101
|
Penna F, Costelli P. New developments in investigational HDAC inhibitors for the potential multimodal treatment of cachexia. Expert Opin Investig Drugs 2018; 28:179-189. [PMID: 30526137 DOI: 10.1080/13543784.2019.1557634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cachexia is a frequent feature of chronic diseases. This syndrome includes loss of body weight, depletion of skeletal muscle mass and altered metabolic homeostasis. Acceleration of protein and energy metabolism, impaired myogenesis, and systemic inflammation contribute to cachexia. Its occurrence impinges on treatment tolerance and on the quality of life of the patient, however, no effective therapy is available yet. AREAS COVERED This review focuses on the use of histone deacetylase inhibitors as pharmacological tools to prevent or delay cachexia, with reference to muscle wasting. EXPERT OPINION Novel histone deacetylase inhibitors could be considered as exercise mimetics and this supports their use as a treatment for muscle-wasting associated diseases, such as cachexia. The ability of some of these inhibitors to modulate the release of extracellular vesicles from tumor cells is a potential tool for restricting the development of cancer-induced muscle protein depletion. There are few clinical trials that are testing histone deacetylase inhibitors as a treatment for cachexia; this reflects the lack of robust experimental evidence of effectiveness. The determination of the pathogenic mechanisms of muscle wasting and the identification of suitable histone deacetylase inhibitors that target such mechanisms are necessary.
Collapse
Affiliation(s)
- Fabio Penna
- a Department of Clinical and Biological Science , University of Torino , Italy.,b Interuniversity Institute of Myology , Italy
| | - Paola Costelli
- a Department of Clinical and Biological Science , University of Torino , Italy.,b Interuniversity Institute of Myology , Italy
| |
Collapse
|
102
|
Suzuki T, Palus S, Springer J. Skeletal muscle wasting in chronic heart failure. ESC Heart Fail 2018; 5:1099-1107. [PMID: 30548178 PMCID: PMC6300810 DOI: 10.1002/ehf2.12387] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Patients suffering from chronic heart failure (CHF) show an increased prevalence (~20% in elderly CHF patients) of loss of muscle mass and muscle function (i.e. sarcopenia) compared with healthy elderly people. Sarcopenia, which can also occur in obese patients, is considered a strong predictor of frailty, disability, and mortality in older persons and is present in 5–13% of elderly persons aged 60–70 years and up to 50% of all octogenarians. In a CHF study, sarcopenia was associated with lower strength, reduced peak oxygen consumption (peak VO2, 1173 ± 433 vs. 1622 ± 456 mL/min), and lower exercise time (7.7 ± 3.8 vs. 10.22 ± 3.0 min, both P < 0.001). Unfortunately, there are only very limited therapy options. Currently, the main intervention remains resistance exercise. Specialized nutritional support may aid the effects of resistance training. Testosterone has significant positive effects on muscle mass and function, and low endogenous testosterone has been described as an independent risk factor in CHF in a study with 618 men (hazard ratio 0.929, P = 0.042). However, the use of testosterone is controversial because of possible side effects. Selective androgen receptor modulators have been developed to overcome these side effects but are not yet available on the market. Further investigational drugs include growth hormone, insulin‐like growth factor 1, and several compounds that target the myostatin pathway. The continuing development of new treatment strategies and compounds for sarcopenia, muscle wasting regardless of CHF, and cardiac cachexia makes this a stimulating research area.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sandra Palus
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jochen Springer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
103
|
Rodriguez JA, Bruggeman EC, Mani BK, Osborne-Lawrence S, Lord CC, Roseman HF, Viroslav HL, Vijayaraghavan P, Metzger NP, Gupta D, Shankar K, Pietra C, Liu C, Zigman JM. Ghrelin Receptor Agonist Rescues Excess Neonatal Mortality in a Prader-Willi Syndrome Mouse Model. Endocrinology 2018; 159:4006-4022. [PMID: 30380028 PMCID: PMC6260060 DOI: 10.1210/en.2018-00801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
In the current study, we sought to determine the significance of the ghrelin system in Prader-Willi Syndrome (PWS). PWS is characterized by hypotonia and difficulty feeding in neonates and hyperphagia and obesity beginning later in childhood. Other features include low GH, neonatal hypoglycemia, hypogonadism, and accelerated mortality. Although the hyperphagia and obesity in PWS have been attributed to elevated levels of the orexigenic hormone ghrelin, this link has never been firmly established, nor have ghrelin's potentially protective actions to increase GH secretion, blood glucose, and survival been investigated in a PWS context. In the current study, we show that placing Snord116del mice modeling PWS on ghrelin-deficient or ghrelin receptor [GH secretagogue receptor (GHSR)]-deficient backgrounds does not impact their characteristically reduced body weight, lower plasma IGF-1, delayed sexual maturation, or increased mortality in the period prior to weaning. However, blood glucose was further reduced in male Snord116del pups on a ghrelin-deficient background, and percentage body weight gain and percentage fat mass were further reduced in male Snord116del pups on a GHSR-deficient background. Strikingly, 2 weeks of daily administration of the GHSR agonist HM01 to Snord116del neonates markedly improved survival, resulting in a nearly complete rescue of the excess mortality owing to loss of the paternal Snord116 gene. These data support further exploration of the therapeutic potential of GHSR agonist administration in limiting PWS mortality, especially during the period characterized by failure to thrive.
