101
|
Guo S, Deng CX. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int J Biol Sci 2018; 14:2083-2093. [PMID: 30585271 PMCID: PMC6299363 DOI: 10.7150/ijbs.25720] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular environment where tumor cells reside is called the tumor microenvironment (TME), which consists of borders, blood vessels, lymph vessels, extracellular matrix (ECM), stromal cells, immune/inflammatory cells, secreted proteins, RNAs and small organelles. By dynamically interacting with tumor cells, stromal cells participate in all stages of tumor initiation, progression, metastasis, recurrence and drug response, and consequently, affect the fate of patients. During the processes of tumor evolution and metastasis initiation, stromal cells in TME also experience some changes and play roles in both the suppression and promotion of metastasis, while the overall function of stromal cells is beneficial for cancer cell survival and movement. In this review, we examine the effects of stromal cells in TME on metastasis initiation, including angiogenesis, epithelial-mesenchymal transition (EMT) and invasion. We also highlight functions of proteins, RNAs and small organelles secreted by stromal cells in their influences on multiple stages of tumor metastasis.
Collapse
Affiliation(s)
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
102
|
González R, Molina-Ruiz FJ, Bárcena JA, Padilla CA, Muntané J. Regulation of Cell Survival, Apoptosis, and Epithelial-to-Mesenchymal Transition by Nitric Oxide-Dependent Post-Translational Modifications. Antioxid Redox Signal 2018; 29:1312-1332. [PMID: 28795583 DOI: 10.1089/ars.2017.7072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) is a physiopathological messenger generating different reactive nitrogen species (RNS) according to hypoxic, acidic and redox conditions. Recent Advances: RNS and reactive oxygen species (ROS) promote relevant post-translational modifications, such as nitrosation, nitration, and oxidation, in critical components of cell proliferation and death, epithelial-to-mesenchymal transition, and metastasis. CRITICAL ISSUES The pro- or antitumoral properties of NO are dependent on local concentration, redox state, cellular status, duration of exposure, and compartmentalization of NO generation. The increased expression of NO synthase has been associated with cancer progression. However, the experimental strategies leading to high intratumoral NO generation have been shown to exert antitumoral properties. The effect of NO and ROS on cell signaling is critically altered by factors modulating tumor progression such as oxygen content, metabolism, and inflammatory response. The review describes the alteration of key components involved in cell survival and death, metabolism, and metastasis induced by RNS- and ROS-related post-translational modifications. FUTURE DIRECTIONS The identification of the molecular targets affected by nitrosation, nitration, and oxidation, as well as their interactions with other post-translational modifications, will improve the understanding on the complex signaling and cell fate decision in cancer. The therapeutic NO-based strategies have to address the complex crosstalk among NO and ROS with regard to critical components affecting tumor cell survival, metabolism, and metastasis in the progression of cancer, as well as close interaction with ionizing radiation and chemotherapy.
Collapse
Affiliation(s)
- Raúl González
- 1 Institute of Biomedicine of Seville (IBiS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville , Seville, Spain
| | - Francisco J Molina-Ruiz
- 1 Institute of Biomedicine of Seville (IBiS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville , Seville, Spain
| | - J Antonio Bárcena
- 2 Department of Biochemistry and Molecular Biology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba , Córdoba, Spain
| | - C Alicia Padilla
- 2 Department of Biochemistry and Molecular Biology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba , Córdoba, Spain
| | - Jordi Muntané
- 3 Department of General Surgery, "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville , Seville, Spain .,4 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| |
Collapse
|
103
|
Ogasawara N, Kudo T, Sato M, Kawasaki Y, Yonezawa S, Takahashi S, Miyagi Y, Natori Y, Sugiyama A. Reduction of Membrane Protein CRIM1 Decreases E-Cadherin and Increases Claudin-1 and MMPs, Enhancing the Migration and Invasion of Renal Carcinoma Cells. Biol Pharm Bull 2018; 41:604-611. [PMID: 29607933 DOI: 10.1248/bpb.b17-00990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CRIM1 is a membrane protein that has been reported to be related to cell proliferation. CRIM1 is expressed in renal carcinoma cells, but its involvement in proliferation and malignant transformation remains unclear. We analyzed whether alterations in the characteristics of cancer cells are observed following knockdown of CRIM1. Decreased expression of CRIM1 did not affect proliferation or anchorage-independent growth. The results of wound healing and invasion assays showed that reduced expression of CRIM1 increased cells' migratory and invasive abilities. Expression analysis of factors involved in migration and invasion in CRIM1-knockdown cells revealed that expression of the cell adhesion factor E-cadherin declined and expression of claudin-1, which is upregulated in metastatic cancer cells, increased. In addition, increased expression of matrix metalloproteinase (MMP) 2 and MMP9, protease essential for cancer cell invasiveness, was observed. Furthermore, an increase in phosphorylated focal adhesion kinase (FAK), which increases cell migration, was observed. Increased expression of the E-cadherin transcription repressors Snail, Slug, and ZEB-1 were observed, and mRNA levels of E-cadherin were decreased. Therefore, expression of E-cadherin is thought to be decreased by both suppression of E-cadherin mRNA expression and promotion of degradation of the E-cadherin protein. In addition, expression of CRIM1 was decreased in renal cancer cells undergoing epithelial-mesenchymal transition (EMT) stimulated by tumor necrosis factor alpha (TNF-α). Thus, CRIM1 regulates the expression of several EMT-related factors and appears to play a role in suppressing migration and invasion through control of EMT.
Collapse
Affiliation(s)
- Nobutaka Ogasawara
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Tamami Kudo
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Masaki Sato
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Yasushi Kawasaki
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Sei Yonezawa
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Satoru Takahashi
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Science, Mukogawa Women's University
| | - Yohei Miyagi
- Division of Molecular Pathology and Genetics, Kanagawa Cancer Center Research Institute
| | - Yasuhiro Natori
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Akinori Sugiyama
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
104
|
Yamini B. NF-κB, Mesenchymal Differentiation and Glioblastoma. Cells 2018; 7:cells7090125. [PMID: 30200302 PMCID: PMC6162779 DOI: 10.3390/cells7090125] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Although glioblastoma (GBM) has always been recognized as a heterogeneous tumor, the advent of largescale molecular analysis has enabled robust categorization of this malignancy into several specific subgroups. Among the subtypes designated by expression profiling, mesenchymal tumors have been associated with an inflammatory microenvironment, increased angiogenesis, and resistance to therapy. Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor that plays a prominent role in mediating many of the central features associated with mesenchymal differentiation. This review summarizes the mechanisms by which NF-κB proteins and their co-regulating partners induce the transcriptional network that underlies the mesenchymal phenotype. Moreover, both the intrinsic changes within mesenchymal GBM cells and the microenvironmental factors that modify the overall NF-κB response are detailed.
Collapse
Affiliation(s)
- Bakhtiar Yamini
- Section of Neurosurgery Department of Surgery, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
105
|
Wang X, Yu H, Sun W, Kong J, Zhang L, Tang J, Wang J, Xu E, Lai M, Zhang H. The long non-coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Mol Cancer 2018; 17:110. [PMID: 30064438 PMCID: PMC6069835 DOI: 10.1186/s12943-018-0860-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/20/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) function as key molecules in cancer progression. The lncRNA CYTOR plays oncogenic roles in multiple types of cancer, yet the detailed molecular mechanisms of those roles remain unknown. The aim of this study was to investigate the clinical significance, biological function and interacting partners of CYTOR in colorectal cancer (CRC). METHODS A systematic and comprehensive analysis of CYTOR expression was performed in 138 CRC samples and in the TCGA and GEO databases. Biological function was investigated through knockdown and overexpression of CYTOR in vitro and in vivo. In addition, its protein binding partner was identified and validated using ChIRP-MS and RNA immunoprecipitation assays. Their key interaction sites on CYTOR were verified by CRISPR/Cas9 and a series of mutant constructs. Furthermore, the downstream targets of CYTOR were confirmed via immunoblotting and luciferase reporter assays. RESULTS CYTOR was significantly up-regulated in CRC samples and associated with poor prognosis, promoting proliferation and metastasis in vitro and in vivo. NCL and Sam68 could recognize their specific motifs and directly bind to EXON1 of CYTOR. Moreover, EXON1 was the key functional site mediating the interaction of CYTOR with NCL and Sam68. NCL and Sam68 functioned as oncogenes to promote CRC progression. Furthermore, we confirmed that the heterotrimeric complex of CYTOR, NCL and Sam68 activated the NF-κB pathway and EMT to contribute to CRC progression. CONCLUSION CYTOR plays important roles in CRC progression by interacting with NCL and Sam68 and may serve as a prognostic biomarker and/or an effective target for CRC therapies.
