101
|
Omri N, Moussa F, Bu Y. Functionalization of [60]Fullerene through photochemical reaction for fulleropyrrolidine nanovectors synthesis: Experimental and theoretical approaches. Colloids Surf B Biointerfaces 2020; 198:111457. [PMID: 33243548 DOI: 10.1016/j.colsurfb.2020.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022]
Abstract
To develop novel carbon-based nanocarriers, we proposed grafting on the [60]Fullerene (C60) biologically active molecules. In this process, the formed derivatives described another approach to use photo-cycloaddition reactions for developing the third nanovector generation. As a result, the photoexcitation of C60 and azomethine ylide (AZMYtrp), with visible light, was considered as the most promising pathway to synthesize fulleropyrrolidine (FPL). After complexation with sodium cation (Na+), the error masses of FPL mono-, bis- and tris-adducts were remarkably decreased to -85.93 %, -53.99 % and -99.42 %, respectively. The formed FPL-Na+ complexes presented a significant capacity for trapping OH and OOH free radicals. In fact, their antiradical properties increased when Na+ was bonded with FPL-Na+ mono-adduct carbonyl oxygens. Comparing FPL bis-adducts regioisomers, under three different AZMYtrp forms, the neutral and anionic-neutral forms of FPL cis1 isomer were considered as the most reactive bis-nanocarriers with mole fractions of about 61 % and 46 %, respectively, in contrast to FPL-Na+, when the mixture was dominated by the anionic-neutral form of cis2 isomer with 50.34 %.
Collapse
Affiliation(s)
- Nabil Omri
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Fathi Moussa
- LETIAM, Groupe de Chimie Analytique de Paris Sud, EA 4041, IUT d'Orsay, Université Paris Sud 11, Plateau de Moulon, 91400 Orsay, France
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
102
|
Forbot N, Bolibok P, Wiśniewski M, Roszek K. Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress. Mini Rev Med Chem 2020; 20:294-307. [PMID: 31738152 DOI: 10.2174/1389557519666191029162150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022]
Abstract
The concept of nanoscale materials and their applications in industrial technologies, consumer goods, as well as in novel medical therapies has rapidly escalated in the last several years. Consequently, there is a critical need to understand the mechanisms that drive nanomaterials biocompatibility or toxicity to human cells and tissues. The ability of nanomaterials to initiate cellular pathways resulting in oxidative stress has emerged as a leading hypothesis in nanotoxicology. Nevertheless, there are a few examples revealing another face of nanomaterials - they can alleviate oxidative stress via decreasing the level of reactive oxygen species. The fundamental structural and physicochemical properties of carbonaceous nanomaterials that govern these anti-oxidative effects are discussed in this article. The signaling pathways influenced by these unique nanomaterials, as well as examples of their applications in the biomedical field, e.g. cell culture, cell-based therapies or drug delivery, are presented. We anticipate this emerging knowledge of intrinsic anti-oxidative properties of carbon nanomaterials to facilitate the use of tailored nanoparticles in vivo.
Collapse
Affiliation(s)
- Natalia Forbot
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
103
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
104
|
Demirci H, Wang Y, Li Q, Lin CM, Kotov NA, Grisolia ABD, Guo JL. Penetration of Carbon Nanotubes into the Retinoblastoma Tumor after Intravitreal Injection in LH BETA T AG Transgenic Mice Reti-noblastoma Model. J Ophthalmic Vis Res 2020; 15:446-452. [PMID: 33133434 PMCID: PMC7591833 DOI: 10.18502/jovr.v15i4.7778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 06/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the penetration of carbon nanotubes (CNTs) throughout retinoblastoma in a transgenic mice model. Methods CNTs functionalized with fluorescein isothiocyanate and targeting ligands biotin (CTN-FITC-Bio, 0.5mg/ml), or folic acid (CNT-FITC-FA, 0.5mg/ml) were injected into the vitreous of one eye of LH BETA T AG transgenic mice. Other eye did not receive any injection and was used as control. Three mice were sacrificed at days 1, 2, and 3. Eyes were enucleated and stained with 4,6-diamidino-2-phenylindole. The sections were imaged by fluorescent microscope. The images were transformed into grey-scale in MATLAB for intensity analysis. Background intensity was normalized by marking squares outside the eyeball and using the mean intensity of these squares. Fluorescent intensity (FI) for each image was measured by calculating the intensity of a same-sized square within retinoblastoma. Results Nine eyes of nine mice were included in each CNT-FITC-Bio and CNT-FITC-FA groups. The mean FI in CNT-FITC-Bio was 52.08 ± 6.33, 53.62 ± 9.00, and 65.54 ± 5.14 in days 1, 2, and 3, respectively. The mean FI in CNT-FITC-FA was 50.28 ± 7.37, 59.21 ± 6.43, and 58.38 ± 2.32 on days 1, 2, and 3, respectively. FI was significantly higher in eyes injected with CNT-FITC-Bio and CNT-FITC-FA compared to the control eyes (P = 0.02). There was no difference in FI between eyes with CNT-FITC-Bio and CNT-FITC-FA, and FI remained stable on days 1–3 in CNT-FITC-Bio, CNT-FITC-FA, and control eyes (P> 0.05). Conclusion We observed higher FI in eyes with CNT-FITC-Bio and CNT-FITC-FA compared to control eyes, showing penetration of CNTs throughout retinoblastoma. CNTs can be a carrier candidate for imaging or therapeutic purposes in retinoblastoma.
Collapse
Affiliation(s)
- Hakan Demirci
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Ann Arbor, MI, USA
| | - Yichun Wang
- Biointerfaces Institute, University of Michigan Ann Arbor, MI, USA.,Department of Chemical Engineering, University of Michigan Ann Arbor, MI, USA
| | - Qiaochu Li
- Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI, USA
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Ann Arbor, MI, USA
| | - Nicholas A Kotov
- Biointerfaces Institute, University of Michigan Ann Arbor, MI, USA.,Department of Chemical Engineering, University of Michigan Ann Arbor, MI, USA.,Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan Ann Arbor, MI, USA.,Department of Macromolecular Science and Engineering, University of Michigan Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care, University of Michigan Ann Arbor, MI, USA.,Michigan Institute of Translational Nanotechnology, University of Michigan Ann Arbor, MI, USA
| | - Anna Beatriz Diniz Grisolia
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Ann Arbor, MI, USA
| | - Jay L Guo
- Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
105
|
Pineux F, Federico S, Klotz KN, Kachler S, Michiels C, Sturlese M, Prato M, Spalluto G, Moro S, Bonifazi D. Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem 2020; 15:1909-1920. [PMID: 32706529 DOI: 10.1002/cmdc.202000466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The A3 adenosine receptor (AR) is a G protein-coupled receptor (GPCR) overexpressed in the membrane of specific cancer cells. Thus, the development of nanosystems targeting this receptor could be a strategy to both treat and diagnose cancer. Iron-filled carbon nanotubes (CNTs) are an optimal platform for theranostic purposes, and the use of a magnetic field can be exploited for cancer magnetic cell sorting and thermal therapy. In this work, we have conjugated an A3 AR ligand on the surface of iron-filled CNTs with the aim of targeting cells overexpressing A3 ARs. In particular, two conjugates bearing PEG linkers of different length were designed. A docking analysis of A3 AR showed that neither CNT nor linker interferes with ligand binding to the receptor; this was confirmed by in vitro preliminary radioligand competition assays on A3 AR. Encouraged by this result, magnetic cell sorting was applied to a mixture of cells overexpressing or not the A3 AR in which our compound displayed indiscriminate binding to all cells. Despite this, it is the first time that a GPCR ligand has been anchored to a magnetic nanosystem, thus it opens the door to new applications for cancer treatment.
