101
|
Samarakkody AS, Shin NY, Cantor AB. Role of RUNX Family Transcription Factors in DNA Damage Response. Mol Cells 2020; 43:99-106. [PMID: 32024352 PMCID: PMC7057837 DOI: 10.14348/molcells.2019.0304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023] Open
Abstract
Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.
Collapse
Affiliation(s)
- Ann Sanoji Samarakkody
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Nah-Young Shin
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
- Harvard Stem Cell Institute, Cambridge, MA 0138, USA
| |
Collapse
|
102
|
Replication Protein A (RPA) Mediates Radio-Resistance of Glioblastoma Cancer Stem-Like Cells. Int J Mol Sci 2020; 21:ijms21051588. [PMID: 32111042 PMCID: PMC7084771 DOI: 10.3390/ijms21051588] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma (GBM) is among the deadliest of solid tumors with median survival rates of approximately 12–15 months despite maximal therapeutic intervention. A rare population of self-renewing cells referred to as GBM cancer stem-like cells (GSCs) are believed to be the source of inevitable recurrence in GBM. GSCs exhibit preferential activation of the DNA damage response pathway (DDR) and evade ionizing radiation (IR) therapy by superior execution of DNA repair compared to their differentiated counterparts, differentiated GBM cells (DGCs). Replication Protein A (RPA) plays a central role in most of the DNA metabolic processes essential for genomic stability, including DNA repair. Here, we show that RPA is preferentially expressed by GSCs and high RPA expression informs poor glioma patient survival. RPA loss either by shRNA-mediated silencing or chemical inhibition impairs GSCs’ survival and self-renewal and most importantly, sensitizes these cells to IR. This newly uncovered role of RPA in GSCs supports its potential clinical significance as a druggable biomarker in GBM.
Collapse
|
103
|
Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1429-1449. [PMID: 32048164 DOI: 10.1007/s11427-020-1631-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 12/23/2022]
Abstract
Mammalian mitochondria have small genomes encoding very limited numbers of proteins. Over one thousand proteins and noncoding RNAs encoded by the nuclear genome must be imported from the cytosol into the mitochondria. Here, we report the identification of hundreds of circular RNAs (mecciRNAs) encoded by the mitochondrial genome. We provide both in vitro and in vivo evidence to show that mecciRNAs facilitate the mitochondrial entry of nuclear-encoded proteins by serving as molecular chaperones in the folding of imported proteins. Known components involved in mitochondrial protein and RNA importation, such as TOM40 and PNPASE, interact with mecciRNAs and regulate protein entry. The expression of mecciRNAs is regulated, and these transcripts are critical for the adaption of mitochondria to physiological conditions and diseases such as stresses and cancers by modulating mitochondrial protein importation. mecciRNAs and their associated physiological roles add categories and functions to the known eukaryotic circular RNAs and shed novel light on the communication between mitochondria and the nucleus.
Collapse
|
104
|
Paoletti F, El-Sagheer AH, Allard J, Brown T, Dushek O, Esashi F. Molecular flexibility of DNA as a key determinant of RAD51 recruitment. EMBO J 2020; 39:e103002. [PMID: 31943278 PMCID: PMC7110135 DOI: 10.15252/embj.2019103002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
The timely activation of homologous recombination is essential for the maintenance of genome stability, in which the RAD51 recombinase plays a central role. Biochemically, human RAD51 polymerises faster on single‐stranded DNA (ssDNA) compared to double‐stranded DNA (dsDNA), raising a key conceptual question: how does it discriminate between them? In this study, we tackled this problem by systematically assessing RAD51 binding kinetics on ssDNA and dsDNA differing in length and flexibility using surface plasmon resonance. By directly fitting a mechanistic model to our experimental data, we demonstrate that the RAD51 polymerisation rate positively correlates with the flexibility of DNA. Once the RAD51‐DNA complex is formed, however, RAD51 remains stably bound independent of DNA flexibility, but rapidly dissociates from flexible DNA when RAD51 self‐association is perturbed. This model presents a new general framework suggesting that the flexibility of DNA, which may increase locally as a result of DNA damage, plays an important role in rapidly recruiting repair factors that multimerise at sites of DNA damage.
Collapse
Affiliation(s)
- Federico Paoletti
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Oxford, UK.,Department of Science and Mathematics, Suez University, Suez, Egypt
| | - Jun Allard
- Department of Mathematics, University of California, Irvine, CA, USA
| | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
105
|
Zhang Y, Yu C. Distinct expression and prognostic values of the replication protein A family in gastric cancer. Oncol Lett 2020; 19:1831-1841. [PMID: 32194677 PMCID: PMC7038973 DOI: 10.3892/ol.2020.11253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
The replication protein A (RPA)1-4 family are single-stranded DNA-binding proteins that are essential components of DNA replication, repair and recombination, and cell cycle regulation. The present study aimed to evaluate the prognostic value of the RPA family members in patients with gastric cancer (GC), using datasets retrieved from the Oncomine public database. Datasets were retrieved for the purpose of comparing the RPA expression levels between GC and normal tissues. Additionally, Kaplan-Meier analysis was used to compare the overall survival (OS) times of GC patients that expressed different levels of RPA proteins. RPA1, 2, and 3 expression levels were all significantly upregulated in gastric intestinal-type, diffuse gastric, and gastric mixed adenocarcinomas, compared with those in normal mucosal tissues. Moreover, high mRNA expression levels of RPA3 and 4 predicted poorer OS times in all GCs, as well as patients with human epidermal growth factor receptor 2-negative and -positive GC. The high-risk group, separated by RPA signature, showed a poorer outcome than the low-risk group. RPA3 was the most strongly correlated with CD4+ T-cell levels. In conclusion, RPAs are novel prognostic indicators in GC, and can also predict the features of immunological diseases. Future experimental investigation into the roles of RPAs concerning the pathogenesis and development of GC may provide a novel biomarker or therapeutic target, improving the prognosis of patients with GC.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chaoran Yu
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200025, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200025, P.R. China
| |
Collapse
|
106
|
Singh SP, Kukshal V, De Bona P, Antony E, Galletto R. The mitochondrial single-stranded DNA binding protein from S. cerevisiae, Rim1, does not form stable homo-tetramers and binds DNA as a dimer of dimers. Nucleic Acids Res 2019; 46:7193-7205. [PMID: 29931186 PMCID: PMC6101547 DOI: 10.1093/nar/gky530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023] Open
Abstract
Rim1 is the mitochondrial single-stranded DNA binding protein in Saccharomyces cerevisiae and functions to coordinate replication and maintenance of mtDNA. Rim1 can form homo-tetramers in solution and this species has been assumed to be solely responsible for ssDNA binding. We solved structures of tetrameric Rim1 in two crystals forms which differ in the relative orientation of the dimers within the tetramer. In testing whether the different arrangement of the dimers was due to formation of unstable tetramers, we discovered that while Rim1 forms tetramers at high protein concentration, it dissociates into a smaller oligomeric species at low protein concentrations. A single point mutation at the dimer-dimer interface generates stable dimers and provides support for a dimer-tetramer oligomerization model. The presence of Rim1 dimers in solution becomes evident in DNA binding studies using short ssDNA substrates. However, binding of the first Rim1 dimer is followed by binding of a second dimer, whose affinity depends on the length of the ssDNA. We propose a model where binding of DNA to a dimer of Rim1 induces tetramerization, modulated by the ability of the second dimer to interact with ssDNA.