Collapse
Affiliation(s)
- Juan A Rodriguez
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Emily C Bruggeman
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Sherri Osborne-Lawrence
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Caleb C Lord
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Henry F Roseman
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Hannah L Viroslav
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Prasanna Vijayaraghavan
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Nathan P Metzger
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Deepali Gupta
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Kripa Shankar
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | | | - Chen Liu
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
104
|
Pin F, Couch ME, Bonetto A. Preservation of muscle mass as a strategy to reduce the toxic effects of cancer chemotherapy on body composition. Curr Opin Support Palliat Care 2018; 12:420-426. [PMID: 30124526 PMCID: PMC6221433 DOI: 10.1097/spc.0000000000000382] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Cancer patients undergoing chemotherapy often experience very debilitating side effects, including unintentional weight loss, nausea, and vomiting. Changes in body composition, specifically lean body mass (LBM), are known to have important implications for anticancer drug toxicity and cancer prognosis. Currently, chemotherapy dosing is based on calculation of body surface area, although this approximation does not take into consideration the variability in lean and adipose tissue mass. RECENT FINDINGS Patients with depletion of muscle mass present higher chemotherapy-related toxicity, whereas patients with larger amounts of LBM show fewer toxicities and better outcomes. Commonly used chemotherapy regimens promote changes in body composition, primarily by affecting skeletal muscle, as well as fat and bone mass. Experimental evidence has shown that pro-atrophy mechanisms, abnormal mitochondrial metabolism, and reduced protein anabolism are primarily implicated in muscle depletion. Muscle-targeted pro-anabolic strategies have proven successful in preserving lean tissue in the occurrence of cancer or following chemotherapy. SUMMARY Muscle wasting often occurs as a consequence of anticancer treatments and is indicative of worse outcomes and poor quality of life in cancer patients. Accurate assessment of body composition and preservation of muscle mass may reduce chemotherapy toxicity and improve the overall survival.
Collapse
Affiliation(s)
| | - Marion E. Couch
- Department of Otolaryngology – Head & Neck Surgery
- Center for Cachexia Research Innovation and Therapy
- Simon Cancer Center
| | - Andrea Bonetto
- Department of Anatomy and Cell Biology
- Department of Otolaryngology – Head & Neck Surgery
- Center for Cachexia Research Innovation and Therapy
- Simon Cancer Center
- Department of Surgery
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
105
|
Angelino E, Reano S, Bollo A, Ferrara M, De Feudis M, Sustova H, Agosti E, Clerici S, Prodam F, Tomasetto CL, Graziani A, Filigheddu N. Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal. Endocrine 2018; 62:129-135. [PMID: 29846901 DOI: 10.1007/s12020-018-1606-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/15/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. The peptides produced by the ghrelin gene, i.e., acylated ghrelin (AG), unacylated ghrelin (UnAG), and obestatin (Ob), affect skeletal muscle biology in several ways, not always with overlapping effects. In particular, UnAG and Ob promote SC self-renewal and myoblast differentiation, thus fostering muscle regeneration. METHODS To delineate the endogenous contribution of preproghrelin in muscle regeneration, we evaluated the repair process in Ghrl-/- mice upon CTX-induced injury. RESULTS Although muscles from Ghrl-/- mice do not visibly differ from WT muscles in term of weight, structure, and SCs content, muscle regeneration after CTX-induced injury is impaired in Ghrl-/- mice, indicating that ghrelin-derived peptides actively participate in muscle repair. Remarkably, the lack of ghrelin gene impacts SC self-renewal during regeneration. CONCLUSIONS Although we cannot discern the specific Ghrl-derived peptide responsible for such activities, these data indicate that Ghrl contributes to a proper muscle regeneration.
Collapse
Affiliation(s)
- Elia Angelino
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandro Bollo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Michele Ferrara
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Marilisa De Feudis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Hana Sustova
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Emanuela Agosti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Sara Clerici
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Catherine-Laure Tomasetto
- IGBMC - Institut de Génétique et de Biologie Moléculaire et Cellulaire - Université de Strasbourg, Illkirch, France
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
- Università Vita-Salute San Raffaele, Milano, Italy.