Collapse
Affiliation(s)
- Florent Pineux
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Carine Michiels
- Namur Research Institute for Life Science (NARILIS), Unité de Recherche en Biologie Cellulaire (URBC), University of Namur, 5000, Namur, Belgium
| | - Mattia Sturlese
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain.,Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Stefano Moro
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Str. 38, 1090, Wien, Austria
| |
Collapse
|
106
|
Asif A, García‐López S, Heiskanen A, Martínez‐Serrano A, Keller SS, Pereira MP, Emnéus J. Pyrolytic Carbon Nanograss Enhances Neurogenesis and Dopaminergic Differentiation of Human Midbrain Neural Stem Cells. Adv Healthc Mater 2020; 9:e2001108. [PMID: 32902188 DOI: 10.1002/adhm.202001108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Advancements in research on the interaction of human neural stem cells (hNSCs) with nanotopographies and biomaterials are enhancing the ability to influence cell migration, proliferation, gene expression, and tailored differentiation toward desired phenotypes. Here, the fabrication of pyrolytic carbon nanograss (CNG) nanotopographies is reported and demonstrated that these can be employed as cell substrates boosting hNSCs differentiation into dopaminergic neurons (DAn), a long-time pursued goal in regenerative medicine based on cell replacement. In the near future, such structures can play a crucial role in the near future for stem-cell based cell replacement therapy (CRT) and bio-implants for Parkinson's disease (PD). The unique combination of randomly distributed nanograss topographies and biocompatible pyrolytic carbon material is optimized to provide suitable mechano-material cues for hNSCs adhesion, division, and DAn differentiation of midbrain hNSCs. The results show that in the presence of the biocoating poly-L-lysine (PLL), the CNG enhances hNSCs neurogenesis up to 2.3-fold and DAn differentiation up to 3.5-fold. Moreover, for the first time, consistent evidence is provided, that CNGs without any PLL coating are not only supporting cell survival but also lead to significantly enhanced neurogenesis and promote hNSCs to acquire dopaminergic phenotype compared to PLL coated topographies.
Collapse
Affiliation(s)
- Afia Asif
- Department of Biotechnology and Biomedicine (DTU Bioengineering) Produktionstorvet Building 423, Room 122 Kgs. Lyngby 2800 Denmark
| | - Silvia García‐López
- Department of Molecular Biology Universidad Autónoma Madrid Madrid 28049 Spain
- Department of Molecular Neuropathology Center of Molecular Biology Severo Ochoa (UAM‐CSIC) Nicolás Cabrera 1 Madrid 28049 Spain
| | - Arto Heiskanen
- Department of Biotechnology and Biomedicine (DTU Bioengineering) Produktionstorvet Building 423, Room 122 Kgs. Lyngby 2800 Denmark
| | - Alberto Martínez‐Serrano
- Department of Molecular Biology Universidad Autónoma Madrid Madrid 28049 Spain
- Department of Molecular Neuropathology Center of Molecular Biology Severo Ochoa (UAM‐CSIC) Nicolás Cabrera 1 Madrid 28049 Spain
| | - Stephan S. Keller
- National Centre for Nano Fabrication and Characterization (DTU Nanolab) Ørsteds Plads, Building 347 Kgs. Lyngby 2800 Denmark
| | - Marta P. Pereira
- Department of Molecular Biology Universidad Autónoma Madrid Madrid 28049 Spain
- Department of Molecular Neuropathology Center of Molecular Biology Severo Ochoa (UAM‐CSIC) Nicolás Cabrera 1 Madrid 28049 Spain
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering) Produktionstorvet Building 423, Room 122 Kgs. Lyngby 2800 Denmark
| |
Collapse
|
107
|
Wu B, Jiang M, Liu X, Huang C, Gu Z, Cao Y. Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells in vitro and blood vessels in vivo. Nanotoxicology 2020; 14:1017-1038. [PMID: 32574508 DOI: 10.1080/17435390.2020.1780642] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials (NMs) with tubular structures, such as halloysite nanotubes (HNTs), have potential applications in biomedicine. Although the biocompatibility of HNTs has been investigated before, the toxicity of HNTs to blood vessels is rarely systemically evaluated. Herein, we compared the toxicity of HNTs and multi-walled carbon nanotubes (MWCNTs) to human umbilical vein endothelial cells (HUVECs) in vitro and blood vessels of mice in vivo. HUVECs internalized HNTs and MWCNTs, but the uptake of HNTs was not obviously changed by clathrin inhibitor. Exposure to NMs decreased cellular viability, activated apoptotic proteins and up-regulated adhesion molecules, including soluble vascular cell adhesion molecule 1 (sVCAM-1) and VCAM-1. As the mechanisms, NMs decreased NO levels, eNOS mRNA and eNOS/p-eNOS proteins. Meanwhile, NMs promoted intracellular ROS and autophagy dysfunction, shown as decreased protein levels of LC3, beclin-1 and ATG5. The eNOS regulator Kruppel-like factor 4 (KLF4) was inhibited, but another eNOS regulator KLF4 was surprisingly up-regulated. Under in vivo conditions, ICR mice intravenously injected with NMs (50 μg/mouse, once a day for 5 days) showed an increased percentage of neutrophils, monocytes and basophils. Meanwhile, autophagy dysfunction, eNOS uncoupling, activation of apoptotic proteins and alteration of KLF proteins were also observed in mouse aortas. All of the toxic effects were more pronounced for MWCNTs in comparison with HNTs based on the same mass concentrations. Our results may provide novel insights about the toxicity of NMs with tubular structures to blood vessels. Considering the toxicological data reported here, HNTs are probably safer nanocarriers compared with MWCNTs.
