC formation in patients and DEN(N2ICD) mice is accompanied by re-expression of hepatocyte nuclear factor 4α(HNF4α), possibly indicating dedifferentiation of BECs. CONCLUSION Our data establish an oncogenic role for constitutive Notch2 signaling in liver cancer development.
Collapse
Affiliation(s)
- Michael T Dill
- Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Shim JH, Lee HC, Han S, Kang HJ, Yu E, Lee SG. Hepatocyte nuclear factor 1β is a novel prognostic marker independent of the Milan criteria in transplantable hepatocellular carcinoma: a retrospective analysis based on tissue microarrays. Liver Transpl 2013. [PMID: 23203386 DOI: 10.1002/lt.23584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We retrospectively investigated the prognostic value of hepatocyte nuclear factor 1 (HNF1) proteins in 159 liver transplant patients with hepatocellular carcinoma (HCC), including 36 (22.6%) exceeding the Milan criteria. The expression of alpha-fetoprotein (AFP), HNF1α, and HNF1β was examined with immunohistochemistry on duplicate tissue microarray slides containing HCC tumor explants. The times to recurrence and cancer death were analyzed with a Cox regression model and were compared according to the expression of markers of interest. We compared risk predictions with area under the receiver operator curves (AUROCs) and C statistics. AFP, HNF1α, and HNF1β were positive in 22.6%, 46.5%, and 61.0% of the tumor immunoprofiles, respectively. Although several variables were associated with the times to recurrence and cancer death in univariate Cox analyses, only AFP expression for the time to recurrence and the Milan criteria and HNF1β expression for the times to recurrence and cancer death remained significant after multivariate adjustments. The expression of HNF1β (but not HNF1α) was related to a serum AFP level ≥ 200 ng/mL, microvascular invasion, and AFP expression (P < 0.05 for all). A subgroup analysis showed that in the group meeting the Milan criteria, recurrence and cancer death rates at 10 years in the HNF1β-negative patients were approximately one-tenth of those in the HNF1β-positive patients, but the difference was not significant in the group exceeding the Milan criteria. The addition of HNF1β expression to the Milan criteria increased the C statistics and AUROCs for both recurrence and mortality (P < 0.05 for all). In conclusion, the immunohistological detection of HNF1β predicts recurrence and HCC-specific death after transplantation and provides an additive benefit in comparison with the Milan selection criteria on their own.
Collapse
Affiliation(s)
- Ju Hyun Shim
- Department of Gastroenterology (Asan Liver Center), University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
111
|
Walesky C, Gunewardena S, Terwilliger EF, Edwards G, Borude P, Apte U. Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice results in increased hepatocyte proliferation. Am J Physiol Gastrointest Liver Physiol 2013; 304:G26-37. [PMID: 23104559 PMCID: PMC3543634 DOI: 10.1152/ajpgi.00064.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor-4α (HNF4α) is known as the master regulator of hepatocyte differentiation. Recent studies indicate that HNF4α may inhibit hepatocyte proliferation via mechanisms that have yet to be identified. Using a HNF4α knockdown mouse model based on delivery of inducible Cre recombinase via an adeno-associated virus 8 viral vector, we investigated the role of HNF4α in the regulation of hepatocyte proliferation. Hepatocyte-specific deletion of HNF4α resulted in increased hepatocyte proliferation. Global gene expression analysis showed that a majority of the downregulated genes were previously known HNF4α target genes involved in hepatic differentiation. Interestingly, ≥500 upregulated genes were associated with cell proliferation and cancer. Furthermore, we identified potential negative target genes of HNF4α, many of which are involved in the stimulation of proliferation. Using chromatin immunoprecipitation analysis, we confirmed binding of HNF4α at three of these genes. Furthermore, overexpression of HNF4α in mouse hepatocellular carcinoma cells resulted in a decrease in promitogenic gene expression and cell cycle arrest. Taken together, these data indicate that, apart from its role in hepatocyte differentiation, HNF4α actively inhibits hepatocyte proliferation by repression of specific promitogenic genes.
Collapse
Affiliation(s)
- Chad Walesky
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Sumedha Gunewardena
- 2Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Ernest F. Terwilliger
- 3Division of Experimental Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts
| | - Genea Edwards
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Prachi Borude
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Udayan Apte
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| |
Collapse
|
112
|
Cozzolino AM, Alonzi T, Santangelo L, Mancone C, Conti B, Steindler C, Musone M, Cicchini C, Tripodi M, Marchetti A. TGFβ overrides HNF4α tumor suppressing activity through GSK3β inactivation: implication for hepatocellular carcinoma gene therapy. J Hepatol 2013; 58:65-72. [PMID: 22960426 DOI: 10.1016/j.jhep.2012.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The tumor fate derives from cell autonomous properties and niche microenvironmental cues. The transforming growth factor β (TGFβ) is a major microenvironmental factor for hepatocellular carcinoma (HCC) influencing tumor dedifferentiation, induction of epithelial-to-mesenchymal transition (EMT) and acquisition of metastatic properties. The loss of the transcriptional factor HNF4α is a predominant mechanism through which HCCs progress to a more aggressive phenotype; its re-expression, reducing tumor formation and repressing EMT program, has been suggested as a therapeutic tool for HCC gene therapy. We investigated the influence of TGFβ on the anti-EMT and tumor suppressor HNF4α activity. METHODS Cell motility and invasion were analyzed by wound healing and invasion assays. EMT was evaluated by RT-qPCR and immunofluorescence. ChIP and EMSA assays were utilized for investigation of the HNF4α DNA binding activity. HNF4α post-translational modifications (PTMs) were assessed by 2-DE analysis. GSK3β activity was modulated by chemical inhibition and constitutive active mutant expression. RESULTS We demonstrated that the presence of TGFβ impairs the efficiency of HNF4α as tumor suppressor. We found that TGFβ induces HNF4α PTMs that correlate with the early loss of HNF4α DNA binding activity on target gene promoters. Furthermore, we identified the GSK3β kinase as one of the TGFβ targets mediating HNF4α functional inactivation: GSK3β chemical inhibition results in HNF4α DNA binding impairment while a constitutively active GSK3β mutant impairs the TGFβ-induced inhibitory effect on HNF4α tumor suppressor activity. CONCLUSIONS Our data identify in the dominance of TGFβ a limit for the HNF4α-mediated gene therapy of HCC.
Collapse
Affiliation(s)
- Angela Maria Cozzolino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Sakurai T, Kudo M, Umemura A, He G, Elsharkawy AM, Seki E, Karin M. p38α inhibits liver fibrogenesis and consequent hepatocarcinogenesis by curtailing accumulation of reactive oxygen species. Cancer Res 2012; 73:215-24. [PMID: 23271722 DOI: 10.1158/0008-5472.can-12-1602] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most hepatocellular carcinomas (HCC) develop in the context of severe liver fibrosis and cirrhosis caused by chronic liver inflammation, which also results in accumulation of reactive oxygen species (ROS). In this study, we examined whether the stress-activated protein kinase p38α (Mapk14) controls ROS metabolism and development of fibrosis and cancer in mice given thioacetamide to induce chronic liver injury. Liver-specific p38α ablation was found to enhance ROS accumulation, which appears to be exerted through the reduced expression of antioxidant protein HSP25 (Hspb1), a mouse homolog of HSP27. Its reexpression in p38α-deficient liver prevents ROS accumulation and thioacetamide-induced fibrosis. p38α deficiency increased expression of SOX2, a marker for cancer stem cells and the liver oncoproteins c-Jun (Jun) and Gankyrin (Psmd10) and led to enhanced thioacetamide-induced hepatocarcinogenesis. The upregulation of SOX2 and c-Jun was prevented by administration of the antioxidant butylated hydroxyanisole. Intriguingly, the risk of human HCC recurrence is positively correlated with ROS accumulation in liver. Thus, p38α and its target HSP25/HSP27 appear to play a conserved and critical hepatoprotective function by curtailing ROS accumulation in liver parenchymal cells engaged in oxidative metabolism of exogenous chemicals. Augmented oxidative stress of liver parenchymal cells may explain the close relationship between liver fibrosis and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kinki University, Ohnohigashi, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
114
|
Inhibition of hepatocyte nuclear factor 1 and 4 alpha (HNF1α and HNF4α) as a mechanism of arsenic carcinogenesis. Arch Toxicol 2012; 87:1001-12. [DOI: 10.1007/s00204-012-0948-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/18/2012] [Indexed: 12/21/2022]
|
115
|
Hanse EA, Mashek DG, Becker JR, Solmonson AD, Mullany LK, Mashek MT, Towle HC, Chau AT, Albrecht JH. Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4α. Cell Cycle 2012; 11:2681-90. [PMID: 22751438 PMCID: PMC3409010 DOI: 10.4161/cc.21019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Following acute hepatic injury, the metabolic capacity of the liver is altered during the process of compensatory hepatocyte proliferation by undefined mechanisms. In this study, we examined the regulation of de novo lipogenesis by cyclin D1, a key mediator of hepatocyte cell cycle progression. In primary hepatocytes, cyclin D1 significantly impaired lipogenesis in response to glucose stimulation. Cyclin D1 inhibited the glucose-mediated induction of key lipogenic genes, and similar effects were seen using a mutant (D1-KE) that does not activate cdk4 or induce cell cycle progression. Cyclin D1 (but not D1-KE) inhibited the activity of the carbohydrate response element-binding protein (ChREBP) by regulating the glucose-sensing motif of this transcription factor. Because changes in ChREBP activity could not fully explain the effect of cyclin D1, we examined hepatocyte nuclear factor 4α (HNF4α), which regulates numerous differentiated functions in the liver including lipid metabolism. We found that both cyclins D1 and D1-KE bound to HNF4α and significantly inhibited its recruitment to the promoter region of lipogenic genes in hepatocytes. Conversely, knockdown of cyclin D1 in the AML12 hepatocyte cell line promoted HNF4α activity and lipogenesis. In mouse liver, HNF4α bound to a central domain of cyclin D1 involved in transcriptional repression. Cyclin D1 inhibited lipogenic gene expression in the liver following carbohydrate feeding. Similar findings were observed in the setting of physiologic cyclin D1 expression in the regenerating liver. In conclusion, these studies demonstrate that cyclin D1 represses ChREBP and HNF4α function in hepatocytes via Cdk4-dependent and -independent mechanisms. These findings provide a direct link between the cell cycle machinery and the transcriptional control of metabolic function of the liver.