Collapse
Affiliation(s)
- Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Vandna Kukshal
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Paolo De Bona
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
107
|
Haas KT, Lee M, Esposito A, Venkitaraman AR. Single-molecule localization microscopy reveals molecular transactions during RAD51 filament assembly at cellular DNA damage sites. Nucleic Acids Res 2019; 46:2398-2416. [PMID: 29309696 PMCID: PMC5861458 DOI: 10.1093/nar/gkx1303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 11/14/2022] Open
Abstract
RAD51 recombinase assembles on single-stranded (ss)DNA substrates exposed by DNA end-resection to initiate homologous recombination (HR), a process fundamental to genome integrity. RAD51 assembly has been characterized using purified proteins, but its ultrastructural topography in the cell nucleus is unexplored. Here, we combine cell genetics with single-molecule localization microscopy and a palette of bespoke analytical tools, to visualize molecular transactions during RAD51 assembly in the cellular milieu at resolutions approaching 30-40 nm. In several human cell types, RAD51 focalizes in clusters that progressively extend into long filaments, which abut-but do not overlap-with globular bundles of replication protein A (RPA). Extended filaments alter topographically over time, suggestive of succeeding steps in HR. In cells depleted of the tumor suppressor protein BRCA2, or overexpressing its RAD51-binding BRC repeats, RAD51 fails to assemble at damage sites, although RPA accumulates unhindered. By contrast, in cells lacking a BRCA2 carboxyl (C)-terminal region targeted by cancer-causing mutations, damage-induced RAD51 assemblies initiate but do not extend into filaments. We suggest a model wherein RAD51 assembly proceeds concurrently with end-resection at adjacent sites, via an initiation step dependent on the BRC repeats, followed by filament extension through the C-terminal region of BRCA2.
Collapse
Affiliation(s)
- Kalina T Haas
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - MiYoung Lee
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Alessandro Esposito
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
108
|
Hać A, Brokowska J, Rintz E, Bartkowski M, Węgrzyn G, Herman-Antosiewicz A. Mechanism of selective anticancer activity of isothiocyanates relies on differences in DNA damage repair between cancer and healthy cells. Eur J Nutr 2019; 59:1421-1432. [PMID: 31123866 PMCID: PMC7230056 DOI: 10.1007/s00394-019-01995-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
Purpose Isothiocyanates (ITCs) are compounds derived from Brassica plants with documented anticancer activity. Molecular mechanisms of their selective activity against cancer cells are still underexplored. In this work, the impact of ITC on DNA replication and damage was compared between PC-3 prostate cancer cells and HDFa normal fibroblasts as well as PNT2 prostate epithelial cells. Methods Cells were treated with sulforaphane or phenethyl isothiocyanate. [3H]thymidine incorporation and the level of histone γH2A.X were estimated as indicators of DNA replication and double-strand breaks (DSB), respectively. Levels of HDAC3, CtIP, and p-RPA were investigated by immunoblotting. Comet assay was performed to visualize DNA damage. Results ITCs inhibited DNA replication in all tested cell lines, and this activity was independent of reactive oxygen species of mitochondrial origin. It was followed by DSB which were more pronounced in cancer than noncancerous cells. This difference was independent of HDAC activity which was decreased in both cell lines when treated with ITCs. On the other hand, it correlated with faster removal of DSB, and thus, transient activation of repair proteins in normal cells, while in PC-3 prostate cancer, cell DNA repair was significantly less effective. Conclusion DNA damage induced by ITCs is a consequence of the block in DNA replication which is observed in both, cancer and normal cells. Selective antiproliferative activity of ITCs towards cancer cells results from less efficient DNA repair in cancer cells relative to normal cells.
Collapse
Affiliation(s)
- Aleksandra Hać
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Joanna Brokowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Estera Rintz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Bartkowski
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
109
|
Ali F, Ahmed S, Swati ZNK, Akbar S. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. J Comput Aided Mol Des 2019; 33:645-658. [PMID: 31123959 DOI: 10.1007/s10822-019-00207-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/18/2019] [Indexed: 12/28/2022]
Abstract
DNA-binding proteins (DBPs) participate in various biological processes including DNA replication, recombination, and repair. In the human genome, about 6-7% of these proteins are utilized for genes encoding. DBPs shape the DNA into a compact structure known chromatin while some of these proteins regulate the chromosome packaging and transcription process. In the pharmaceutical industry, DBPs are used as a key component of antibiotics, steroids, and cancer drugs. These proteins also involve in biophysical, biological, and biochemical studies of DNA. Due to the crucial role in various biological activities, identification of DBPs is a hot issue in protein science. A series of experimental and computational methods have been proposed, however, some methods didn't achieve the desired results while some are inadequate in its accuracy and authenticity. Still, it is highly desired to present more intelligent computational predictors. In this work, we introduce an innovative computational method namely DP-BINDER based on physicochemical and evolutionary information. We captured local highly decisive features from physicochemical properties of primary protein sequences via normalized Moreau-Broto autocorrelation (NMBAC) and evolutionary information by position specific scoring matrix-transition probability composition (PSSM-TPC) and pseudo-position specific scoring matrix (PsePSSM) using training and independent datasets. The optimal features were selected by the support vector machine-recursive feature elimination and correlation bias reduction (SVM-RFE + CBR) from fused features and were fed into random forest (RF) and support vector machine (SVM). Our method attained 92.46% and 89.58% accuracy with jackknife and ten-fold cross-validation, respectively on the training dataset, while 81.17% accuracy on the independent dataset for prediction of DBPs. These results demonstrate that our method attained the highest success rate in the literature. The superiority of DP-BINDER over existing approaches due to several reasons including abstraction of local dominant features via effective feature descriptors, utilization of appropriate feature selection algorithms and effective classifier.
Collapse
Affiliation(s)
- Farman Ali
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Saeed Ahmed
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zar Nawab Khan Swati
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Computer Science, Karakoram International University, Gilgit, Gilgit-Baltistan, 15100, Pakistan
| | - Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
110
|
Bowlt Blacklock KL, Birand Z, Selmic LE, Nelissen P, Murphy S, Blackwood L, Bass J, McKay J, Fox R, Beaver S, Starkey M. Genome-wide analysis of canine oral malignant melanoma metastasis-associated gene expression. Sci Rep 2019; 9:6511. [PMID: 31019223 PMCID: PMC6482147 DOI: 10.1038/s41598-019-42839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Oral malignant melanoma (OMM) is the most common canine melanocytic neoplasm. Overlap between the somatic mutation profiles of canine OMM and human mucosal melanomas suggest a shared UV-independent molecular aetiology. In common with human mucosal melanomas, most canine OMM metastasise. There is no reliable means of predicting canine OMM metastasis, and systemic therapies for metastatic disease are largely palliative. Herein, we employed exon microarrays for comparative expression profiling of FFPE biopsies of 18 primary canine OMM that metastasised and 10 primary OMM that did not metastasise. Genes displaying metastasis-associated expression may be targets for anti-metastasis treatments, and biomarkers of OMM metastasis. Reduced expression of CXCL12 in the metastasising OMMs implies that the CXCR4/CXCL12 axis may be involved in OMM metastasis. Increased expression of APOBEC3A in the metastasising OMMs may indicate APOBEC3A-induced double-strand DNA breaks and pro-metastatic hypermutation. DNA double strand breakage triggers the DNA damage response network and two Fanconi anaemia DNA repair pathway members showed elevated expression in the metastasising OMMs. Cross-validation was employed to test a Linear Discriminant Analysis classifier based upon the RT-qPCR-measured expression levels of CXCL12, APOBEC3A and RPL29. Classification accuracies of 94% (metastasising OMMs) and 86% (non-metastasising OMMs) were estimated.