Collapse
Affiliation(s)
- Bihan Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Mengdie Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Xuewu Liu
- Hunan Laboratory Animal Center, Hunan Drug Safety Evaluation Center, Liuyang, P.R. China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, P.R. China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| |
Collapse
|
108
|
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18:2401-2415. [PMID: 33005303 PMCID: PMC7508700 DOI: 10.1016/j.csbj.2020.08.031] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advantages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems have become the most widely used genome editing technology in molecular biology laboratories all around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including the innovations, the applications in human disease research and gene therapy, as well as the challenges and opportunities that will be faced in the practical application of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
109
|
Hassanpour S, Behnam B, Baradaran B, Hashemzaei M, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 2020; 221:121610. [PMID: 33076140 DOI: 10.1016/j.talanta.2020.121610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotropes including carbon nanotubes and graphenes have been widely used for development of different Nano-biosensors for a diverse list of analytes because of their great physiochemical features such as high tensile strength, ultra-light weight, unique electronic construction, high thermo-chemical stability, and an appropriate capacity for electron transfer. Because of these exceptional properties, scientists have developed an immense interest in these nanomaterials. In this case, there are important reports to show the effective Nano-carbon based biosensors in the detection of NTI drugs and the present review will critically summarize the available data in this field.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
110
|
Almagro L, Lemos R, Makowski K, Rodríguez H, Ortiz O, Cáceres W, Herranz MÁ, Molero D, Martínez‐Álvarez R, Suárez M, Martín N. [60]Fullerene Hybrids Bearing “Steroid Wings”: A Joined Experimental and Theoretical Investigation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Luis Almagro
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - Reinier Lemos
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - Kamil Makowski
- School of Chemical Sciences and Engineering Yachay Tech University 100119 Urququi Ecuador
| | - Hortensia Rodríguez
- School of Chemical Sciences and Engineering Yachay Tech University 100119 Urququi Ecuador
| | - Orlando Ortiz
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - William Cáceres
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - M. Ángeles Herranz
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | - Dolores Molero
- CAI RMN Universidad Complutense de Madrid 28040 Madrid Spain
| | - Roberto Martínez‐Álvarez
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - Nazario Martín
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
111
|
Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K. Carbon nanostructures: The drug and the delivery system for brain disorders. Int J Pharm 2020; 587:119701. [PMID: 32736018 DOI: 10.1016/j.ijpharm.2020.119701] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Neurodegenerative disorders and brain tumors are major pathological conditions affecting the brain. The delivery of therapeutic agents into the brain is not as easy as to other organs or systems. The presence of the blood-brain barrier (BBB) makes the drug delivery into the brain more complicated and challenging. Many techniques have been developed to overcome the difficulties with BBB and to achieve brain-targeted drug delivery. Incorporation of the drugs into nanocarriers capable to penetrate BBB is a simple technique. Different nanocarriers have been developed including polymeric nanoparticles, carbon nanoparticles, lipid-based nanoparticles, etc. Carbon nanostructures could make a superior position among them, because of their good biocompatibility and easy penetration of BBB. Carbon-family nanomaterials consist of different carbon-based structures including zero-dimensional fullerene, one-dimensional carbon nanotube, two-dimensional graphene, and some other related structures like carbon dots and nanodiamonds. They can be used as efficient carriers for drug delivery into the brain. Apart from the drug delivery applications, they can also be used as a central nervous system (CNS) therapeutic agent; some of the carbon nanostructures have neuroregenerative activity. Their influence on neuronal growth and anti-amyloid action is also interesting. This review focuses on different carbon nanostructures for brain-targeted drug delivery and their CNS activities. As a carrier and CNS therapeutic agent, carbon nanostructures can revolutionize the treatment of brain disorders.
Collapse
Affiliation(s)
- T K Henna
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - V R Raphey
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Renu Sankar
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - V K Ameena Shirin
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
112
|
Aasi A, Aghaei SM, Moore MD, Panchapakesan B. Pt-, Rh-, Ru-, and Cu-Single-Wall Carbon Nanotubes Are Exceptional Candidates for Design of Anti-Viral Surfaces: A Theoretical Study. Int J Mol Sci 2020; 21:E5211. [PMID: 32717853 PMCID: PMC7432269 DOI: 10.3390/ijms21155211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/04/2023] Open
Abstract
As SARS-CoV-2 is spreading rapidly around the globe, adopting proper actions for confronting and protecting against this virus is an essential and unmet task. Reactive oxygen species (ROS) promoting molecules such as peroxides are detrimental to many viruses, including coronaviruses. In this paper, metal decorated single-wall carbon nanotubes (SWCNTs) were evaluated for hydrogen peroxide (H2O2) adsorption for potential use for designing viral inactivation surfaces. We employed first-principles methods based on the density functional theory (DFT) to investigate the capture of an individual H2O2 molecule on pristine and metal (Pt, Pd, Ni, Cu, Rh, or Ru) decorated SWCNTs. Although the single H2O2 molecule is weakly physisorbed on pristine SWCNT, a significant improvement on its adsorption energy was found by utilizing metal functionalized SWCNT as the adsorbent. It was revealed that Rh-SWCNT and Ru-SWCNT systems demonstrate outstanding performance for H2O2 adsorption. Furthermore, we discovered through calculations that Pt- and Cu-decorated SWNCT-H2O2 systems show high potential for filters for virus removal and inactivation with a very long shelf-life (2.2 × 1012 and 1.9 × 108 years, respectively). The strong adsorption of metal decorated SWCNTs and the long shelf-life of these nanomaterials suggest they are exceptional candidates for designing personal protection equipment against viruses.