Collapse
Affiliation(s)
- Eric A Hanse
- Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
miR-200b restoration and DNA methyltransferase inhibitor block lung metastasis of mesenchymal-phenotype hepatocellular carcinoma. Oncogenesis 2012; 1:e15. [PMID: 23552699 PMCID: PMC3412647 DOI: 10.1038/oncsis.2012.15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with poor prognosis and metastasis in hepatocellular carcinoma. We have previously demonstrated an in vivo model of liver cancer in which mesenchymal cells post-EMT demonstrate a high rate of invasive growth and metastasis. Here, we investigate the role of microRNA 200 (miR-200) family members and epigenetic modifications on the maintenance of mesenchymal/metastatic phenotype after EMT. Mesenchymal cells post-EMT demonstrates high levels of E-box repressors Zeb1 and Zeb2 and downregulation of four miR-200 family members (miR-200a, miR-200b, miR-200c and miR-429). In addition, DNA sequencing after bisulfite modification demonstrates that several CpG sites within the E-cadherin promoter are methylated in mesenchymal cells. In mesenchymal cells, forced expression of miR-200b results in a significant increase in E-cadherin and a reduction in cell migration/invasion. Despite these mesenchymal-to-epithelial transition (MET) changes in vitro, there is no significant change in metastatic potential after miR-200b upregulation in vivo. After the mesenchymal cells were treated with combination of DNA methyltransferase (DNMT) inhibitor and upregulation of miR-200b, invasive phenotype was significantly reduced and metastatic potential was eliminated. Direct targeting of E-cadherin with short hairpin RNA does not restore metastatic potential after DNMT inhibition and miR-200b re-expression. In addition, restoration of E-cadherin alone was unable to block metastatic potential in primary mesenchymal cells. In conclusion, targeting mesenchymal liver cancer cells with miR-200b and DNMT inhibitor reduces metastatic potential irrespective of E-cadherin expression. Thus, the broader differentiation and MET effects of DNMT inhibition and miR-200b must be considered in terms of rescuing metastatic potential.
Collapse
|
117
|
Pandiri AR, Sills RC, Ziglioli V, Ton TVT, Hong HHL, Lahousse SA, Gerrish KE, Auerbach SS, Shockley KR, Bushel PR, Peddada SD, Hoenerhoff MJ. Differential transcriptomic analysis of spontaneous lung tumors in B6C3F1 mice: comparison to human non-small cell lung cancer. Toxicol Pathol 2012; 40:1141-59. [PMID: 22688403 DOI: 10.1177/0192623312447543] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in people and is mainly due to environmental factors such as smoking and radon. The National Toxicology Program (NTP) tests various chemicals and mixtures for their carcinogenic hazard potential. In the NTP chronic bioassay using B6C3F1 mice, the incidence of lung tumors in treated and control animals is second only to the liver tumors. In order to study the molecular mechanisms of chemically induced lung tumors, an understanding of the genetic changes that occur in spontaneous lung (SL) tumors from untreated control animals is needed. The authors have evaluated the differential transcriptomic changes within SL tumors compared to normal lungs from untreated age-matched animals. Within SL tumors, several canonical pathways associated with cancer (eukaryotic initiation factor 2 signaling, RhoA signaling, PTEN signaling, and mammalian target of rapamycin signaling), metabolism (Inositol phosphate metabolism, mitochondrial dysfunction, and purine and pyramidine metabolism), and immune responses (FcγR-mediated phagocytosis, clathrin-mediated endocytosis, interleukin 8 signaling, and CXCR4 signaling) were altered. Meta-analysis of murine SL tumors and human non-small cell lung cancer transcriptomic data sets revealed a high concordance. These data provide important information on the differential transcriptomic changes in murine SL tumors that will be critical to our understanding of chemically induced lung tumors and will aid in hazard analysis in the NTP 2-year carcinogenicity bioassays.
Collapse
Affiliation(s)
- Arun R Pandiri
- Cellular and Molecular Pathology Branch, National Toxicology Program-NTP, National Institute of Environmental Health Sciences-NIEHS, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Lockwood WW, Wilson IM, Coe BP, Chari R, Pikor LA, Thu KL, Solis LM, Nunez MI, Behrens C, Yee J, English J, Murray N, Tsao MS, Minna JD, Gazdar AF, Wistuba II, MacAulay CE, Lam S, Lam WL. Divergent genomic and epigenomic landscapes of lung cancer subtypes underscore the selection of different oncogenic pathways during tumor development. PLoS One 2012; 7:e37775. [PMID: 22629454 PMCID: PMC3357406 DOI: 10.1371/journal.pone.0037775] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/27/2012] [Indexed: 01/12/2023] Open
Abstract
For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC.
Collapse
Affiliation(s)
- William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Forced lineage conversion of accessible cell types can supply scarce or inaccessible cells for research and therapy. Two papers in Nature now report the identification of transcription factors sufficient for inducing therapeutically effective hepatocyte function in fibroblasts (Huang et al., 2011; Sekiya and Suzuki, 2011).
Collapse
Affiliation(s)
- Holger Willenbring
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
120
|
FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep 2012; 32:113-30. [PMID: 22115363 DOI: 10.1042/bsr20110046] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When aberrant, factors critical for organ morphogenesis are also commonly involved in disease progression. FOXA1 (forkhead box A1), also known as HNF3α (hepatocyte nuclear factor 3α), is required for postnatal survival due to its essential role in controlling pancreatic and renal function. In addition to regulating a variety of tissues during embryogenesis and early life, rescue experiments have revealed a specific role for FOXA1 in the postnatal development of the mammary gland and prostate. Activity of the nuclear hormone receptors ERα (oestrogen receptor α) and AR (androgen receptor) is also required for proper development of the mammary gland and prostate respectively. FOXA1 modulates ER and AR function in breast and prostate cancer cells, supporting the postulate that FOXA1 is involved in ER and AR signalling under normal conditions, and that some carcinogenic processes in these tissues stem from hormonally regulated developmental pathways gone awry. In addition to broadly reviewing the function of FOXA1 in various aspects of development and cancer, this review focuses on the interplay of FOXA1/ER and FOXA1/AR, in normal and cancerous mammary and prostate epithelial cells. Given the hormone dependency of both breast and prostate cancer, a thorough understanding of FOXA1's role in both cancer types is critical for battling hormone receptor-positive disease and acquired anti-hormone resistance.