Collapse
Affiliation(s)
- Xue Wang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009 China
| | - Hongfei Yu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Wenjie Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Jianlu Kong
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Lei Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009 China
| | - Jinlong Tang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Jingyu Wang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009 China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| |
Collapse
|
106
|
Huang B, Lv DJ, Wang C, Shu FP, Gong ZC, Xie T, Yu YZ, Song XL, Xie JJ, Li S, Liu YM, Qi H, Zhao SC. Suppressed epithelial-mesenchymal transition and cancer stem cell properties mediate the anti-cancer effects of ethyl pyruvate via regulation of the AKT/nuclear factor-κB pathway in prostate cancer cells. Oncol Lett 2018; 16:2271-2278. [PMID: 30008929 PMCID: PMC6036506 DOI: 10.3892/ol.2018.8958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a leading cause of mortality among cases of prostate cancer (PCa). Current treatment options for CRPC are limited. Ethyl pyruvate (EP), a lipophilic derivative of pyruvic acid, has been reported to have antitumor activities. In the present study, the efficacy of EP against PCa was investigated using two human PCa cell lines and a mouse xenograft tumor model. PC3 and CWR22RV1 cells were treated with EP, and cytotoxicity was evaluated via Cell Counting Kit-8 and colony formation assays, while cell cycle distribution was assessed by flow cytometry. Changes in cell migration and invasion caused by EP treatment were also evaluated with Transwell and wound healing assays, and changes in the expression of intracellular signaling pathway components were detected by western blotting. EP treatment reduced cell viability, induced G1 arrest, and activated the intrinsic apoptosis pathway. Additionally, the in vivo experiments revealed that EP administration markedly inhibited tumor growth. EP also reversed epithelial-mesenchymal transition and suppressed cancer stem cell properties in part through negative regulation of AKT/nuclear factor-κB signaling. These results indicate that EP has anticancer activity in vitro and in vivo, and is therefore a promising therapeutic agent for the treatment of PCa.
Collapse
Affiliation(s)
- Bin Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dao-Jun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fang-Peng Shu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhi-Cheng Gong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tao Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu-Zhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xian-Lu Song
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jia-Jia Xie
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sen Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ya-Meng Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Huan Qi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
107
|
Sena P, Mancini S, Benincasa M, Mariani F, Palumbo C, Roncucci L. Metformin Induces Apoptosis and Alters Cellular Responses to Oxidative Stress in Ht29 Colon Cancer Cells: Preliminary Findings. Int J Mol Sci 2018; 19:1478. [PMID: 29772687 PMCID: PMC5983851 DOI: 10.3390/ijms19051478] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/25/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence suggests that metformin, used as an antidiabetic drug, possesses anti-cancer properties. Metformin reduced the incidence and growth of experimental tumors in vivo. In a randomized clinical trial among nondiabetic patients, metformin treatment significantly decreased the number of aberrant crypt foci compared to the untreated group with a follow-up of 1 month. In our study, HT29 cells were treated with graded concentrations of metformin, 10 mM/25 mM/50 mM for 24/48 h. We performed immunofluorescence experiments by means of confocal microscopy and western blot analysis to evaluate a panel of factors involved in apoptotic/autophagic processes and oxidative stress response. Moreover, HT29 cells treated with metformin were analyzed by a flow cytometry assay to detect the cell apoptotic rate. The results demonstrate that metformin exerts growth inhibitory effects on cultured HT29 cells by increasing both apoptosis and autophagy; moreover, it affects the survival of cultured cells inhibiting the transcriptional activation of Nuclear factor E2-related factor 2 (NRF-2) and nuclear factor-kappa B (NF-κB). The effects of metformin on HT29 cells were dose- and time-dependent. These results are very intriguing since metformin is emerging as a multi-faceted drug: It has a good safety profile and is associated with low cost and might be a promising candidate for the prevention or the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Paola Sena
- Department of Biomedical, Metabolic and Neurosciences, Section of Human Morphology, University of Modena and Reggio Emilia, Policlinico, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Stefano Mancini
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Policlinico, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Marta Benincasa
- Department of Biomedical, Metabolic and Neurosciences, Section of Human Morphology, University of Modena and Reggio Emilia, Policlinico, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Francesco Mariani
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Policlinico, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neurosciences, Section of Human Morphology, University of Modena and Reggio Emilia, Policlinico, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Luca Roncucci
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Policlinico, Via Del Pozzo 71, I-41125 Modena, Italy.
| |
Collapse
|
108
|
Liu W, Wang S, Sun Q, Yang Z, Liu M, Tang H. DCLK1 promotes epithelial-mesenchymal transition via the PI3K/Akt/NF-κB pathway in colorectal cancer. Int J Cancer 2018; 142:2068-2079. [PMID: 29277893 DOI: 10.1002/ijc.31232] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
Double cortin-like kinase 1 (DCLK1) plays important roles during the epithelial-mesenchymal transition (EMT) process in human colorectal cancer (CRC). However, the role of DCLK1 in regulating the EMT of CRC is still poorly understood. In this study, we report evidence that DCLK1 acts as a potent oncogene to drive its extremely malignant character of EMT in an NF-κB-dependent manner in CRC cells. Mechanistic investigations showed that DCLK1 induced the NF-κBp65 subunit expression through the PI3K/Akt/Sp1 axis and activated NF-κBp65 through the PI3K/Akt/IκBα pathway during the EMT of CRC cells. Moreover, we found that silencing the expression of DCLK1 inhibited the invasion and metastasis of CRC cells in vivo. Collectively, our findings identify DCLK1 as a pivotal regulator of an EMT axis in CRC, thus implicating DCLK1 as a potential therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Weiying Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shixing Wang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Sun
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
109
|
Du Y, Kong C, Zhu Y, Yu M, Li Z, Bi J, Li Z, Liu X, Zhang Z, Yu X. Knockdown of SNHG15 suppresses renal cell carcinoma proliferation and EMT by regulating the NF-κB signaling pathway. Int J Oncol 2018; 53:384-394. [PMID: 29750422 DOI: 10.3892/ijo.2018.4395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/12/2018] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of long noncoding RNAs (lncRNAs) is associated with cancer tumorigenesis and progression. It has been suggested that lncRNAs may be potential clinical diagnostic and prognostic biomarkers, and therapeutic targets. In the present study, the expression levels of small nucleolar RNA host gene 15 (SNHG15) were significantly upregulated in renal cell carcinoma (RCC) tissues and cell lines compared with in adjacent tissues and a proximal tubule epithelial cell line, as determined by reverse transcription‑quantitative polymerase chain reaction. Subsequently, knockdown of SNHG15 expression with small interfering RNA inhibited RCC proliferation, invasion and migration, was determined by western blotting and Transwell assays. Furthermore, the present study suggested that SNHG15 may be involved in the nuclear factor‑κB signaling pathway, induce the epithelial‑mesenchymal transition process, and promote RCC invasion and migration.
Collapse
Affiliation(s)
- Yang Du
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Meng Yu
- Department of Reproductive Biology and Transgenic Animal China Medical University, Shenyang, Liaoning 110003, P.R. China
| | - Zeliang Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiankui Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiuyue Yu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
110
|
Feng HT, Zhao WW, Lu JJ, Wang YT, Chen XP. Hypaconitine inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses adhesion, migration, and invasion of lung cancer A549 cells. Chin J Nat Med 2018. [PMID: 28629532 DOI: 10.1016/s1875-5364(17)30064-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in tumor invasion and metastasis and provides novel strategies for cancer therapy. Hypaconitine (HpA), a diester-diterpenoid alkaloid isolated from the root of the Aconitum species, exhibits anti-inflammatory, analgesic, and especially, cardiotoxic activities. Here, we reported the anti-metastatic potentials of HpA in transforming growth factor-β1 (TGF-β1)-induced EMT in lung cancer A549 cells. The cytotoxic effect of HpA was determined by MTT assay. A549 cells were treated with TGF-β1 with or without HpA co-treatment, and the morphological alterations were observed with a microscopy. The expression of E-cadherin, N-cadherin, and NF-κB was determined by both Western blotting and immunofluorescence analyses. The adhesion, migration, and invasion were detected with Matrigel, wound-healing, and transwell assays, respectively. The expression of Snail was determined by Western blotting. The expression of NF-κB p65, IκBα, and p-IκBα in nuclear and cytosolic extracts was assessed by Western blotting. The results showed that low concentration of HpA (<16 μmol·L-1) had no obvious cytotoxicity to A549 cells. Morphologically, TGF-β1 treatment induced spindle-shaped alteration in the cells. The upregulation of N-cadherin, NF-κB, and Snail and the downregulation of E-cadherin were detected after TGF-β1 treatment. The adhesion, migration and invasion abilities were also increased by TGF-β1. Besides, TGF-β1 induced expression of Snail in a time-dependent manner. Furthermore, TGF-β1 induced nuclear translocation of NF-κB p65. All these alterations were dramatically inhibited by HpA co-treatment. In addition, the NF-κB inhibitor PDTC showed similar inhibitory effect. In conclusion, these results showed that HpA inhibited TGF-β1-induced EMT in A549 cells, which was possibly mediated by the inactivation of the NF-κB signaling pathway, providing an evidence for anti-cancer effect of HpA.
