101
|
Morell CM, Strazzabosco M. Notch signaling and new therapeutic options in liver disease. J Hepatol 2014; 60:885-90. [PMID: 24308992 DOI: 10.1016/j.jhep.2013.11.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022]
Abstract
Notch signaling is a crucial determinant of cell fate decision during development and disease in several organs. Notch effects are strictly dependent on the cellular context in which it is activated. In the liver, Notch signaling is involved in biliary tree development and tubulogenesis. Recent advances have shed light on Notch as a critical player in liver regeneration and repair, as well as in liver metabolism and inflammation and cancer. Notch signaling is finely regulated at several levels. The complexity of the pathway provides several possible targets for development of therapeutic agents able to inhibit Notch. Recent reports have shown that persistent activation of Notch signaling is associated with liver malignancies, particularly hepatocellular with stem cell features and cholangiocarcinoma. These novel findings suggest that interfering with the aberrant activation of the Notch pathway may have therapeutic relevance. However, further studies are needed to clarify the mechanisms regulating physiologic and pathologic Notch activation in the adult liver, to better understand the mechanistic role(s) of Notch in liver diseases and to develop safe and specific therapeutic agents.
Collapse
Affiliation(s)
- Carola Maria Morell
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy
| | - Mario Strazzabosco
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy; Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
102
|
Walter TJ, Vanderpool C, Cast AE, Huppert SS. Intrahepatic bile duct regeneration in mice does not require Hnf6 or Notch signaling through Rbpj. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1479-88. [PMID: 24631193 DOI: 10.1016/j.ajpath.2014.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
The potential for intrahepatic bile duct (IHBD) regeneration in patients with bile duct insufficiency diseases is poorly understood. Notch signaling and Hnf6 have each been shown to be important for the morphogenesis of IHBDs in mice. One congenital pediatric liver disease characterized by reduced numbers of IHBDs, Alagille syndrome, is associated with mutations in Notch signaling components. Therefore, we investigated whether liver cell plasticity could contribute to IHBD regeneration in mice with disruptions in Notch signaling and Hnf6. We studied a mouse model of bile duct insufficiency with liver epithelial cell-specific deficiencies in Hnf6 and Rbpj, a mediator of canonical Notch signaling. Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice initially developed no peripheral bile ducts. The evolving postnatal liver phenotype was analyzed using IHBD resin casting, immunostaining, and serum chemistry. With age, Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice mounted a ductular reaction extending through the hepatic tissue and then regenerated communicating peripheral IHBD branches. Rbpj and Hnf6 were determined to remain absent from biliary epithelial cells constituting the ductular reaction and the regenerated peripheral IHBDs. We report the expression of Sox9, a marker of biliary epithelial cells, in cells expressing hepatocyte markers. Tissue analysis indicates that reactive ductules did not arise directly from preexisting hilar IHBDs. We conclude that liver cell plasticity is competent for regeneration of IHBDs independent of Notch signaling via Rbpj and Hnf6.
Collapse
Affiliation(s)
- Teagan J Walter
- Divisions of Gastroenterology, Hepatology, and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charles Vanderpool
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ashley E Cast
- Divisions of Gastroenterology, Hepatology, and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stacey S Huppert
- Divisions of Gastroenterology, Hepatology, and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
103
|
Abstract
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration; Research Institute for Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration; Research Institute for Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| |
Collapse
|
104
|
Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by notch signaling. Mol Cell Biol 2013; 34:653-63. [PMID: 24298019 DOI: 10.1128/mcb.01408-13] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway enables regulation and control of development, differentiation, and homeostasis through cell-cell communication. Our investigation shows that Notch signaling directly activates the Nrf2 stress adaptive response pathway through recruitment of the Notch intracellular domain (NICD) transcriptosome to a conserved Rbpjκ site in the promoter of Nrf2. Stimulation of Notch signaling through Notch ligand expression in cells and by overexpression of the NICD in Rosa(NICD/-)::AlbCre mice in vivo induces expression of Nrf2 and its target genes. Continuous and transient NICD expression in the liver produces a Notch-dependent cytoprotective response through direct transcriptional activation of Nrf2 signaling to rescue mice from acute acetaminophen toxicity. This response can be reversed upon genetic disruption of Nrf2. Morphological studies showed that the characteristic phenotype of high-density intrahepatic bile ducts and enlarged liver in Rosa(NICD/-)::AlbCre mice could be at least partially reversed after Nrf2 disruption. Furthermore, the liver and bile duct phenotypes could be recapitulated with constitutive activation of Nrf2 signaling in Keap1(F/F)::AlbCre mice. It appears that Notch-to-Nrf2 signaling is another important determinant in liver development and function and promotes cell-cell cytoprotective signaling responses.
Collapse
|
105
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
106
|
Liu WH, Ren LN, Chen T, Liu LY, Tang LJ. Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells. World J Gastroenterol 2013; 19:7032-7041. [PMID: 24222945 PMCID: PMC3819537 DOI: 10.3748/wjg.v19.i41.7032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/01/2013] [Accepted: 09/15/2013] [Indexed: 02/06/2023] Open
Abstract
Except for the most organized mature hepatocytes, liver stem/progenitor cells (LSPCs) can differentiate into many other types of cells in the liver including cholangiocytes. In addition, LSPCs are demonstrated to be able to give birth to other kinds of extra-hepatic cell types such as insulin-producing cells. Even more, under some bad conditions, these LSPCs could generate liver cancer stem like cells (LCSCs) through malignant transformation. In this review, we mainly concentrate on the molecular mechanisms for controlling cell fates of LSPCs, especially differentiation of cholangiocytes, insulin-producing cells and LCSCs. First of all, to certificate the cell fates of LSPCs, the following three features need to be taken into account to perform accurate phenotyping: (1) morphological properties; (2) specific markers; and (3) functional assessment including in vivo transplantation. Secondly, to promote LSPCs differentiation, systematical attention should be paid to inductive materials (such as growth factors and chemical stimulators), progressive materials including intracellular and extracellular signaling pathways, and implementary materials (such as liver enriched transcriptive factors). Accordingly, some recommendations were proposed to standardize, optimize, and enrich the effective production of cholangiocyte-like cells out of LSPCs. At the end, the potential regulating mechanisms for generation of cholangiocytes by LSPCs were carefully analyzed. The differentiation of LSPCs is a gradually progressing process, which consists of three main steps: initiation, progression and accomplishment. It's the unbalanced distribution of affecting materials in each step decides the cell fates of LSPCs.
Collapse
|
107
|
Morell CM, Fiorotto R, Fabris L, Strazzabosco M. Notch signalling beyond liver development: emerging concepts in liver repair and oncogenesis. Clin Res Hepatol Gastroenterol 2013; 37:447-54. [PMID: 23806629 DOI: 10.1016/j.clinre.2013.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 02/08/2023]
Abstract
Notch signalling is an evolutionarily conserved intercellular pathway involved in many aspects of development and tissue renewal in several organs. The importance of Notch signalling in liver development and morphogenesis is well established. However, the post-natal role of Notch in liver repair/regeneration is only now beginning to be unveiled. Despite the simplicity of the pathway activation, a fine spatial-temporal regulation of Notch signalling is required to avoid pathologic effects. This review highlights recent advances in the field indicating that Notch signalling is involved in the reparative morphogenesis of the biliary tree and in liver carcinogenesis. Defective Notch signalling leads to impaired ability of the liver to repair liver damage, while excessive activation may be involved in liver cancer. Even though much remains to be understood about these mechanisms, including the cross-talk between Notch signalling and other liver morphogens, current evidence suggests that the modulation of the Notch pathway may represent a therapeutic target in chronic liver disease.