Collapse
|
121
|
Wai PY, Kuo PC. Intersecting pathways in inflammation and cancer: Hepatocellular carcinoma as a paradigm. World J Clin Oncol 2012; 3:15-23. [PMID: 22347691 PMCID: PMC3280348 DOI: 10.5306/wjco.v3.i2.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/29/2012] [Accepted: 02/06/2012] [Indexed: 02/06/2023] Open
Abstract
Viral infection and chemical carcinogens trigger somatic changes resulting in activation of oncogenes during tumor initiation in the development of cancer. However, a critical interaction resides in the synergism between these somatic changes and an inflamed tumor microenvironment where myeloid and hematopoietic cells are subverted to enhance tumor progression. The causative molecular mechanisms leading to the development of hepatocellular cancer remain incompletely understood but appear to result from multiple factors related to direct hepatocyte injury and the ensuing inflammatory changes mediated by the host response to tissue injury, DNA damage, repair of cellular damage, and chronic, repetitive injury. In this review, the molecular and cellular changes that regulate inflammation and tissue repair will be compared to the activated local tumor microenvironment. Cell-cell signaling within this microenvironment that enhances tumor progression and inhibits anti-tumor immunity will be discussed
Collapse
Affiliation(s)
- Philip Y Wai
- Philip Y Wai, Paul C Kuo, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, United States
| | | |
Collapse
|
122
|
Bonzo JA, Ferry CH, Matsubara T, Kim JH, Gonzalez FJ. Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J Biol Chem 2012; 287:7345-56. [PMID: 22241473 DOI: 10.1074/jbc.m111.334599] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) regulates genes involved in lipid and bile acid synthesis, gluconeogenesis, amino acid metabolism, and blood coagulation. In addition to its metabolic role, HNF4α is critical for hepatocyte differentiation, and loss of HNF4α is associated with hepatocellular carcinoma. The hepatocyte-specific Hnf4a knock-out mouse develops severe hepatomegaly and steatosis resulting in premature death, thereby limiting studies of the role of this transcription factor in the adult animal. In addition, gene compensation may complicate analysis of the phenotype of these mice. To overcome these issues, an acute Hnf4a knock-out mouse model was generated through use of the tamoxifen-inducible ErT2cre coupled to the serum albumin gene promoter. Microarray expression analysis revealed up-regulation of genes associated with proliferation and cell cycle control only in the acute liver-specific Hnf4α-null mouse. BrdU and ki67 staining confirmed extensive hepatocyte proliferation in this model. Proliferation was associated with induction of the hepatomitogen Bmp7 as well as reduced basal apoptotic activity. The p53/p63 apoptosis effector gene Perp was further identified as a direct HNF4α target gene. These data suggest that HNF4α maintains hepatocyte differentiation in the adult healthy liver, and its loss may directly contribute to hepatocellular carcinoma development, thus indicating this factor as a possible liver tumor suppressor gene.
Collapse
Affiliation(s)
- Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
123
|
Expression and clinicopathological significance of notch signaling and cell-fate genes in biliary tract cancer. Am J Gastroenterol 2012; 107:126-35. [PMID: 21931375 DOI: 10.1038/ajg.2011.305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Biliary tract cancer (BTC) is a fatal cancer originating from epithelial cells of the intra- and extra-hepatic biliary duct system and the gallbladder. Genes and pathways regulating stem and progenitor cells as well as cell-fate decisions are increasingly recognized in tumorigenesis. We evaluated the expression of Notch1, Notch2, and HES1 (hairy and enhancer of split 1), as well as the biliary cell-fate regulators SOX9 (SRY (sex determining region Y)-box 9) and HNF1β (hepatocyte nuclear factor 1β), in BTC for correlation with clinicopathological parameters. METHODS Tissue microarrays including normal bile ducts and 111 BTCs consisting of 17 intrahepatic cholangiocarcinomas, 58 extrahepatic cholangiocarcinomas, and 36 gallbladder carcinomas were analyzed using immunohistochemistry. RESULTS Lack of cytoplasmic SOX9 expression was associated with a higher tumor grade (P=0.010) and a significantly reduced overall survival (P=0.002; median 6 months vs. 24 months) in univariate survival analysis, whereas lack of nuclear SOX9 expression was associated with a higher tumor stage (P=0.003). Notch pathway members showed high expression in BTC. However, no correlation was found between cytoplasmic or nuclear Notch1, Notch2, and HES1, as well as HNF1β expression, and any of the clinicopathological parameters. In multivariate analysis, cytoplasmic SOX9 expression was an independent prognostic factor for overall survival (P=0.031, relative risk=0.571). CONCLUSIONS We show strong Notch pathway activation and identify SOX9 as a prognostic marker in BTC. These results substantiate diagnostic and therapeutic approaches targeting developmentally active genes and pathways.
Collapse
|
124
|
Heriyanto DS, Yano Y, Utsumi T, Anggorowati N, Rinonce HT, Lusida MI, Soetjipto, Triwikatmani C, Ratnasari N, Maduseno S, Purnama PB, Nurdjanah S, Hayashi Y. Mutations within enhancer II and BCP regions of hepatitis B virus in relation to advanced liver diseases in patients infected with subgenotype B3 in Indonesia. J Med Virol 2012; 84:44-51. [PMID: 22095534 DOI: 10.1002/jmv.22266] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies on the characteristics of mutations within the hepatitis B virus (HBV) genome, their roles in the pathogenesis of advanced liver diseases, and the involvement of host properties of HBV-infected individuals have not been conducted in subgenotype B3-infected populations. For addressing this issue, 40 cases with HBV surface antigen (HBsAg)-positive advanced liver diseases, including advanced liver cancer and cirrhosis (male 31, female 9, age 54.4 ± 11.6-year-old), were collected and compared with 109 cases with chronic hepatitis B (male 71, female 38, age 38.0 ± 13.4-year-old). Mutations in enhancer II (Enh II) and basal core promoter (BCP)/precore regions were analyzed by PCR-direct sequencing method. HBV viral load was examined by real-time PCR. For all examined regions, the prevalence of mutation was significantly higher in cases with advanced liver diseases. Multivariate analysis showed that, in patients older than 45 years, C1638T and T1753V mutations constituted independent risk factors for the advancement of liver diseases. The presence of C1638T and T1753V mutations may serve as predictive markers for the progression of liver diseases in Indonesia and other countries, where subgenotype B3 infection is prevalent.
Collapse
Affiliation(s)
- Didik Setyo Heriyanto
- Center for Infectious Diseases, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
An epistatic mini-circuitry between the transcription factors Snail and HNF4α controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs. Cell Death Differ 2011; 19:937-46. [PMID: 22139130 DOI: 10.1038/cdd.2011.175] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Preservation of the epithelial state involves the stable repression of epithelial-to-mesenchymal transition program, whereas maintenance of the stem compartment requires the inhibition of differentiation processes. A simple and direct molecular mini-circuitry between master elements of these biological processes might provide the best device to keep balanced such complex phenomena. In this work, we show that in hepatic stem cell Snail, a transcriptional repressor of the hepatocyte differentiation master gene HNF4α, directly represses the expression of the epithelial microRNAs (miRs)-200c and -34a, which in turn target several stem cell genes. Notably, in differentiated hepatocytes HNF4α, previously identified as a transcriptional repressor of Snail, induces the miRs-34a and -200a, b, c that, when silenced, causes epithelial dedifferentiation and reacquisition of stem traits. Altogether these data unveiled Snail, HNF4α and miRs-200a, b, c and -34a as epistatic elements controlling hepatic stem cell maintenance/differentiation.