Collapse
Affiliation(s)
- Hai-Tao Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wen-Wen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiu-Ping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
111
|
Ye W, Ling S, Liu RY, Pan ZZ, Wang G, Gao S, Wu J, Cao L, Dong L, Li Y, Zhou Y, Du W, Meng X, Chen J, Guan X, He Y, Pan C, Zheng XS, Lu X, Chen S, Huang W. Exome sequencing reveals the genetic landscape and frequent inactivation of PCDHB3 in Chinese rectal cancers. J Pathol 2018. [PMID: 29537081 DOI: 10.1002/path.5073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with more than 1.3 million new cases and 690 000 deaths each year. In China, the incidence of CRC has increased dramatically due to dietary and lifestyle changes, to become the fifth leading cause of cancer-related death. Here, we performed whole-exome sequencing in 50 rectal cancer cases among the Chinese population as part of the International Cancer Genome Consortium research project. Frequently mutated genes and enriched pathways were identified. Moreover, a previously unreported gene, PCDHB3, was found frequently mutated in 5.19% cases. Additionally, PCDHB3 expression was found decreased in 81.6% of CRC tissues and all eight CRC cell lines tested. Low expression and cytoplasmic localization of PCDHB3 predict poor prognosis in advanced CRC. Copy number decrease and/or CpG island hypermethylation contributes to the pervasive decreased expression of PCDHB3. PCDHB3 inhibits CRC cell proliferation, migration, and epithelial-mesenchymal transition. The tumor-suppressive effects of PCDHB3 are partially due to inhibition of NF-κB transcriptional activity through K63 deubiquitination of p50 at lysine 244/252, which increases the binding affinity of inactive p50 homodimer to κB DNA, resulting in competitive inhibition of the transcription of NF-κB target genes by p65 dimers. Our study identified PCDHB3 as a novel tumor suppressor in CRC via inhibition of the NF-κB pathway, and its expression and localization may serve as prognostic markers for advanced CRC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wen Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Shaoping Ling
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Ran-Yi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Zhi-Zhong Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Gaoyuan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Lihua Cao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Lili Dong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Yingchang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Yi Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Wuying Du
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Xiangqi Meng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Jinna Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Xinyuan Guan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.,Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Changchuan Pan
- Medical Oncology, Sichuan Cancer Hospital and Institute, Second People's Hospital of Sichuan Province, Chengdu, PR China
| | - Xf Steven Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xuemei Lu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Shuai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
112
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
113
|
Bednarczyk RB, Tuli NY, Hanly EK, Rahoma GB, Maniyar R, Mittelman A, Geliebter J, Tiwari RK. Macrophage inflammatory factors promote epithelial-mesenchymal transition in breast cancer. Oncotarget 2018; 9:24272-24282. [PMID: 29849939 PMCID: PMC5966261 DOI: 10.18632/oncotarget.24917] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023] Open
Abstract
The majority of breast cancers (90-95%) arise due to mediators distinct from inherited genetic mutations. One major mediator of breast cancer involves chronic inflammation. M1 macrophages are an integral component of chronic inflammation and the breast cancer tumor microenvironment (TME). Previous studies have demonstrated that up to 50% of the breast tumor comprise of tumor-associated macrophages (TAMs) and increased TAM infiltration has been associated with poor patient prognosis. Furthermore, breast cancer associated deaths are predominantly attributed to invasive cancers and metastasis with epithelial-mesenchymal transition (EMT) being implicated. In this study, we investigated the effects of cellular crosstalk between TAMs and breast cancer using an in vitro model system. M1 polarized THP-1 macrophage conditioned media (CM) was generated and used to evaluate cellular and functional changes of breast cancer lines T47D and MCF-7. We observed that T47D and MCF-7 exhibited a partial EMT phenotype in the presence of activated THP-1 CM. Additionally, MCF-7 displayed a significant increase in migratory and invasive properties. We conclude that M1 secretory factors can promote a partial EMT of epithelial-like breast cancer cells. The targeting of M1 macrophages or their secretory components may inhibit EMT and limit the invasive potential of breast cancer.
Collapse
Affiliation(s)
- Robert B Bednarczyk
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Neha Y Tuli
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Elyse K Hanly
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Ghada Ben Rahoma
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Rachana Maniyar
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Abraham Mittelman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Jan Geliebter
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
114
|
He YM, Xiao YS, Wei L, Zhang JQ, Peng CH. CUL4B promotes metastasis and proliferation in pancreatic cancer cells by inducing epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. J Cell Biochem 2018; 119:5308-5323. [PMID: 29274277 DOI: 10.1002/jcb.26643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
This study determines whether cullin 4B (CUL4B) promotes pancreatic cancer (PC) metastasis by inducing epithelial-mesenchymal transition (EMT) via the Wnt/β-catenin signaling pathway. A total of 64 PC patients were enrolled in this study. Human PC cell lines were distributed into blank, negative control, shCUL4B, PLOC, PLOC-CUL4B, and PLOC-CUL4B + siRNA-β-catenin groups. The expressions of CUL4B, Wnt/β-catenin signaling pathway-related proteins, and EMT-related proteins were determined using RT-qPCR and Western blotting. The positive expressions of CUL4B and β-catenin protein in tissues were detected by immunohistochemistry. MTT assay and flow cytometry was performed for cell proliferation and cell cycle, scratch test, and transwell assay for cell migration and invasion ability. CUL4B and β-catenin were expressed at a higher level in PC tissues than in paracancerous tissues though paracancerous tissues had higher expressions of CUL4B and β-catenin than normal tissues. The PLOC-CUL4B group showed increased CUL4B, Wnt, β-catenin, LEF-1, c-Jun, Cyclin D1, N-cadherin, Vimentin, Snail, and ZEB1 expression; decreased E-cadherin expression; accelerated cell proliferation; increased S-phase cell percentages; increased cell migration ability; more liver metastases; and enlarged tumor than the PLOC and PLOC-CUL4B + siRNA-β-catenin groups. The shCUL4B group showed decreased CUL4B, Wnt, β-catenin, LEF-1, c-Jun, Cyclin D1, N-cadherin, Vimentin, Snail, and ZEB1 expression; increased E-cadherin expression; decelerated cell proliferation; decreased S-phase cell percentages; reduced cell migration ability; less liver metastases; and decreased tumor weight than the blank and negative control groups. We demonstrate that CUL4B promotes PC metastasis by inducing EMT via the Wnt/β-catenin signaling pathway. Therefore, CUL4B might be the clinical target for treating PC.
Collapse
Affiliation(s)
- Yue-Ming He
- Department of Hepato-Pancreato-Bililary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Yu-Sha Xiao
- Department of Hepato-Pancreato-Bililary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Lei Wei
- Department of Hepato-Pancreato-Bililary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Jia-Qiang Zhang
- Department of General Surgery, Ruijin Hospital, Zhejiang Xiaoshan Hospital, Hangzhou, P.R. China
| | - Cheng-Hong Peng
- Department of General Surgery, Ruijin Hospital, Zhejiang Xiaoshan Hospital, Hangzhou, P.R. China
| |
Collapse
|
115
|
Jiang Y, Jiao Y, Liu Y, Zhang M, Wang Z, Li Y, Li T, Zhao X, Wang D. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition. Int J Mol Sci 2018. [PMID: 29538296 PMCID: PMC5877705 DOI: 10.3390/ijms19030844] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As shown in our previous study, sinomenine hydrochloride (SH), the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae), initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM) for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB) and the expression of matrix metalloproteinase (MMP)-2/-9, triggered endoplasmic reticulum (ER) stress, reversed the exogenous epithelial-mesenchymal transition (EMT) induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) or autophagy-related 5 (ATG5)-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA) or 3-methyladenine (3-MA), as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B)-II and autophagic vacuoles (AVs) stained with monodansylcadaverine (MDC), respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug) expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing MMP-2/-9 expression and reversing the endogenous and exogenous EMT in vitro and/or in vivo. Thus, SH might be a new potential anti-metastasis agent for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Yumao Jiang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yang Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Meiyu Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Zhiguo Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yujuan Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Xiaoliang Zhao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Danqiao Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| |
Collapse
|
116
|
Zhao K, Zhang S, Song X, Yao Y, Zhou Y, You Q, Guo Q, Lu N. Gambogic acid suppresses cancer invasion and migration by inhibiting TGFβ1-induced epithelial-to-mesenchymal transition. Oncotarget 2018; 8:27120-27136. [PMID: 28404892 PMCID: PMC5432322 DOI: 10.18632/oncotarget.15449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) contributes to the disruption of cell–cell junctions and imbues cancer cells with invasive and migratory properties. In this study, we investigated the effect of gambogic acid, a xanthone extracted from the resin of Garciania hanburyi, on transforming growth factor β1 (TGFβ1)-induced EMT. Gambogic acid inhibited the invasion and migration of TGFβ1-induced A549 cells in vitro. Gambogic acid also increased the mRNA and protein expression of E-cadherin, but repressed the mRNA and protein expression of N-cadherin, vimentin, and transcription factor TWIST1. Further examination of the mechanism revealed that the nuclear factor κB (NF-κB) pathway is involved in this regulation of EMT-related biomarkers. Gambogic acid inhibited NF-κB p65 nuclear translocation and the phosphorylation of the inhibitor of NF-κB (IκBα) and IκBα kinase (IKKα). Gambogic acid also suppressed the EMT induced by TGFβ1 and tumor necrosis factor α by inhibiting the NF-κB pathway. Our data also indicate that gambogic acid inhibited the primary lesion and lung metastasis of orthotopic model of A549 cells in vivo. We propose that gambogic acid might be developed as a candidate drug with therapeutic potential for the treatment of cancer invasion and migration.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Natural Medicines, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shuai Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, People's Republic of China
| | - Xiuming Song
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, People's Republic of China
| | - Yuyuan Yao
- State Key Laboratory of Natural Medicines, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qidong You
- State Key Laboratory of Natural Medicines, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
117
|
Altered DNA methylation indicates an oscillatory flow mediated epithelial-to-mesenchymal transition signature in ascending aorta of patients with bicuspid aortic valve. Sci Rep 2018; 8:2777. [PMID: 29426841 PMCID: PMC5807320 DOI: 10.1038/s41598-018-20642-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Disturbed flow has been suggested to contribute to aneurysm susceptibility in bicuspid aortic valve (BAV) patients. Lately, flow has emerged as an important modulator of DNA methylation. Hear we combined global methylation analysis with in vitro studies of flow-sensitive methylation to identify biological processes associated with BAV-aortopathy and the potential contribution of flow. Biopsies from non-dilated and dilated ascending aortas were collected from BAV (n = 21) and tricuspid aortic valve (TAV) patients (n = 23). DNA methylation and gene expression was measured in aortic intima-media tissue samples, and in EA.hy926 and primary aortic endothelial cells (ECs) isolated from BAV and TAV exposed to oscillatory (±12 dynes/cm2) or laminar (12 dynes/cm2) flow. We show methylation changes related to epithelial-mesenchymal-transition (EMT) in the non-dilated BAV aorta, associated with oscillatory flow related to endocytosis. The results indicate that the flow-response in BAV ECs involves hypomethylation and increased expression of WNT/β-catenin genes, as opposed to an angiogenic profile in TAV ECs. The EMT-signature was exasperated in dilated BAV aortas. Aberrant EMT in BAV aortic walls could contribute to increased aneurysm susceptibility, and may be due to disturbed flow-exposure. Perturbations during the spatiotemporally related embryonic development of ascending aorta and semilunar valves can however not be excluded.