Collapse
Affiliation(s)
- Carola Maria Morell
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy
| | | | | | | |
Collapse
|
108
|
Jeliazkova P, Jörs S, Siveke JT, Geisler F. Reply: To PMID 23315998. Hepatology 2013; 58:1859-60. [PMID: 23526407 DOI: 10.1002/hep.26410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 12/07/2022]
Affiliation(s)
- Petia Jeliazkova
- 2nd Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|
109
|
Activation of Notch signaling is required for cholangiocarcinoma progression and is enhanced by inactivation of p53 in vivo. PLoS One 2013; 8:e77433. [PMID: 24204826 PMCID: PMC3813685 DOI: 10.1371/journal.pone.0077433] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022] Open
Abstract
Cholangiocacinoma (CC) is a cancer disease with rising incidence. Notch signaling has been shown to be deregulated in many cancers. However, the role of this signaling pathway in the carcinogenesis of CC is still not fully explored. In this study, we investigated the effects of Notch inhibition by γ-secretase inhibitor IX (GSI IX) in cultured human CC cell lines and we established a transgenic mouse model with liver specific expression of the intracellular domain of Notch (Notch-ICD) and inactivation of tumor suppressor p53. GSI IX treatment effectively impaired cell proliferation, migration, invasion, epithelial to mesenchymal transition and growth of softagar colonies. In vivo overexpression of Notch-ICD together with an inactivation of p53 significantly increased tumor burden and showed CC characteristics. Conclusion: Our study highlights the importance of Notch signaling in the tumorigenesis of CC and demonstrates that additional inactivation of p53 in vivo.
Collapse
|
110
|
Kitade M, Factor VM, Andersen JB, Tomokuni A, Kaji K, Akita H, Holczbauer A, Seo D, Marquardt JU, Conner EA, Lee SB, Lee YH, Thorgeirsson SS. Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev 2013; 27:1706-17. [PMID: 23913923 DOI: 10.1101/gad.214601.113] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relative contribution of hepatocyte growth factor (HGF)/MET and epidermal growth factor (EGF)/EGF receptor (EGFR), two key signal transduction systems in the normal and diseased liver, to fate decisions of adult hepatic progenitor cells (HPCs) has not been resolved. Here, we developed a robust culture system that permitted expansion and genetic manipulation of cells capable of multilineage differentiation in vitro and in vivo to examine the individual roles of HGF/MET and EGF/EGFR in HPC self-renewal and binary cell fate decision. By employing loss-of-function and rescue experiments in vitro, we showed that both receptors collaborate to increase the self-renewal of HPCs through activation of the extracellular signal-regulated kinase (ERK) pathway. MET was a strong inducer of hepatocyte differentiation by activating AKT and signal transducer and activator of transcription (STAT3). Conversely, EGFR selectively induced NOTCH1 to promote cholangiocyte specification and branching morphogenesis while concomitantly suppressing hepatocyte commitment. Furthermore, unlike the deleterious effects of MET deletion, the liver-specific conditional loss of Egfr facilitated rather than suppressed progenitor-mediated liver regeneration by switching progenitor cell differentiation toward hepatocyte lineage. These data provide new insight into the mechanisms regulating the stemness properties of adult HPCs and reveal a previously unrecognized link between EGFR and NOTCH1 in directing cholangiocyte differentiation.
Collapse
Affiliation(s)
- Mitsuteru Kitade
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Fiorotto R, Raizner A, Morell CM, Torsello B, Scirpo R, Fabris L, Spirli C, Strazzabosco M. Notch signaling regulates tubular morphogenesis during repair from biliary damage in mice. J Hepatol 2013; 59:124-30. [PMID: 23500150 PMCID: PMC3777645 DOI: 10.1016/j.jhep.2013.02.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 02/24/2013] [Accepted: 02/28/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Repair from biliary damages requires the biliary specification of hepatic progenitor cells and the remodeling of ductular reactive structures into branching biliary tubules. We hypothesized that the morphogenetic role of Notch signaling is maintained during the repair process and have addressed this hypothesis using pharmacologic and genetic models of defective Notch signaling. METHODS Treatment with DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) or ANIT (alpha-naphthyl-isothiocyanate) was used to induce biliary damage in wild type mice and in mice with a liver specific defect in the Notch-2 receptor (Notch-2-cKO) or in RPB-Jk. Hepatic progenitor cells, ductular reaction, and mature ductules were quantified using K19 and SOX-9. RESULTS In DDC treated wild type mice, pharmacologic Notch inhibition with dibenzazepine decreased the number of both ductular reaction and hepatic progenitor cells. Notch-2-cKO mice treated with DDC or ANIT accumulated hepatic progenitor cells that failed to progress into mature ducts. In RBP-Jk-cKO mice, mature ducts and hepatic progenitor cells were both significantly reduced with respect to similarly treated wild type mice. The mouse progenitor cell line BMOL cultured on matrigel, formed a tubular network allowing the study of tubule formation in vitro; γ-secretase inhibitor treatment and siRNAs silencing of Notch-1, Notch-2 or Jagged-1 significantly reduced both the length and number of tubular branches. CONCLUSIONS These data demonstrate that Notch signaling plays an essential role in biliary repair. Lack of Notch-2 prevents biliary tubule formation, both in vivo and in vitro. Lack of RBP-Jk inhibits the generation of biliary-committed precursors and tubule formation.
Collapse
Affiliation(s)
- Romina Fiorotto
- Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Aileen Raizner
- Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Carola M. Morell
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy
| | - Barbara Torsello
- Department of Health Sciences, University of Milano-Bicocca, Milan, Italy
| | - Roberto Scirpo
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy
| | - Luca Fabris
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Carlo Spirli
- Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Strazzabosco
- Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
112
|
Zender S, Nickeleit I, Wuestefeld T, Sörensen I, Dauch D, Bozko P, El-Khatib M, Geffers R, Bektas H, Manns MP, Gossler A, Wilkens L, Plentz R, Zender L, Malek NP. A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell 2013; 23:784-95. [PMID: 23727022 DOI: 10.1016/j.ccr.2013.04.019] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 06/11/2012] [Accepted: 04/20/2013] [Indexed: 12/28/2022]
Abstract
The incidence of cholangiocellular carcinoma (CCC) is increasing worldwide. Using a transgenic mouse model, we found that expression of the intracellular domain of Notch 1 (NICD) in mouse livers results in the formation of intrahepatic CCCs. These tumors display features of bipotential hepatic progenitor cells, indicating that intrahepatic CCC can originate from this cell type. We show that human and mouse CCCs are characterized by high expression of the cyclin E protein and identified the cyclin E gene as a direct transcriptional target of the Notch signaling pathway. Intriguingly, blocking γ-secretase activity in human CCC xenotransplants results in downregulation of cyclin E expression, induction of apoptosis, and tumor remission in vivo.