Collapse
|
126
|
Zeng X, Lin Y, Yin C, Zhang X, Ning BF, Zhang Q, Zhang JP, Qiu L, Qin XR, Chen YX, Xie WF. Recombinant adenovirus carrying the hepatocyte nuclear factor-1alpha gene inhibits hepatocellular carcinoma xenograft growth in mice. Hepatology 2011; 54:2036-47. [PMID: 21898499 DOI: 10.1002/hep.24647] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Hepatocyte nuclear factor-1alpha (HNF1α) is one of the key transcription factors of the HNF family, which plays a critical role in hepatocyte differentiation. Substantial evidence has suggested that down-regulation of HNF1α may contribute to the development of hepatocellular carcinoma (HCC). Herein, human cancer cells and tumor-associated fibroblasts (TAFs) were isolated from human HCC tissues, respectively. A recombinant adenovirus carrying the HNF1α gene (AdHNF1α) was constructed to determine its effect on HCC in vitro and in vivo. Our results demonstrated that HCC cells and HCC tissues revealed reduced expression of HNF1α. Forced reexpression of HNF1α significantly suppressed the proliferation of HCC cells and TAFs and inhibited the clonogenic growth of hepatoma cells in vitro. In parallel, HNF1α overexpression reestablished the expression of certain liver-specific genes and microRNA 192 and 194 levels, with a resultant increase in p21 levels and induction of G(2)/M arrest. Additionally, AdHNF1α inhibited the expression of cluster of differentiation 133 and epithelial cell adhesion molecule and the signal pathways of the mammalian target of rapamycin and transforming growth factor beta/Smads. Furthermore, HNF1α abolished the tumorigenicity of hepatoma cells in vivo. Most interestingly, intratumoral injection of AdHNF1α significantly inhibited the growth of subcutaneous HCC xenografts in nude mice. Systemic delivery of AdHNF1α could eradicate the orthotopic liver HCC nodules in nonobese diabetic/severe combined immunodeficiency mice. CONCLUSION These results suggest that the potent inhibitive effect of HNF1α on HCC is attained by inducing the differentiation of hepatoma cells into mature hepatocytes and G(2)/M arrest. HNF1α might represent a novel, promising therapeutic agent for human HCC treatment. Our findings also encourage the evaluation of differentiation therapy for tumors of organs other than liver using their corresponding differentiation-determining transcription factor.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Wirsing A, Senkel S, Klein-Hitpass L, Ryffel GU. A systematic analysis of the 3'UTR of HNF4A mRNA reveals an interplay of regulatory elements including miRNA target sites. PLoS One 2011; 6:e27438. [PMID: 22140441 PMCID: PMC3227676 DOI: 10.1371/journal.pone.0027438] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/17/2011] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of hepatocyte nuclear factor 4α (HNF4α) has been linked to maturity onset diabetes of the young (MODY1), diabetes type II and possibly to renal cell carcinoma (RCC). Whereas diabetes causing mutations are well known, there are no HNF4A mutations found in RCC. Since so far analyses have been constricted to the promoter and open reading frame of HNF4A, we performed a systematic analysis of the human HNF4A 3′UTR. We identified a short (1724 nt) and long (3180 nt) 3′UTR that are much longer than the open reading frame and conferred a repressive effect in luciferase reporter assays in HEK293 and INS-1 cells. By dissecting the 3′UTR into several pieces, we located two distinct elements of about 400 nt conferring a highly repressive effect. These negative elements A and B are counteracted by a balancer element of 39 nt located within the 5′ end of the HNF4A 3′UTR. Dicer knock-down experiments implied that the HNF4A 3′UTR is regulated by miRNAs. More detailed analysis showed that miR-34a and miR-21 both overexpressed in RCC cooperate in downregulation of the HNF4A mRNA. One of the identified miR-34a binding sites is destroyed by SNP rs11574744. The identification of several regulatory elements within the HNF4A 3′UTR justifies the analysis of the 3′UTR sequence to explore the dysfunction of HNF4α in diabetes and RCC.
Collapse
Affiliation(s)
- Andrea Wirsing
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Sabine Senkel
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gerhart U. Ryffel
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
128
|
Gasnereau I, Boissan M, Margall-Ducos G, Couchy G, Wendum D, Bourgain-Guglielmetti F, Desdouets C, Lacombe ML, Zucman-Rossi J, Sobczak-Thépot J. KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and hepatocarcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:131-40. [PMID: 22056911 DOI: 10.1016/j.ajpath.2011.09.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/24/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
Abstract
Mitotic kinesin-like protein 2 (MKlp2), a microtubule-associated motor, is required during mitosis exit for the final step of cytokinesis. It also contributes to retrograde vesicular trafficking from the Golgi apparatus to the endoplasmic reticulum in interphase. The KIF20A gene encoding MKlp2 is controlled by the E2F-retinoblastoma protein-p16 pathway, and its widely expressed mRNA is found in fetal and proliferating adult tissues. The expression pattern and function of MKlp2 in the adult liver, however, have not been investigated. We report herein that MKlp2 transiently accumulates in vivo during mouse liver regeneration after partial hepatectomy and is strongly overexpressed in preneoplastic and neoplastic mouse liver. In vitro in mitogen-stimulated primary hepatocytes, MKlp2 accumulated in the nucleus during the G2 phase of the cell cycle coincident with the mitotic kinase Aurora B. Human hepatoma cell lines exhibited high levels of MKlp2; however, it was undetectable in normal human hepatocytes. RNAi-mediated MKlp2 knockdown in hepatoma cells induced polyploidization consistent with its essential function in promoting cytokinesis and inhibited cell proliferation without inducing apoptosis. KIF20A mRNA was strongly accumulated in a large series of human hepatocellular carcinomas, with the highest expression observed in tumors with genomic instability. Accumulation of MKlp2 in normal proliferating, preneoplastic, and transformed hepatocytes suggests that MKlp2 contributes to both normal and pathologic hepatocyte proliferation and is linked to tumor aggressiveness in human hepatocellular carcinomas.
Collapse
|
129
|
Sun W, Ding J, Wu K, Ning BF, Wen W, Sun HY, Han T, Huang L, Dong LW, Yang W, Deng X, Li Z, Wu MC, Feng GS, Xie WF, Wang HY. Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells. Hepatology 2011; 54:1259-72. [PMID: 21735473 DOI: 10.1002/hep.24530] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED Gankyrin is a critical oncoprotein overexpressed in human hepatocellular carcinoma (HCC). However, the mechanism underlying gankyrin-mediated hepatocarcinogenesis remains elusive. Herein, we provide evidence that gankyrin expression was progressively elevated in liver fibrosis, cirrhosis, and HCC. Levels of gankyrin expression were closely associated with the dedifferentiation status of hepatoma in patients. Decrease of hepatocyte characteristic markers and increase of cholangiocyte-specific markers were observed in rat primary hepatocytes with enforced gankyrin expression and diethylnitrosamine (DEN)-triggered rat hepatocarcinogenesis. Overexpression of gankyrin also attenuated the hepatic function of primary hepatocytes, which further suggests that gankyrin promotes the dedifferentiation of hepatocytes. Moreover, elevated expression of gankyrin closely correlated with the expression of HCC stem/progenitor cell markers in DEN-triggered hepatocarcinogenesis and human HCCs. Hepatoma cells derived from suspension-cultured spheroids exhibited a higher gankyrin level, and enforced gankyrin expression in hepatoma cells remarkably enhanced cluster of differentiation (CD)133, CD90, and epithelial cellular adhesion molecule expression, indicating a role of gankyrin in hepatoma cell dedifferentiation and the generation of hepatoma stem/progenitor cells. In contrast, down-regulation of gankyrin in hepatoma cells by lentivirus-mediated microRNA delivery significantly improved their differentiation status and attenuated malignancy. Interference of gankyrin expression in hepatoma cells also diminished the proportion of cancer stem/progenitor cells and their self-renewal capacity. Furthermore, gankyrin was found to bind hepatocyte nuclear factor 4α (HNF4α), which determines hepatocyte differentiation status and enhances proteasome-dependent HNF4α degradation in hepatoma cells. The inverse correlation of gankyrin and HNF4α was further confirmed in primary hepatocytes, DEN-induced hepatocarcinogenesis, and human HCCs. CONCLUSION Gankyrin-mediated dedifferentiation of hepatocytes and hepatoma cells via, at least partially, down-regulation of HNF4α facilitates HCC development, and interference of gankyrin expression could be a novel strategy for HCC prevention and differentiation therapy.
Collapse
Affiliation(s)
- Wen Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Mizutani A, Koinuma D, Tsutsumi S, Kamimura N, Morikawa M, Suzuki HI, Imamura T, Miyazono K, Aburatani H. Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4alpha in HepG2 cells. J Biol Chem 2011; 286:29848-60. [PMID: 21646355 PMCID: PMC3191026 DOI: 10.1074/jbc.m110.217745] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Specific regulation of target genes by transforming growth factor-β (TGF-β) in a given cellular context is determined in part by transcription factors and cofactors that interact with the Smad complex. In this study, we determined Smad2 and Smad3 (Smad2/3) binding regions in the promoters of known genes in HepG2 hepatoblastoma cells, and we compared them with those in HaCaT epidermal keratinocytes to elucidate the mechanisms of cell type- and context-dependent regulation of transcription induced by TGF-β. Our results show that 81% of the Smad2/3 binding regions in HepG2 cells were not shared with those found in HaCaT cells. Hepatocyte nuclear factor 4α (HNF4α) is expressed in HepG2 cells but not in HaCaT cells, and the HNF4α-binding motif was identified as an enriched motif in the HepG2-specific Smad2/3 binding regions. Chromatin immunoprecipitation sequencing analysis of HNF4α binding regions under TGF-β stimulation revealed that 32.5% of the Smad2/3 binding regions overlapped HNF4α bindings. MIXL1 was identified as a new combinatorial target of HNF4α and Smad2/3, and both the HNF4α protein and its binding motif were required for the induction of MIXL1 by TGF-β in HepG2 cells. These findings generalize the importance of binding of HNF4α on Smad2/3 binding genomic regions for HepG2-specific regulation of transcription by TGF-β and suggest that certain transcription factors expressed in a cell type-specific manner play important roles in the transcription regulated by the TGF-β-Smad signaling pathway.