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
106
|
von Haehling S, Anker MS, Ebner N, Anker SD. Time to jump on the bandwagon: the Journal of Cachexia, Sarcopenia and Muscle in 2018. J Cachexia Sarcopenia Muscle 2018; 9:793-801. [PMID: 30311438 PMCID: PMC6204581 DOI: 10.1002/jcsm.12356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical School, Göttingen, Germany
| | - Markus S Anker
- Division of Cardiology and Metabolism, Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site: Department of Cardiology Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicole Ebner
- Department of Cardiology and Pneumology, University of Göttingen Medical School, Göttingen, Germany
| | - Stefan D Anker
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site: Department of Cardiology Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
107
|
Holubová M, Blechová M, Kákonová A, Kuneš J, Železná B, Maletínská L. In Vitro and In Vivo Characterization of Novel Stable Peptidic Ghrelin Analogs: Beneficial Effects in the Settings of Lipopolysaccharide-Induced Anorexia in Mice. J Pharmacol Exp Ther 2018; 366:422-432. [PMID: 29914876 DOI: 10.1124/jpet.118.249086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023] Open
Abstract
Ghrelin, the only known orexigenic gut hormone produced primarily in the stomach, has lately gained attention as a potential treatment of anorexia and cachexia. However, its biologic stability is highly limited; therefore, a number of both peptide and nonpeptide ghrelin analogs have been synthesized. In this study, we provide in vitro and in vivo characterization of a series of novel peptide growth hormone secretagogue receptor (GHS-R1a) agonists, both under nonpathologic conditions and in the context of lipopolysaccharide (LPS)-induced anorexia. These analogs were based on our previous series modified by replacing the Ser3 with diaminopropionic acid (Dpr), the N-terminal Gly with sarcosine, and Phe4 with various noncoded amino acids. New analogs were further modified by replacing the n-octanoyl bound to Dpr3 with longer or unsaturated fatty acid residues, by incorporation of the second fatty acid residue into the molecule, or by shortening the peptide chain. These modifications preserved the ability of ghrelin analogs to bind to the membranes of cells transfected with GHS-R1a, as well as the GHS-R1a signaling activation. The selected analogs exhibited long-lasting and potent orexigenic effects after a single s.c. administration in mice. The stability of new ghrelin analogs in mice after s.c. administration was significantly higher when compared with ghrelin and [Dpr3]ghrelin, with half-lives of approximately 2 hours. A single s.c. injection of the selected ghrelin analogs in mice with LPS-induced anorexia significantly increased food intake via the activation of orexigenic pathways and normalized blood levels of proinflammatory cytokines, demonstrating the anti-inflammatory potential of the analogs.
Collapse
Affiliation(s)
- Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Anna Kákonová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| |
Collapse
|
108
|
Springer J, Springer JI, Anker SD. Muscle wasting and sarcopenia in heart failure and beyond: update 2017. ESC Heart Fail 2018; 4:492-498. [PMID: 29154428 PMCID: PMC5695190 DOI: 10.1002/ehf2.12237] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF‐1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one.
Collapse
Affiliation(s)
- Jochen Springer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Joshua-I Springer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Stefan D Anker
- Division of Cardiology and Metabolism-Heart Failure, Cachexia and Sarcopenia, Department of Cardiology (CVK); and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
109
|
Platinum-induced muscle wasting in cancer chemotherapy: Mechanisms and potential targets for therapeutic intervention. Life Sci 2018; 208:1-9. [PMID: 30146014 DOI: 10.1016/j.lfs.2018.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/01/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023]
Abstract
Platinum-based drugs are among the most effective anticancer therapies, integrating the standard of care for numerous human malignancies. However, platinum-based chemotherapy induces severe side-effects in cancer patients, such as cachexia. Weight loss, as well as fatigue and systemic inflammation are characteristics of this syndrome that adversely affects the survival and the quality of life of cancer patients. The signalling pathways involved in chemotherapy-induced cachexia are still to be fully understood, but the activity of several mediators associated with muscle wasting, such as myostatin and pro-inflammatory cytokines are increased by platinum-based drugs like cisplatin. Indeed, the molecular mechanisms behind chemotherapy-induced muscle wasting seem to be similar to the ones promoted by cancer in treatment-naive patients. Although some therapeutic agents are under investigation for treating muscle wasting in cancer patients, no effective treatment is yet available. Herein, we review the molecular mechanisms proposed to be involved in chemotherapy-related muscle wasting with a focus on the typical platinum-based drug cisplatin. Therapeutic strategies presently under investigation are also reviewed, providing an overview of the current efforts to preserve muscle mass and quality of life among cancer patients.