Collapse
|
118
|
Expression of ICAM-1, E-cadherin, periostin and midkine in metastases of pancreatic ductal adenocarcinomas. Exp Mol Pathol 2018; 104:109-113. [PMID: 29355490 DOI: 10.1016/j.yexmp.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/10/2018] [Indexed: 01/05/2023]
Abstract
Development and progression of malignant tumors is in part characterized by the ability of a tumor cell to overcome cell-cell and cell-matrix adhesion and to disseminate in organs distinct from that in which they originated. This study was undertaken to analyze the clinical significance of the expression of the following cell-cell and cell-matrix adhesion molecules in pancreatic ductal adenocarcinomas (PDACs) and synchronous liver metastases: intercellular adhesion molecule 1 (ICAM-1), E-cadherin, periostin, and midkine (MK). ICAM-1, E-cadherin, periostin and MK expression was analyzed by immunohistochemistry on a tissue microarray containing 34 PDACs and 12 liver metastasis specimens. ICAM-1 expression was predominantly localized in the membranes of the cells and was found in weak to moderate intensities in PDACs and liver metastases. E-cadherin expression was absent in the majority of PDACs and corresponding liver metastases. The secreted proteins periostin and MK were expressed in various intensities in primary cancers and liver metastases. Statistical analysis demonstrated that the expression levels of the analyzed markers were neither significantly associated with metastasis in PDACs nor with clinical outcome of patients. Our study shows that the expression of the cell-cell and cell-matrix adhesion molecules ICAM-1, E-cadherin, periostin and MK was not significantly linked to metastatic disease in PDACs. Moreover, our study excludes the analyzed markers as prognostic markers in PDACs.
Collapse
|
119
|
Rodriguez-Monterrosas C, Díaz-Aragon R, Leal-Orta E, Cortes-Reynosa P, Perez Salazar E. Insulin induces an EMT-like process in mammary epithelial cells MCF10A. J Cell Biochem 2018; 119:4061-4071. [PMID: 29236310 DOI: 10.1002/jcb.26582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus has been related with an increased risk of breast cancer, whereas it has been suggested that links between diabetes mellitus and cancer are hyperinsulinemia, insulin resistance, hyperglycemia, and chronic inflammation induced by adipose tissue. Contribution of hyperinsulinemia to carcinogenesis is mediated through resistance to endogenous insulin and by exogenous insulin used in treatment. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to a mesenchymal state that has been implicated in cancer progression. However, the role of insulin in EMT process has not been studied in detail. In the present study, we demonstrate that insulin induces downregulation of E-cadherin expression, accompanied with an increase of N-cadherin and vimentin expression, and an increase of MMP-2 and -9 secretions. Insulin also induces FAK activation, an increase of NFκB DNA binding activity, migration, and invasion of mammary non-tumorigenic epithelial cells MCF10A. In addition, migration requires the activity of insulin receptors and insulin-like growth factor receptor 1 (IGF1R). In summary, our results demonstrate that insulin induces an EMT-like process in MCF10A cells.
Collapse
Affiliation(s)
| | - Ricardo Díaz-Aragon
- Departamento de Biologia Celular, Cinvestav-IPN, San Pedro Zacatenco, Mexico DF, Mexico
| | - Elizabeth Leal-Orta
- Departamento de Biologia Celular, Cinvestav-IPN, San Pedro Zacatenco, Mexico DF, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, San Pedro Zacatenco, Mexico DF, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, San Pedro Zacatenco, Mexico DF, Mexico
| |
Collapse
|
120
|
Dinicola S, Masiello MG, Proietti S, Coluccia P, Fabrizi G, Catizone A, Ricci G, de Toma G, Bizzarri M, Cucina A. Nicotine increases colon cancer cell migration and invasion through epithelial to mesenchymal transition (EMT): COX-2 involvement. J Cell Physiol 2018; 233:4935-4948. [PMID: 29215713 DOI: 10.1002/jcp.26323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022]
Abstract
Cigarette smoking is a recognized risk factor for colon cancer and nicotine, the principal active component of tobacco, plays a pivotal role in increasing colon cancer cell growth and survival. The aim of this study was to determine the effect of nicotine on cellular Caco-2 and HCT-8 migration and invasion, focusing on epithelial to mesenchymal transition (EMT) induction, and COX-2 pathway involvement. In both these cell lines, treatment with nicotine increased COX-2 expression and the release of its enzymatic product PGE2 . Moreover, nicotine-stimulated cells showed increased migratory and invasive behavior, mesenchymal markers up-regulation and epithelial markers down-regulation, nuclear translocation of the β-catenin, increase of MMP-2 and MMP-9 activity, and enhanced NF-κB expression. Noticeably, all these effects are largely mediated by COX-2 activity, as simultaneous treatment of both cell lines with nicotine and NS-398, a selective COX-2 inhibitor, greatly reduced the number of migrating and invading cells and reverted nicotine-induced EMT. These findings emphasize that nicotine triggers EMT, leading hence to increased migration and invasiveness of colon cancer cells. Thereby, the use of COX-2 inhibitor drugs might likely counteract nicotine-mediated EMT effects on colon cancer development and progression.
Collapse
Affiliation(s)
- Simona Dinicola
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria G Masiello
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sara Proietti
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Coluccia
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Gianmarco Fabrizi
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Giorgio de Toma
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy.,Policlinico Umberto I, Rome, Italy
| |
Collapse
|
121
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
122
|
Li X, Yan X, Wang Y, Wang J, Zhou F, Wang H, Xie W, Kong H. NLRP3 inflammasome inhibition attenuates silica-induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells. Exp Cell Res 2018; 362:489-497. [DOI: 10.1016/j.yexcr.2017.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
|
123
|
Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122589. [PMID: 29194365 PMCID: PMC5751192 DOI: 10.3390/ijms18122589] [Citation(s) in RCA: 484] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
124
|
Chuffa LGDA, Reiter RJ, Lupi LA. Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis 2017; 38:945-952. [PMID: 28575150 DOI: 10.1093/carcin/bgx054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate of all gynecological cancers, and most patients develop chemoresistance after first-line treatments. Despite recent advances, the 5-year relative survival is ~45% for all OC subtypes, and invasive epithelial OC has only a 17% survival rate when diagnosed at a late stage. Identification of new efficacious molecules or biomarkers represents important opportunities in the treatment of OC. The pharmacological and physiological properties of melatonin indicate this agent could be useful against OC progression and metastasis. In normal cells, melatonin has potent antioxidant and anti-apoptotic actions. Conversely, melatonin has pro-oxidant as well as anti-proliferative, anti-angiogenic and immunomodulatory properties in many cancer types including hormone-dependent cancers. Although melatonin receptors have been identified in OC cells, the exact mechanism by which melatonin induces anticancer activities remains incompletely understood. Clinical studies have reported negative correlation between aggressiveness of OC and serum levels of melatonin, reinforcing the idea that melatonin may be a critical factor determining OC development. In vitro and in vivo studies suggest melatonin differentially regulates multiple signaling pathways in OC cells. This focused review explores the potential mechanisms of action of melatonin on cultured OC cells and in experimental models of OC in an attempt to clarify how melatonin modulates the signaling pathways involved in cancer cell apoptosis, survival, inflammation, proliferation and metabolic processes. Based on the evidence presented, we feel that melatonin, as an agent that controls cellular signals associated with malignancy, may be beneficial in combination with other therapeutics for OC treatment.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu-SP, Brazil and Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA
| | - Russel J Reiter
- Department of Anatomy, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu-SP, Brazil and Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu-SP, Brazil and Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA
| |
Collapse
|
125
|
Baskari S, Govatati S, Madhuri V, Nallabelli N, K PM, Naik S, Poornachandar, Balka S, Tamanam RR, Devi VR. Influence of autocrine growth hormone on NF-κB activation leading to epithelial–mesenchymal transition of mammary carcinoma. Tumour Biol 2017; 39:1010428317719121. [DOI: 10.1177/1010428317719121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Srinivas Baskari
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Suresh Govatati
- Department of Biochemistry, Andhra University, Visakhapatnam, India
| | - Vijaya Madhuri
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Nayudu Nallabelli
- Council of Scientific & Industrial Research (CSIR)—Institute of Microbial Technology, Chandigarh, India
| | - Paul Marx K
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Srinivas Naik
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Poornachandar
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Swarna Balka
- Department of Biochemistry, Osmania University, Hyderabad, India
| | | | | |
Collapse
|
126
|
Sethi GS, Dharwal V, Naura AS. Poly(ADP-Ribose)Polymerase-1 in Lung Inflammatory Disorders: A Review. Front Immunol 2017; 8:1172. [PMID: 28974953 PMCID: PMC5610677 DOI: 10.3389/fimmu.2017.01172] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Asthma, acute lung injury (ALI), and chronic obstructive pulmonary disease (COPD) are lung inflammatory disorders with a common outcome, that is, difficulty in breathing. Corticosteroids, a class of potent anti-inflammatory drugs, have shown less success in the treatment/management of these disorders, particularly ALI and COPD; thus, alternative therapies are needed. Poly(ADP-ribose)polymerases (PARPs) are the post-translational modifying enzymes with a primary role in DNA repair. During the last two decades, several studies have reported the critical role played by PARPs in a good of inflammatory disorders. In the current review, the studies that address the role of PARPs in asthma, ALI, and COPD have been discussed. Among the different members of the family, PARP-1 emerges as a key player in the orchestration of lung inflammation in asthma and ALI. In addition, PARP activation seems to be associated with the progression of COPD. Furthermore, PARP-14 seems to play a crucial role in asthma. STAT-6 and GATA-3 are reported to be central players in PARP-1-mediated eosinophilic inflammation in asthma. Interestingly, oxidative stress-PARP-1-NF-κB axis appears to be tightly linked with inflammatory response in all three-lung diseases despite their distinct pathophysiologies. The present review sheds light on PARP-1-regulated factors, which may be common or differential players in asthma/ALI/COPD and put forward our prospective for future studies.