Collapse
Affiliation(s)
- Steffen Zender
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Jeliazkova P, Jörs S, Lee M, Zimber-Strobl U, Ferrer J, Schmid RM, Siveke JT, Geisler F. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology 2013; 57:2469-79. [PMID: 23315998 DOI: 10.1002/hep.26254] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED Notch signaling through the Notch2 receptor is essential for normal biliary tubulogenesis during liver development. However, the signaling events downstream of Notch2 critical for this process are less well defined. Furthermore, whether Notch signaling also underlies adult hepatic cell fate decisions is largely unknown. By implementing different genetic mouse models, we provide a comprehensive analysis that defines the role of Notch in cell fate control in the developing and adult liver. We show that cell-specific activation of Notch2 signaling by a Notch2IC (N2IC) transgene leads to rapid biliary specification of embryonic hepatoblasts, but also-when expressed in up to 6-month-old adult livers-rapidly reprograms adult hepatocytes to biliary cells with formation of tubular-cystic structures. When directed specifically to the adult biliary and facultative liver progenitor cell compartment, Notch2 is capable of inducing a ductular reaction. Furthermore, we characterized the significance of key effectors of canonical Notch signaling during normal development and in N2IC-expressing models. We demonstrate that tubule formation of intrahepatic bile ducts during embryonic development as well as N2IC-induced specification and morphogenesis of embryonic hepatoblasts and biliary conversion of adult hepatocytes all critically rely on canonical Notch signaling via recombination signal binding protein (RBP)-Jκ but do not require Hes1. CONCLUSION Notch2 appears to be the main determinant not only of biliary commitment of embryonic hepatoblasts during development but also of biliary reprogramming of adult hepatocytes. Notch2-dictated cell fates and morphogenesis in both embryonic hepatoblasts and adult hepatocytes rely on canonical Notch signaling but do not require Hes1. Adult liver cells possess a remarkable plasticity to assume new cell fates when embryonic signaling pathways are active. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Petia Jeliazkova
- 2nd Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J, Huang B, Chen Q, Wu S, Pan D. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 2013; 25:388-401. [PMID: 23725764 PMCID: PMC3705890 DOI: 10.1016/j.devcel.2013.04.021] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 04/28/2013] [Accepted: 04/30/2013] [Indexed: 12/01/2022]
Abstract
The Hippo tumor suppressor pathway restricts tissue growth by inactivating the transcriptional coactivator Yki. Although Sd has been implicated as a DNA-binding transcription factor partner for Yki and can genetically account for gain-of-function Yki phenotypes, how Yki regulates normal tissue growth remains a long-standing puzzle because Sd, unlike Yki, is dispensable for normal growth in most Drosophila tissues. Here we show that the yki mutant phenotypes in multiple developmental contexts are rescued by inactivation of Sd, suggesting that Sd functions as a default repressor and that Yki promotes normal tissue growth by relieving Sd-mediated default repression. We further identify Tgi as a cofactor involved in Sd's default repressor function and demonstrate that the mammalian ortholog of Tgi potently suppresses the YAP oncoprotein in transgenic mice. These findings fill a major gap in Hippo-mediated transcriptional regulation and open up possibilities for modulating the YAP oncoprotein in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Laura M. Koontz
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Liu-Chittenden
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng Yin
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yonggang Zheng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jianzhong Yu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Huang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qian Chen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shian Wu
- School of Life Sciences, Nankai University, Tianjin 300071, China
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
115
|
Abstract
Recent advances in developmental biology have greatly expanded our understanding of progenitor cell programming and the fundamental roles that Sox9 plays in liver and pancreas organogenesis. In the last 2 years, several studies have dissected the behavior of the Sox9+ duct cells in adult organs, but conflicting results have left unanswered the long-standing question of whether physiologically functioning progenitors exist in adult liver and pancreas. On the other hand, increasing evidence suggests that duct cells function as progenitors in the tissue restoration process after injury, during which embryonic programs are sometimes reactivated. This article discusses the role of Sox9 in programming liver and pancreatic progenitors as well as controversies in the field.
Collapse
Affiliation(s)
- Yoshiya Kawaguchi
- Department of Clinical Application, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
116
|
Abstract
Liver is a prime organ responsible for synthesis, metabolism, and detoxification. The organ is endodermal in origin and its development is regulated by temporal, complex, and finely balanced cellular and molecular interactions that dictate its origin, growth, and maturation. We discuss the relevance of endoderm patterning, which truly is the first step toward mapping of domains that will give rise to specific organs. Once foregut patterning is completed, certain cells within the foregut endoderm gain competence in the form of expression of certain transcription factors that allow them to respond to certain inductive signals. Hepatic specification is then a result of such inductive signals, which often emanate from the surrounding mesenchyme. During hepatic specification bipotential hepatic stem cells or hepatoblasts become apparent and undergo expansion, which results in a visible liver primordium during the stage of hepatic morphogenesis. Hepatoblasts next differentiate into either hepatocytes or cholangiocytes. The expansion and differentiation is regulated by cellular and molecular interactions between hepatoblasts and mesenchymal cells including sinusoidal endothelial cells, stellate cells, and also innate hematopoietic elements. Further maturation of hepatocytes and cholangiocytes continues during late hepatic development as a function of various growth factors. At this time, liver gains architectural novelty in the form of zonality and at cellular level acquires polarity. A comprehensive elucidation of such finely tuned developmental cues have been the basis of transdifferentiation of various types of stem cells to hepatocyte-like cells for purposes of understanding health and disease and for therapeutic applications.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
117
|
Dill MT, Tornillo L, Fritzius T, Terracciano L, Semela D, Bettler B, Heim MH, Tchorz JS. Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 2013; 57:1607-19. [PMID: 23175466 DOI: 10.1002/hep.26165] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCC) are the most common liver tumors and a leading cause for cancer-related death in men. Notch2 regulates cellular differentiation in the developing and adult liver. Although aberrant Notch signaling is implicated in various cancers, it is still unclear whether Notch2 regulates proliferation and differentiation in liver carcinogenesis and thereby contributes to HCC and CCC formation. Here, we investigated the oncogenic potential of constitutive Notch2 signaling in the liver. We show that liver-specific expression of the intracellular domain of Notch2 (N2ICD) in mice is sufficient to induce HCC formation and biliary hyperplasia. Specifically, constitutive N2ICD signaling in the liver leads to up-regulation of pro-proliferative genes and proliferation of hepatocytes and biliary epithelial cells (BECs). Using the diethylnitrosamine (DEN) HCC carcinogenesis model, we further show that constitutive Notch2 signaling accelerates DEN-induced HCC formation. DEN-induced HCCs with constitutive Notch2 signaling (DEN(N2ICD) HCCs) exhibit a marked increase in size, proliferation, and expression of pro-proliferative genes when compared with HCCs from DEN-induced control mice (DEN(ctrl) HCCs). Moreover, DEN(N2ICD) HCCs exhibit increased Sox9 messenger RNA (mRNA) levels and reduced Albumin and Alpha-fetoprotein mRNA levels, indicating that they are less differentiated than DEN(ctrl) HCCs. Additionally, DEN(N2ICD) mice develop large hepatic cysts, dysplasia of the biliary epithelium, and eventually CCC. CCC formation in patients and DEN(N2ICD) mice is accompanied by re-expression of hepatocyte nuclear factor 4α(HNF4α), possibly indicating dedifferentiation of BECs. CONCLUSION Our data establish an oncogenic role for constitutive Notch2 signaling in liver cancer development.
Collapse
Affiliation(s)
- Michael T Dill
- Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
118
|
DLK1 Protein Expression during Mouse Development Provides New Insights into Its Function. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/628962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Delta-like 1 homolog (DLK1) is a noncanonical ligand in the Delta-Notch signalling pathway. Although Dlk1 mRNA is abundantly present embryonically and declines rapidly just before birth, Dlk1 knockouts display a relatively mild phenotype. To assess whether this mild phenotype was due to posttranscriptional regulation, we studied the expression of DLK1 protein in mouse embryos and found abundant expression in liver, lung, muscle, vertebrae, pancreas, pituitary, and adrenal gland(s). DLK1 expression was absent in heart, stomach, intestine, kidney, epidermis, and central nervous system. DLK1 protein expression, therefore, correlates well with the reported Dlk1 mRNA expression pattern, which shows that its expression is mainly regulated at the pretranslational level. The comparison of the reported expression patterns of Notch mRNA and those of DLK1 in organs where lineage commitment and branching morphogenesis are important developmental processes suggests that DLK1 is a ligand that prevents premature Notch-dependent differentiation, possibly by competing with canonical ligands.