Collapse
Affiliation(s)
- Anna Mizutani
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Daizo Koinuma
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Shuichi Tsutsumi
- the Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, and
| | - Naoko Kamimura
- the Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, and
| | - Masato Morikawa
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Hiroshi I. Suzuki
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Takeshi Imamura
- the Division of Biochemistry, Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Kohei Miyazono
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
- To whom correspondence should be addressed. Tel.: 81-3-5841-3356; Fax: 81-3-5841-3354; E-mail:
| | - Hiroyuki Aburatani
- the Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, and
| |
Collapse
|
131
|
Weltmeier F, Borlak J. A high resolution genome-wide scan of HNF4α recognition sites infers a regulatory gene network in colon cancer. PLoS One 2011; 6:e21667. [PMID: 21829439 PMCID: PMC3145629 DOI: 10.1371/journal.pone.0021667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
The hepatic nuclear factor HNF4α is a versatile transcription factor and controls expression of many genes in development, metabolism and disease. To delineate its regulatory gene network in colon cancer and to define novel gene targets a comprehensive genome-wide scan was carried out at a resolution of 35 bp with chromatin IP DNA obtained from the human colon carcinoma cell line Caco-2 that is a particularly rich source of HNF4α. More than 90% of HNF4α binding sites were mapped as promoter distal sequences while enhancer elements could be defined to foster chromatin loops for interaction with other promoter-bound transcription factors. Sequence motif analysis by various genetic algorithms evidenced a unique enhanceosome that consisted of the nuclear proteins ERα, AP1, GATA and HNF1α as cooperating transcription factors. Overall >17,500 DNA binding sites were identified with a gene/binding site ratio that differed >6-fold between chromosomes and clustered in distinct chromosomal regions amongst >6600 genes targeted by HNF4α. Evidence is presented for nuclear receptor cross-talk of HNF4α and estrogen receptor α that is recapitulated at the sequence level. Remarkably, the Y-chromosome is devoid of HNF4α binding sites. The functional importance of enrichment sites was confirmed in genome-wide gene expression studies at varying HNF4α protein levels. Taken collectively, a genome-wide scan of HNF4α binding sites is reported to better understand basic mechanisms of transcriptional control of HNF4α targeted genes. Novel promoter distal binding sites are identified which form an enhanceosome thereby facilitating RNA processing events.
Collapse
Affiliation(s)
- Fridtjof Weltmeier
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Juergen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
132
|
Ogunwobi OO, Liu C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis 2011; 28:721-31. [PMID: 21744257 DOI: 10.1007/s10585-011-9404-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/28/2011] [Indexed: 12/16/2022]
Abstract
Advanced hepatocellular carcinoma (HCC) is an important cause of cancer mortality. Epithelial-mesenchymal transition (EMT) has been shown to be an important biological process in cancer progression and metastasis. We have focused on elucidating factors that induce EMT to promote carcinogenesis and subsequent metastasis in HCC using the BNL CL.2 (BNL) and BNL 1ME A. 7R.1 (1MEA) cell lines. BNL cells are normal hepatocytes whereas the 1MEA cells are HCC cells derived from chemical transformation of the BNL cells. Their morphological characteristics were examined. Expression levels of hepatocyte growth factor (HGF), markers of EMT and mediators of HGF signaling were determined and functional characteristics were compared. BNL cells were treated with HGF and effects on EMT-marker and mediators of HGF signaling were analyzed. BNL cells display characteristic epithelial morphology whereas 1MEA cells display mesenchymal characteristics. 1MEA cells express and secrete more HGF than BNL cells. There was significantly decreased expression of E-cadherin, albumin, AAT and increased expression of fibronectin, collagen-1, vimentin, snail and slug in 1MEA cells. There was also increased expression of cyclooxygenase-2 (COX-2), Akt and phosphorylated Akt (pAkt) in 1MEA cells. Moreover, 1MEA cells had increased migratory capacity inhibited by inhibition of COX-2 and Akt but not extracellular signal regulated kinase (ERK). Molecular mesenchymal characteristics of 1MEA cells were reversed by inhibition of COX-2, Akt and ERK. Treatment of BNL cells with HGF led to decreased expression of E-cadherin and increased expression of fibronectin, vimentin, snail, slug, COX-2, Akt, pAkt and increased migration, invasiveness and clonogenicity. We conclude that development of HCC is associated with upregulation of HGF which promotes EMT and carcinogenesis via upregulation of COX-2 and Akt. Consequently, HGF signaling may be targeted for therapy in advanced and metastatic HCC.
Collapse
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, 1600 SW Archer Road, M651, PO 100275, Gainesville, FL 32610, USA
| | | |
Collapse
|
133
|
A potential role for the homeoprotein Hhex in hepatocellular carcinoma progression. Med Oncol 2011; 29:1059-67. [PMID: 21656028 DOI: 10.1007/s12032-011-9989-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/14/2011] [Indexed: 01/15/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common primary malignant tumor of the liver, often associated with the dysregulation of transcriptional pathways involved in cell growth and differentiation. The hematopoietically expressed homeobox protein (Hhex) is an important transcription factor throughout liver development and is essential to liver bud formation and hepatoblast differentiation. Here, we report a relationship between Hhex expression and HCC. First, adenovirus-mediated Hhex delivery into the hepatoma cell line, Hepa1-6, resulted in decreased expression of several proto-oncogenes (c-Jun and Bcl2), increased expression of some tumor suppressor genes (P53 and Rb), and enhanced expression of a cluster of hepatocytic and bile ductular markers. Second, Hhex expression significantly attenuated Hepa1-6 tumorigenicity in nude mice. Third, we report a correlation between Hhex expression and the differentiation state of human HCC. In 24 cases of clinical specimens, there was a significant difference in Hhex expression between poorly differentiated HCC and well-differentiated HCC (P < 0.001). Taken together, these results indicate that Hhex is a potential candidate molecular marker for HCC pathological evaluation, suggesting a need to evaluate Hhex as a potential target for therapeutic intervention.
Collapse
|
134
|
Santangelo L, Marchetti A, Cicchini C, Conigliaro A, Conti B, Mancone C, Bonzo JA, Gonzalez FJ, Alonzi T, Amicone L, Tripodi M. The stable repression of mesenchymal program is required for hepatocyte identity: a novel role for hepatocyte nuclear factor 4α. Hepatology 2011; 53:2063-74. [PMID: 21384409 PMCID: PMC6624426 DOI: 10.1002/hep.24280] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial-to-mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal-to-epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4α (HNF4α) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real-time quantitative polymerase chain reaction. HNF4α recruitment on promoters of both mesenchymal and EMT regulator genes was determined by way of electrophoretic mobility shift assay and chromatin immunoprecipitation. The effect of HNF4α depletion was assessed in silenced cells and in the context of the whole liver of HNF4 knockout animals. Our results identified key EMT regulators and mesenchymal genes as new targets of HNF4α. HNF4α, in cooperation with its target HNF1α, directly inhibits transcription of the EMT master regulatory genes Snail, Slug, and HMGA2 and of several mesenchymal markers. HNF4α-mediated repression of EMT genes induces MET in hepatomas, and its silencing triggers the mesenchymal program in differentiated hepatocytes both in cell culture and in the whole liver. CONCLUSION The pivotal role of HNF4α in the induction and maintenance of hepatocyte differentiation should also be ascribed to its capacity to continuously repress the mesenchymal program; thus, both HNF4α activator and repressor functions are necessary for the identity of hepatocytes.