Collapse
Affiliation(s)
| | - Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India
| |
Collapse
|
127
|
Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther 2017; 2:17036. [PMID: 29263924 PMCID: PMC5661624 DOI: 10.1038/sigtrans.2017.36] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is recognized as a driving force of cancer cell metastasis and drug resistance, two leading causes of cancer recurrence and cancer-related death. It is, therefore, logical in cancer therapy to target the EMT switch to prevent such cancer metastasis and recurrence. Previous reports have indicated that growth factors (such as epidermal growth factor and fibroblast growth factor) and cytokines (such as the transforming growth factor beta (TGF-β) family) are major stimulators of EMT. However, the mechanisms underlying EMT initiation and progression remain unclear. Recently, emerging evidence has suggested that reactive oxygen species (ROS), important cellular secondary messengers involved in diverse biological events in cancer cells, play essential roles in the EMT process in cancer cells by regulating extracellular matrix (ECM) remodeling, cytoskeleton remodeling, cell–cell junctions, and cell mobility. Thus, targeting EMT by manipulating the intracellular redox status may hold promise for cancer therapy. Herein, we will address recent advances in redox biology involved in the EMT process in cancer cells, which will contribute to the development of novel therapeutic strategies by targeting redox-regulated EMT for cancer treatment.
Collapse
|
128
|
Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E. A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol (Dordr) 2017; 40:303-339. [DOI: 10.1007/s13402-017-0341-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
|
129
|
Chen H, Shien K, Suzawa K, Tsukuda K, Tomida S, Sato H, Torigoe H, Watanabe M, Namba K, Yamamoto H, Soh J, Asano H, Miyoshi S, Toyooka S. Elacridar, a third-generation ABCB1 inhibitor, overcomes resistance to docetaxel in non-small cell lung cancer. Oncol Lett 2017; 14:4349-4354. [PMID: 28959367 DOI: 10.3892/ol.2017.6678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 06/14/2017] [Indexed: 01/06/2023] Open
Abstract
Docetaxel is a third-generation chemotherapeutic drug that is widely used in the treatment of patients with non-small cell lung cancer (NSCLC). However, the majority of patients with NSCLC eventually acquire resistance to the treatment. In the present study, the mechanism of acquired resistance to docetaxel treatment in lung cancer cells was investigated. The three NSCLC cell lines, H1299 with wild-type epidermal growth factor receptor (EGFR), EGFR-mutant HCC4006 and HCC827, and experimentally established docetaxel-resistant (DR) cells, H1299-DR, HCC827-DR, and HCC4006-DR were used with stepwise increases in concentrations of docetaxel. It was demonstrated that the established cell lines showed resistance to docetaxel and EGFR-tyrosine kinase inhibitors (TKIs). Molecular analysis revealed that all of the resistant cell lines highly expressed ATP binding cassette subfamily B member 1 (ABCB1), which is also known as P-glycoprotein or MDR1. Furthermore, HCC827-DR and HCC4006-DR cells exhibited a cancer stem cell-like marker and epithelial-to-mesenchymal transition features, respectively. Elacridar (GF120918), a third-generation inhibitor of ABCB1, was able to overcome resistance to docetaxel. Additionally, knockdown of ABCB1 using small interfering RNA (si)-ABCB1 recovered sensitivity to docetaxel. However, elacridar and si-ABCB1 could not recover sensitivity to EGFR-TKIs in established resistant cells. The results of the present study revealed that docetaxel-resistant NSCLC cells also acquired cross-resistance to EGFR-TKI therapy through mechanisms other than ABCB1, that ABCB1 serves an important role in acquired resistance to docetaxel in lung cancer, and that combination therapy with elacridar can overcome ABCB1-mediated docetaxel resistance.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazunori Tsukuda
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shuta Tomida
- Department of Bioinformatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroki Sato
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hidejiro Torigoe
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Mototsugu Watanabe
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kei Namba
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Junichi Soh
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroaki Asano
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinichiro Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
130
|
An SM, Lei HM, Ding XP, Sun F, Zhang C, Tang YB, Chen HZ, Shen Y, Zhu L. Interleukin-6 identified as an important factor in hypoxia- and aldehyde dehydrogenase-based gefitinib adaptive resistance in non-small cell lung cancer cells. Oncol Lett 2017; 14:3445-3454. [PMID: 28927099 PMCID: PMC5588073 DOI: 10.3892/ol.2017.6613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/25/2017] [Indexed: 12/23/2022] Open
Abstract
Gefitinib resistance and relapse of the disease were the greatest challenges facing clinical therapy of non-small-cell lung cancer (NSCLC). Of note, regarding the hypoxia condition in solid tumor tissues in vivo, roles of hypoxia in gefitinib adaptive resistance and its association with lung cancer stem cells (LCSCs) have not been fully elucidated. In the present study, the role of hypoxia in gefitinib adaptive resistance and its association with aldehyde dehydrogenase (ALDH)-based LCSC gefitinib resistance were comparatively studied using RNA-sequencing (RNA-seq) technology. Co-treatment of PC9 cells with gefitinib and hypoxia (1% O2) significantly enhanced adaptive resistance compared with gefitinib or hypoxia treatment alone. An ALDEFLUOR assay demonstrated that there was a significant increase of ALDH expression level in hypoxia and gefitinib co-treated PC9 cells, in addition to a higher ratio of G0/G1 quiescent cell enrichment and acquisition of epithelial-mesenchymal transition. RNA-seq analysis revealed that interleukin-6 (IL-6) is an important common factor in hypoxia and ALDH-based gefitinib resistance, supported by inflammation-associated tumor necrosis factor, nuclear factor-κB and Janus kinase-signal transducer and activator of transcription signaling pathway enrichment. Furthermore, exposure of PC9 and HCC827 cells to IL-6 increased gefitinib adaptive resistance. Consequently, IL-6 expression level was a poor prognostic marker for patients with NSCLC and adenocarcinoma. Thus, targeting IL-6 combined with tyrosine kinase inhibitor treatment may be promising in NSCLC clinical therapy in the future.
Collapse
Affiliation(s)
- Shi-Min An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| | - Hui-Min Lei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xu-Ping Ding
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Fan Sun
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Department of Pharmacy, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Chun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
131
|
Fernandez HR, Lindén SK. The aspirin metabolite salicylate inhibits lysine acetyltransferases and MUC1 induced epithelial to mesenchymal transition. Sci Rep 2017; 7:5626. [PMID: 28717171 PMCID: PMC5514058 DOI: 10.1038/s41598-017-06149-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
MUC1 is a transmembrane mucin that can promote cancer progression, and its upregulation correlates with a worse prognosis in colon cancer. We examined the effects of overexpression of MUC1 in colon cancer cells, finding that it induced epithelial to mesenchymal transition (EMT), including enhanced migration and invasion, and increased Akt phosphorylation. When the clones were treated with the aspirin metabolite salicylate, Akt phosphorylation was decreased and EMT inhibited. As the salicylate motif is necessary for the activity of the lysine acetyltransferase (KAT) inhibitor anacardic acid, we hypothesized these effects were associated with the inhibition of KAT activity. This was supported by anacardic acid treatment producing the same effect on EMT. In vitro KAT assays confirmed that salicylate directly inhibited PCAF/Kat2b, Tip60/Kat5 and hMOF/Kat8, and this inhibition was likely involved in the reversal of EMT in the metastatic prostate cancer cell line PC-3. Salicylate treatment also inhibited EMT induced by cytokines, illustrating the general effect it had on this process. The inhibition of both EMT and KATs by salicylate presents a little explored activity that could explain some of the anti-cancer effects of aspirin.