Collapse
|
119
|
FAM172A induces S phase arrest of HepG2 cells via Notch 3. Oncol Rep 2013; 29:1154-60. [PMID: 23314443 DOI: 10.3892/or.2013.2235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 12/21/2012] [Indexed: 11/05/2022] Open
Abstract
Our previous results revealed that FAM172A was significantly downregulated in liver tissue from hepatocellular carcinoma or cirrhotic patients. The present study was designed to elucidate the regulatory role of FAM172A in HepG2 cells. In order to determine the expression of the FAM172A protein, western blot analysis was performed. Confocal laser scanning technique was used to observe the localization of FAM172A in HepG2 cells. Surface plasmon resonance experiments were used to determine the binding activity of FAM172A and active single sugar and Ca2+. The cell cycle progression of HepG2 cells was assessed by flow cytometry. The FAM172A protein was localized in the endoplasmic reticulum of HepG2 cells. This protein was moderately expressed in normal liver tissue, but was significantly decreased in liver tissue of patients with chronic hepatitis B When co-cultured with the FAM172A recombinant protein, HepG2 cells exhibited complete cell cycle arrest in the S phase at a high concentration (100 ng/ml). Proliferation of HepG2 cells treated with the FAM172A recombinant protein was prominently inhibited compared with that of the control cells. Western blot analysis showed that upregulation of Notch 3 and cyclin E may be related with the cell cycle control. Our results indicate that FAM172A may be a novel tumor-suppressor gene, which plays an important role in cell cycle control and tumor cell proliferation. G1/S phase arrest may be mediated, at least partially, by the Notch 3 signaling pathway.
Collapse
|
120
|
Liver Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
121
|
You N, Liu W, Zhong X, Dou K, Tao K. Possibility of the enhanced progression of fetal liver stem/progenitor cells therapy for treating end-stage liver diseases by regulating the notch signaling pathway. Arch Med Res 2012; 43:585-587. [PMID: 23069628 DOI: 10.1016/j.arcmed.2012.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023]
Abstract
Cell therapy is the most promising therapy for end-stage liver diseases (ESLDs). Fetal liver stem/progenitor cells (FLSPCs) have the advantages of a high survival rate, high proliferation, small volume, and high safety, which make them one of the ideal cells for stem cell therapy for liver diseases. During the early phase of our study, we applied a three-step separation method to enrich FLSPCs and obtained a separation efficiency that was similar to the flow cell-sorting method. Additionally, using a fulminant hepatic failure rat model, we demonstrated that FLSPCs can contribute to the recovery of hepatic morphogenesis and function. However, two problems remain to be resolved to explore the therapeutic potential of FLSPCs. First, how can FLSPCs be induced to accurately differentiate into hepatocytes and cholangiocytes? Second, how do FLSPCs maintain self-renewal? The Notch signaling plays a critical role in regulating the differentiation and self-renewal of many types of stem cells. Additionally, our previous findings have shown that the Notch signaling plays an important role in FLSPC differentiation into hepatocytes. Therefore, we hypothesized that the Notch signaling may be involved in the differentiation and self-renewal of FLSPCs. We began a study on the regulatory effects and relative molecular mechanisms of the Notch signaling on FLSPCs and found the corresponding interfering target, which may become an index for the clinical application of FLSPCs.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | |
Collapse
|
122
|
Abstract
During chronic injury a population of bipotent hepatic progenitor cells (HPCs) become activated to regenerate both cholangiocytes and hepatocytes. Here we show in human diseased liver and mouse models of the ductular reaction that Notch and Wnt signaling direct specification of HPCs via their interactions with activated myofibroblasts or macrophages. In particular, we found that during biliary regeneration, expression of Jagged 1 (a Notch ligand) by myofibroblasts promoted Notch signaling in HPCs and thus their biliary specification to cholangiocytes. Alternatively, during hepatocyte regeneration, macrophage engulfment of hepatocyte debris induced Wnt3a expression. This resulted in canonical Wnt signaling in nearby HPCs, thus maintaining expression of Numb (a cell fate determinant) within these cells and the promotion of their specification to hepatocytes. By these two pathways adult parenchymal regeneration during acute liver injury is promoted.
Collapse
Affiliation(s)
- Ben Z. Stanger
- Departments of Medicine and Cell and Developmental Biology Perelman
School of Medicine University of Pennsylvania, Philadelphia, PA
| | - Linda Greenbaum
- Departments of Cancer Biology and Medicine Thomas Jefferson
University School of Medicine Philadelphia, PA
| |
Collapse
|
123
|
Ringelhan M, Schmid RM, Geisler F. The NF-κB subunit RelA/p65 is dispensable for successful liver regeneration after partial hepatectomy in mice. PLoS One 2012; 7:e46469. [PMID: 23049704 PMCID: PMC3462179 DOI: 10.1371/journal.pone.0046469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/04/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The transcription factor NF-κB consisting of the subunits RelA/p65 and p50 is known to be quickly activated after partial hepatectomy (PH), the functional relevance of which is still a matter of debate. Current concepts suggest that activation of NF-κB is especially critical in non-parenchymal cells to produce cytokines (TNF, IL-6) to adequately prime hepatocytes to proliferate after PH, while NF-κB within hepatocytes mainly bears cytoprotective functions. METHODS To study the role of the NF-κB pathway in different liver cell compartments, we generated conditional knockout mice in which the transactivating NF-κB subunit RelA/p65 can be inactivated specifically in hepatocytes (Rela(F/F)AlbCre) or both in hepatocytes plus non-parenchymal cells including Kupffer cells (Rela(F/F)MxCre). 2/3 and 80% PH were performed in controls (Rela(F/F)) and conditional knockout mice (Rela(F/F)AlbCre and Rela(F/F)MxCre) and analyzed for regeneration. RESULTS Hepatocyte-specific deletion of RelA/p65 in Rela(F/F)AlbCre mice resulted in an accelerated cell cycle progression without altering liver mass regeneration after 2/3 PH. Surprisingly, hepatocyte apoptosis or liver damage were not enhanced in Rela(F/F)AlbCre mice, even when performing 80% PH. The additional inactivation of RelA/p65 in non-parenchymal cells in Rela(F/F)MxCre mice reversed the small proliferative advantage observed after hepatocyte-specific deletion of RelA/p65 so that Rela(F/F)MxCre mice displayed normal cell cycle progression, DNA-synthesis and liver mass regeneration. CONCLUSION The NF-κB subunit RelA/p65 fulfills opposite functions in different liver cell compartments in liver regeneration after PH. However, the effects observed after conditional deletion of RelA/p65 are small and do not alter liver mass regeneration after PH. We therefore do not consider RelA/p65-containing canonical NF-κB signalling to be essential for successful liver regeneration after PH.
Collapse
Affiliation(s)
- Marc Ringelhan
- 2nd Medical Department, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland M. Schmid
- 2nd Medical Department, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fabian Geisler
- 2nd Medical Department, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
124
|
Bai H, Zhang N, Xu Y, Chen Q, Khan M, Potter JJ, Nayar SK, Cornish T, Alpini G, Bronk S, Pan D, Anders RA. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology 2012; 56:1097-107. [PMID: 22886419 PMCID: PMC3431197 DOI: 10.1002/hep.25769] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/31/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Human chronic cholestatic liver diseases are characterized by cholangiocyte proliferation, hepatocyte injury, and fibrosis. Yes-associated protein (YAP), the effector of the Hippo tumor-suppressor pathway, has been shown to play a critical role in promoting cholangiocyte and hepatocyte proliferation and survival during embryonic liver development and hepatocellular carcinogenesis. Therefore, the aim of this study was to examine whether YAP participates in the regenerative response after cholestatic injury. First, we examined human liver tissue from patients with chronic cholestasis. We found more-active nuclear YAP in the bile ductular reactions of primary sclerosing cholangitis and primary biliary cirrhosis patient liver samples. Next, we used the murine bile duct ligation (BDL) model to induce cholestatic liver injury. We found significant changes in YAP activity after BDL in wild-type mice. The function of YAP in the hepatic response after BDL was further evaluated with liver-specific Yap conditional deletion in mice. Ablating Yap in the mouse liver not only compromised bile duct proliferation, but also enhanced hepatocyte necrosis and suppressed hepatocyte proliferation after BDL. Furthermore, primary hepatocytes and cholangiocytes isolated from Yap-deficient livers showed reduced proliferation in response to epidermal growth factor in vitro. Finally, we demonstrated that YAP likely mediates its biological effects through the modulation of Survivin expression. CONCLUSION Our data suggest that YAP promotes cholangiocyte and hepatocyte proliferation and prevents parenchymal damage after cholestatic injury in mice and thus may mediate the response to cholestasis-induced human liver disease.