Collapse
Affiliation(s)
| | - Z Birand
- Animal Health Trust, Newmarket, Suffolk, UK
| | - L E Selmic
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - P Nelissen
- Dick White Referrals, Newmarket, Suffolk, UK
| | - S Murphy
- Animal Health Trust, Newmarket, Suffolk, UK
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - L Blackwood
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - J Bass
- Animal Health Trust, Newmarket, Suffolk, UK
- Finn Pathologists, Harleston, UK
| | - J McKay
- IDEXX Laboratories, Ltd, Wetherby, UK
| | - R Fox
- Finn Pathologists, Harleston, UK
| | - S Beaver
- Nationwide Laboratory Services, Poulton-le-Fylde, UK
| | - M Starkey
- Animal Health Trust, Newmarket, Suffolk, UK.
| |
Collapse
|
111
|
Zhang G, Dong Z, Prager BC, Kim LJ, Wu Q, Gimple RC, Wang X, Bao S, Hamerlik P, Rich JN. Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC. JCI Insight 2019; 4:126140. [PMID: 30779712 DOI: 10.1172/jci.insight.126140] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
Glioblastomas, which contain stem cell-like glioblastoma stem cells (GSCs), are universally lethal cancers. While neural stem cells (NSCs) are usually quiescent, single-cell studies suggest that proliferating glioblastoma cells reside in the GSC population. Interrogating in silico glioma databases for epigenetic regulators that correlate with cell cycle regulation, we identified the chromatin remodeler HELLS as a potential target in glioblastoma. GSCs preferentially expressed HELLS compared with their differentiated tumor progeny and nonmalignant brain cells. Targeting HELLS disrupted GSC proliferation, survival, and self-renewal with induction of replication stress and DNA damage. Investigating potential molecular mechanisms downstream of HELLS revealed that HELLS interacted with the core oncogenic transcription factors, E2F3 and MYC, to regulate gene expression critical to GSC proliferation and maintenance. Supporting the interaction, HELLS expression strongly correlated with targets of E2F3 and MYC transcriptional activity in glioblastoma patients. The potential clinical significance of HELLS was reinforced by improved survival of tumor-bearing mice upon targeting HELLS and poor prognosis of glioma patients with elevated HELLS expression. Collectively, targeting HELLS may permit the functional disruption of the relatively undruggable MYC and E2F3 transcription factors and serve as a novel therapeutic paradigm for glioblastoma.
Collapse
Affiliation(s)
- Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leo Jk Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Petra Hamerlik
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
112
|
Lawson T, El-Kamand S, Kariawasam R, Richard DJ, Cubeddu L, Gamsjaeger R. A Structural Perspective on the Regulation of Human Single-Stranded DNA Binding Protein 1 (hSSB1, OBFC2B) Function in DNA Repair. Comput Struct Biotechnol J 2019; 17:441-446. [PMID: 30996823 PMCID: PMC6451162 DOI: 10.1016/j.csbj.2019.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Single-stranded DNA binding (SSB) proteins are essential to protect singe-stranded DNA (ssDNA) that exists as a result of several important DNA repair pathways in living cells. In humans, besides the well-characterised Replication Protein A (RPA) we have described another SSB termed human SSB1 (hSSB1, OBFC2B) and have shown that this protein is an important player in the maintenance of the genome. In this review we define the structural and biophysical details of how hSSB1 interacts with both DNA and other essential proteins. While the presence of the oligonucleotide/oligosaccharide (OB) domain ensures ssDNA binding by hSSB1, it has also been shown to self-oligomerise as well as interact with and being modified by several proteins highlighting the versatility that hSSB1 displays in the context of DNA repair. A detailed structural understanding of these processes will likely lead to the designs of tailored hSSB1 inhibitors as anti-cancer drugs in the near future.
Collapse
Affiliation(s)
- Teegan Lawson
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Serene El-Kamand
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Derek J Richard
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
113
|
Li S, Dong Z, Yang S, Feng J, Li Q. Chaperoning RPA during DNA metabolism. Curr Genet 2019; 65:857-864. [PMID: 30796471 DOI: 10.1007/s00294-019-00945-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
Single-stranded DNA (ssDNA) is widely generated during DNA metabolisms including DNA replication, repair and recombination and is susceptible to digestion by nucleases and secondary structure formation. It is vital for DNA metabolism and genome stability that ssDNA is protected and stabilized, which are performed by the major ssDNA-binding protein, and replication protein A (RPA) in these processes. In addition, RPA-coated ssDNA also serves as a protein-protein-binding platform for coordinating multiple events during DNA metabolisms. However, little is known about whether and how the formation of RPA-ssDNA platform is regulated. Here we highlight our recent study of a novel RPA-binding protein, Regulator of Ty1 transposition 105 (Rtt105) in Saccharomyces cerevisiae, which regulates the RPA-ssDNA platform assembly at replication forks. We propose that Rtt105 functions as an "RPA chaperone" during DNA replication, likely also promoting the assembly of RPA-ssDNA platform in other processes in which RPA plays a critical role.
Collapse
Affiliation(s)
- Shuqi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Laboratory of Host-Pathogen Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ziqi Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shuangshuang Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
114
|
Croft LV, Bolderson E, Adams MN, El-Kamand S, Kariawasam R, Cubeddu L, Gamsjaeger R, Richard DJ. Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Semin Cell Dev Biol 2019; 86:121-128. [DOI: 10.1016/j.semcdb.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
|
115
|
Abstract
The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Himabindu Gali
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
116
|
Schaub JM, Zhang H, Soniat MM, Finkelstein IJ. Assessing Protein Dynamics on Low-Complexity Single-Stranded DNA Curtains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14882-14890. [PMID: 30044093 PMCID: PMC6679933 DOI: 10.1021/acs.langmuir.8b01812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-stranded DNA (ssDNA) is a critical intermediate in all DNA transactions. Because ssDNA is more flexible than double-stranded (ds) DNA, interactions with ssDNA-binding proteins (SSBs) may significantly compact or elongate the ssDNA molecule. Here, we develop and characterize low-complexity ssDNA curtains, a high-throughput single-molecule assay to simultaneously monitor protein binding and correlated ssDNA length changes on supported lipid bilayers. Low-complexity ssDNA is generated via rolling circle replication of short synthetic oligonucleotides, permitting control over the sequence composition and secondary structure-forming propensity. One end of the ssDNA is functionalized with a biotin, while the second is fluorescently labeled to track the overall DNA length. Arrays of ssDNA molecules are organized at microfabricated barriers for high-throughput single-molecule imaging. Using this assay, we demonstrate that E. coli SSB drastically and reversibly compacts ssDNA templates upon changes in NaCl concentration. We also examine the interactions between a phosphomimetic RPA and ssDNA. Our results indicate that RPA-ssDNA interactions are not significantly altered by these modifications. We anticipate that low-complexity ssDNA curtains will be broadly useful for single-molecule studies of ssDNA-binding proteins involved in DNA replication, transcription, and repair.