Collapse
Affiliation(s)
- Harvey R Fernandez
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara K Lindén
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
132
|
He SJ, Xiang CQ, Zhang Y, Lu XT, Chen HW, Xiong LX. Recent progress on the effects of microRNAs and natural products on tumor epithelial-mesenchymal transition. Onco Targets Ther 2017; 10:3435-3451. [PMID: 28744148 PMCID: PMC5513877 DOI: 10.2147/ott.s139546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients’ prognosis. MicroRNAs (miRNAs) are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3′ untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects.
Collapse
Affiliation(s)
- Shu-Jin He
- Department of Pathophysiology, Medical College, Nanchang University.,Second Clinical Medical College, Nanchang University
| | - Chu-Qi Xiang
- Department of Pathophysiology, Medical College, Nanchang University.,First Clinical Medical College, Nanchang University
| | - Yu Zhang
- First Clinical Medical College, Nanchang University
| | - Xiang-Tong Lu
- Department of Pathophysiology, Medical College, Nanchang University
| | - Hou-Wen Chen
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| |
Collapse
|
133
|
AQP5 promotes hepatocellular carcinoma metastasis via NF-κB-regulated epithelial-mesenchymal transition. Biochem Biophys Res Commun 2017; 490:343-348. [PMID: 28619511 DOI: 10.1016/j.bbrc.2017.06.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022]
Abstract
Aquaporin 5 (AQP5), a transmembrane protein, is known for its involvement in the progress of many diseases such as chronic kidney disease and systemic disease. Recently, AQP5 has been reported to play an important role in cancer progression. However, little is known about its precise functions in hepatocellular carcinoma (HCC). This study aimed to investigate the specific role of AQP5 in HCC. The results showed that AQP5 was highly expressed in HCC cell lines and its down-regulation inhibited HCC cell invasion and tumor metastasis in vitro and in vivo. In addition, down-regulation of AQP5 suppressed the epithelial-mesenchymal transition (EMT) process in HCC cells by modulating EMT-related molecules such as E-cadherin, α-catenin, N-cadherin and Vimentin. Further studies on corresponding mechanisms indicated that AQP5 down-regulation inhibited HCC metastasis and EMT partly via inactivation of the NF-κB signaling pathway. Taken together, these findings suggest that AQP5 may be a potential therapeutic target for HCC.
Collapse
|
134
|
Soubannier V, Stifani S. NF-κB Signalling in Glioblastoma. Biomedicines 2017; 5:biomedicines5020029. [PMID: 28598356 PMCID: PMC5489815 DOI: 10.3390/biomedicines5020029] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor regulating a wide array of genes mediating numerous cellular processes such as proliferation, differentiation, motility and survival, to name a few. Aberrant activation of NF-κB is a frequent event in numerous cancers, including glioblastoma, the most common and lethal form of brain tumours of glial cell origin (collectively termed gliomas). Glioblastoma is characterized by high cellular heterogeneity, resistance to therapy and almost inevitable recurrence after surgery and treatment. NF-κB is aberrantly activated in response to a variety of stimuli in glioblastoma, where its activity has been implicated in processes ranging from maintenance of cancer stem-like cells, stimulation of cancer cell invasion, promotion of mesenchymal identity, and resistance to radiotherapy. This review examines the mechanisms of NF-κB activation in glioblastoma, the involvement of NF-κB in several mechanisms underlying glioblastoma propagation, and discusses some of the important questions of future research into the roles of NF-κB in glioblastoma.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| |
Collapse
|
135
|
Wang Z, Zhai Z, Du X. Celastrol inhibits migration and invasion through blocking the NF-κB pathway in ovarian cancer cells. Exp Ther Med 2017; 14:819-824. [PMID: 28673005 DOI: 10.3892/etm.2017.4568] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Metastatic ovarian cancer is a major clinical challenge with poor prognosis and high mortality. Celastrol is a natural compound that has exhibits antiproliferative activity; however, its effects on metastasis-related phenotypes in ovarian cancer models are unclear. In the current study, the anti-invasive activities and associated signaling pathways of celastrol were determined in ovarian cancer cells. Cell proliferation was tested by MTT assay. Cell migration was detected by wound healing and Transwell assays, while cell invasion was detected by a Matrigel-coated Transwell method. In addition, nuclear factor (NF)-κB and matrix metalloproteinase (MMP) expression was examined by western blotting, and MMP-2/-9 activities were determined by gelatin zymography. At sub-toxic concentrations (<0.5 µM), celastrol inhibited migration and invasion in a concentration-dependent manner in SKOV-3 and OVCAR-3 cells. At the molecular level, celastrol blocked the canonical NF-κB pathway by inhibiting IκBα phosphorylation, and preventing IκBα degradation and p65 accumulation. Furthermore, the expression and activity of the NF-κB target protein MMP-9, but not MMP-2, were inhibited by celastrol. Furthermore, celastrol showed no synergistic effect with MG132, an NF-κB inhibitor. In conclusion, celastrol exhibited significant anti-invasive activities in ovarian cancer cells. Such functions may be mediated via NF-κB pathway blockade. The results of this in vitro study strengthen the value of applying celastrol as a potential clinical intervention modality for delaying ovarian cancer metastasis. This, celastrol warrants further preclinical investigation.
Collapse
Affiliation(s)
- Zhongye Wang
- Department of Obstetrics and Gynecology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Zhenyuan Zhai
- Department of Obstetrics and Gynecology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Xiulan Du
- Department of Obstetrics and Gynecology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
136
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
137
|
He G, Ma M, Yang W, Wang H, Zhang Y, Gao MQ. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells. Int J Biol Sci 2017; 13:604-614. [PMID: 28539833 PMCID: PMC5441177 DOI: 10.7150/ijbs.19591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/19/2017] [Indexed: 01/17/2023] Open
Abstract
Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.
Collapse
Affiliation(s)
- Guiliang He
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengru Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming-Qing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
138
|
Ordoñez-Moreno A, Rodriguez-Monterrosas C, Cortes-Reynosa P, Perez-Carreon JI, Perez Salazar E. Erythropoietin Induces an Epithelial to Mesenchymal Transition-Like Process in Mammary Epithelial Cells MCF10A. J Cell Biochem 2017; 118:2983-2992. [PMID: 28247960 DOI: 10.1002/jcb.25959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022]
Abstract
Anemia is associated with chemotherapy treatment in cancer patients. Erythropoietin (EPO) has been used to treat anemia of cancer patients, because it stimulates erythropoiesis. However, treatment of breast cancer patients with EPO has been associated with poor prognosis and decrease of survival. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to a mesenchymal state. It has been implicated in tumor progression, because epithelial cells acquire the capacity to execute the multiple steps of invasion/metastasis process. However, the role of EPO on EMT process in human mammary epithelial cells has not been studied. In the present study, we demonstrate that EPO promotes a decrease of E-cadherin expression, an increase of N-cadherin, vimentin, and Snail2 expression, activation of FAK and Src kinases and an increase of MMP-2 and MMP-9 secretions. Moreover, EPO induces an increase of NFκB DNA binding activity, an increase of binding of p50 and p65 NFκB subunits to Snail1 promoter, migration, and invasion in mammary non-tumorigenic epithelial cells MCF10A. In summary, these findings demonstrate, for the first time, that EPO induces an EMT-like process in mammary non-tumorigenic epithelial cells. J. Cell. Biochem. 118: 2983-2992, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Pedro Cortes-Reynosa
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN # 2508, San Pedro Zacatenco, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN # 2508, San Pedro Zacatenco, Mexico
| |
Collapse
|
139
|
Lu Z, Li Y, Wang J, Che Y, Sun S, Huang J, Chen Z, He J. Long non-coding RNA NKILA inhibits migration and invasion of non-small cell lung cancer via NF-κB/Snail pathway. J Exp Clin Cancer Res 2017; 36:54. [PMID: 28412955 PMCID: PMC5393036 DOI: 10.1186/s13046-017-0518-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/18/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Numerous studies have shown that long non-coding RNAs (lncRNAs) play key roles during multiple cancer processes, such as cell proliferation, apoptosis, migration and invasion. The previous studies found that NKILA interacted with and suppressed the nuclear translocation of NF-KappaB, which influenced metastasis and prognosis in breast cancer. However the clinical significance and biological role of NKILA in non-small cell lung cancer (NSCLC) remains unknown. METHODS We examined expression levels of NKILA in 106 pairs of NSCLC tissues and cell lines. The expression level of NKILA after TGF-β1 stimulation also was examined by qRT-PCR and validated by Chromatin immunoprecipitation (ChIP). Gain-of-function and loss-of-function assays were performed to examine the effect of NKILA on proliferation, migration and invasion of NSCLC cells. RNA immunoprecipitation (RIP), western blot and rescue experiments were carried out to reveal the interrelation between NKILA, NF-κB and EMT signal pathway. RESULTS The expression of NKILA was down-regulated in NSCLC cancer tissues compared with matched adjacent noncancerous tissues, and lower NKILA expression in tumor tissues were significantly correlated with lymph node metastasis and advanced TNM stage. We found that the expression of NKILA was mainly regulated by classical TGF-β signal pathway in NSCLC cells rather than NF-κB pathway reported in breast cancer. Gain and loss of function assays found that NKILA inhibited migration, invasion and viability of NSCLC cells. Mechanistic study showed that NKILA attenuated Snail expression via inhibiting the phosphorylation of IκBα and NF-κB activation, subsequently suppressed the expression of markers of epithelial-mesenchymal transition process. CONCLUSIONS The present study found that the expression of NKILA was downregulated in tumor tissues of NSCLC, which improved the metastasis of NSCLC patients. In vitro studies further clarified that the expression of NKILA was regulated through classical TGF-β signal pathway, which subsequently inhibited migration and invasion of NSCLC cells through interfering NF-κB/Snail signal pathway in NSCLC cells.