Collapse
Affiliation(s)
- Aref Aasi
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (A.A.); (S.M.A.)
| | - Sadegh M Aghaei
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (A.A.); (S.M.A.)
| | - Matthew D. Moore
- Applied and Environmental Virology Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
| | - Balaji Panchapakesan
- Applied and Environmental Virology Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
113
|
Mohammadinejad R, Dehshahri A, Sassan H, Behnam B, Ashrafizadeh M, Samareh Gholami A, Pardakhty A, Mandegary A. Preparation of carbon dot as a potential CRISPR/Cas9 plasmid delivery system for lung cancer cells. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02618-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
114
|
Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Research on the toxicity of engineered carbon nanotubes (CNT) was initiated by Belgian academic chemists and toxicologists more than 15 years ago. It is now undisputed that some of these attractive nanomaterials induce serious illness such as fibrosis and cancer. The physico-chemical determinants of CNT-induced adverse effects are now elucidated and include shape, nanoscale diameter, and structural defects. Generated in vitro and in vivo data on their inflammogenic and fibrogenic activities were combined and translated in AOP (adverse outcome pathways) available for risk assessment and regulatory policies. The asbestos-like carcinogenic effect of CNT, notably their capacity to induce malignant mesothelioma (MM), remain, however, a cause of concern for public health and strongly curb the craze for CNT in industries. MM still represents a real challenge for clinicians and a highly refractory cancer to existing therapeutic strategies. By comparing mesotheliomagenic CNT (needle-like CNT-N) to non mesotheliomagenic CNT (tangled-like CNT-T), our group generated a relevant animal model that highlights immune pathways specifically associated to the carcinogenic process. Evidence indicates that only CNT-N possess the intrinsic capacity to induce a preferential, rapid, and sustained accumulation of host immunosuppressive cells that subvert immune surveillance and suppress anti-mesothelioma immunity. This new concept offers novel horizons for the clinical management of mesothelioma and represents an additional tool for predicting the mesotheliomagenic activity of newly elaborated CNT or nanoparticles.
Collapse
|
115
|
Nie W, Li Y, Chen L, Zhao Z, Zuo X, Wang D, Zhao L, Feng X. Interaction between multi-walled carbon nanotubes and propranolol. Sci Rep 2020; 10:10259. [PMID: 32581369 PMCID: PMC7314780 DOI: 10.1038/s41598-020-66933-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Carbon nanotubes could accumulate in organism and have a negative impact on the structure and function of the ecosystem when they were discharged into environment. Furthermore, it will affect the migration and fate of pollutants in the water body. The study is mainly to explore the adsorption behavior and mechanism of beta-blocker on multi-walled carbon nanotubes (MWCNTs). Propranolol (PRO) was selected as the representative of beta-blocker. The effects of different environmental factors such as pH, ionic strength and humic acid (HA) on the adsorption process were investigated. The adsorption results were characterized by Zeta potential. At the same time, the effects of different types of drugs on the adsorption process were explored and the possible adsorption mechanisms were analyzed. The experimental results showed that the adsorption behavior was significantly different under different pH conditions. π-π EDA interaction, hydrophobic interaction and hydrogen bonding were speculated to be the main adsorption mechanisms for PRO adsorption on MWCNTs.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China. .,Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China.
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.,Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China
| | - Leyuan Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Zhicheng Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xin Zuo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Dongdong Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Lei Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xinyue Feng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
116
|
When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2020; 11:2205-2231. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.
Collapse
|
117
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
118
|
Liu X, Tang J, Wang L, Liu R. Synergistic toxic effects of ball-milled biochar and copper oxide nanoparticles on Streptomyces coelicolor M145. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137582. [PMID: 32146398 DOI: 10.1016/j.scitotenv.2020.137582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 05/24/2023]
Abstract
The toxic effects of multi-nanomaterial systems are receiving increasing attention owing to their inevitable release of various nanomaterials. Knowledge of the bioavailability of the new carbon material ball-milled biochar (BMB) and its synergistic toxicity with metal oxide nanoparticles in bacteria is currently limited. In this study, the interactions of BMB with copper oxide nanoparticles (CuO NPs) and their synergistic toxicity towards Streptomyces coelicolor M145 were analyzed. Results showed that the cytotoxicity, ROS level and permeability of cells changed greatly with the pyrolysis temperatures of biochar and the concentrations of CuO NPs. The greatest cytotoxicity (up to 63.1%) was achieved by adding 20 mg/L CuO NPs to BMB700. The ROS level and cell permeability of this treatment was also the highest, about 4.2 folds and 2.9 folds greater than that of control, respectively. The combination of 10 mg/L BMB700 with 10 mg/L CuO NPs can maximize production of antibiotics, with the yield of undecylprodigiosin (RED) and actinorhodin (ACT) 3.0 times and 4.2 times higher than that in the control, respectively, and the change trend of related genes was consistent with that of antibiotics production. Mechanism analysis showed that the different adsorption capacity of BMB of different pyrolysis temperatures on copper ions played a vital role in the synergistic toxicity, and the increase in cell membrane permeability caused by cell collisions with particles was also an important reason for cytotoxicity. Overall, the synergistic toxicity of BMB with other NPs varies the pyrolysis temperatures, when considering the synergistic toxicity of these materials, the preparation conditions need to be taken into account so as to assess their environmental risks more accurately. On the other hand, this research may provide a new approach for the antibiotic industry to increase its output.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
119
|
Ahmed DS, Mohammed MKA. Studying the bactericidal ability and biocompatibility of gold and gold oxide nanoparticles decorating on multi-wall carbon nanotubes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01223-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
120
|
Boran G, Tavakoli S, Dierking I, Kamali AR, Ege D. Synergistic effect of graphene oxide and zoledronic acid for osteoporosis and cancer treatment. Sci Rep 2020; 10:7827. [PMID: 32385391 PMCID: PMC7211009 DOI: 10.1038/s41598-020-64760-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Zoledronic acid (ZOL) is a third generation bisphosphonate which can be used as a drug for the treatment of osteoporosis and metastasis. In this study, graphene oxide (GO) is conjugated with ZOL, and the nanostructured material is evaluated in terms viability, proliferation and differentiation. Furthermore, the associated morphological changes of bone marrow-derived mesenchymal stem cells (BM-MSC), and Michigan Cancer Foundation-7 (MCF-7) breast cancer cells, as well as the effect of the drugs on mineralization of BM-MSCs are investigated using a variety of characterization techniques including Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM) as well as alamar blue, acridine orange, and alizarin red assays. Nanostructured ZOL-GO with an optimum performance is synthesized using ZOL and GO suspensions with the concentration of 50 µM and 2.91 ng/ml, respectively. ZOL-GO nanostructures can facilitate the mineralization of BM-MSC cells, demonstrated by the formation of clusters around the cells. The results obtained confirm the performance of ZOL-GO nanostructures as promising drug complexes for the treatment of osteoporosis and metastasis.