Collapse
Affiliation(s)
- Jeffrey M. Schaub
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Hongshan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Michael M. Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
117
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
118
|
Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:438-460. [PMID: 29466611 PMCID: PMC6031472 DOI: 10.1002/em.22176] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 05/10/2023]
Abstract
The growing incidence of melanoma is a serious public health issue that merits a thorough understanding of potential causative risk factors, which includes exposure to ultraviolet radiation (UVR). Though UVR has been classified as a complete carcinogen and has long been recognized for its ability to damage genomic DNA through both direct and indirect means, the precise mechanisms by which the UVA and UVB components of UVR contribute to the pathogenesis of melanoma have not been clearly defined. In this review, we therefore highlight recent studies that have addressed roles for UVA radiation in the generation of DNA damage and in modulating the subsequent cellular responses to DNA damage in melanocytes, which are the cell type that gives rise to melanoma. Recent research suggests that UVA not only contributes to the direct formation of DNA lesions but also impairs the removal of UV photoproducts from genomic DNA through oxidation and damage to DNA repair proteins. Moreover, the melanocyte microenvironment within the epidermis of the skin is also expected to impact melanomagenesis, and we therefore discuss several paracrine signaling pathways that have been shown to impact the DNA damage response in UV-irradiated melanocytes. Lastly, we examine how alterations to the immune microenvironment by UVA-associated DNA damage responses may contribute to melanoma development. Thus, there appear to be multiple avenues by which UVA may elevate the risk of melanoma. Protective strategies against excess exposure to UVA wavelengths of light therefore have the potential to decrease the incidence of melanoma. Environ. Mol. Mutagen. 59:438-460, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aiman Q Khan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Dayton Veterans Affairs Medical Center, Dayton, Ohio
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
119
|
Antony E, Lohman TM. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Semin Cell Dev Biol 2018; 86:102-111. [PMID: 29588158 DOI: 10.1016/j.semcdb.2018.03.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/25/2023]
Abstract
Single stranded DNA binding proteins (SSB) are essential to the cell as they stabilize transiently open single stranded DNA (ssDNA) intermediates, recruit appropriate DNA metabolism proteins, and coordinate fundamental processes such as replication, repair and recombination. Escherichia coli single stranded DNA binding protein (EcSSB) has long served as the prototype for the study of SSB function. The structure, functions, and DNA binding properties of EcSSB are well established: The protein is a stable homotetramer with each subunit possessing an N-terminal DNA binding core, a C-terminal protein-protein interaction tail, and an intervening intrinsically disordered linker (IDL). EcSSB wraps ssDNA in multiple DNA binding modes and can diffuse along DNA to remove secondary structures and remodel other protein-DNA complexes. This review provides an update on these features based on recent findings, with special emphasis on the functional and mechanistic relevance of the IDL and DNA binding modes.
Collapse
Affiliation(s)
- Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
120
|
Rector J, Kapil S, Treude KJ, Kumm P, Glanzer JG, Byrne BM, Liu S, Smith LM, DiMaio DJ, Giannini P, Smith RB, Oakley GG. S4S8-RPA phosphorylation as an indicator of cancer progression in oral squamous cell carcinomas. Oncotarget 2018; 8:9243-9250. [PMID: 27999209 PMCID: PMC5354728 DOI: 10.18632/oncotarget.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Oral cancers are easily accessible compared to many other cancers. Nevertheless, oral cancer is often diagnosed late, resulting in a poor prognosis. Most oral cancers are squamous cell carcinomas that predominantly develop from cell hyperplasias and dysplasias. DNA damage is induced in these tissues directly or indirectly in response to oncogene-induced deregulation of cellular proliferation. Consequently, a DNA Damage response (DDR) and a cell cycle checkpoint is activated. As dysplasia transitions to cancer, proteins involved in DNA damage and checkpoint signaling are mutated or silenced decreasing cell death while increasing genomic instability and allowing continued tumor progression. Hyperphosphorylation of Replication Protein A (RPA), including phosphorylation of Ser4 and Ser8 of RPA2, is a well-known indicator of DNA damage and checkpoint activation. In this study, we utilize S4S8-RPA phosphorylation as a marker for cancer development and progression in oral squamous cell carcinomas (OSCC). S4S8-RPA phosphorylation was observed to be low in normal cells, high in dysplasias, moderate in early grade tumors, and low in late stage tumors, essentially supporting the model of the DDR as an early barrier to tumorigenesis in certain types of cancers. In contrast, overall RPA expression was not correlative to DDR activation or tumor progression. Utilizing S4S8-RPA phosphorylation to indicate competent DDR activation in the future may have clinical significance in OSCC treatment decisions, by predicting the susceptibility of cancer cells to first-line platinum-based therapies for locally advanced, metastatic and recurrent OSCC.
Collapse
Affiliation(s)
- Jeff Rector
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln NE 68583, USA
| | - Sasha Kapil
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Kelly J Treude
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Phyllis Kumm
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln NE 68583, USA
| | - Jason G Glanzer
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln NE 68583, USA
| | - Brendan M Byrne
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln NE 68583, USA
| | - Shengqin Liu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln NE 68583, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Peter Giannini
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln NE 68583, USA
| | - Russell B Smith
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Greg G Oakley
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln NE 68583, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha NE 68198, USA
| |
Collapse
|
121
|
Protein interactomes of protein phosphatase 2A B55 regulatory subunits reveal B55-mediated regulation of replication protein A under replication stress. Sci Rep 2018; 8:2683. [PMID: 29422626 PMCID: PMC5805732 DOI: 10.1038/s41598-018-21040-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022] Open
Abstract
The specific function of PP2A, a major serine/threonine phosphatase, is mediated by regulatory targeting subunits, such as members of the B55 family. Although implicated in cell division and other pathways, the specific substrates and functions of B55 targeting subunits are largely undefined. In this study we identified over 100 binding proteins of B55α and B55β in Xenopus egg extracts that are involved in metabolism, mitochondria function, molecular trafficking, cell division, cytoskeleton, DNA replication, DNA repair, and cell signaling. Among the B55α and B55β-associated proteins were numerous mitotic regulators, including many substrates of CDK1. Consistently, upregulation of B55α accelerated M-phase exit and inhibited M-phase entry. Moreover, specific substrates of CDK2, including factors of DNA replication and chromatin remodeling were identified within the interactomes of B55α and B55β, suggesting a role for these phosphatase subunits in DNA replication. In particular, we confirmed in human cells that B55α binds RPA and mediates the dephosphorylation of RPA2. The B55-RPA association is disrupted after replication stress, consistent with the induction of RPA2 phosphorylation. Thus, we report here a new mechanism that accounts for both how RPA phosphorylation is modulated by PP2A and how the phosphorylation of RPA2 is abruptly induced after replication stress.
Collapse
|
122
|
Bao Z, Tian B, Wang X, Feng H, Liang Y, Chen Z, Li W, Shen H, Ying S. Oleandrin induces DNA damage responses in cancer cells by suppressing the expression of Rad51. Oncotarget 2018; 7:59572-59579. [PMID: 27449097 PMCID: PMC5312332 DOI: 10.18632/oncotarget.10726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
Oleandrin is a monomeric compound extracted from leaves and seeds of Nerium oleander. It had been reported that oleandrin could effectively inhibit the growth of human cancer cells. However, the specific mechanisms of the oleandrin-induced anti-tumor effects remain largely unclear. Genomic instability is one of the main features of cancer cells, it can be the combined effect of DNA damage and tumour-specific DNA repair defects. DNA damage plays important roles during tumorigenesis. In fact, most of the current chemotherapy agents were designed to kill cancer cells by inducing DNA damage. In this study, we found that oleandrin was effective to induce apoptosis in cancer cells, and cause rapid DNA damage response, represented by nuclear RPA (Replication Protein A, a single strand DNA binding protein) and γH2AX(a marker for DNA double strand breaks) foci formation. Interestingly, expression of RAD51, a key protein involved in homologous recombination (HR), was suppressed while XRCC1 was up-regulated in oleandrin treated cancer cells. These results suggested that XRCC1 may play a predominant role in repairing oleandrin-induced DNA damage. Collectively, oleandrin may be a potential anti-tumor agent by suppressing the expression of Rad51.