Collapse
|
110
|
Kim A, Im M, Ma JY. A novel herbal formula, SGE, induces endoplasmic reticulum stress-mediated cancer cell death and alleviates cachexia symptoms induced by colon-26 adenocarcinoma. Oncotarget 2018; 9:16284-16296. [PMID: 29662645 PMCID: PMC5893240 DOI: 10.18632/oncotarget.24616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/23/2018] [Indexed: 12/26/2022] Open
Abstract
Cachexia in cancer patients, characterized by marked involuntary weight loss and impaired physical function, is associated with a poor prognosis in response to conventional treatment and with an increase in cancer-related mortality. Prevention of skeletal muscle loss under cancer-induced cachexia via inhibition of pro-cachectic factors, as well as a reduction in tumor mass, has been considered reasonable pharmacological and nutritional interventions to treat cancer patients. In this study, we constructed a novel herbal formula, SGE, which contains Ginseng Radix alba, Atractylodis Rhizoma alba, and Hoelen, examined its anti-cancer and anti-cachexia efficacies. In in vitro experiments, SGE induced death of CT-26 murine colon carcinoma cells via endoplasmic reticulum stress, and suppressed the production of inflammatory cytokines in Raw 264.7 murine macrophage-like cells. In addition, SGE treatment attenuated CT-26-induced C2C12 skeletal muscle cell atrophy as well as CT-26-induced reduction in lipid accumulation in 3T3-L1 adipocyte. In CT-26 tumor-bearing mice, daily oral administration of 10 and 50 mg/kg SGE remarkably attenuated the cachexia-related symptoms, including body weight and muscle loss, compared with saline treatment, while food intake was not affected. These data collectively suggest that SGE is beneficial as an anti-cancer adjuvant to treat cancer patients with severe weight loss.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - Minju Im
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| |
Collapse
|
111
|
Khatib MN, Shankar AH, Kirubakaran R, Gaidhane A, Gaidhane S, Simkhada P, Quazi Syed Z. Ghrelin for the management of cachexia associated with cancer. Cochrane Database Syst Rev 2018; 2:CD012229. [PMID: 29489032 PMCID: PMC6491219 DOI: 10.1002/14651858.cd012229.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer sufferers are amongst the most malnourished of all the patient groups. Studies have shown that ghrelin, a gut hormone can be a potential therapeutic agent for cachexia (wasting syndrome) associated with cancer. A variety of mechanisms of action of ghrelin in people with cancer cachexia have been proposed. However, safety and efficacy of ghrelin for cancer-associated cachexia have not been systematically reviewed. The aim of this review was to assess whether ghrelin is associated with better food intake, body composition and survival than other options for adults with cancer cachexia. OBJECTIVES To assess the efficacy and safety of ghrelin in improving food intake, body composition and survival in people with cachexia associated with cancer. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase without language restrictions up to July 2017. We also searched for ongoing studies in trials registers, performed handsearching, checked bibliographic references of relevant articles and contacted authors and experts in the field to seek potentially relevant research. We applied no restrictions on language, date, or publication status. SELECTION CRITERIA We included randomised controlled (parallel-group or cross-over) trials comparing ghrelin (any formulation or route of administration) with placebo or an active comparator in adults (aged 18 years and over) who met any of the international criteria for cancer cachexia. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility. Two review authors then extracted data and assessed the risk of bias for individual studies using standard Cochrane methodology. For dichotomous variables, we planned to calculate risk ratio with 95% confidence intervals (CI) and for continuous data, we planned to calculate mean differences (MD) with 95% CI. We assessed the evidence using GRADE and created 'Summary of findings' tables. MAIN RESULTS We screened 926 individual references and identified three studies that satisfied the inclusion criteria. Fifty-nine participants (37 men and 22 women) aged between 54 and 78 years were randomised initially, 47 participants completed the treatment. One study had a parallel design and two had a cross-over design. The studies included people with a variety of cancers and also differed in the dosage, route of administration, frequency and duration of treatment.One trial, which compared ghrelin with placebo, found that ghrelin improved food intake (very low-quality evidence) and had no adverse events (very low-quality evidence). Due to unavailability of data we were unable to report on comparisons for ghrelin versus no treatment or alternative experimental treatment modalities, or ghrelin in combination with other treatments or ghrelin analogues/ghrelin mimetics/ghrelin potentiators. Two studies compared a higher dose of ghrelin with a lower dose of ghrelin, however due to differences in study designs and great diversity in the treatment provided we did not pool the results. In both trials, food intake did not differ between participants on higher-dose and lower-dose ghrelin. None of the included studies assessed data on body weight. One study reported higher adverse events with a higher dose as compared to a lower dose of ghrelin.All studies were at high risk of attrition bias and bias for size of the study. Risk of bias in other domains was unclear or low.We rated the overall quality of the evidence for primary outcomes (food intake, body weight, adverse events) as very low. We downgraded the quality of the evidence due to lack of data, high or unclear risk of bias of the studies and small study size. AUTHORS' CONCLUSIONS There is insufficient evidence to be able to support or refute the use of ghrelin in people with cancer cachexia. Adequately powered randomised controlled trials focusing on evaluation of safety and efficacy of ghrelin in people with cancer cachexia is warranted.
Collapse
Affiliation(s)
- Mahalaqua Nazli Khatib
- Division of Evidence Synthesis; School of Epidemiology and Public Health & Department of Physiology, Datta Meghe Institute of Medical Sciences, Sawangi Meghe, Wardha, Maharashtra, India, 442004
| | | | | | | | | | | | | |
Collapse
|
112
|
Lin MT, Ko JL, Liu TC, Chao PT, Ou CC. Protective Effect of D-Methionine on Body Weight Loss, Anorexia, and Nephrotoxicity in Cisplatin-Induced Chronic Toxicity in Rats. Integr Cancer Ther 2018; 17:813-824. [PMID: 29430988 PMCID: PMC6142074 DOI: 10.1177/1534735417753543] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
D-methionine is a sulfur-containing amino acid that can act as a potent antioxidant. Anorexia and nephrotoxicity are side effects of cisplatin. The protective effects of D-methionine on cisplatin-induced anorexia and renal injury were investigated. The model of chronic cisplatin administration (5 mg/kg body weight) involved intraperitoneal injection on days 1, 8, and 15 and oral D-methionine (300 mg/kg body weight) coadministration daily for 20 days. On the 21st day of treatment, food intake and body weight in the cisplatin-treated group significantly decreased by 52% and 31%, respectively, when compared with a control group. D-methionine coadministration with cisplatin decreased food intake and body weight by 29% and 8%, respectively. In cisplatin-treated rats, white blood cell, mean corpuscular volume, and platelet values significantly decreased, while mean corpuscular hemoglobin concentration significantly increased by 8.6% when compared with control rats. Cisplatin administration resulted in significantly decreased feeding efficiency, elevated renal oxidative stress, and reduced antioxidative activity. Leukocyte infiltration, tubule vacuolization, tubular expansion, and swelling were observed in the kidneys of cisplatin-treated rats. Oral D-methionine exhibited an antianorexic effect, with improvement in food intake, feeding efficiency, and hematological toxicities, as well as a protective effect against nephrotoxicity by elevated antioxidative activity. D-methionine may serve as a chemoprotectant in patients receiving cisplatin as part of a chemotherapy regimen.