Collapse
Affiliation(s)
- Gökçen Boran
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
| | - Sepideh Tavakoli
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
- Northeastern University, College of Engineering, Boston, Massachusetts USA 02115, Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
| | - Ingo Dierking
- University of Manchester, Department of Physics and Astronomy, Manchester, M13 9PL, United Kingdom
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang, China, 110819
| | - Duygu Ege
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368.
| |
Collapse
|
121
|
Cytotoxic or Not? Disclosing the Toxic Nature of Carbonaceous Nanomaterials through Nano-Bio Interactions. MATERIALS 2020; 13:ma13092060. [PMID: 32365624 PMCID: PMC7254307 DOI: 10.3390/ma13092060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
The cytotoxic influence of two different carbonaceous nanomaterials on human mesenchymal stem cells (MSCs) cultured in vitro was compared in the short (1-3 days) and long term (up to 60 days). Amorphous carbon and single-walled carbon nanotubes were chosen and evaluated due to their contrasting physicochemical properties. Both materials, though supposed similarly low-toxic in basic short-term cytotoxicity assays, demonstrated dramatically different properties in the long-term study. The surface chemistry and biomolecule-adsorption capacity turned out to be crucial factors influencing cytotoxicity. We proved that amorphous carbon is able to weakly bind a low-affinity protein coat (so-called soft corona), while carbon nanotubes behaved oppositely. Obtained results from zeta-potential and adsorption measurements for both nanomaterials confirmed that a hard protein corona was present on the single-walled carbon-nanotube surface that aggravated their cytotoxic influence. The long-term exposure of the mesenchymal stem cells to carbon nanotubes, coated by the strongly bound proteins, showed a significant decrease in cell-growth rate, followed by cell senescence and death. These results are of great importance in the light of increasing nanomaterial applications in biomedicine and cell-based therapies. Our better understanding of the puzzling cytotoxicity of carbonaceous nanomaterials, reflecting their surface chemistry and interactions, is helpful in adjusting their properties when tailored for specific applications.
Collapse
|
122
|
Human β-defensin 3 gene modification promotes the osteogenic differentiation of human periodontal ligament cells and bone repair in periodontitis. Int J Oral Sci 2020; 12:13. [PMID: 32350241 PMCID: PMC7190824 DOI: 10.1038/s41368-020-0078-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Efforts to control inflammation and achieve better tissue repair in the treatment of periodontitis have been ongoing for years. Human β-defensin 3, a broad-spectrum antimicrobial peptide has been proven to have a variety of biological functions in periodontitis; however, relatively few reports have addressed the effects of human periodontal ligament cells (hPDLCs) on osteogenic differentiation. In this study, we evaluated the osteogenic effects of hPDLCs with an adenoviral vector encoding human β-defensin 3 in an inflammatory microenvironment. Then human β-defensin 3 gene-modified rat periodontal ligament cells were transplanted into rats with experimental periodontitis to observe their effects on periodontal bone repair. We found that the human β-defensin 3 gene-modified hPDLCs presented with high levels of osteogenesis-related gene expression and calcium deposition. Furthermore, the p38 MAPK pathway was activated in this process. In vivo, human β-defensin 3 gene-transfected rat PDLCs promoted bone repair in SD rats with periodontitis, and the p38 mitogen-activated protein kinase (MAPK) pathway might also have been involved. These findings demonstrate that human β-defensin 3 accelerates osteogenesis and that human β-defensin 3 gene modification may offer a potential approach to promote bone repair in patients with periodontitis.
Collapse
|
123
|
Skariyachan S, Gopal D, Kadam SP, Muddebihalkar AG, Uttarkar A, Niranjan V. Carbon fullerene acts as potential lead molecule against prospective molecular targets of biofilm-producing multidrug-resistant Acinetobacter baumanni and Pseudomonas aerugenosa: computational modeling and MD simulation studies. J Biomol Struct Dyn 2020; 39:1121-1137. [PMID: 32036742 DOI: 10.1080/07391102.2020.1726821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to screen putative drug targets associated with biofilm formation of multidrug-resistant Acinetobacter baumannii and Pseudomonas areugenosa and prioritize carbon nano-fullerene as potential lead molecule by structure-based virtual screening. Based on the functional role, 36 and 83 genes that are involved in biofilm formation of A. baumannii and P. areugenosa respectively were selected and metabolic network was computationally constructed. The genes that lack three-dimensional structures were predicted and validated. Carbon nano-fullerene selected as lead molecule and their drug-likeliness and pharmacokinetics properties were computationally predicted. The binding potential of carbon nano-fullerene toward selected drug targets was modeled and compared with the binding of conventional drugs, doripenem, and polymyxin-B with their usual targets. The stabilities of four best-docked complexes were confirmed by molecular dynamic (MD) simulation. This study suggested that selected genes demonstrated relevant interactions in the constructed metabolic pathways. Carbon fullerene exhibited significant binding abilities to most of the prioritized targets in comparison with the binding of last-resort antibiotics and their usual target. The four best ligand-receptor interactions predicted by molecular docking revealed that stability throughout MD simulation. Notably, carbon fullerene exhibited profound binding with outer membrane protein (OmpA) and ribonuclease-HII (rnhB) of A. baumannii and 2-heptyl-4(1H)-quinolone synthase (pqsBC) and chemotaxis protein (wspA) of P. aeruginosa. Thus, the current study suggested that carbon fullerene was probably used as potential lead molecules toward selected targets of A. baumannii and P. aeruginosa and the applied aspects probably scaled up to design promising lead molecules toward these pathogens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, India
| | - Dharshini Gopal
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Sanjana Pratab Kadam
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Aditi G Muddebihalkar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India.,Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| |
Collapse
|
124
|
Mohammadi E, Zeinali M, Mohammadi-Sardoo M, Iranpour M, Behnam B, Mandegary A. The effects of functionalization of carbon nanotubes on toxicological parameters in mice. Hum Exp Toxicol 2020; 39:1147-1167. [PMID: 31957491 DOI: 10.1177/0960327119899988] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon nanotubes (CNTs) have emerged as a new class of multifunctional nanoparticles in biomedicine, but their multiple in vivo effects remain unclear. Also, the impact of various functionalization types and duration of exposures are still unidentified. Herein, we report a complete toxicological study to evaluate the effects of single- and multiwalled carbon nanotubes (SWCNTs and MWCNTs) with either amine or carboxylic acid (COOH) surface functional groups. The results showed that significant oxidative stress and the subsequent cell apoptosis could be resulted in both acute and, mainly, in chronic intravenous administrations. Also, male reproductive parameters were altered during these exposures. The amino-functionalized CNTs had more toxic properties compared with the COOH functionalized group, and also, in some groups, the multiwalled nanotubes were more active in eliciting cytotoxicity than the single-walled nanotubes. Interestingly, the SWCNTs-COOH had the least alterations in most of the parameters. Evidently, it is concluded that the toxicity of CNTs in specific organs can be minimized through particular surface functionalizations.
Collapse
Affiliation(s)
- E Mohammadi
- Student Research Committee, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - M Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - M Mohammadi-Sardoo
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - M Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - B Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - A Mandegary
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
125
|
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020; 378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.