Collapse
Affiliation(s)
- Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021 China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021 China
| | - Jingnan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021 China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021 China
| | - Shouguo Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021 China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021 China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021 China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021 China
| |
Collapse
|
140
|
Chung I, Hah YS, Ju S, Kim JH, Yoo WS, Cho HY, Yoo JM, Seo SW, Choi WS, Kim SJ. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells. Curr Eye Res 2017. [PMID: 28632030 DOI: 10.1080/02713683.2016.1270327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. METHODS Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. RESULTS At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm2) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. CONCLUSIONS Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.
Collapse
Affiliation(s)
- Inyoung Chung
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Young-Sool Hah
- b Biomedical Research Institute , Gyeongsang National University Hospital, Institute of Health Sciences , Jinju , Korea
| | - SunMi Ju
- c Division of Pulmonology and Allergy, Department of Internal Medicine , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Ji-Hye Kim
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Woong-Sun Yoo
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Hee-Young Cho
- b Biomedical Research Institute , Gyeongsang National University Hospital, Institute of Health Sciences , Jinju , Korea
| | - Ji-Myong Yoo
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Seong-Wook Seo
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Wan-Sung Choi
- d Department of Anatomy and Neurobiology, Institute of Health Sciences , Gyeongsang National University School of Medicine , Jinju , Korea
| | - Seong-Jae Kim
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| |
Collapse
|
141
|
Feng H, Lu JJ, Wang Y, Pei L, Chen X. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr 2017; 11:464-475. [PMID: 28146373 DOI: 10.1080/19336918.2016.1259058] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), the transdifferentiation of epithelial cells into mesenchymal cells, has been implicated in the metastasis and provides novel strategies for cancer therapy. Osthole (OST), a dominant active constituent of Chinese herb Cnidium monnieri, has been reported to inhibit cancer metastasis while the mechanisms remains unclear. Here, we studied the inhibitory effect and mechanisms of OST on TGF-β1-induced EMT in A549 cells. Cells were treated with TGF-β1 in the absence and presence of OST. The morphological alterations were observed with a microscopy. The protein and mRNA expressions were determined by Western blotting and real-time PCR. The protein localization was detected with immunofluorescence. The adhesion, migration, and invasion were determined by Matrigel, wound-healing, and Transwell assays. TGF-β1 treatment induced spindle-shaped alterations of cells, upregulation of N-cadherin, Vimentin, NF-κB p65, and downregulation of E-cadherin. Dysregulated membrane expression and mRNA expression of E-cadherin and N-cadherin were observed after TGF-β1 treatment. TGF-β1 increased abilities of migration and invasion and triggered the nuclear translocation of NF-κB p65. These alterations were dramatically inhibited by OST. Furthermore, PDTC, a NF-κB inhibitor, showed similar effects. In addition, TGF-β1-induced expression of Snail was significantly inhibited by OST and silenced Snail partially reversed TGF-β1-induced EMT biomarkers without affecting NF-κB p-65. In conclusion, OST inhibited TGF-β1-induced EMT, adhesion, migration, and invasion through inactivation of NF-κB-Snail pathways in A549 cells. This study provides novel molecular mechanisms for the anti-metastatic effect of OST.
Collapse
Affiliation(s)
- Haitao Feng
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Jin-Jian Lu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Lixia Pei
- b Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau , China
| |
Collapse
|
142
|
Pazos MC, Abramovich D, Bechis A, Accialini P, Parborell F, Tesone M, Irusta G. Gamma secretase inhibitor impairs epithelial-to-mesenchymal transition induced by TGF-β in ovarian tumor cell lines. Mol Cell Endocrinol 2017; 440:125-137. [PMID: 27908834 DOI: 10.1016/j.mce.2016.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
Ovarian cancer is characterized by being highly metastatic, a feature that represents the main cause of failure of the treatment. This study investigated the effects of γ-secretase inhibition on the TGF-β-induced epithelial-mesenchymal transition (EMT) process in ovarian cancer cell lines. SKOV3 cells incubated in the presence of TGF-β showed morphological and biochemical changes related to EMT, which were blocked by co-stimulation with TGF-β and the γ-secretase inhibitor DAPT. In SKOV3 and IGROV1 cells, the co-stimulation blocked the cadherin switch and the increase in the transcription factors Snail, Slug, Twist and Zeb1 induced by TGF-β. DAPT impaired the translocation of phospho-β-catenin to the inner cell compartment observed in TGF-β-treated cells, but was not able to block the induction at protein level induced by TGF-β. Moreover, the inhibitor blocked the increased cell migration and invasiveness ability of both cell lines induced by TGF-β. Notch target genes (Hes1 and Hey1) were induced by TGF-β, decreased by DAPT treatment and remained low in the presence of both stimuli. However, DAPT alone caused no effects on most of the parameters analyzed. These results demonstrate that the γ-secretase inhibitor used in this study exerted a blockade on TGF-β-induced EMT in ovarian cancer cells.
Collapse
Affiliation(s)
- M C Pazos
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - D Abramovich
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - A Bechis
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - P Accialini
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - F Parborell
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - M Tesone
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - G Irusta
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
143
|
Martin M, Hua L, Wang B, Wei H, Prabhu L, Hartley AV, Jiang G, Liu Y, Lu T. Novel Serine 176 Phosphorylation of YBX1 Activates NF-κB in Colon Cancer. J Biol Chem 2017; 292:3433-3444. [PMID: 28077578 DOI: 10.1074/jbc.m116.740258] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Y box protein 1 (YBX1) is a well known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Previously, we have shown that YBX1 could function as a tumor promoter through phosphorylation of its Ser-165 residue, leading to the activation of the NF-κB signaling pathway (1). In this study, using mass spectrometry analysis, we discovered a distinct phosphorylation site, Ser-176, on YBX1. Overexpression of the YBX1-S176A (serine-to-alanine) mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB-activating ability compared with that of WT-YBX1, confirming that Ser-176 phosphorylation is critical for the activation of NF-κB by YBX1. Importantly, the mutant of Ser-176 and the previously reported Ser-165 sites regulate distinct groups of NF-κB target genes, suggesting the unique and irreplaceable function of each of these two phosphorylated serine residues. Our important findings could provide a novel cancer therapy strategy by blocking either Ser-176 or Ser-165 phosphorylation or both of YBX1 in colon cancer.
Collapse
Affiliation(s)
| | | | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Han Wei
- Departments of Pharmacology and Toxicology
| | | | | | - Guanglong Jiang
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yunlong Liu
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tao Lu
- Departments of Pharmacology and Toxicology; Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202; Biochemistry and Molecular Biology.
| |
Collapse
|
144
|
Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemo/immuno-resistance in cancer. Drug Resist Updat 2017; 30:28-38. [PMID: 28363333 DOI: 10.1016/j.drup.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Several gene products have been postulated to mediate inherent and/or acquired anticancer drug resistance and tumor metastasis. Among these, the metastasis suppressor and chemo-immuno-sensitizing gene product, Raf Kinase Inhibitor Protein (RKIP), is poorly expressed in many cancers. In contrast, the metastasis inducer and chemo-immuno-resistant factor Yin Yang 1 (YY1) is overexpressed in many cancers. This inverse relationship between RKIP and YY1 expression suggests that these two gene products may be regulated via cross-talks of molecular signaling pathways, culminating in the expression of different phenotypes based on their targets. Analyses of the molecular regulation of the expression patterns of RKIP and YY1 as well as epigenetic, post-transcriptional, and post-translational regulation revealed the existence of several effector mechanisms and crosstalk pathways, of which five pathways of relevance have been identified and analyzed. The five examined cross-talk pathways include the following loops: RKIP/NF-κB/Snail/YY1, p38/MAPK/RKIP/GSK3β/Snail/YY1, RKIP/Smurf2/YY1/Snail, RKIP/MAPK/Myc/Let-7/HMGA2/Snail/YY1, as well as RKIP/GPCR/STAT3/miR-34/YY1. Each loop is comprised of multiple interactions and cascades that provide evidence for YY1's negative regulation of RKIP expression and vice versa. These loops elucidate potential prognostic motifs and targets for therapeutic intervention. Chiefly, these findings suggest that targeted inhibition of YY1 by specific small molecule inhibitors and/or the specific induction of RKIP expression and activity are potential therapeutic strategies to block tumor growth and metastasis in many cancers, as well as to overcome anticancer drug resistance. These strategies present potential alternatives for their synergistic uses in combination with low doses of conventional chemo-immunotherapeutics and hence, increasing survival, reducing toxicity, and improving quality of life.