Collapse
Affiliation(s)
- Ming-Tai Lin
- 1 Changhua Christian Hospital, Changhua City, Taiwan
| | | | - Te-Chung Liu
- 2 Chung Shan Medical University, Taichung, Taiwan
| | | | - Chu-Chyn Ou
- 2 Chung Shan Medical University, Taichung, Taiwan.,3 Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
113
|
Guillory B, Jawanmardi N, Iakova P, Anderson B, Zang P, Timchenko NA, Garcia JM. Ghrelin deletion protects against age-associated hepatic steatosis by downregulating the C/EBPα-p300/DGAT1 pathway. Aging Cell 2018; 17. [PMID: 29024407 PMCID: PMC5771394 DOI: 10.1111/acel.12688] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. NAFLD usually begins as low‐grade hepatic steatosis which further progresses in an age‐dependent manner to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma in some patients. Ghrelin is a hormone known to promote adiposity in rodents and humans, but its potential role in hepatic steatosis is unknown. We hypothesized that genetic ghrelin deletion will protect against the development of age‐related hepatic steatosis. To examine this hypothesis, we utilized ghrelin knockout (KO) mice. Although no different in young animals (3 months old), we found that at 20 months of age, ghrelin KO mice have significantly reduced hepatic steatosis compared to aged‐matched wild‐type (WT) mice. Examination of molecular pathways by which deletion of ghrelin reduces steatosis showed that the increase in expression of diacylglycerol O‐acyltransferase‐1 (DGAT1), one of the key enzymes of triglyceride (TG) synthesis, seen with age in WT mice, is not present in KO mice. This was due to the lack of activation of CCAAT/enhancer binding protein‐alpha (C/EBPα) protein and subsequent reduction of C/EBPα‐p300 complexes. These complexes were abundant in livers of old WT mice and were bound to and activated the DGAT1 promoter. However, the C/EBPα‐p300 complexes were not detected on the DGAT1 promoter in livers of old KO mice resulting in lower levels of the enzyme. In conclusion, these studies demonstrate the mechanism by which ghrelin deletion prevents age‐associated hepatic steatosis and suggest that targeting this pathway may offer therapeutic benefit for NAFLD.
Collapse
Affiliation(s)
- Bobby Guillory
- Department of Medicine; Baylor College of Medicine; Division of Endocrinology; Diabetes and Metabolism, MCL; Center for Translational Research in Inflammatory Diseases; Michael E. DeBakey Veterans Affairs Medical Center; Houston TX 77030 USA
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
| | - Nicole Jawanmardi
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
- Department of Pathology and Immunology; Baylor College of Medicine; Houston TX 77030 USA
| | - Polina Iakova
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
- Department of Pathology and Immunology; Baylor College of Medicine; Houston TX 77030 USA
| | - Barbara Anderson
- GRECC; VA Puget Sound Health Care System; University of Washington; Seattle WA 98108 USA
| | - Pu Zang
- GRECC; VA Puget Sound Health Care System; University of Washington; Seattle WA 98108 USA
- Department of Endocrinology; Nanjing Jinling Hospital; Nanjing 210002 China
| | - Nikolai A. Timchenko
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
- Department of Pathology and Immunology; Baylor College of Medicine; Houston TX 77030 USA
- Cincinnati Children's Hospital Medical Center; Cincinnati OH 45229 USA
| | - Jose M. Garcia
- Department of Medicine; Baylor College of Medicine; Division of Endocrinology; Diabetes and Metabolism, MCL; Center for Translational Research in Inflammatory Diseases; Michael E. DeBakey Veterans Affairs Medical Center; Houston TX 77030 USA
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
- GRECC; VA Puget Sound Health Care System; University of Washington; Seattle WA 98108 USA
| |
Collapse
|
114
|
Rhodes L, Zollers B, Wofford JA, Heinen E. Capromorelin: a ghrelin receptor agonist and novel therapy for stimulation of appetite in dogs. Vet Med Sci 2018; 4:3-16. [PMID: 29468076 PMCID: PMC5813110 DOI: 10.1002/vms3.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is a hormone, secreted from cells in the stomach, which is important in the regulation of appetite and food intake in mammals. It exerts its action by binding to a specific G-protein-coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1a) which is found in areas of the brain associated with the regulation of food intake. Ghrelin causes a release of growth hormone (GH) through binding to GHS-R1a in the hypothalamus and pituitary gland. A class of compounds known as growth hormone secretagogues, or ghrelin receptor agonists, were developed for therapeutic use in humans for the stimulation of GH in the frail elderly, and have subsequently been studied for their effects on increasing appetite and food intake, increasing body weight, building lean muscle mass, and treating cachexia. Subsequent research has shown that ghrelin has anti-inflammatory and immunomodulatory effects. This article reviews the basic physiology of ghrelin and the ghrelin receptor agonists, including the available evidence of these effects in vitro and in vivo in rodent models, humans, dogs and cats. One of these compounds, capromorelin, has been FDA-approved for the stimulation of appetite in dogs (ENTYCE ®). The data available on the safety and effectiveness of capromorelin is reviewed, along with a discussion of the potential clinical applications for ghrelin receptor agonists in both human and veterinary medicine.