Collapse
Affiliation(s)
- Laura Santangelo
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Alessandra Marchetti
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Carla Cicchini
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Alice Conigliaro
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Beatrice Conti
- National Institute for Infectious Diseases L. Spallanzani, Institute of Research and Cure of Scientific Character, Rome, Italy
| | - Carmine Mancone
- National Institute for Infectious Diseases L. Spallanzani, Institute of Research and Cure of Scientific Character, Rome, Italy
| | - Jessica A. Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tonino Alonzi
- National Institute for Infectious Diseases L. Spallanzani, Institute of Research and Cure of Scientific Character, Rome, Italy
| | - Laura Amicone
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Marco Tripodi
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy,National Institute for Infectious Diseases L. Spallanzani, Institute of Research and Cure of Scientific Character, Rome, Italy
| |
Collapse
|
135
|
Yang JD, Sun Z, Hu C, Lai J, Dove R, Nakamura I, Lee JS, Thorgeirsson SS, Kang KJ, Chu IS, Roberts LR. Sulfatase 1 and sulfatase 2 in hepatocellular carcinoma: associated signaling pathways, tumor phenotypes, and survival. Genes Chromosomes Cancer 2011; 50:122-135. [PMID: 21104785 PMCID: PMC3253341 DOI: 10.1002/gcc.20838] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The heparin-degrading endosulfatases sulfatase 1 (SULF1) and sulfatase 2 (SULF2) have opposing effects in hepatocarcinogenesis despite structural similarity. Using mRNA expression arrays, we analyzed the correlations of SULF expression with signaling networks in human hepatocellular carcinomas (HCCs) and the associations of SULF expression with tumor phenotype and patient survival. Data from two mRNA microarray analyses of 139 and 36 HCCs and adjacent tissues were used as training and validation sets. Partek and Metacore software were used to identify SULF correlated genes and their associated signaling pathways. Associations between SULF expression, the hepatoblast subtype of HCC, and survival were examined. Both SULF1 and 2 had strong positive correlations with periostin, IQGAP1, TGFB1, and vimentin and inverse correlations with HNF4A and IQGAP2. Genes correlated with both SULFs were highly associated with the cell adhesion, cytoskeletal remodeling, blood coagulation, TGFB, and Wnt/β-catenin and epithelial mesenchymal transition signaling pathways. Genes uniquely correlated with SULF2 were more associated with neoplastic processes than genes uniquely correlated with SULF1. High SULF expression was associated with the hepatoblast subtype of HCC. There was a bimodal effect of SULF1 expression on prognosis, with patients in the lowest or highest tertile having a worse prognosis than those in the middle tertile. SULFs have complex effects on HCC signaling and patient survival. There are functionally similar associations with cell adhesion, ECM remodeling, TGFB, and WNT pathways, but also unique associations of SULF1 and SULF2. The roles and targeting of the SULFs in cancer require further investigation.
Collapse
Affiliation(s)
- Ju Dong Yang
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN
| | - Zhifu Sun
- Department of Biomedical Statistics and Informatics, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN
| | - Chunling Hu
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN
| | - Jinping Lai
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN
| | - Rebecca Dove
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN
| | - Ikuo Nakamura
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | | | - Koo Jeong Kang
- Surgery, Keimyung University School of Medicine, Daegu, Korea
| | - In-Sun Chu
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Lewis R. Roberts
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN
| |
Collapse
|
136
|
KANAZAWA T, ICHII O, OTSUKA S, NAMIKI Y, HASHIMOTO Y, KON Y. Hepatocyte Nuclear Factor 4 Alpha is Associated with Mesenchymal-Epithelial Transition in Developing Kidneys of C57BL/6 Mice. J Vet Med Sci 2011; 73:601-7. [DOI: 10.1292/jvms.10-0493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tomonori KANAZAWA
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Osamu ICHII
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Saori OTSUKA
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Yuka NAMIKI
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Yoshiharu HASHIMOTO
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Yasuhiro KON
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| |
Collapse
|
137
|
Fan W, Shi B, Wei H, Du G, Song S. Comparison of hepatitis B X gene mutation between patients with hepatocellular carcinoma and patients with chronic hepatitis B. Virus Genes 2010; 42:162-70. [PMID: 21161360 DOI: 10.1007/s11262-010-0557-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/19/2010] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV), a major causative agent of hepatocellular carcinoma (HCC), encodes an oncogenic X protein (HBx) that transcriptionally activates multiple viral and cellular promoters. The present study aimed to identify the specific gene mutation related to the clinical outcome of HCC. Seventy-two HBV-infected patients (38 with chronic HBV infection and 34 with HCC) with well-characterized clinical profiles were enrolled. The HBx region was amplified from patient serum samples and analyzed by sequencing. Genotypes were determined using the National Center for Biotechnology Information genotype tool. All isolates were genotype B or C. Enhancer II nucleotide substitutions in the HCC group were significantly different from those in the chronic hepatitis B (CHB) group (Ρ < 0.05). HCC patients with genotype C had a higher risk of harboring the 1762/1764 double mutation than those with genotype B. The incidence of the 1762/1764 double mutation was higher in the high viral load group (>10(6) copies/ml) than in the low viral load group (≤10(6) copies/ml) (P = 0.03). The 1762/1764 double mutations may be related to the genotype and viral load. We found significantly more direct repeat sequence 1 (DR1) nucleotide substitutions in the HCC group (32.4%, 11/34) than in the CHB group (10.5%, 4/38) (Ρ < 0.05). Patients with higher viral load and genotype C had a higher incidence of 1762/1764 double mutations, which may not be related with development of HCC. Enhancer II and DR1 may play an important role in HCC development via nucleotide substitution.
Collapse
Affiliation(s)
- Wenmei Fan
- Institute of Organ Transplantation, Chinese PLA Postgraduate Medical School, The No. 309th Hospital of PLA, Beijing, China.
| | | | | | | | | |
Collapse
|
138
|
Lu H, Gonzalez FJ, Klaassen C. Alterations in hepatic mRNA expression of phase II enzymes and xenobiotic transporters after targeted disruption of hepatocyte nuclear factor 4 alpha. Toxicol Sci 2010; 118:380-90. [PMID: 20935164 DOI: 10.1093/toxsci/kfq280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4a) is a liver-enriched master regulator of liver function. HNF4a is important in regulating hepatic expression of certain cytochrome P450s. The purpose of this study was to use mice lacking HNF4a expression in liver (HNF4a-HNull) to elucidate the role of HNF4a in regulating hepatic expression of phase II enzymes and transporters in mice. Compared with male wild-type mice, HNF4a-HNull male mouse livers had (1) markedly lower messenger RNAs (mRNAs) encoding the uptake transporters sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide (Oatp) 1a1, Oatp2b1, organic anion transporter 2, sodium phosphate cotransporter type 1, sulfate anion transporter 1, sodium-dependent vitamin C transporter 1, the phase II enzymes Uridine 5'-diphospho (UDP)-glucuronosyltransferase (Ugt) 2a3, Ugt2b1, Ugt3a1, Ugt3a2, sulfotransferase (Sult) 1a1, Sult1b1, Sult5a1, the efflux transporters multidrug resistance-associated protein (Mrp) 6, and multidrug and toxin extrusion 1; (2) moderately lower mRNAs encoding Oatp1b2, organic cation transporter (Oct) 1, Ugt1a5, Ugt1a9, glutathione S-transferase (Gst) m4, Gstm6, and breast cancer resistance protein; but (3) higher mRNAs encoding Oatp1a4, Octn2, Ugt1a1, Sult1e1, Sult2a2, Gsta4, Gstm1-m3, multidrug resistance protein (Mdr) 1a, Mrp3, and Mrp4. Hepatic signaling of nuclear factor E2-related factor 2 and pregnane X receptor appear to be activated in HNF4a-HNull mice. In conclusion, HNF4a deficiency markedly alters hepatic mRNA expression of a large number of phase II enzymes and transporters, probably because of the loss of HNF4a, which is a transactivator and a determinant of gender-specific expression and/or adaptive activation of signaling pathways important in hepatic regulation of these phase II enzymes and transporters.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
139
|
Role of hepatocyte nuclear factor 4α in controlling copper-responsive transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:102-8. [PMID: 20875833 DOI: 10.1016/j.bbamcr.2010.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/07/2010] [Accepted: 09/16/2010] [Indexed: 01/04/2023]
Abstract
Previous global transcriptome and interactome analyses of copper-treated HepG2 cells identified hepatocyte nuclear factor 4α (HNF4α) as a potential master regulator of copper-responsive transcription. Copper exposure caused a decrease in the expression of HNF4α at both mRNA and protein levels, which was accompanied by a decrease in the level of HNF4α binding to its consensus DNA binding sequence. qRT-PCR and RNAi studies demonstrated that changes in HNF4α expression ultimately affected the expressions of its down-stream target genes. Analysis of upstream regulators of HNF4α expression, including p53 and ATF3, showed that copper caused an increase in the steady-state levels of these proteins. These results support a model for copper-responsive transcription in which the metal affects ATF3 expression and stabilizes p53 resulting in the down-regulation of HNF4α expression. In addition, copper may directly affect p53 protein levels. The suppression of HNF4α activity may contribute to the molecular mechanisms underlying the physiological and toxicological consequences of copper toxicity in hepatic-derived cells.