Collapse
Affiliation(s)
- Zhengqiang Bao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Baoping Tian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaohui Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hanrong Feng
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ye Liang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China.,State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou 310009, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
123
|
Bhattacharjee A, Wang Y, Diao J, Price CM. Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST. Nucleic Acids Res 2017; 45:12311-12324. [PMID: 29040642 PMCID: PMC5716219 DOI: 10.1093/nar/gkx878] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/22/2017] [Indexed: 11/14/2022] Open
Abstract
Human CST (CTC1-STN1-TEN1) is a ssDNA-binding complex that helps resolve replication problems both at telomeres and genome-wide. CST resembles Replication Protein A (RPA) in that the two complexes harbor comparable arrays of OB-folds and have structurally similar small subunits. However, the overall architecture and functions of CST and RPA are distinct. Currently, the mechanism underlying CST action at diverse replication issues remains unclear. To clarify CST mechanism, we examined the capacity of CST to bind and resolve DNA structures found at sites of CST activity. We show that CST binds preferentially to ss-dsDNA junctions, an activity that can explain the incremental nature of telomeric C-strand synthesis following telomerase action. We also show that CST unfolds G-quadruplex structures, thus providing a mechanism for CST to facilitate replication through telomeres and other GC-rich regions. Finally, smFRET analysis indicates that CST binding to ssDNA is dynamic with CST complexes undergoing concentration-dependent self-displacement. These findings support an RPA-based model where dissociation and re-association of individual OB-folds allow CST to mediate loading and unloading of partner proteins to facilitate various aspects of telomere replication and genome-wide resolution of replication stress.
Collapse
Affiliation(s)
| | - Yongyao Wang
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Carolyn M Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
124
|
Sarlós K, Biebricher A, Petermann EJG, Wuite GJL, Hickson ID. Knotty Problems during Mitosis: Mechanistic Insight into the Processing of Ultrafine DNA Bridges in Anaphase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:187-195. [PMID: 29167280 DOI: 10.1101/sqb.2017.82.033647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To survive and proliferate, cells have to faithfully segregate their newly replicated genomic DNA to the two daughter cells. However, the sister chromatids of mitotic chromosomes are frequently interlinked by so-called ultrafine DNA bridges (UFBs) that are visible in the anaphase of mitosis. UFBs can only be detected by the proteins bound to them and not by staining with conventional DNA dyes. These DNA bridges are presumed to represent entangled sister chromatids and hence pose a threat to faithful segregation. A failure to accurately unlink UFB DNA results in chromosome segregation errors and binucleation. This, in turn, compromises genome integrity, which is a hallmark of cancer. UFBs are actively removed during anaphase, and most known UFB-associated proteins are enzymes involved in DNA repair in interphase. However, little is known about the mitotic activities of these enzymes or the exact DNA structures present on UFBs. We focus on the biology of UFBs, with special emphasis on their underlying DNA structure and the decatenation machineries that process UFBs.
Collapse
Affiliation(s)
- Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andreas Biebricher
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Petermann
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
125
|
Pokhrel N, Origanti S, Davenport EP, Gandhi D, Kaniecki K, Mehl RA, Greene EC, Dockendorff C, Antony E. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids. Nucleic Acids Res 2017; 45:9413-9426. [PMID: 28934470 PMCID: PMC5766198 DOI: 10.1093/nar/gkx598] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/09/2017] [Indexed: 12/23/2022] Open
Abstract
An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance.
Collapse
Affiliation(s)
- Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Sofia Origanti
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | - Disha Gandhi
- Department of Chemistry, Marquette University, Milwaukee, WI 53201, USA
| | - Kyle Kaniecki
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chris Dockendorff
- Department of Chemistry, Marquette University, Milwaukee, WI 53201, USA
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| |
Collapse
|
126
|
Abstract
Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under increased DNA replication stress.
Collapse
Affiliation(s)
- Luis Toledo
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Kai John Neelsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
127
|
He H, Wang J, Liu T. UV-Induced RPA1 Acetylation Promotes Nucleotide Excision Repair. Cell Rep 2017; 20:2010-2025. [DOI: 10.1016/j.celrep.2017.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/21/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
|
128
|
Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutat Res 2017; 806:64-74. [PMID: 28779875 DOI: 10.1016/j.mrfmmm.2017.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways.
Collapse
|
129
|
Xiao W, Zheng J, Zhou B, Pan L. Replication Protein A 3 Is Associated with Hepatocellular Carcinoma Tumorigenesis and Poor Patient Survival. Dig Dis 2017; 36:26-32. [PMID: 28683444 DOI: 10.1159/000478977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/23/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Replication protein A (RPA) 3 is a subunit of the RPA protein complex, which functions in multiple processes of DNA metabolism. Dysregulation of RPA1 and RPA2 has been implicated in tumor progression in several cancer types. However, the function of RPA3 in hepatocellular carcinoma (HCC) tumorigenesis has not been elucidated. METHOD In this study, we investigated the function of RPA3 in HCC development by stably knocking down its expression using short hairpin RNA (shRNA) in HepG2 cell line, followed by cell proliferation, colony formation, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumor-promoting properties of RPA3. RESULTS Downregulation of RPA3-inhibited cell proliferation, colony formation, soft agar growth as well as invasion in HepG2 cells were observed. Stable knockdown of RPA3 significantly inhibited tumor growth in the xenograft mouse model. In addition, qRT-PCR analysis revealed that RPA3 was upregulated in human HCC tissues compared with matched noncancerous adjacent tissues (NATs). High expression of RPA3 was associated with poor overall survival and disease-free survival. CONCLUSION Elevated expression of RPA3 promotes tumor progression in HCC cells. RPA3 is upregulated in HCC tissues and high expression of RPA3 is associated with poorer patient survival. Therefore, this protein may represent a novel therapeutic target for intervention of HCC and prognostic biomarker for patient survival.
Collapse
Affiliation(s)
- Wenbo Xiao
- Department of Digestion, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | |
Collapse
|
130
|
Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism. Int J Mol Sci 2017; 18:ijms18061233. [PMID: 28594346 PMCID: PMC5486056 DOI: 10.3390/ijms18061233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023] Open
Abstract
Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.