Collapse
|
115
|
Abstract
PURPOSE OF REVIEW Cancer cachexia is a frequent syndrome that affects patient quality of life, anticancer treatment effectiveness, and overall survival. The lack of anticancer cachexia therapies likely relies on the complexity of the syndrome that renders difficult to design appropriate clinical trials and, conversely, on the insufficient knowledge of the underlying pathogenetic mechanisms. The aim of this review is to collect the most relevant latest information regarding cancer cachexia with a special focus on the experimental systems adopted for modeling the disease in translational studies. RECENT FINDINGS The scenario of preclinical models for the study of cancer cachexia is not static and is rapidly evolving in parallel with new prospective treatment options. The well established syngeneic models using rodent cancer cells injected ectopically are now used alongside new ones featuring orthotopic injection, human cancer cell or patient-derived xenograft, or spontaneous tumors in genetically engineered mice. SUMMARY The use of more complex animal models that better resemble cancer cachexia, ideally including also the administration of chemotherapy, will expand the understanding of the underlying mechanisms and will allow a more reliable evaluation of prospective drugs for translational purposes.
Collapse
|
116
|
Barreto R, Waning DL, Gao H, Liu Y, Zimmers TA, Bonetto A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget 2017; 7:43442-43460. [PMID: 27259276 PMCID: PMC5190036 DOI: 10.18632/oncotarget.9779] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022] Open
Abstract
Cachexia affects the majority of cancer patients, with currently no effective treatments. Cachexia is defined by increased fatigue and loss of muscle function resulting from muscle and fat depletion. Previous studies suggest that chemotherapy may contribute to cachexia, although the causes responsible for this association are not clear. The purpose of this study was to investigate the mechanism(s) associated with chemotherapy-related effects on body composition and muscle function. Normal mice were administered chemotherapy regimens used for the treatment of colorectal cancer, such as Folfox (5-FU, leucovorin, oxaliplatin) or Folfiri (5-FU, leucovorin, irinotecan) for 5 weeks. The animals that received chemotherapy exhibited concurrent loss of muscle mass and muscle weakness. Consistently with previous findings, muscle wasting was associated with up-regulation of ERK1/2 and p38 MAPKs. No changes in ubiquitin-dependent proteolysis or in the expression of TGFβ-family members were detected. Further, marked decreases in mitochondrial content, associated with abnormalities at the sarcomeric level and with increase in the number of glycolytic fibers were observed in the muscle of mice receiving chemotherapy. Finally, ACVR2B/Fc or PD98059 prevented Folfiri-associated ERK1/2 activation and myofiber atrophy in C2C12 cultures. Our findings demonstrate that chemotherapy promotes MAPK-dependent muscle atrophy as well as mitochondrial depletion and alterations of the sarcomeric units. Therefore, these findings suggest that chemotherapy potentially plays a causative role in the occurrence of muscle loss and weakness. Moreover, the present observations provide a strong rationale for testing ACVR2B/Fc or MEK1 inhibitors in combination with anticancer drugs as novel strategies aimed at preventing chemotherapy-associated muscle atrophy.