Collapse
Affiliation(s)
- Viviana Negri
- Departamento de Biotecnología y Farmacia, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Jesús Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, c/Dr. Esquerdo 56, 28007, Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, c/Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
126
|
Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug Chem Toxicol 2020; 45:435-450. [DOI: 10.1080/01480545.2019.1709492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Payal Kesharwani
- Ram-Eesh Institute of Vocational and Technical Education, Knowledge Park I, Greater Noida, Uttar Pradesh, India
| | - Deeksha Soni
- Rawatpura Sarkar Institute of Pharmacy, Datia, Madhya Pradesh, India
| | - Aakanchha Jain
- Bhagyodaya Tirth Pharmacy College, Sagar, Madhya Pradesh, India
| |
Collapse
|
127
|
Carbon Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
128
|
Thong NM, Vo QV, Le Huyen T, Van Bay M, Dung NN, Thu Thao PT, Nam PC. Functionalization and antioxidant activity of polyaniline–fullerene hybrid nanomaterials: a theoretical investigation. RSC Adv 2020; 10:14595-14605. [PMID: 35497132 PMCID: PMC9051919 DOI: 10.1039/d0ra00903b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Functionalized fullerene is one of the most advantageous nanotechnologies to develop novel materials for potential biomedical applications. In this study, we applied the ONIOM-GD3 approach to explore the nucleophilic addition reaction mechanism between polyaniline (emeraldine and leucoemeraldine forms) and fullerene. Potential energy surfaces were also analyzed to predict the predominantly formed products of the functionalized reaction. The themoparameters, such as bond dissociation enthalpy (BDE), ionization energy (IE), and electron affinity (EA), characterized by two mechanisms HAT and SET, were used to evaluate the antioxidant activities of the selected compounds. Moreover, the calculated HOMO, LUMO, and DOS results indicate that the electronic structures of polyaniline–fullerene were significantly affected by the presence of fullerene. The computational results show that C60-L1 seems to be the best antioxidant following the SET mechanism. Functionalized fullerene is one of the most advantageous nanotechnologies to develop novel materials for potential biomedical applications.![]()
Collapse
Affiliation(s)
| | - Quan V. Vo
- The University of Danang
- University of Technology and Education
- Danang 550000
- Vietnam
| | - Trinh Le Huyen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Department of Chemical Engineering
| | - Mai Van Bay
- The University of Danang
- University of Science and Education
- Danang 550000
- Vietnam
| | - Nguyen Nho Dung
- Danang University of Physical Education and Sports
- Danang 550000
- Vietnam
| | - Pham Thi Thu Thao
- Department of Chemical Engineering
- The University of Danang
- University of Science and Technology
- Danang 550000
- Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering
- The University of Danang
- University of Science and Technology
- Danang 550000
- Vietnam
| |
Collapse
|
129
|
Chandrasekaran R, Rajiv P, Abd-Elsalam KA. Carbon nanotubes: Plant gene delivery and genome editing. CARBON NANOMATERIALS FOR AGRI-FOOD AND ENVIRONMENTAL APPLICATIONS 2020:279-296. [DOI: 10.1016/b978-0-12-819786-8.00014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
130
|
Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, Yuan X. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. ENVIRONMENT INTERNATIONAL 2020; 134:105298. [PMID: 31765863 DOI: 10.1016/j.envint.2019.105298] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials (CNMs) are novel nanomaterials with excellent physicochemical properties, which are widely used in biomedicine, energy and sensing. Besides, CNMs also play an important role in environmental pollution control, which can absorb heavy metals, antibiotics and harmful gases. However, CNMs are inevitably entering the environment while they are rapidly developing. They are harmful to living organisms in the environment and are difficult to degrade under natural conditions. Here, we systematically describe the toxicity of carbon nanotubes (CNTs), graphene (GRA) and C60 to cells, animals, humans, and microorganisms. According to the current research results, the toxicity mechanism is summarized, including oxidative stress response, mechanical damage and effects on biological enzymes. In addition, according to the latest research progress, we focus on the two major degradation methods of chemical degradation and biodegradation of CNTs, GRA and C60. Meanwhile, the reaction conditions and degradation mechanisms of degradation are respectively stated. Moreover, we have prospects for the limitations of CNM degradation under non-experimental conditions and their potential application.
Collapse
Affiliation(s)
- Zan Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaojuan Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
131
|
Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, Tamaddondoust RN, Khanbabaei H, Mohammadinejad R, Thakur VK. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int J Biol Macromol 2019; 145:282-300. [PMID: 31870872 DOI: 10.1016/j.ijbiomac.2019.12.145] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022]
Abstract
Paclitaxel (PTX) and docetaxel (DTX) are key members of taxanes with high anti-tumor activity against various cancer cells. These chemotherapeutic agents suffer from a number of drawbacks and it seems that low solubility in water is the most important one. Although much effort has been made in improving the bioavailability of PTX and DTX, the low bioavailability and minimal accumulation at tumor sites are still the challenges faced in PTX and DTX therapy. As a consequence, bio-based nanoparticles (NPs) have attracted much attention due to unique properties. Among them, chitosan (CS) is of interest due to its great biocompatibility. CS is a positively charged polysaccharide with the capability of interaction with negatively charged biomolecules. Besides, it can be processed into the sheet, micro/nano-particles, scaffold, and is dissolvable in mildly acidic pH similar to the pH of the tumor microenvironment. Keeping in mind the different applications of CS in the preparation of nanocarriers for delivery of PTX and DTX, in the present review, we demonstrate that how CS functionalized-nanocarriers and CS modification can be beneficial in enhancing the bioavailability of PTX and DTX, targeted delivery at tumor site, image-guided delivery and co-delivery with other anti-tumor drugs or genes.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, Shushtar, Khuzestan, Iran
| | - Neda Mohamadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- SUNUM, Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey
| | - Sara Abasi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
132
|
Cao Y, Luo Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: A review. Toxicol Appl Pharmacol 2019; 385:114801. [PMID: 31678607 DOI: 10.1016/j.taap.2019.114801] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Carbon nanotubes (CNTs) are novel carbon based nanomaterials (NMs) that could be used in many areas ranging from electronics to biotechnology. The present review summarized pharmacological and toxicological aspects of CNTs to vascular systems, because the vascular systems are important targets for CNTs during manufacturing process, daily contact and biomedical uses. Functionalized CNTs could be used as novel nanoplateforms to regulate angiogenesis for cancer therapy, as well as nanocarriers to cross blood brain barrier (BBB), one of the major obstacles to prevent the entering of therapeutic substances into brains. However, it has also been shown that inhalational or intravenous contact with CNTs might induce adverse vascular effects, such as progression of atherosclerotic plaque, vasomotor dysfunction, and changes of blood pressure and/or heart rate in laboratory animals, although currently there are only limited reports obtained from CNT-exposed human beings and the results are inconclusive. The mechanisms associated with the vascular toxicity of CNTs remain poorly understood, and it appears that multiple signaling pathways are likely to be involved. The toxicity of CNTs to vascular systems might be reduced by controlling the physicochemical properties of CNTs, particularly lengths, diameters and surface chemistry. At present, the beneficial and adverse effects of CNTs to vascular systems are still largely unknown and require further extensive studies.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | - Yingmei Luo