Collapse
Affiliation(s)
- Haibo Bai
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - Nailing Zhang
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, MD,Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimore, MD
| | - Yang Xu
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - Qian Chen
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, MD,Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimore, MD
| | - Mehtab Khan
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - James J Potter
- Department of Medicine, Johns Hopkins University School of MedicineBaltimore, MD
| | - Suresh K Nayar
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - Toby Cornish
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - Gianfranco Alpini
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, College of Medicine, and Scott & White Hospital, and Research Service, Central Texas Veterans Health Care SystemTemple, TX
| | - Steven Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic School of MedicineRochester, MN
| | - Duojia Pan
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, MD,Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimore, MD
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| |
Collapse
|
125
|
Delous M, Yin C, Shin D, Ninov N, Debrito Carten J, Pan L, Ma TP, Farber SA, Moens CB, Stainier DYR. Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet 2012; 8:e1002754. [PMID: 22719264 PMCID: PMC3375260 DOI: 10.1371/journal.pgen.1002754] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/23/2012] [Indexed: 01/19/2023] Open
Abstract
The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9b(fh313), to dissect its function in the morphogenesis of this structure. Strikingly, sox9b(fh313) homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9b(fh313) mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9b(fh313) mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9b(fh313) mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies.
Collapse
Affiliation(s)
- Marion Delous
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Chunyue Yin
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Donghun Shin
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Juliana Debrito Carten
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Embryology, The Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Luyuan Pan
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Taylur P. Ma
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven A. Farber
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Embryology, The Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Cecilia B. Moens
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
126
|
Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:643-55. [DOI: 10.1002/wdev.47] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
127
|
Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:988-95. [PMID: 22353464 DOI: 10.1016/j.bbadis.2012.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.
Collapse
Affiliation(s)
- Farah A Falix
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
128
|
Notch signaling in human development and disease. Semin Cell Dev Biol 2012; 23:450-7. [PMID: 22306179 DOI: 10.1016/j.semcdb.2012.01.010] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 12/31/2022]
Abstract
Mutations in Notch signaling pathway members cause developmental phenotypes that affect the liver, skeleton, heart, eye, face, kidney, and vasculature. Notch associated disorders include the autosomal dominant, multi-system, Alagille syndrome caused by mutations in both a ligand (Jagged1 (JAG1)) and receptor (NOTCH2) and autosomal recessive spondylocostal dysostosis, caused by mutations in a ligand (Delta-like-3 (DLL3)), as well as several other members of the Notch signaling pathway. Mutations in NOTCH2 have also recently been connected to Hajdu-Cheney syndrome, a dominant disorder causing focal bone destruction, osteoporosis, craniofacial morphology and renal cysts. Mutations in the NOTCH1 receptor are associated with several types of cardiac disease and mutations in NOTCH3 cause the dominant adult onset disorder CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy), a vascular disorder with onset in the 4th or 5th decades. Studies of these human disorders and their inheritance patterns and types of mutations reveal insights into the mechanisms of Notch signaling.
Collapse
|
129
|
Le TT, Conley KW, Mead TJ, Rowan S, Yutzey KE, Brown NL. Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens development. Dev Dyn 2012; 241:493-504. [PMID: 22275127 DOI: 10.1002/dvdy.23739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND During vertebrate lens development, the lens placode in the embryonic ectoderm invaginates into a lens vesicle, which then separates from the surface epithelium, followed by two waves of fiber cell differentiation. In the mouse, multiple labs have shown that Jag1-Notch signaling is critically required during the second wave of lens fiber cell formation. However, Notch signaling appears to play no obvious role during lens induction or morphogenesis, although multiple pathway genes are expressed at these earlier stages. RESULTS Here, we explored functions for Notch signaling specifically during early lens development, by using the early-acting AP2α-Cre driver to delete Jag1 or Rbpj. We found that Jag1 and Rbpj are not required during lens induction, but are necessary for proper lens vesicle separation from the surface ectoderm. CONCLUSIONS We conclude that precise levels of Notch signaling are essential during lens vesicle morphogenesis. In addition, AP2α-Cre-mediated deletion of Rbpj resulted in embryos with cardiac outflow tract and liver deformities, and perinatal lethality.
Collapse
Affiliation(s)
- Tien T Le
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
130
|
Expression and clinicopathological significance of notch signaling and cell-fate genes in biliary tract cancer. Am J Gastroenterol 2012; 107:126-35. [PMID: 21931375 DOI: 10.1038/ajg.2011.305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Biliary tract cancer (BTC) is a fatal cancer originating from epithelial cells of the intra- and extra-hepatic biliary duct system and the gallbladder. Genes and pathways regulating stem and progenitor cells as well as cell-fate decisions are increasingly recognized in tumorigenesis. We evaluated the expression of Notch1, Notch2, and HES1 (hairy and enhancer of split 1), as well as the biliary cell-fate regulators SOX9 (SRY (sex determining region Y)-box 9) and HNF1β (hepatocyte nuclear factor 1β), in BTC for correlation with clinicopathological parameters. METHODS Tissue microarrays including normal bile ducts and 111 BTCs consisting of 17 intrahepatic cholangiocarcinomas, 58 extrahepatic cholangiocarcinomas, and 36 gallbladder carcinomas were analyzed using immunohistochemistry. RESULTS Lack of cytoplasmic SOX9 expression was associated with a higher tumor grade (P=0.010) and a significantly reduced overall survival (P=0.002; median 6 months vs. 24 months) in univariate survival analysis, whereas lack of nuclear SOX9 expression was associated with a higher tumor stage (P=0.003). Notch pathway members showed high expression in BTC. However, no correlation was found between cytoplasmic or nuclear Notch1, Notch2, and HES1, as well as HNF1β expression, and any of the clinicopathological parameters. In multivariate analysis, cytoplasmic SOX9 expression was an independent prognostic factor for overall survival (P=0.031, relative risk=0.571). CONCLUSIONS We show strong Notch pathway activation and identify SOX9 as a prognostic marker in BTC. These results substantiate diagnostic and therapeutic approaches targeting developmentally active genes and pathways.
Collapse
|
131
|
Vanderpool C, Sparks EE, Huppert KA, Gannon M, Means AL, Huppert SS. Genetic interactions between hepatocyte nuclear factor-6 and Notch signaling regulate mouse intrahepatic bile duct development in vivo. Hepatology 2012; 55:233-43. [PMID: 21898486 PMCID: PMC3235248 DOI: 10.1002/hep.24631] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Notch signaling and hepatocyte nuclear factor-6 (HNF-6) are two genetic factors known to affect lineage commitment in the bipotential hepatoblast progenitor cell (BHPC) population. A genetic interaction involving Notch signaling and HNF-6 in mice has been inferred through separate experiments showing that both affect BHPC specification and bile duct morphogenesis. To define the genetic interaction between HNF-6 and Notch signaling in an in vivo mouse model, we examined the effects of BHPC-specific loss of HNF-6 alone and within the background of BHPC-specific loss of recombination signal binding protein immunoglobulin kappa J (RBP-J), the common DNA-binding partner of all Notch receptors. Isolated loss of HNF-6 in this mouse model fails to demonstrate a phenotypic variance in bile duct development compared to control. However, when HNF-6 loss is combined with RBP-J loss, a phenotype consisting of cholestasis, hepatic necrosis, and fibrosis is observed that is more severe than the phenotype seen with Notch signaling loss alone. This phenotype is associated with significant intrahepatic biliary system abnormalities, including an early decrease in biliary epithelial cells, evolving to ductular proliferation and a decrease in the density of communicating peripheral bile duct branches. In this in vivo model, simultaneous loss of both HNF-6 and RBP-J results in down-regulation of both HNF-1β and Sox9 (sex determining region Y-related HMG box transcription factor 9). CONCLUSION HNF-6 and Notch signaling interact in vivo to control expression of downstream mediators essential to the normal development of the intrahepatic biliary system. This study provides a model to investigate genetic interactions of factors important to intrahepatic bile duct development and their effect on cholestatic liver disease phenotypes.