Collapse
Affiliation(s)
- Rafael Barreto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David L Waning
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,IUPUI Center for Cachexia Research, Innovation and Therapy, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,IUPUI Center for Cachexia Research, Innovation and Therapy, Indianapolis, IN 46202, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,IUPUI Center for Cachexia Research, Innovation and Therapy, Indianapolis, IN 46202, USA
| |
Collapse
|
117
|
Barazzoni R, Gortan Cappellari G, Palus S, Vinci P, Ruozi G, Zanetti M, Semolic A, Ebner N, von Haehling S, Sinagra G, Giacca M, Springer J. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle 2017; 8:991-998. [PMID: 29098797 PMCID: PMC5700435 DOI: 10.1002/jcsm.12254] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic heart failure (CHF) is associated with skeletal muscle abnormalities contributing to exercise intolerance, muscle loss, and negative impact on patient prognosis. A primary role has been proposed for mitochondrial dysfunction, which may be induced by systemic and tissue inflammation and further contribute to low insulin signalling. The acylated form of the gastric hormone ghrelin (AG) may improve mitochondrial oxidative capacity and insulin signalling in both healthy and diseased rodent models. METHODS We investigated the impact of AG continuous subcutaneous administration (AG) by osmotic minipump (50 nmol/kg/day for 28 days) compared with placebo (P) on skeletal muscle mitochondrial enzyme activities, mitochondrial biogenesis regulators transcriptional expression and insulin signalling in a rodent post-myocardial infarction CHF model. RESULTS No statistically significant differences (NS) were observed among the three group in cumulative food intake. Compared with sham-operated, P had low mitochondrial enzyme activities, mitochondrial biogenesis regulators transcripts, and insulin signalling activation at AKT level (P < 0.05), associated with activating nuclear translocation of pro-inflammatory transcription factor nuclear factor-κB. AG completely normalized all alterations (P < 0.05 vs P, P = NS vs sham-operated). Direct AG activities were strongly supported by in vitro C2C12 myotubes experiments showing AG-dependent stimulation of mitochondrial enzyme activities. No changes in mitochondrial parameters and insulin signalling were observed in the liver in any group. CONCLUSIONS Sustained peripheral AG treatment with preserved food intake normalizes a CHF-induced tissue-specific cluster of skeletal muscle mitochondrial dysfunction, pro-inflammatory changes, and reduced insulin signalling. AG is therefore a potential treatment for CHF-associated muscle catabolic alterations, with potential positive impact on patient outcome.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Gianluca Gortan Cappellari
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Sandra Palus
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Pierandrea Vinci
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michela Zanetti
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Annamaria Semolic
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Nicole Ebner
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy.,Cardiology Division, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jochen Springer
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
118
|
Abstract
PURPOSE OF REVIEW In spite of its relevance, treatments for the cancer anorexia and cachexia syndrome (CACS) are not available. One of the agents that recently reached phase III clinical trials is anamorelin. Its development, along with that of other agents for this indication, will be reviewed here, with a focus on the gaps in the current knowledge and future directions. RECENT FINDINGS In spite of several targets showing promising results in early development, their difficulties obtaining regulatory approval underscore the need to reconsider the current strategies in drug development and the challenges in the field of CACS. SUMMARY Further research is needed in order to meet the challenges of developing treatments for CACS. Preclinical studies should expand our understanding about key regulators of appetite, muscle, and energy metabolism in this setting using models that can be translated reliably to humans. Clinical research efforts should focus on validating the entry criteria, endpoints, outcomes, and the potential synergistic effects and interaction between different targets, nutrition, and exercise interventions. Clinical meaningfulness and significance should be taken into account in the design of clinical trials. It is essential that all key stakeholders are included in the design of future strategies.
Collapse
Affiliation(s)
- Jose M. Garcia
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA
- Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
119
|
Marty E, Liu Y, Samuel A, Or O, Lane J. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone 2017; 105:276-286. [PMID: 28931495 DOI: 10.1016/j.bone.2017.09.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
Sarcopenia is defined as an age associated decline in skeletal muscle mass. The pathophysiology of sarcopenia is multifactorial, with decreased caloric intake, muscle fiber denervation, intracellular oxidative stress, hormonal decline, and enhanced myostatin signaling all thought to contribute. Prevalence rates are as high as 29% and 33% in elderly community dwelling and long-term care populations, respectively, with advanced age, low body mass index, and low physical activity as significant risk factors. Sarcopenia shares many characteristics with other disease states typically associated with risk of fall and fracture, including osteoporosis, frailty, and obesity. There is no current universally accepted definition of sarcopenia. Diagnosing sarcopenia with contemporary operational definitions requires assessments of muscle mass, muscle strength, and physical performance. Screening is recommended for both elderly patients and those with conditions that noticeably reduce physical function. Sarcopenia is highly prevalent in orthopedic patient populations and correlates with higher hospital costs and rates of falling, fracture, and mortality. As no muscle building agents are currently approved in the United States, resistance training and nutritional supplementation are the primary methods for treating sarcopenia. Trials with various agents, including selective androgen receptor modulators and myostatin inhibitors, show promise as future treatment options. Increased awareness of sarcopenia is of great importance to begin reaching consensus on diagnosis and to contribute to finding a cure for this condition.
Collapse
Affiliation(s)
- Eric Marty
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States
| | - Yi Liu
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States
| | - Andre Samuel
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States
| | - Omer Or
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States
| | - Joseph Lane
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States.
| |
Collapse
|
120
|
Dunne RF, Mustian KM, Garcia JM, Dale W, Hayward R, Roussel B, Buschmann MM, Caan BJ, Cole CL, Fleming FJ, Chakkalakal JV, Linehan DC, Hezel AF, Mohile SG. Research priorities in cancer cachexia: The University of Rochester Cancer Center NCI Community Oncology Research Program Research Base Symposium on Cancer Cachexia and Sarcopenia. Curr Opin Support Palliat Care 2017; 11:278-286. [PMID: 28957880 PMCID: PMC5658778 DOI: 10.1097/spc.0000000000000301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Cancer cachexia remains understudied and there are no standard treatments available despite the publication of an international consensus definition and the completion of several large phase III intervention trials in the past 6 years. In September 2015, The University of Rochester Cancer Center NCORP Research Base led a Symposium on Cancer Cachexia and Sarcopenia with goals of reviewing the state of the science, identifying knowledge gaps, and formulating research priorities in cancer cachexia through active discussion and consensus. RECENT FINDINGS Research priorities that emerged from the discussion included the implementation of morphometrics into clinical decision making, establishing specific diagnostic criteria for the stages of cachexia, expanding patient selection in intervention trials, identifying clinically meaningful trial endpoints, and the investigation of exercise as an intervention for cancer cachexia. SUMMARY Standardizing how we define and measure cancer cachexia, targeting its complex biologic mechanisms, enrolling patients early in their disease course, and evaluating exercise, either alone or in combination, were proposed as initiatives that may ultimately result in the improved design of cancer cachexia therapeutic trials.