Collapse
|
140
|
Leong WS, Tay CY, Yu H, Li A, Wu SC, Duc DH, Lim CT, Tan LP. Thickness sensing of hMSCs on collagen gel directs stem cell fate. Biochem Biophys Res Commun 2010; 401:287-92. [PMID: 20851103 DOI: 10.1016/j.bbrc.2010.09.052] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/11/2010] [Indexed: 10/19/2022]
Abstract
Mechanically compliant substrate provides crucial biomechanical cues for multipotent stem cells to regulate cellular fates such as differentiation, proliferation and maintenance of their phenotype. Effective modulus of which cells sense is not only determined by intrinsic mechanical properties of the substrate, but also the thickness of substrate. From our study, it was found that interference from underlying rigid support at hundreds of microns away could induce significant cellular response. Human mesenchymal stem cells (hMSCs) were cultured on compliant biological gel, collagen type I, of different thickness but identical ECM composition and local stiffness. The cells sensed the thin gel (130 μm) as having a higher effective modulus than the thick gel (1440 μm) and this was reflected in their changes in morphology, actin fibers structure, proliferation and tissue specific gene expression. Commitment into neuronal lineage was observed on the thin gel only. Conversely, the thick gel (1440 μm) was found to act like a substrate with lower effective modulus that inhibited actin fiber polymerization. Stem cells on the thick substrate did not express tissue specific genes and remained at their quiescent state. This study highlighted the need to consider not only the local modulus but also the thickness of biopolymer gel coating during modulation of cellular responses.
Collapse
Affiliation(s)
- Wen Shing Leong
- Division of Materials Technology, Nanyang Technological University, School of Materials Science and Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Zhong W, Zhao Y, McClain CJ, Kang YJ, Zhou Z. Inactivation of hepatocyte nuclear factor-4{alpha} mediates alcohol-induced downregulation of intestinal tight junction proteins. Am J Physiol Gastrointest Liver Physiol 2010; 299:G643-51. [PMID: 20576917 PMCID: PMC2950677 DOI: 10.1152/ajpgi.00515.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic alcohol exposure has been shown to increase the gut permeability in the distal intestine, in part, through induction of zinc deficiency. The present study evaluated the molecular mechanisms whereby zinc deficiency mediates alcohol-induced intestinal barrier dysfunction. Examination of zinc finger transcription factors in the gastrointestinal tract of mice revealed a prominent distribution of hepatocyte nuclear factor-4alpha (HNF-4alpha). HNF-4alpha exclusively localizes in the epithelial nuclei and exhibited an increased abundance in mRNA and protein levels in the distal intestine. Chronic alcohol exposure to mice repressed the HNF-4alpha gene expression in the ileum and reduced the protein level and DNA binding activity of HNF-4alpha in all of the intestinal segments with the most remarkable changes in the ileum. Chronic alcohol exposure also decreased the mRNA levels of tight junction proteins, particularly in the ileum. Caco-2 cell culture studies were conducted to determine the role of HNF-4alpha in regulation of the epithelial tight junction and barrier function. Knockdown of HNF-4alpha in Caco-2 cells decreased the mRNA and protein levels of tight junction proteins in association with disruption of the epithelial barrier. Alcohol treatment inactivated HNF-4alpha, which was prevented by N-acetyl-cysteine or zinc. The link between zinc and HNF-4alpha function was confirmed by zinc deprivation, which inhibited HNF-4alpha DNA binding activity. These results indicate that inactivation of HNF-4alpha due to oxidative stress and zinc deficiency is likely a novel mechanism contributing to the deleterious effects of alcohol on the tight junctions and the intestinal barrier function.
Collapse
Affiliation(s)
- Wei Zhong
- Departments of 1Medicine and ,5College of Veterinary Medicine, China Agricultural University, Beijing; and
| | - Yantao Zhao
- Departments of 1Medicine and ,6College of Animal Sciences and Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Craig J. McClain
- Departments of 1Medicine and ,2Pharmacology & Toxicology, University of Louisville School of Medicine and ,3University of Louisville Alcohol Research Center, ,4Louisville Veterans' Affairs Medical Center, Louisville, Kentucky;
| | - Y. James Kang
- 2Pharmacology & Toxicology, University of Louisville School of Medicine and ,3University of Louisville Alcohol Research Center,
| | - Zhanxiang Zhou
- Departments of 1Medicine and ,3University of Louisville Alcohol Research Center,
| |
Collapse
|
142
|
Lehner F, Kulik U, Klempnauer J, Borlak J. Mapping of liver-enriched transcription factors in the human intestine. World J Gastroenterol 2010; 16:3919-27. [PMID: 20712053 PMCID: PMC2923766 DOI: 10.3748/wjg.v16.i31.3919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the gene expression pattern of hepatocyte nuclear factor 6 (HNF6) and other liver-enriched transcription factors in various segments of the human intestine to better understand the differentiation of the gut epithelium.
METHODS: Samples of healthy duodenum and jejunum were obtained from patients with pancreatic cancer whereas ileum and colon was obtained from patients undergoing right or left hemicolectomy or (recto)sigmoid or rectal resection. All surgical specimens were subjected to histopathology. Excised tissue was shock-frozen and analyzed for gene expression of liver-enriched transcription factors by semiquantitative reverse transcription polymerase chain and compared to the human colon carcinoma cell line Caco-2. Protein expression of major liver-enriched transcription factors was determined by Western blotting while the DNA binding of HNF6 was investigated by electromobility shift assays.
RESULTS: The gene expression patterning of liver-enriched transcription factors differed in the various segments of the human intestine with HNF6 gene expression being most abundant in the duodenum (P < 0.05) whereas expression of the zinc finger protein GATA4 and of the HNF6 target gene ALDH3A1 was most abundant in the jejunum (P < 0.05). Likewise, expression of FOXA2 and the splice variants 2 and 4 of HNF4α were most abundantly expressed in the jejunum (P < 0.05). Essentially, expression of transcription factors declined from the duodenum towards the colon with the most abundant expression in the jejunum and less in the ileum. The expression of HNF6 and of genes targeted by this factor, i.e. neurogenin 3 (NGN3) was most abundant in the jejunum followed by the ileum and the colon while DNA binding activity of HNF4α and of NGN3 was confirmed by electromobility shift assays to an optimized probe. Furthermore, Western blotting provided evidence of the expression of several liver-enriched transcription factors in cultures of colon epithelial cells, albeit at different levels.
CONCLUSION: We describe significant local and segmental differences in the expression of liver-enriched transcription factors in the human intestine which impact epithelial cell biology of the gut.
Collapse
|
143
|
Gomo C, Coriat R, Faivre L, Mir O, Ropert S, Billemont B, Dauphin A, Tod M, Goldwasser F, Blanchet B. Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs 2010; 29:1511-4. [PMID: 20706860 DOI: 10.1007/s10637-010-9514-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/27/2010] [Indexed: 01/01/2023]
Abstract
Sorafenib, an orally active multi-kinase inhibitor approved for the treatment of hepatocellular carcinoma (HCC), is primarily metabolized both via cytochrome P450 3A4 isoform (CYP3A4) and UGT1A9. Due to the contribution of these two biotransformation pathways, sorafenib is considered to be less susceptible than other agents to CYP3A4 drug-drug interactions. This report discusses a clinically relevant pharmacokinetic CYP3A4 drug-drug interaction between sorafenib and felodipine in an 80-year-old Caucasian patient with HCC. On day 15, after the introduction of sorafenib (400 mg bid), sorafenib plasma concentration was at 3.6 mg/L. Felodipine (5 mg bid), an anti-hypertensive agent that is exclusively CYP3A4 substrate, was then introduced due to grade 2 sorafenib-related hypertension. On day 30, hypertension was well controlled. However, sorafenib plasma concentration was 3-fold greater (11.4 mg/L) and the patient experienced grade-3 anorexia. Since neither diarrhea nor cutaneous side effects were noticed at this time, sorafenib treatment was continued at the same daily dosage. On day 45, sorafenib plasma concentration was stable (10.8 mg/L) before declining on days 60 and 75 (7.0 mg/L and 7.4 mg/L, respectively), which was probably related to an occurrence of grade-2 diarrhea. This observation suggests a pharmacokinetic interaction involving CYP3A4 inhibition by felodipine. According to the Drug Interaction Probability Scale, this interaction was possible. Since hypertension is a common toxicity of sorafenib, clinicians should be aware of this possible interaction. The clinical relevance of pharmacokinetic interactions involving CYP3A4 inhibition in HCC patients receiving sorafenib is analyzed in this case report.