Collapse
|
131
|
Croft LV, Ashton NW, Paquet N, Bolderson E, O'Byrne KJ, Richard DJ. hSSB1 associates with and promotes stability of the BLM helicase. BMC Mol Biol 2017; 18:13. [PMID: 28506294 PMCID: PMC5433028 DOI: 10.1186/s12867-017-0090-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/05/2017] [Indexed: 01/03/2023] Open
Abstract
Background Maintenance of genome stability is critical in human cells. Mutations in or loss of genome stability pathways can lead to a number of pathologies including cancer. hSSB1 is a critical DNA repair protein functioning in the repair and signalling of stalled DNA replication forks, double strand DNA breaks and oxidised DNA lesions. The BLM helicase is central to the repair of both collapsed DNA replication forks and double strand DNA breaks by homologous recombination. Results In this study, we demonstrate that hSSB1 and BLM helicase form a complex in cells and the interaction is altered in response to ionising radiation (IR). BLM and hSSB1 also co-localised at nuclear foci following IR-induced double strand breaks and stalled replication forks. We show that hSSB1 depleted cells contain less BLM protein and that this deficiency is due to proteasome mediated degradation of BLM. Consequently, there is a defect in recruitment of BLM to chromatin in response to ionising radiation-induced DSBs and to hydroxyurea-induced stalled and collapsed replication forks. Conclusions Our data highlights that BLM helicase and hSSB1 function in a dynamic complex in cells and that this complex is likely required for BLM protein stability and function. Electronic supplementary material The online version of this article (doi:10.1186/s12867-017-0090-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura V Croft
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Nicholas W Ashton
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Nicolas Paquet
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia. .,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
132
|
Herlihy AE, de Bruin RAM. The Role of the Transcriptional Response to DNA Replication Stress. Genes (Basel) 2017; 8:E92. [PMID: 28257104 PMCID: PMC5368696 DOI: 10.3390/genes8030092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.
Collapse
Affiliation(s)
- Anna E Herlihy
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Robertus A M de Bruin
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
- The UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
133
|
Senturk S, Shirole NH, Nowak DG, Corbo V, Pal D, Vaughan A, Tuveson DA, Trotman LC, Kinney JB, Sordella R. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun 2017; 8:14370. [PMID: 28224990 DOI: 10.1101/023366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/21/2016] [Indexed: 05/21/2023] Open
Abstract
The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic characterization and identification of essential genes, as well as the investigation of the interactions between functional genes.
Collapse
Affiliation(s)
- Serif Senturk
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Nitin H Shirole
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Dawid G Nowak
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Vincenzo Corbo
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Debjani Pal
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Alexander Vaughan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Raffaella Sordella
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
134
|
Senturk S, Shirole NH, Nowak DG, Corbo V, Pal D, Vaughan A, Tuveson DA, Trotman LC, Kinney JB, Sordella R. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun 2017; 8:14370. [PMID: 28224990 PMCID: PMC5322564 DOI: 10.1038/ncomms14370] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/21/2016] [Indexed: 12/25/2022] Open
Abstract
The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic characterization and identification of essential genes, as well as the investigation of the interactions between functional genes.
Collapse
Affiliation(s)
- Serif Senturk
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Nitin H. Shirole
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Dawid G. Nowak
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Vincenzo Corbo
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Debjani Pal
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Alexander Vaughan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Lloyd C. Trotman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Justin B. Kinney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Raffaella Sordella
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
135
|
Pal D, Pertot A, Shirole NH, Yao Z, Anaparthy N, Garvin T, Cox H, Chang K, Rollins F, Kendall J, Edwards L, Singh VA, Stone GC, Schatz MC, Hicks J, Hannon GJ, Sordella R. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. eLife 2017; 6:e21615. [PMID: 28092266 PMCID: PMC5345931 DOI: 10.7554/elife.21615] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/14/2017] [Indexed: 12/21/2022] Open
Abstract
Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24- cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.
Collapse
Affiliation(s)
- Debjani Pal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
| | - Anja Pertot
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Nitin H Shirole
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Graduate Program in Genetics, Stony Brook University, Stony Brook, United States
| | - Zhan Yao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Naishitha Anaparthy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
| | - Tyler Garvin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Hilary Cox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Fred Rollins
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Leyla Edwards
- Huntington Hospital, Northwell Health, Huntington, United States
| | - Vijay A Singh
- Huntington Hospital, Northwell Health, Huntington, United States
| | - Gary C Stone
- Huntington Hospital, Northwell Health, Huntington, United States
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - James Hicks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- University of Southern California, Los Angeles, United States
| | - Gregory J Hannon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Cancer Research UK – Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Raffaella Sordella
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Graduate Program in Genetics, Stony Brook University, Stony Brook, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
136
|
Wang H, Xu X. Microhomology-mediated end joining: new players join the team. Cell Biosci 2017; 7:6. [PMID: 28101326 PMCID: PMC5237343 DOI: 10.1186/s13578-017-0136-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most deleterious type of DNA damage in cells arising from endogenous and exogenous attacks on the genomic DNA. Timely and properly repair of DSBs is important for genomic integrity and survival. MMEJ is an error-prone repair mechanism for DSBs, which relies on exposed microhomologous sequence flanking broken junction to fix DSBs in a Ku- and ligase IV-independent manner. Recently, significant progress has been made in MMEJ mechanism study. In this review, we will summarize its biochemical activities of several newly identified MMEJ factors and their biological significance.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048 China ; Shenzhen University School of Medicine, Shenzhen, 518060 Guangdong China
| |
Collapse
|
137
|
Wang SC, Lai KR, Li CY, Chiang CS, Yu GY, Sakamoto N, Tu WY, Hsieh MH, Huang JF, Chuang WL, Dai CY, Yu ML. The Paradoxical Effects of Different Hepatitis C Viral Loads on Host DNA Damage and Repair Abilities. PLoS One 2017; 12:e0164281. [PMID: 28052067 PMCID: PMC5215444 DOI: 10.1371/journal.pone.0164281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV)-induced hepatic stress is associated with increased oxidative DNA damage and has been implicated in hepatic inflammation. However, HCV infection and replication are uneven and vary among individual hepatocytes. To investigate the effect of the viral load on host DNA damage, we used an Enhanced Yellow Fluorescent Protein gene (EYFP)-tagged HCV virus to distinguish between HCV intracellular high viral load (HVL) cells and low viral load (LVL) cells. The cell sorting efficiency was confirmed by the high expression of the HCV polyprotein. We found DNA damage γ-H2AX foci in the HVL population. Comet assays demonstrated that HVL was related to the extent of the DNA strand breaks. Surprisingly, the DNA qPCR arrays and western blotting showed that the damage-related genes GPX2, MRE11, phospho-ATM, and OGG1 were significantly up-regulated in LVL cells but inversely down-regulated or consistently expressed in HVL cells. The colony survival assay to examine the repair abilities of these cells in response to irradiation showed that the LVL cells were more resistant to irradiation and had an increased ability to repair radiation-induced damage. This study found that intracellular viral loads drove cellular DNA damage levels but suppressed damage-related gene expression. However, the increase in damage-related gene expression in the LVL cells may be affected by ROS from the HVL cells. These findings provide new insights into the distinct DNA damage and repair responses resulting from different viral loads in HCV-infected cells.
Collapse
Affiliation(s)
- Shu-Chi Wang
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Ru Lai
- Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wen-Yu Tu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsuan Hsieh
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Lipid and Glycomedicine Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
138
|
Pavani RS, da Silva MS, Fernandes CAH, Morini FS, Araujo CB, Fontes MRDM, Sant’Anna OA, Machado CR, Cano MI, Fragoso SP, Elias MC. Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi. PLoS Negl Trop Dis 2016; 10:e0005181. [PMID: 27984589 PMCID: PMC5161316 DOI: 10.1371/journal.pntd.0005181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/10/2016] [Indexed: 02/03/2023] Open
Abstract
Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi.