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
133
|
Wolski P, Wojton P, Nieszporek K, Panczyk T. Interaction of Human Telomeric i-Motif DNA with Single-Walled Carbon Nanotubes: Insights from Molecular Dynamics Simulations. J Phys Chem B 2019; 123:10343-10353. [PMID: 31735024 DOI: 10.1021/acs.jpcb.9b07292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work deals with molecular dynamics simulations of human telomeric i-motif DNA interacting with functionalized single-walled carbon nanotubes. We study two kinds of i-motifs differing by the protonation state of cytosines, i.e., unprotonated ones representative to neutral pH and with half of the cytosines protonated and representative to acidic conditions. These i-motifs interact with two kinds of carbon nanotubes differing mainly in chirality (diameter), i.e., (10, 0) and (20, 0). Additionally, these nanotubes were on-tip functionalized by amino groups or by guanine- containing residues. We found that protonated i-motif adsorbs strongly, although not specifically, on the nanotube surfaces with its 3' and 5' ends directed toward the surface and that adsorption does not affect the i-motif shape and hydrogen bonds existing between C:C+ pairs. The functional groups on the nanotube tips have minimal effect either on position of i-motif or on its binding strength. Unprotonated i-motif, in turn, deteriorates significantly during interaction with the nanotubes and its binding strength is rather high as well. We found that (10, 0) nanotubes destroy the i-motif shape faster than (20, 0). Moreover the i-motif either tries to wrap the nanotube or migrates to its tip and becomes immobilized due to interaction with guanine residue localized on the nanotube tip and attempts to incorporate its 3' end into the nanotube interior. No hydrogen bonds exist within the unprotonated i-motif prior to and after adsorption on the nanotube. Thus, carbon nanotubes do not improve the stability of unprotonated i-motif due to simple adsorption or just physical interactions. We hypothesize that the stabilizing effect of carbon nanotubes reported in the literature is due to proton transfer from the functional group in the nanotube to cytosines and subsequent formation of C:C+ pairs.
Collapse
Affiliation(s)
- Pawel Wolski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| | - Patrycja Wojton
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| | - Krzysztof Nieszporek
- Department of Chemistry , Maria Curie-Sklodowska University , pl. M. Curie-Sklodowskiej 3 , 20031 Lublin , Poland
| | - Tomasz Panczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| |
Collapse
|
134
|
Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111680. [PMID: 31810038 DOI: 10.1016/j.jphotobiol.2019.111680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023]
Abstract
Tissue engineering and stem cell rehabilitation are the hopeful aspects that are being investigated for the management of Myocardial Infarction (MI); cardiac patches have been used to start myocardial rejuvenation. In this study, we engineered p-phenylenediamine surface functionalized (modif-CQD) into the Silk fibroin/PLA (SF/PLA) nanofibrous bioactive scaffolds with improved physico-chemical abilities, mechanical and cytocompatibility to cardiomyocytes. The micrograph results visualized the morphological improved spherical modif-CQD have been equivalently spread throughout the SF/PLA bioactive cardiac scaffolds. The fabricated CQD@SF/PLA nanofibrous bioactive scaffolds were highly porous with fully consistent pores; effectively improved young modulus and swelling asset for the suitability and effective implantation efficacy. The scaffolds were prepared with rat cardiomyocytes and cultured for up to 7 days, without electrical incentive. After 7 days of culture, the scaffold pores all over the construct volume were overflowing with cardiomyocytes. The metabolic activity and viability of the cardiomyocytes in CQD@SF/PLA scaffolds were significantly higher than cardiomyocytes in Silk fibroin /PLA scaffolds. The integration of CQD also influenced greatly and increases the expression of cardiac-marker genes. The results of the present investigations evidently recommended that well-organized cardiac nanofibrous scaffold with greater cardiac related mechanical abilities and biocompatibilities for cardiac tissue engineering and nursing care applications.
Collapse
|
135
|
Thermodynamics of multi-walled carbon nanotube biofunctionalization using nisin: The effect of peptide structure. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
136
|
De Maio F, Palmieri V, De Spirito M, Delogu G, Papi M. Carbon nanomaterials: a new way against tuberculosis. Expert Rev Med Devices 2019; 16:863-875. [PMID: 31550943 DOI: 10.1080/17434440.2019.1671820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Tuberculosis (TB) remains one of the most alarming worldwide infectious diseases primarily in low-income countries, where the infection shows a higher and unvaried prevalence. In the last years, the emergence and spread of Mycobacterium tuberculosis (Mtb) strains resistant to first-line anti-TB drugs are the cause of major concern and prompted the implementation of new treatments, including the development of new drugs and the repurposing of old ones. Areas covered: In this review, we discuss solutions against TB based on nanomaterials (NMTs), alone or combined with current anti-TB drugs. We will summarize drug delivery platforms tested in in vivo or in vitro models and their activity against mycobacteria. We will describe how the new nanotechnologies based on carbon nanomaterials, like carbon nanotubes and graphene oxide are now facing the panorama of the medical fight against TB. Expert opinion: We foresee that in the next decade carbon nanomaterials will be at the forefront in fighting emerging antibiotic-resistant Mtb strains by shortening treatment periods, reducing adverse effects and mitigating antibiotic use. However, toxicity and biodegradation studies should be done prior to the clinical translation of carbon nanomaterials.
Collapse
Affiliation(s)
- Flavio De Maio
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Giovanni Delogu
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| |
Collapse
|
137
|
Nanomaterials-based Electrochemical Immunosensors. MICROMACHINES 2019; 10:mi10060397. [PMID: 31207970 PMCID: PMC6630602 DOI: 10.3390/mi10060397] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
With the development of nanomaterials and sensor technology, nanomaterials-based electrochemical immunosensors have been widely employed in various fields. Nanomaterials for electrode modification are emerging one after another in order to improve the performance of electrochemical immunosensors. When compared with traditional detection methods, electrochemical immunosensors have the advantages of simplicity, real-time analysis, high sensitivity, miniaturization, rapid detection time, and low cost. Here, we summarize recent developments in electrochemical immunosensors based on nanomaterials, including carbon nanomaterials, metal nanomaterials, and quantum dots. Additionally, we discuss research challenges and future prospects for this field of study.