Collapse
Affiliation(s)
- Charles Vanderpool
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin E. Sparks
- Department of Cell and Developmental Biology and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kari A. Huppert
- Department of Cell and Developmental Biology and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maureen Gannon
- Department of Medicine and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L. Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stacey S. Huppert
- Department of Cell and Developmental Biology and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
132
|
Han S, Dziedzic N, Gadue P, Keller GM, Gouon-Evans V. An endothelial cell niche induces hepatic specification through dual repression of Wnt and Notch signaling. Stem Cells 2011; 29:217-28. [PMID: 21732480 DOI: 10.1002/stem.576] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Complex cross-talk between endoderm and the microenvironment is an absolute requirement to orchestrate hepatic specification and expansion. In the mouse, the septum transversum and cardiac mesoderm, through secreted bone morphogenetic proteins (BMP) and fibroblast growth factors (FGF), respectively, instruct the adjacent ventral endoderm to become hepatic endoderm. Consecutively, endothelial cells promote expansion of the specified hepatic endoderm. By using a mouse reporter embryonic stem cell line, in which hCD4 and hCD25 were targeted to the Foxa2 and Foxa3 loci, we reconstituted an in vitro culture system in which committed endoderm cells coexpressing hCD4-Foxa2 and hCD25-Foxa3 were isolated and cocultured with endothelial cells in the presence of BMP4 and bFGF. In this culture setting, we provide mechanistic evidence that endothelial cells function not only to promote hepatic endoderm expansion but are also required at an earlier step for hepatic specification, at least in part through regulation of the Wnt and Notch pathways. Activation of Wnt and Notch by chemical or genetic approaches increases endoderm cell numbers but inhibits hepatic specification, and conversely, chemical inhibition of both pathways enhances hepatic specification and reduces proliferation. By using identical coculture conditions, we defined a similar dependence of endoderm harvested from embryos on endothelial cells to support their growth and hepatic specification. Our findings (1) confirm a conserved role of Wnt repression for mouse hepatic specification, (2) uncover a novel role for Notch repression in the hepatic fate decision, and (3) demonstrate that repression of Wnt and Notch signaling in hepatic endoderm is controlled by the endothelial cell niche.
Collapse
Affiliation(s)
- Songyan Han
- Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
133
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 724] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
134
|
Gilgenkrantz H, Collin de l'Hortet A. New insights into liver regeneration. Clin Res Hepatol Gastroenterol 2011; 35:623-9. [PMID: 21613004 DOI: 10.1016/j.clinre.2011.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 02/06/2023]
Abstract
Even if the Greeks probably anticipated rather than discovered the extraordinary regenerative capacity of the liver with the Prometheus myth, this phenomenon still fascinates scientists nowadays with the same enthusiasm. There are good reasons to decipher this process other than to find an answer to our fantasy of immortality: it could indeed help patients needing large liver resections or living-donor liver transplantation, it could increase our understanding of liver pathology and finally it could enable novel cell-therapy approaches. For decades, most of our knowledge about the mechanisms involved in liver regeneration came from the classic two-thirds partial hepatectomy (PH) model. In this scenario, hepatocytes play the leading role, which raises the question of the simple existence of a stem cell population. Recently however, hepatic progenitor cells come again under the limelight, seeming to play a role in liver physiology and in various liver diseases such as steatosis or cirrhosis. Excellent reviews have recently addressed liver regeneration. Our goal is therefore to focus on recent improvements in the field, highlighting data mostly published in the last two years in order to draw a putative picture of what the future research axes on liver regeneration might look like.
Collapse
Affiliation(s)
- H Gilgenkrantz
- U.1016 Inserm, CNRS UMR8104, Institut Cochin, University Paris-Descartes, 24 rue du Faubourg-Saint-Jacques, Paris 75014, France.
| | | |
Collapse
|
135
|
Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, Zmoos AF, Mazur PK, Schaffer BE, Ostermeier A, Vogel H, Sylvester KG, Thorgeirsson SS, Grompe M, Sage J. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. ACTA ACUST UNITED AC 2011; 208:1963-76. [PMID: 21875955 PMCID: PMC3182062 DOI: 10.1084/jem.20110198] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mice lacking all three Rb genes in the liver develop tumors resembling specific subgroups of human hepatocellular carcinomas, and Notch activity appears to suppress the growth and progression of these tumors. Hepatocellular carcinoma (HCC) is the third cancer killer worldwide with >600,000 deaths every year. Although the major risk factors are known, therapeutic options in patients remain limited in part because of our incomplete understanding of the cellular and molecular mechanisms influencing HCC development. Evidence indicates that the retinoblastoma (RB) pathway is functionally inactivated in most cases of HCC by genetic, epigenetic, and/or viral mechanisms. To investigate the functional relevance of this observation, we inactivated the RB pathway in the liver of adult mice by deleting the three members of the Rb (Rb1) gene family: Rb, p107, and p130. Rb family triple knockout mice develop liver tumors with histopathological features and gene expression profiles similar to human HCC. In this mouse model, cancer initiation is associated with the specific expansion of populations of liver stem/progenitor cells, indicating that the RB pathway may prevent HCC development by maintaining the quiescence of adult liver progenitor cells. In addition, we show that during tumor progression, activation of the Notch pathway via E2F transcription factors serves as a negative feedback mechanism to slow HCC growth. The level of Notch activity is also able to predict survival of HCC patients, suggesting novel means to diagnose and treat HCC.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Medical Chemistry, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Fowler JC, Zecchini VR, Jones PH. Intestinal activation of Notch signaling induces rapid onset hepatic steatosis and insulin resistance. PLoS One 2011; 6:e20767. [PMID: 21698231 PMCID: PMC3116826 DOI: 10.1371/journal.pone.0020767] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023] Open
Abstract
Here we investigate the effects of expressing an activated mutant of Notch (ICD-E) in an inducible transgenic mouse model. Hepatic expression of ICD-E in adult animals has no detectable phenotype, but simultaneous induction of ICD-E in both the liver and small intestine results in hepatic steatosis, lipogranuloma formation and mild insulin resistance within 96 hours. This supports work that suggests that fatty liver disease may result from disruption of the gut-liver axis. In the intestine, ICD-E expression is known to produce a transient change in the proportion of goblet cells followed by shedding of the recombinant epithelium. We report additional intestinal transcriptional changes following ICD-E expression, finding significant transcriptional down-regulation of rpL29 (ribosomal protein L29), which is implicated in the regulation of intestinal flora. These results provide further evidence of a gut-liver axis in the development of fatty liver disease and insulin resistance and validate a new model for future studies of hepatic steatosis.