Collapse
Affiliation(s)
- Raphael Souza Pavani
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Carlos Alexandre Henrique Fernandes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho -UNESP, Botucatu, São Paulo, Brazil
| | | | - Christiane Bezerra Araujo
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Marcos Roberto de Mattos Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho -UNESP, Botucatu, São Paulo, Brazil
| | - Osvaldo Augusto Sant’Anna
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Isabel Cano
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Julio Mesquita Filho—UNESP, Botucatu, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
139
|
Kemp MG, Spandau DF, Simman R, Travers JB. Insulin-like Growth Factor 1 Receptor Signaling Is Required for Optimal ATR-CHK1 Kinase Signaling in Ultraviolet B (UVB)-irradiated Human Keratinocytes. J Biol Chem 2016; 292:1231-1239. [PMID: 27979966 DOI: 10.1074/jbc.m116.765883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/08/2016] [Indexed: 01/16/2023] Open
Abstract
UVB wavelengths of light induce the formation of photoproducts in DNA that are potentially mutagenic if not properly removed by the nucleotide excision repair machinery. As an additional mechanism to minimize the risk of mutagenesis, UVB-irradiated cells also activate a checkpoint signaling cascade mediated by the ATM and Rad3-related (ATR) and checkpoint kinase 1 (CHK1) kinases to transiently suppress DNA synthesis and cell cycle progression. Given that keratinocytes in geriatric skin display reduced activation of the insulin-like growth factor 1 receptor (IGF-1R) and alterations in DNA repair rate, apoptosis, and senescence following UVB exposure, here we used cultured human keratinocytes in vitro and skin explants ex vivo to examine how IGF-1R activation status affects ATR-CHK1 kinase signaling and the inhibition of DNA replication following UVB irradiation. We find that disruption of IGF-1R signaling with small-molecule inhibitors or IGF-1 withdrawal partially abrogates both the phosphorylation and activation of CHK1 by ATR and the accompanying inhibition of chromosomal DNA synthesis in UVB-irradiated keratinocytes. A critical protein factor that mediates both ATR-CHK1 signaling and nucleotide excision repair is replication protein A, and we find that its accumulation on UVB-damaged chromatin is partially attenuated in cells with an inactive IGF-1R. These results indicate that mutagenesis and skin carcinogenesis in IGF-1-deficient geriatric skin may be caused by defects in multiple cellular responses to UVB-induced DNA damage, including through a failure to properly suppress DNA synthesis on UVB-damaged DNA templates.
Collapse
Affiliation(s)
- Michael G Kemp
- From the Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435,
| | - Dan F Spandau
- the Departments of Dermatology and.,Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, and
| | - Richard Simman
- From the Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435
| | - Jeffrey B Travers
- From the Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435.,the Dayton Veterans Affairs Medical Center, Dayton, Ohio 45428
| |
Collapse
|
140
|
Seeber A, Hegnauer AM, Hustedt N, Deshpande I, Poli J, Eglinger J, Pasero P, Gut H, Shinohara M, Hopfner KP, Shimada K, Gasser SM. RPA Mediates Recruitment of MRX to Forks and Double-Strand Breaks to Hold Sister Chromatids Together. Mol Cell 2016; 64:951-966. [PMID: 27889450 DOI: 10.1016/j.molcel.2016.10.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding sister chromatids together at breaks.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Anna Maria Hegnauer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicole Hustedt
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ishan Deshpande
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UPR 1142, 34090 Montpellier, France
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
141
|
Krasikova YS, Rechkunova NI, Lavrik OI. Replication protein A as a major eukaryotic single-stranded DNA-binding protein and its role in DNA repair. Mol Biol 2016. [DOI: 10.1134/s0026893316030080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
142
|
Palermo V, Rinalducci S, Sanchez M, Grillini F, Sommers JA, Brosh RM, Zolla L, Franchitto A, Pichierri P. CDK1 phosphorylates WRN at collapsed replication forks. Nat Commun 2016; 7:12880. [PMID: 27634057 PMCID: PMC5028418 DOI: 10.1038/ncomms12880] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Regulation of end-processing is critical for accurate repair and to switch between homologous recombination (HR) and non-homologous end joining (NHEJ). End resection is a two-stage process but very little is known about regulation of the long-range resection, especially in humans. WRN participates in one of the two alternative long-range resection pathways mediated by DNA2 or EXO1. Here we demonstrate that phosphorylation of WRN by CDK1 is essential to perform DNA2-dependent end resection at replication-related DSBs, promoting HR, replication recovery and chromosome stability. Mechanistically, S1133 phosphorylation of WRN is dispensable for relocalization in foci but is involved in the interaction with the MRE11 complex. Loss of WRN phosphorylation negatively affects MRE11 foci formation and acts in a dominant negative manner to prevent long-range resection altogether, thereby licensing NHEJ at collapsed forks. Collectively, we unveil a CDK1-dependent regulation of the WRN-DNA2-mediated resection and identify an undescribed function of WRN as a DSB repair pathway switch. End-resection of double strand DNA breaks is essential for pathway choice between non-homologous end-joining and homologous recombination. Here the authors show that phosphorylation of WRN helicase by CDK1 is essential for resection at replication-related breaks.
Collapse
Affiliation(s)
- Valentina Palermo
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Sara Rinalducci
- Proteomics Lab, Department of Ecology and Biology, Università della Tuscia, 01100 Viterbo, Italy
| | - Massimo Sanchez
- Section of Gene and Cell Therapy, Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Grillini
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Lello Zolla
- Proteomics Lab, Department of Ecology and Biology, Università della Tuscia, 01100 Viterbo, Italy
| | - Annapaola Franchitto
- Section of Molecular Epidemiology, Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Pietro Pichierri
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| |
Collapse
|
143
|
Domankevich V, Opatowsky Y, Malik A, Korol AB, Frenkel Z, Manov I, Avivi A, Shams I. Adaptive patterns in the p53 protein sequence of the hypoxia- and cancer-tolerant blind mole rat Spalax. BMC Evol Biol 2016; 16:177. [PMID: 27590526 PMCID: PMC5010716 DOI: 10.1186/s12862-016-0743-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage. Therefore, we aimed to identify shared features among species that are adapted to hypoxic stress in the sequence of the tumor-suppressor protein p53, a master regulator of the DNA-damage response (DDR). Results We found that the sequences of p53 transactivation subdomain 2 (TAD2) and tetramerization and regulatory domains (TD and RD) are more similar among hypoxia-tolerant species than expected from phylogeny. Specific positions in these domains composed patterns that are more frequent in hypoxia-tolerant species and have proven to be good predictors of species’ classification into stress-related categories. Some of these positions, which are known to be involved in the interactions between p53 and critical DDR proteins, were identified as positively selected. By 3D modeling of p53 interactions with the coactivator p300 and the DNA repair protein RPA70, we demonstrated that, compared to humans, these substitutions potentially reduce the binding of these proteins to Spalax p53. Conclusions We conclude that extreme hypoxic conditions may have led to convergent evolutionary adaptations of the DDR via TAD2 and TD/RD domains of p53. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0743-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vered Domankevich
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Yarden Opatowsky
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Assaf Malik
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Abraham B Korol
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Zeev Frenkel
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Irena Manov
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Aaron Avivi
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Imad Shams
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
144
|
Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency. PLoS One 2016; 11:e0157784. [PMID: 27327897 PMCID: PMC4915676 DOI: 10.1371/journal.pone.0157784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022] Open
Abstract
XPC-RAD23B (XPC) plays a critical role in human nucleotide excision repair (hNER) as this complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of structurally different bulky DNA damages, various studies have been conducted to define the correlation of XPC-DNA damage equilibrium binding affinity with NER efficiency. However, little is known about the effects of XPC-DNA damage recognition kinetics on hNER. Although association of XPC is important, our current work shows that the XPC-DNA dissociation rate also plays a pivotal role in achieving NER efficiency. We characterized for the first time the binding of XPC to mono- versus di-AAF-modified sequences by using the real time monitoring surface plasmon resonance technique. Strikingly, the half-life (t1/2 or the retention time of XPC in association with damaged DNA) shares an inverse relationship with NER efficiency. This is particularly true when XPC remained bound to clustered adducts for a much longer period of time as compared to mono-adducts. Our results suggest that XPC dissociation from the damage site could become a rate-limiting step in NER of certain types of DNA adducts, leading to repression of NER.