Collapse
|
138
|
Verma SK, Das AK, Gantait S, Kumar V, Gurel E. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:485-499. [PMID: 30833247 DOI: 10.1016/j.scitotenv.2019.02.409] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 05/20/2023]
Abstract
With the remarkable development in the field of nanotechnology, carbon-based nanomaterials (CNMs) have been widely used for numerous applications in different areas of the plant system. The current understanding about the CNMs' accumulation, translocation, plant growth responses, and stress modulations in the plant system is far from complete. There have been relentless efforts by the researchers worldwide in order to acquire newer insights into the plant-CNMs interactions and the consequences. The present review intends to update the reader with the status of the impacts of the different CNMs on plant growth. Research reports from the plant biotechnologists have documented mixed effects (which are dependent on CNMs' concentration) of the CNMs' exposure on plants ranging from enhanced crop yield to acute cytotoxicity. The growth and yield pattern vary from species to species and are dependent on the dosage of the CNMs applied. Studies found an increase in vegetative growth and yield of fruit/seed at lower concentration of CNMs, but a decrease in these observables were also noted when higher concentrations of CNMs were used. In general, at lower concentrations, CNMs were found to be effective in enhancing (water uptake, water transport, seed germination, nitrogenase, photosystem and antioxidant activities), activating (water channels proteins) and promoting (nutrition absorption); all these change when concentrations are raised. All these aspects have been reviewed thoroughly in this article, with a focus on the recent updates on the role of the CNMs in augmenting or retarding plant growth. Sections have been devoted to the various features of the CNMs and their roles in inducing plant growth, phytotoxic responses of the plants and overall crop improvement. Concluding remarks have been added to propose future directions of research on the CNMs-plant interactions and also to sound a warning on the use of CNMs in agriculture.
Collapse
Affiliation(s)
- Sandeep Kumar Verma
- Institute of Biological Science, SAGE University, Baypass Road, Kailod Kartal, Indore 452020, Madhya Pradesh, India; Biotechnology Laboratory, Department of Biology, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey.
| | - Ashok Kumar Das
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - Saikat Gantait
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, Maharashtra, India
| | - Ekrem Gurel
- Biotechnology Laboratory, Department of Biology, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| |
Collapse
|
139
|
Mohajeri M, Behnam B, Barreto GE, Sahebkar A. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer's disease? Pharmacol Res 2019; 143:186-203. [DOI: 10.1016/j.phrs.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/24/2023]
|
140
|
Li Z, Liu T, Long J, Wu Y, Yan B, Ma P, Cao Y. The toxicity of hydroxylated and carboxylated multi-walled carbon nanotubes to human endothelial cells was not exacerbated by ER stress inducer. CHINESE CHEM LETT 2019; 30:582-586. [DOI: 10.1016/j.cclet.2018.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
141
|
Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in Therapeutic Implications of Inorganic Drug Delivery Nano-Platforms for Cancer. Int J Mol Sci 2019; 20:ijms20040965. [PMID: 30813333 PMCID: PMC6413464 DOI: 10.3390/ijms20040965] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Numerous nanoparticles drug delivery systems for therapeutic implications in cancer treatment are in preclinical development as conventional chemotherapy has several drawbacks. A chemotherapeutic approach requires high doses of chemotherapeutic agents with low bioavailability, non-specific targeting, and above all, development of multiple drug resistance. In recent years, inorganic nano-drug delivery platforms (NDDPs; with a metal core) have emerged as potential chemotherapeutic systems in oncology. One of the major goals of developing inorganic NDDPs is to effectively address the targeted anti-cancer drug(s) delivery related problems by carrying the therapeutic agents to desired tumors sites. In this current review, we delve into summarizing the recent developments in targeted release of anti-cancer drugs loaded in inorganic NDDPs such as mesoporous silica nanoparticles, carbon nanotubes, layered double hydroxides, superparamagnetic iron oxide nanoparticles and calcium phosphate nanoparticles together with highlighting their therapeutic performance at tumor sites.
Collapse
Affiliation(s)
- Safia Naz
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Muhammad Shamoon
- Medical School, The Australian National University, Canberra ACT 2600, Australia.
| | - Rui Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Li Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Juan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
142
|
Simon J, Flahaut E, Golzio M. Overview of Carbon Nanotubes for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E624. [PMID: 30791507 PMCID: PMC6416648 DOI: 10.3390/ma12040624] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
The unique combination of mechanical, optical and electrical properties offered by carbon nanotubes has fostered research for their use in many kinds of applications, including the biomedical field. However, due to persisting outstanding questions regarding their potential toxicity when considered as free particles, the research is now focusing on their immobilization on substrates for interface tuning or as biosensors, as load in nanocomposite materials where they improve both mechanical and electrical properties or even for direct use as scaffolds for tissue engineering. After a brief introduction to carbon nanotubes in general and their proposed applications in the biomedical field, this review will focus on nanocomposite materials with hydrogel-based matrices and especially their potential future use for diagnostics, tissue engineering or targeted drug delivery. The toxicity issue will also be briefly described in order to justify the safe(r)-by-design approach offered by carbon nanotubes-based hydrogels.
Collapse
Affiliation(s)
- Juliette Simon
- CIRIMAT, Université Toulouse Paul Sabatier, B.t. CIRIMAT, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse Paul Sabatier, 205, Route de Narbonne, 31077 Toulouse CEDEX 4, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse Paul Sabatier, B.t. CIRIMAT, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse Paul Sabatier, 205, Route de Narbonne, 31077 Toulouse CEDEX 4, France.
| |
Collapse
|
143
|
Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi SM, Mandegary A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. J Adv Res 2019; 18:81-93. [PMID: 30828478 PMCID: PMC6383136 DOI: 10.1016/j.jare.2019.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, carbon dots (CDs) have attracted great attention due to their superior properties, such as biocompatibility, fluorescence, high quantum yield, and uniform distribution. These characteristics make CDs interesting for bioimaging, therapeutic delivery, optogenetics, and theranostics. Photoluminescence (PL) properties enable CDs to act as imaging-trackable gene nanocarriers, while cationic CDs with high transfection efficiency have been applied for plasmid DNA and siRNA delivery. In this review, we have highlighted the precursors, structure and properties of positively charged CDs to demonstrate the various applications of these materials for nucleic acid delivery. Additionally, the potential of CDs as trackable gene delivery systems has been discussed. Although there are several reports on cellular and animal approaches to investigating the potential clinical applications of these nanomaterials, further systematic multidisciplinary approaches are required to examine the pharmacokinetic and biodistribution patterns of CDs for potential clinical applications.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Dadashzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Moghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71345-1583, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosseinali Sassan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Seyed-Mojtaba Sohrevardi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Silences, Yazd, Iran
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|