Collapse
Affiliation(s)
- Joanna C. Fowler
- Medical Research Council Cancer Cell Unit, Cambridge, United Kingdom
| | | | - Philip H. Jones
- Medical Research Council Cancer Cell Unit, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
137
|
Kalén M, Heikura T, Karvinen H, Nitzsche A, Weber H, Esser N, Ylä-Herttuala S, Hellström M. Gamma-secretase inhibitor treatment promotes VEGF-A-driven blood vessel growth and vascular leakage but disrupts neovascular perfusion. PLoS One 2011; 6:e18709. [PMID: 21533193 PMCID: PMC3077402 DOI: 10.1371/journal.pone.0018709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 03/16/2011] [Indexed: 12/18/2022] Open
Abstract
The Notch signaling pathway is essential for normal development due to its role in control of cell differentiation, proliferation and survival. It is also critically involved in tumorigenesis and cancer progression. A key enzyme in the activation of Notch signaling is the gamma-secretase protein complex and therefore, gamma-secretase inhibitors (GSIs)—originally developed for Alzheimer's disease—are now being evaluated in clinical trials for human malignancies. It is also clear that Notch plays an important role in angiogenesis driven by Vascular Endothelial Growth Factor A (VEGF-A)—a process instrumental for tumor growth and metastasis. The effect of GSIs on tumor vasculature has not been conclusively determined. Here we report that Compound X (CX), a GSI previously reported to potently inhibit Notch signaling in vitro and in vivo, promotes angiogenic sprouting in vitro and during developmental angiogenesis in mice. Furthermore, CX treatment suppresses tumor growth in a mouse model of renal carcinoma, leads to the formation of abnormal vessels and an increased tumor vascular density. Using a rabbit model of VEGF-A-driven angiogenesis in skeletal muscle, we demonstrate that CX treatment promotes abnormal blood vessel growth characterized by vessel occlusion, disrupted blood flow, and increased vascular leakage. Based on these findings, we propose a model for how GSIs and other Notch inhibitors disrupt tumor blood vessel perfusion, which might be useful for understanding this new class of anti-cancer agents.
Collapse
Affiliation(s)
- Mattias Kalén
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Tommi Heikura
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna Karvinen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anja Nitzsche
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mats Hellström
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
138
|
Abstract
LKB1 is a 'master' protein kinase implicated in the regulation of metabolism, cell proliferation, cell polarity and tumorigenesis. However, the long-term role of LKB1 in hepatic function is unknown. In the present study, it is shown that hepatic LKB1 plays a key role in liver cellular architecture and metabolism. We report that liver-specific deletion of LKB1 in mice leads to defective canaliculi and bile duct formation, causing impaired bile acid clearance and subsequent accumulation of bile acids in serum and liver. Concomitant with this, it was found that the majority of BSEP (bile salt export pump) was retained in intracellular pools rather than localized to the canalicular membrane in hepatocytes from LLKB1KO (liver-specific Lkb1-knockout) mice. Together, these changes resulted in toxic accumulation of bile salts, reduced liver function and failure to thrive. Additionally, circulating LDL (low-density lipoprotein)-cholesterol and non-esterified cholesterol levels were increased in LLKB1KO mice with an associated alteration in red blood cell morphology and development of hyperbilirubinaemia. These results indicate that LKB1 plays a critical role in bile acid homoeostasis and that lack of LKB1 in the liver results in cholestasis. These findings indicate a novel key role for LKB1 in the development of hepatic morphology and membrane targeting of canalicular proteins.
Collapse
|
139
|
Ductal plates in hepatic ductular reactions. Hypothesis and implications. III. Implications for liver pathology. Virchows Arch 2011; 458:271-9. [PMID: 21301864 DOI: 10.1007/s00428-011-1050-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 02/08/2023]
Abstract
This article discusses on the basis of the ductal plate hypothesis the implication of the concept for several liver abnormalities. The occurrence of ductal plates (DP) during liver growth in childhood would explain the paraportal and parenchymal localizations of von Meyenburg complexes in postnatally developed parts of the liver, and their higher incidence in adulthood versus childhood. It partly clarifies the lack of postnatal intrahepatic bile duct development in Alagille syndrome and the reduced number of portal tracts in this disease. Ductular reactions (DRs) in DP configuration are the predominant type of progenitor cell reaction in fulminant necro-inflammatory liver disease, when lack of sufficient parenchymal regeneration results in liver failure. The concept of dissecting DRs explains the micronodular pattern of advanced biliary and alcoholic cirrhosis. The concept explains the DP patterns of bile ducts in several cases of biliary atresia, with implications for diagnosis and prognosis. The hypothesis also has an impact on concepts about stem/progenitor cells and their niche.
Collapse
|
140
|
Desmet VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. III. Implications for liver pathology. Virchows Arch 2011; 458:251-9. [PMID: 21301864 DOI: 10.1007/s00428-011-1048-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 01/09/2023]
Abstract
This article discusses on the basis of the ductal plate hypothesis the implication of the concept for several liver abnormalities. The occurrence of ductal plates (DP) during liver growth in childhood would explain the paraportal and parenchymal localizations of von Meyenburg complexes in postnatally developed parts of the liver, and their higher incidence in adulthood versus childhood. It partly clarifies the lack of postnatal intrahepatic bile duct development in Alagille syndrome and the reduced number of portal tracts in this disease. Ductular reactions (DRs) in DP configuration are the predominant type of progenitor cell reaction in fulminant necro-inflammatory liver disease, when lack of sufficient parenchymal regeneration results in liver failure. The concept of dissecting DRs explains the micronodular pattern of advanced biliary and alcoholic cirrhosis. The concept explains the DP patterns of bile ducts in several cases of biliary atresia, with implications for diagnosis and prognosis. The hypothesis also has an impact on concepts about stem/progenitor cells and their niche.
Collapse
Affiliation(s)
- Valeer J Desmet
- Department of Pathology, University Hospital K.U.Leuven, Leuven, Belgium,
| |
Collapse
|
141
|
Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development 2011; 138:431-41. [PMID: 21205788 DOI: 10.1242/dev.053843] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipotent progenitors, or else lineage-restricted precursors. Moreover, although rare cells of the adult pancreas express Hes1, it is unknown whether these represent a specialized progenitor-like population. To address these issues, we developed a mouse Hes1(CreERT2) knock-in allele to inducibly mark Hes1(+) cells and their descendants. We find that Hes1 expression in the early embryonic pancreas identifies multipotent, Notch-responsive progenitors, differentiation of which is blocked by activated Notch. In later embryogenesis, Hes1 marks exocrine-restricted progenitors, in which activated Notch promotes ductal differentiation. In the adult pancreas, Hes1 expression persists in rare differentiated cells, particularly terminal duct or centroacinar cells. Although we find that Hes1(+) cells in the resting or injured pancreas do not behave as adult stem cells for insulin-producing beta (β)-cells, Hes1 expression does identify stem cells throughout the small and large intestine. Together, these studies clarify the roles of Notch and Hes1 in the developing and adult pancreas, and open new avenues to study Notch signaling in this and other tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
142
|
Sparks EE, Perrien DS, Huppert KA, Peterson TE, Huppert SS. Defects in hepatic Notch signaling result in disruption of the communicating intrahepatic bile duct network in mice. Dis Model Mech 2011; 4:359-67. [PMID: 21282722 PMCID: PMC3097457 DOI: 10.1242/dmm.005793] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal Notch signaling in humans results in Alagille syndrome, a pleiotropic disease characterized by a paucity of intrahepatic bile ducts (IHBDs). It is not clear how IHBD paucity develops as a consequence of atypical Notch signaling, whether by a developmental lack of bile duct formation, a post-natal lack of branching and elongation or an inability to maintain formed ducts. Previous studies have focused on the role of Notch in IHBD development, and demonstrated a dosage requirement of Notch signaling for proper IHBD formation. In this study, we use resin casting and X-ray microtomography (microCT) analysis to address the role of Notch signaling in the maintenance of formed IHBDs upon chronic loss or gain of Notch function. Our data show that constitutive expression of the Notch1 intracellular domain in bi-potential hepatoblast progenitor cells (BHPCs) results in increased IHBD branches at post-natal day 60 (P60), which are maintained at P90 and P120. By contrast, loss of Notch signaling via BHPC-specific deletion of RBP-J (RBP KO), the DNA-binding partner for all Notch receptors, results in progressive loss of intact IHBD branches with age. Interestingly, in RBP KO mice, we observed a reduction in bile ducts per portal vein at P60; no further reduction had occurred at P120. Thus, bile duct structures are not lost with age; instead, we propose a model in which BHPC-specific loss of Notch signaling results in an initial developmental defect resulting in fewer bile ducts being formed, and in an acquired post-natal defect in the maintenance of intact IHBD architecture as a result of irresolvable cholestasis. Our studies reveal a previously unappreciated role for Notch signaling in the post-natal maintenance of an intact communicating IHBD structure, and suggest that liver defects observed in Alagille syndrome patients might be more complex than bile duct paucity.