Collapse
|
145
|
Bertoli C, Herlihy AE, Pennycook BR, Kriston-Vizi J, de Bruin RAM. Sustained E2F-Dependent Transcription Is a Key Mechanism to Prevent Replication-Stress-Induced DNA Damage. Cell Rep 2016; 15:1412-1422. [PMID: 27160911 PMCID: PMC4893157 DOI: 10.1016/j.celrep.2016.04.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/11/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022] Open
Abstract
Recent work established DNA replication stress as a crucial driver of genomic instability and a key event at the onset of cancer. Post-translational modifications play an important role in the cellular response to replication stress by regulating the activity of key components to prevent replication-stress-induced DNA damage. Here, we establish a far greater role for transcriptional control in determining the outcome of replication-stress-induced events than previously suspected. Sustained E2F-dependent transcription is both required and sufficient for many crucial checkpoint functions, including fork stalling, stabilization, and resolution. Importantly, we also find that, in the context of oncogene-induced replication stress, where increased E2F activity is thought to cause replication stress, E2F activity is required to limit levels of DNA damage. These data suggest a model in which cells experiencing oncogene-induced replication stress through deregulation of E2F-dependent transcription become addicted to E2F activity to cope with high levels of replication stress.
Collapse
Affiliation(s)
- Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology , University College London, London WC1E 6BT, UK
| | - Anna E Herlihy
- MRC Laboratory for Molecular Cell Biology , University College London, London WC1E 6BT, UK
| | - Betheney R Pennycook
- MRC Laboratory for Molecular Cell Biology , University College London, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology , University College London, London WC1E 6BT, UK; Bioinformatics Image Core (BIONIC), University College London, London WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology , University College London, London WC1E 6BT, UK; The UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
146
|
García-Rodríguez N, Wong RP, Ulrich HD. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress. Front Genet 2016; 7:87. [PMID: 27242895 PMCID: PMC4865505 DOI: 10.3389/fgene.2016.00087] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse.
Collapse
|
147
|
Benatti P, Belluti S, Miotto B, Neusiedler J, Dolfini D, Drac M, Basile V, Schwob E, Mantovani R, Blow JJ, Imbriano C. Direct non transcriptional role of NF-Y in DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:673-85. [PMID: 26732297 DOI: 10.1016/j.bbamcr.2015.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/06/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Silvia Belluti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Benoit Miotto
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julia Neusiedler
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Marjorie Drac
- Institute of Molecular Genetics, CNRS UMR5535 & Université Montpellier, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Valentina Basile
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 & Université Montpellier, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - J Julian Blow
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy.
| |
Collapse
|
148
|
Aklilu BB, Culligan KM. Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:33. [PMID: 26858742 PMCID: PMC4731521 DOI: 10.3389/fpls.2016.00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/10/2016] [Indexed: 05/23/2023]
Abstract
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species.
Collapse
Affiliation(s)
- Behailu B. Aklilu
- Department of Molecular, Cellular and Biomedical Sciences, University of New HampshireDurham, NH, USA
- Program in Genetics, University of New HampshireDurham, NH, USA
| | - Kevin M. Culligan
- Department of Molecular, Cellular and Biomedical Sciences, University of New HampshireDurham, NH, USA
- Program in Genetics, University of New HampshireDurham, NH, USA
| |
Collapse
|
149
|
Desmarais JA, Unger C, Damjanov I, Meuth M, Andrews P. Apoptosis and failure of checkpoint kinase 1 activation in human induced pluripotent stem cells under replication stress. Stem Cell Res Ther 2016; 7:17. [PMID: 26810087 PMCID: PMC4727355 DOI: 10.1186/s13287-016-0279-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 04/27/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
Abstract
Background Human induced pluripotent stem (hiPS) cells have the ability to undergo self-renewal and differentiation similarly to human embryonic stem (hES) cells. We have recently shown that hES cells under replication stress fail to activate checkpoint kinase 1 (CHK1). They instead commit to apoptosis, which appears to be a primary defense mechanism against genomic instability. It is not known whether the failure of CHK1 activation and activation of apoptosis under replication stress is solely a feature of hES cells, or if it is a feature that can be extended to hiPS cells. Methods Here we generated integration-free hiPS cell lines by mRNA transfection, and characterised the cell lines. To investigate the mechanism of S phase checkpoint activation, we have induced replication stress by adding excess thymidine to the cell culture medium, and performed DNA content analysis, apoptosis assays and immunoblottings. Results We are showing that hiPS cells similarly to hES cells, fail to activate CHK1 when exposed to DNA replication inhibitors and commit to apoptosis instead. Our findings also suggest the Ataxia Telangiectasia Mutated pathway might be responding to DNA replication stress, resulting in apoptosis. Conclusion Together, these data suggest that the apoptotic response was properly restored during reprogramming with mRNA, and that apoptosis is an important mechanism shared by hiPS and hES cells to maintain their genomic integrity when a replication stress occurs.
Collapse
Affiliation(s)
- Joelle A Desmarais
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK. .,Institute for Cancer Studies, Department of Oncology, School of Medicine, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| | - Christian Unger
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Ivan Damjanov
- Department of Pathology, University of Kansas Hospital, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Mark Meuth
- Institute for Cancer Studies, Department of Oncology, School of Medicine, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| | - Peter Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
150
|
Serber DW, Runge JS, Menon DU, Magnuson T. The Mouse INO80 Chromatin-Remodeling Complex Is an Essential Meiotic Factor for Spermatogenesis. Biol Reprod 2015; 94:8. [PMID: 26607718 PMCID: PMC4809561 DOI: 10.1095/biolreprod.115.135533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022] Open
Abstract
The ability to faithfully transmit genetic information across generations via the germ cells is a critical aspect of mammalian reproduction. The process of germ cell development requires a number of large-scale modulations of chromatin within the nucleus. One such occasion arises during meiotic recombination, when hundreds of DNA double-strand breaks are induced and subsequently repaired, enabling the transfer of genetic information between homologous chromosomes. The inability to properly repair DNA damage is known to lead to an arrest in the developing germ cells and sterility within the animal. Chromatin-remodeling activity, and in particular the BRG1 subunit of the SWI/SNF complex, has been shown to be required for successful completion of meiosis. In contrast, remodeling complexes of the ISWI and CHD families are required for postmeiotic processes. Little is known regarding the contribution of the INO80 family of chromatin-remodeling complexes, which is a particularly interesting candidate due to its well described functions during DNA double-strand break repair. Here we show that INO80 is expressed in developing spermatocytes during the early stages of meiotic prophase I. Based on this information, we used a conditional allele to delete the INO80 core ATPase subunit, thereby eliminating INO80 chromatin-remodeling activity in this lineage. The loss of INO80 resulted in an arrest during meiosis associated with a failure to repair DNA damage during meiotic recombination.
Collapse
Affiliation(s)
- Daniel W Serber
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John S Runge
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Debashish U Menon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terry Magnuson
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|