Collapse
|
145
|
Li H, Lin Z, Bai Y, Chi X, Fu H, Sun R, Liu M, Liu X, Chen L, Shao S. Sinomenine inhibits ovarian cancer cell growth and metastasis by mediating the Wnt/β-catenin pathway via targeting MCM2. RSC Adv 2017. [DOI: 10.1039/c7ra10057d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sinomenine (SIN), an isoquinoline isolated from the Chinese medicinal plantSinomenium acutum, is well known for its curative effect on rheumatic and arthritic diseases.
Collapse
Affiliation(s)
- Huimin Li
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Zhikun Lin
- The First Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Yuxin Bai
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Xinming Chi
- Key Laboratory of Proteomics
- Dalian Medical University
- Dalian
- China
| | - Hailu Fu
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Rui Sun
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Meizi Liu
- The First Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Xuan Liu
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Liying Chen
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Shujuan Shao
- Key Laboratory of Proteomics
- Dalian Medical University
- Dalian
- China
| |
Collapse
|
146
|
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF. Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res 2017; 62. [PMID: 27706852 DOI: 10.1111/jpi.12370] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is a naturally occurring molecule secreted by the pineal gland and known as a gatekeeper of circadian clocks. Mounting evidence indicates that melatonin, employing multiple and interrelated mechanisms, exhibits a variety of oncostatic properties in a myriad of tumors during different stages of their progression. Tumor metastasis, which commonly occurs at the late stage, is responsible for the majority of cancer deaths; metastases lead to the development of secondary tumors distant from a primary site. In reference to melatonin, the vast majority of investigations have focused on tumor development and progression at the primary site. Recently, however, interest has shifted toward the role of melatonin on tumor metastases. In this review, we highlight current advances in understanding the molecular mechanisms by which melatonin counteracts tumor metastases, including experimental and clinical observations; emphasis is placed on the impact of both cancer and non-neoplastic cells within the tumor microenvironment. Due to the broad range of melatonin's actions, the mechanisms underlying its ability to interfere with metastases are numerous. These include modulation of cell-cell and cell-matrix interaction, extracellular matrix remodeling by matrix metalloproteinases, cytoskeleton reorganization, epithelial-mesenchymal transition, and angiogenesis. The evidence discussed herein will serve as a solid foundation for urging basic and clinical studies on the use of melatonin to understand and control metastatic diseases.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
147
|
Kim CW, Hwang KA, Choi KC. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1787-1796. [PMID: 27912881 DOI: 10.1016/j.phymed.2016.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Increased epithelial-mesenchymal transition (EMT) and cell migration and invasion abilities of cancer cells play important roles in the metastatic process of cancer. Resveratrol is a stilbenoid, a type of natural polyphenol found in the skin of grapes, berries, and peanuts. A number of experiments have examined resveratrol's ability to target diverse pathways associated with carcinogenesis and cancer progression. PURPOSE This article aims to present updated overview of the knowledge that resveratrol and its metabolites or analogs have the potential to inhibit metastasis of cancer via affecting many signaling pathways related with EMT, cancer migration, and invasion in diverse organs of the body. CHAPTERS This article starts with a short introduction describing diverse beneficial effects of resveratrol including cancer prevention and the aim of the present study. To address the effects of resveratrol on cancer metastasis, mechanisms of EMT, migration, invasion, and their relevance with cancer metastasis, anti-metastatic effects of resveratrol through EMT-related signaling pathways and inhibitory effects of resveratrol on migration and invasion are highlighted. In addition, anti-metastatic potential of resveratrol metabolites and analogs is addressed. CONCLUSION Resveratrol was demonstrated to turn back the EMT process induced by diverse signaling pathways in several cellular and animal cancer models. In addition, resveratrol can exert chemopreventive efficacies on migration and invasion of cancer cells by inhibiting the related pathways and target molecules. Although these findings display the anti-metastatic potential of resveratrol, more patient-oriented clinical studies demonstrating the marked efficacies of resveratrol in humans are still needed.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
148
|
Katiyar SK. Emerging Phytochemicals for the Prevention and Treatment of Head and Neck Cancer. Molecules 2016; 21:E1610. [PMID: 27886147 PMCID: PMC6273026 DOI: 10.3390/molecules21121610] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 11/17/2022] Open
Abstract
Despite the development of more advanced medical therapies, cancer management remains a problem. Head and neck squamous cell carcinoma (HNSCC) is a particularly challenging malignancy and requires more effective treatment strategies and a reduction in the debilitating morbidities associated with the therapies. Phytochemicals have long been used in ancient systems of medicine, and non-toxic phytochemicals are being considered as new options for the effective management of cancer. Here, we discuss the growth inhibitory and anti-cell migratory actions of proanthocyanidins from grape seeds (GSPs), polyphenols in green tea and honokiol, derived from the Magnolia species. Studies of these phytochemicals using human HNSCC cell lines from different sub-sites have demonstrated significant protective effects against HNSCC in both in vitro and in vivo models. Treatment of human HNSCC cell lines with GSPs, (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic component of green tea or honokiol reduced cell viability and induced apoptosis. These effects have been associated with inhibitory effects of the phytochemicals on the epidermal growth factor receptor (EGFR), and cell cycle regulatory proteins, as well as other major tumor-associated pathways. Similarly, the cell migration capacity of HNSCC cell lines was inhibited. Thus, GSPs, honokiol and EGCG appear to be promising bioactive phytochemicals for the management of head and neck cancer.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35216, USA.
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35216, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
149
|
Todoric J, Antonucci L, Karin M. Targeting Inflammation in Cancer Prevention and Therapy. Cancer Prev Res (Phila) 2016; 9:895-905. [PMID: 27913448 DOI: 10.1158/1940-6207.capr-16-0209] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022]
Abstract
Inflammation is associated with the development and malignant progression of most cancers. As most of the cell types involved in cancer-associated inflammation are genetically stable and thus are not subjected to rapid emergence of drug resistance, the targeting of inflammation represents an attractive strategy both for cancer prevention and for cancer therapy. Tumor-extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, tobacco smoking, asbestos exposure, and excessive alcohol consumption, all of which increase cancer risk and stimulate malignant progression. In contrast, cancer-intrinsic or cancer-elicited inflammation can be triggered by cancer-initiating mutations and can contribute to malignant progression through the recruitment and activation of inflammatory cells. Both extrinsic and intrinsic inflammation can result in immunosuppression, thereby providing a preferred background for tumor development. In clinical trials, lifestyle modifications including healthy diet, exercise, alcohol, and smoking cessation have proven effective in ameliorating inflammation and reducing the risk of cancer-related deaths. In addition, consumption of certain anti-inflammatory drugs, including aspirin, can significantly reduce cancer risk, suggesting that common nonsteroidal anti-inflammatory drugs (NSAID) and more specific COX2 inhibitors can be used in cancer prevention. In addition to being examined for their preventative potential, both NSAIDs and more potent anti-inflammatory antibody-based drugs need to be tested for their ability to augment the efficacy of more conventional therapeutic approaches on the basis of tumor resection, radiation, and cytotoxic chemicals. Cancer Prev Res; 9(12); 895-905. ©2016 AACR.
Collapse
Affiliation(s)
- Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California. .,Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
150
|
Benzina S, Harquail J, Guerrette R, O'Brien P, Jean S, Crapoulet N, Robichaud GA. Breast Cancer Malignant Processes are Regulated by Pax-5 Through the Disruption of FAK Signaling Pathways. J Cancer 2016; 7:2035-2044. [PMID: 28070224 PMCID: PMC5219892 DOI: 10.7150/jca.15200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
The study of genetic factors regulating breast cancer malignancy is a top priority to mitigate the morbidity and mortality associated with this disease. One of these factors, Pax-5, modulates cancer aggressiveness through the regulation of various components of the epithelial to mesenchymal transitioning (EMT) process. We have previously reported that Pax-5 expression profiles in cancer tissues inversely correlate with those of the Focal Adhesion Kinase (FAK), a potent activator of breast cancer malignancy. In this study, we set out to elucidate the molecular and regulatory relationship between Pax-5 and FAK in breast cancer processes. Interestingly, we found that Pax-5 mediated suppression of breast cancer cell migration is dependent of FAK activity. Our mechanistic examination revealed that Pax-5 inhibits FAK expression and activation. We also demonstrate that Pax-5 is a potent modulator of FAK repressors (p53 and miR-135b) and activator (NFκB) which results in the overall suppression of FAK-mediated signaling cascades. Altogether, our findings bring more insight to the molecular triggers regulating phenotypic transitioning process and signaling cascades leading to breast cancer progression.
Collapse
Affiliation(s)
- Sami Benzina
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada E1A 3E9.; Atlantic Cancer Research Institute, Moncton, NB, Canada E1C 8X3
| | - Jason Harquail
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada E1A 3E9.; Atlantic Cancer Research Institute, Moncton, NB, Canada E1C 8X3
| | - Roxann Guerrette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada E1A 3E9.; Atlantic Cancer Research Institute, Moncton, NB, Canada E1C 8X3
| | - Pierre O'Brien
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada E1A 3E9.; Atlantic Cancer Research Institute, Moncton, NB, Canada E1C 8X3
| | - Stéphanie Jean
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada E1A 3E9.; Atlantic Cancer Research Institute, Moncton, NB, Canada E1C 8X3
| | - Nicolas Crapoulet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada E1A 3E9
| | - Gilles A Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada E1A 3E9.; Atlantic Cancer Research Institute, Moncton, NB, Canada E1C 8X3
| |
Collapse
|