Collapse
Affiliation(s)
- Charline Gomo
- Centre évaluation et de recours des inhibiteurs de l'angiogénèse (CERIA), GH Cochin- Hôtel Dieu, 27 rue faubourg Saint Jacques, Paris, 75014, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Buchner A, Castro M, Hennig A, Popp T, Assmann G, Stief CG, Zimmermann W. Downregulation of HNF-1B in Renal Cell Carcinoma Is Associated With Tumor Progression and Poor Prognosis. Urology 2010; 76:507.e6-11. [DOI: 10.1016/j.urology.2010.03.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 02/21/2010] [Accepted: 03/16/2010] [Indexed: 11/26/2022]
|
145
|
Kierans AS, Leonardou P, Hayashi P, Brubaker LM, Elazzazi M, Shaikh F, Semelka RC. MRI findings of rapidly progressive hepatocellular carcinoma. Magn Reson Imaging 2010; 28:790-6. [PMID: 20427139 DOI: 10.1016/j.mri.2010.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/05/2010] [Accepted: 03/05/2010] [Indexed: 12/28/2022]
Abstract
PURPOSE The purpose of this study is to determine the magnetic resonance imaging (MRI) and patient characteristics in subjects with hepatocellular carcinoma (HCC) that exhibit rapid progression. MATERIALS AND METHODS In this unblinded retrospective study, initial and follow up MR images were reviewed, before and after rapid progression of HCC, respectively. Rapid progression was defined as a lesion <3 cm which exhibited >3 cm increase in one year or 2 cm increase in 6 months. Patient characteristics and MRI findings were determined using clinical information from the institution clinical information system and records from the Radiology and Pathology Departments, Hepatology Division and Liver Transplant Service of the Department of Medicine. RESULTS Seven individuals were identified with HCC that showed rapid progression. Five of the patients had underlying hepatitis C, one had alcoholic hepatitis, and one had immunosuppression due to liver transplantation. On initial MRI, six patients had early intense ring enhancing lesions, which rapidly progressed in size. Five patients died within 6 months, one within 1 year after progression despite treatment. Six of the seven patients also had multiple other liver nodules on initial MRI; those that showed ring enhancement rapidly progressed but those without, did not show rapid progression. CONCLUSION Patients with rapidly progressive HCC had underlying hepatitis C and intense ring enhancement on initial MRI. This group of patients should be evaluated further to determine if they might benefit from early intervention.
Collapse
Affiliation(s)
- Andrea S Kierans
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7510, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Tsuchiya M, Parker JS, Kono H, Matsuda M, Fujii H, Rusyn I. Gene expression in nontumoral liver tissue and recurrence-free survival in hepatitis C virus-positive hepatocellular carcinoma. Mol Cancer 2010; 9:74. [PMID: 20380719 PMCID: PMC2856554 DOI: 10.1186/1476-4598-9-74] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/09/2010] [Indexed: 02/08/2023] Open
Abstract
Background The goal of this study was to understand gene expression signatures of hepatocellular carcinoma (HCC) recurrence in subjects with hepatitis C virus (HCV) infection. Recurrence-free survival (RFS) following curative resection of HCC in subjects with HCV is highly variable. Traditional clinico-pathological endpoints are recognized as weak predictors of RFS. It has been suggested that gene expression profiling of HCC and nontumoral liver tissue may improve prediction of RFS, aid in understanding of the underlying liver disease, and guide individualized patient management. Frozen samples of the tumors and nontumoral liver were obtained from 47 subjects with HCV-associated HCC. Additional nontumoral liver samples were obtained from HCV-free subjects with metastatic liver tumors. Gene expression profiling data was used to determine the molecular signature of HCV-associated HCC and to develop a predictor of RFS. Results The molecular profile of the HCV-associated HCC confirmed central roles for MYC and TGFβ1 in liver tumor development. Gene expression in tumors was found to have poor predictive power with regards to RFS, but analysis of nontumoral tissues yielded a strong predictor for RFS in late-recurring (>1 year) subjects. Importantly, nontumoral tissue-derived gene expression predictor of RFS was highly significant in both univariable and multivariable Cox proportional hazard model analyses. Conclusions Microarray analysis of the nontumoral tissues from subjects with HCV-associated HCC delivers novel molecular signatures of RFS, especially among the late-recurrence subjects. The gene expression predictor may hold important insights into the pathobiology of HCC recurrence and de novo tumor formation in cirrhotic patients.
Collapse
Affiliation(s)
- Masato Tsuchiya
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
147
|
Pereira-Rodrigues N, Poleni PE, Guimard D, Arakawa Y, Sakai Y, Fujii T. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS. PLoS One 2010; 5:e9667. [PMID: 20300511 PMCID: PMC2838777 DOI: 10.1371/journal.pone.0009667] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/15/2010] [Indexed: 01/07/2023] Open
Abstract
Background The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC) deposited on polydimethylsiloxane (PDMS) as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2) cells. Principal Findings Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS) influence and modulate initial extracellular matrix (ECM; here, type-I collagen) surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM), which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. Conclusion/Significance We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.
Collapse
Affiliation(s)
| | - Paul-Emile Poleni
- CIRMM, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| | - Denis Guimard
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Yasuhiko Arakawa
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Yasuyuki Sakai
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Teruo Fujii
- CIRMM, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
148
|
van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, Machat G, Grubinger M, Huber H, Mikulits W. Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol 2010; 5:1169-79. [PMID: 19852728 DOI: 10.2217/fon.09.91] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The transition of epithelial cells to a mesenchymal phenotype is of paramount relevance for embryonic development and adult wound healing. During the past decade, the epithelial-mesenchymal transition (EMT) has been increasingly recognized to occur during the progression of various carcinomas such as hepatocellular carcinoma (HCC). Here, we focus on EMT in both experimental liver models and human HCC, emphasizing the underlying molecular mechanisms which show partial recurrence of embryonic programs such as TGF-beta and Wnt/ beta-catenin signaling, including collaboration with hepatitis viruses. We further discuss the differentiation repertoire of malignant hepatocytes with respect to the potential acquisition of stemness, and the involvement of the mesenchymal to epithelial transition, the reversal of EMT, in cancer dissemination and metastatic colonization. The strong evidence for EMT in HCC patients demands novel strategies in pathological assessments and therapeutic concepts to efficiently combat HCC progression.
Collapse
Affiliation(s)
- Franziska van Zijl
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschke-Gasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Donthamsetty S, Bowen W, Mars W, Bhave V, Luo JH, Wu C, Hurd J, Orr A, Bell A, Michalopoulos G. Liver-specific ablation of integrin-linked kinase in mice results in enhanced and prolonged cell proliferation and hepatomegaly after phenobarbital administration. Toxicol Sci 2010; 113:358-366. [PMID: 19920070 PMCID: PMC2807039 DOI: 10.1093/toxsci/kfp281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/11/2009] [Indexed: 11/14/2022] Open
Abstract
We have recently demonstrated that disruption of extracellular matrix (ECM)/integrin signaling via elimination of integrin-linked kinase (ILK) in hepatocytes interferes with signals leading to termination of liver regeneration. This study investigates the role of ILK in liver enlargement induced by phenobarbital (PB). Wild-type (WT) and ILK:liver-/- mice were given PB (0.1% in drinking water) for 10 days. Livers were harvested on 2, 5, and 10 days during PB administration. In the hepatocyte-specific ILK/liver-/- mice, the liver:body weight ratio was more than double as compared to 0 h at day 2 (2.5 times), while at days 5 and 10, it was enlarged three times. In the WT mice, the increase was as expected from previous literature (1.8 times) and seems to have leveled off after day 2. There were slightly increased proliferating cell nuclear antigen-positive cells in the ILK/liver-/- animals at day 2 as compared to WT after PB administration. In the WT animals, the proliferative response had come back to normal by days 5 and 10. Hepatocytes of the ILK/liver-/- mice continued to proliferate up until day 10. ILK/liver-/- mice also showed increased expression of key genes involved in hepatocyte proliferation at different time points during PB administration. In summary, ECM proteins communicate with the signaling machinery of dividing cells via ILK to regulate hepatocyte proliferation and termination of the proliferative response. Lack of ILK in the hepatocytes imparts prolonged proliferative response not only to stimuli related to liver regeneration but also to xenobiotic chemical mitogens, such as PB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - George Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
150
|
Rudinskaya TD, Kuprina NI, Lazarevich NL, Polyanskaya NI, Poltoranina VS, Shavochkina DA, Engelhardt NV. Partial reversion of the phenotype of a poorly differentiated hepatocellular carcinoma in a three-dimensional culture. Russ J Dev Biol 2010. [DOI: 10.1134/s1062360410010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|