Collapse
Affiliation(s)
- Erin E Sparks
- Department of Cell and Developmental Biology and Center for Stem Cell Biology, Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
143
|
Tanaka M, Itoh T, Tanimizu N, Miyajima A. Liver stem/progenitor cells: their characteristics and regulatory mechanisms. J Biochem 2011; 149:231-9. [PMID: 21217146 DOI: 10.1093/jb/mvr001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver stem cells give rise to both hepatocytes and bile duct epithelial cells also known as cholangiocytes. During liver development hepatoblasts emerge from the foregut endoderm and give rise to both cell types. Colony-forming cells are present in the liver primordium and clonally expanded cells differentiate into either hepatocytes or cholangiocytes depending on culture conditions, showing stem cell characteristics. The growth and differentiation of hepatoblasts are regulated by various extrinsic signals. For example, periportal mesenchymal cells provide a cue for bipotential hepatoblasts to become cholangiocytes, and mesothelial cells covering the parenchyma support the expansion of foetal hepatocytes by producing growth factors. The adult liver has an extraordinary capacity to regenerate, and after 70% hepatectomy the liver recovers its original mass by replication of the remaining hepatocytes without the activation of liver stem cells. However, in certain types of liver injury models, liver stem/progenitor-like cells, known as oval cells in rodents, proliferate around the portal vein, while the roles of such cells in liver regeneration remain a matter of debate. Clonogenic and bipotential cells are also present in the normal adult liver. In this minireview we describe recent studies on liver stem/progenitor cells by focusing on extracellular signals.
Collapse
Affiliation(s)
- Minoru Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
144
|
Liver Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
145
|
Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 2010; 137:4061-72. [PMID: 21062863 DOI: 10.1242/dev.052118] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in the human Notch ligand jagged 1 (JAG1) result in a multi-system disorder called Alagille syndrome (AGS). AGS is chiefly characterized by a paucity of intrahepatic bile ducts (IHBD), but also includes cardiac, ocular, skeletal, craniofacial and renal defects. The disease penetration and severity of the affected organs can vary significantly and the molecular basis for this broad spectrum of pathology is unclear. Here, we report that Jag1 inactivation in the portal vein mesenchyme (PVM), but not in the endothelium of mice, leads to the hepatic defects associated with AGS. Loss of Jag1 expression in SM22α-positive cells of the PVM leads to defective bile duct development beyond the initial formation of the ductal plate. Cytokeratin 19-positive cells are detected surrounding the portal vein, yet they are unable to form biliary tubes, revealing an instructive role of the vasculature in liver development. These findings uncover the cellular basis for the defining feature of AGS, identify mesenchymal Jag1-dependent and -independent stages of duct development, and provide mechanistic information for the role of Jag1 in IHBD formation.
Collapse
Affiliation(s)
- Jennifer J Hofmann
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
146
|
Lorent K, Moore JC, Siekmann AF, Lawson N, Pack M. Reiterative use of the notch signal during zebrafish intrahepatic biliary development. Dev Dyn 2010; 239:855-64. [PMID: 20108354 DOI: 10.1002/dvdy.22220] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Notch signaling pathway regulates specification of zebrafish liver progenitor cells towards a biliary cell fate. Here, using staged administration of a pharmacological inhibitor of Notch receptor processing, we show that activation of the Notch pathway is also important for growth and expansion of the intrahepatic biliary network in zebrafish larvae. Biliary expansion is accompanied by extensive cell proliferation and active remodeling of the nascent ductal network, as revealed by time lapse imaging of living zebrafish larvae that express a Notch responsive fluorescent reporter transgene. Together, these data support a model in which the Notch signal functions reiteratively during biliary development; first to specific biliary cells and then to direct remodeling of the nascent biliary network. As the Notch pathway plays a comparable role during mammalian biliary development, including humans, these studies also indicate broad conservation of the molecular mechanisms directing biliary development in vertebrates.
Collapse
Affiliation(s)
- Kristin Lorent
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19130, USA
| | | | | | | | | |
Collapse
|
147
|
Abstract
Liver progenitor cells are activated in most human liver diseases. The dynamics, and therefore subpopulations, of progenitor cells are, however, different in acute versus chronic hepatocytic diseases and in biliary diseases. The role of Wnt and Notch signaling pathways in activation and differentiation of human hepatic progenitor cells holds great promise because they can be manipulated by drugs. Hepatocytic differentiation requires inhibition of Notch (numb switched on), whereas cholangiocytic differentiation requires Notch activation. In this way, the patients' own regenerative response could be supported, which could eventually even avoid the need for transplantation in several patients.
Collapse
|
148
|
Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D)-induced skin carcinogenesis in vivo. PLoS One 2010; 5:e13578. [PMID: 21042537 PMCID: PMC2962652 DOI: 10.1371/journal.pone.0013578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 09/22/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic Kras(G12D) mice with ablation of Notch1 and/or Notch2. METHODOLOGY/PRINCIPAL FINDINGS Surprisingly, mice with activated Kras(G12D) and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. CONCLUSIONS/SIGNIFICANCE Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.
Collapse
|
149
|
Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J, Giovannini M, Liu P, Anders RA, Pan D. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 2010; 19:27-38. [PMID: 20643348 PMCID: PMC2925178 DOI: 10.1016/j.devcel.2010.06.015] [Citation(s) in RCA: 639] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/14/2010] [Accepted: 06/08/2010] [Indexed: 01/12/2023]
Abstract
The conserved Hippo signaling pathway regulates organ size in Drosophila and mammals. While a core kinase cascade leading from the protein kinase Hippo (Hpo) (Mst1 and Mst2 in mammals) to the transcription coactivator Yorkie (Yki) (YAP in mammals) has been established, upstream regulators of the Hippo kinase cascade are less well defined, especially in mammals. Using conditional knockout mice, we demonstrate that the Merlin/NF2 tumor suppressor and the YAP oncoprotein function antagonistically to regulate liver development. While inactivation of Yap led to loss of hepatocytes and biliary epithelial cells, inactivation of Nf2 led to hepatocellular carcinoma and bile duct hamartoma. Strikingly, the Nf2-deficient phenotypes in multiple tissues were largely suppressed by heterozygous deletion of Yap, suggesting that YAP is a major effector of Merlin/NF2 in growth regulation. Our studies link Merlin/NF2 to mammalian Hippo signaling and implicate YAP activation as a mediator of pathologies relevant to Neurofibromatosis 2.
Collapse
Affiliation(s)
- Nailing Zhang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Zong Y, Stanger BZ. Molecular mechanisms of bile duct development. Int J Biochem Cell Biol 2010; 43:257-64. [PMID: 20601079 DOI: 10.1016/j.biocel.2010.06.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 04/12/2010] [Accepted: 06/22/2010] [Indexed: 12/11/2022]
Abstract
The mammalian biliary system, consisting of the intrahepatic and extrahepatic bile ducts, is responsible for transporting bile from the liver to the intestine. Bile duct dysfunction, as is seen in some congenital biliary diseases such as Alagille syndrome and biliary atresia, can lead to the accumulation of bile in the liver, preventing the excretion of detoxification products and ultimately leading to liver damage. Bile duct formation requires coordinated cell-cell interactions, resulting in the regulation of cell differentiation and morphogenesis. Multiple signaling molecules and transcription factors have been identified as important regulators of bile duct development. This review summarizes recent progress in the field. Insights gained from studies of the molecular mechanisms of bile duct development have the potential to reveal novel mechanisms of differentiation and morphogenesis in addition to potential targets for therapy of bile duct disorders.
Collapse
Affiliation(s)
- Yiwei Zong
- Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|