Collapse
Affiliation(s)
- Richard F Dunne
- aWilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York bDepartment of Medicine, University of Washington School of Medicine, Seattle, Washington cDepartment of Supportive Care Medicine, City of Hope, Duarte dSchool of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado eDepartment of Medicine, Brown University, Providence, Rhode Island fDepartment of Medicine, The University of Chicago, Chicago, Ilinois gKaiser Permanente Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
von Haehling S. Casting the net broader to confirm our imaginations: the long road to treating wasting disorders. J Cachexia Sarcopenia Muscle 2017; 8:870-880. [PMID: 29168628 PMCID: PMC5700431 DOI: 10.1002/jcsm.12256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Wasting embraces muscle and tissue wasting in sarcopenia and cachexia. This article describes recent advances in the field published in the Journal of Cachexia, Sarcopenia and Muscle concerning diagnostic tools, biomarker development, pathophysiology, and treatment. Studies discussed herein embrace those on sarcopenia and cachexia in heart failure, chronic obstructive pulmonary disease, and cancer including also animal models.
Collapse
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
| |
Collapse
|
122
|
Sirago G, Conte E, Fracasso F, Cormio A, Fehrentz JA, Martinez J, Musicco C, Camerino GM, Fonzino A, Rizzi L, Torsello A, Lezza AMS, Liantonio A, Cantatore P, Pesce V. Growth hormone secretagogues hexarelin and JMV2894 protect skeletal muscle from mitochondrial damages in a rat model of cisplatin-induced cachexia. Sci Rep 2017; 7:13017. [PMID: 29026190 PMCID: PMC5638899 DOI: 10.1038/s41598-017-13504-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy can cause cachexia, which consists of weight loss associated with muscle atrophy. The exact mechanisms underlying this skeletal muscle toxicity are largely unknown and co-therapies to attenuate chemotherapy-induced side effects are lacking. By using a rat model of cisplatin-induced cachexia, we here characterized the mitochondrial homeostasis in tibialis anterior cachectic muscle and evaluated the potential beneficial effects of the growth hormone secretagogues (GHS) hexarelin and JMV2894 in this setting. We found that cisplatin treatment caused a decrease in mitochondrial biogenesis (PGC-1α, NRF-1, TFAM, mtDNA, ND1), mitochondrial mass (Porin and Citrate synthase activity) and fusion index (MFN2, Drp1), together with changes in the expression of autophagy-related genes (AKT/FoxO pathway, Atg1, Beclin1, LC3AII, p62) and enhanced ROS production (PRX III, MnSOD). Importantly, JMV2894 and hexarelin are capable to antagonize this chemotherapy-induced mitochondrial dysfunction. Thus, our findings reveal a key-role played by mitochondria in the mechanism responsible for GHS beneficial effects in skeletal muscle, strongly indicating that targeting mitochondrial dysfunction might be a promising area of research in developing therapeutic strategies to prevent or limit muscle wasting in cachexia.
Collapse
Affiliation(s)
- Giuseppe Sirago
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Antonella Cormio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Jean-Alain Fehrentz
- Max Mousseron Institute of Biomolecules UMR5247, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Jean Martinez
- Max Mousseron Institute of Biomolecules UMR5247, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Clara Musicco
- IBBE Institute of Biomembranes and Bioenergetics CNR-National Research Council of Italy, Bari, Italy
| | | | - Adriano Fonzino
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Palmiro Cantatore
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.
| |
Collapse
|
123
|
Feather CE, Lees JG, Makker PGS, Goldstein D, Kwok JB, Moalem-Taylor G, Polly P. Oxaliplatin induces muscle loss and muscle-specific molecular changes in Mice. Muscle Nerve 2017; 57:650-658. [PMID: 28881481 DOI: 10.1002/mus.25966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Muscle wasting is a frequent, debilitating complication of cancer. The impact of colorectal cancer chemotherapeutic oxaliplatin on the development of muscle loss and associated molecular changes is of clinical importance. METHODS C57BL/6J male mice were treated with oxaliplatin. Total body weights were measured and behavioral studies performed. Hindlimb muscle weights (gastrocnemius and soleus) were recorded in conjunction with gene and protein expression analysis. RESULTS Oxaliplatin-treated mice displayed reduced weight gain and behavioral deficits. Mice treated over a shorter course had significantly increased STAT3 phosphorylation in gastrocnemius muscles. Mice receiving extended oxaliplatin treatment demonstrated reduced hindlimb muscle mass with upregulation of myopathy-associated genes Foxo3, MAFbx, and Bnip3. DISCUSSION The findings suggest that oxaliplatin treatment can directly disrupt skeletal muscle homeostasis and promote muscle loss, which may be clinically relevant in the context of targeting fatigue and weakness in cancer patients. Muscle Nerve 57: 650-658, 2018.
Collapse
Affiliation(s)
- Claire E Feather
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Justin G Lees
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Preet G S Makker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - John B Kwok
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Patsie Polly
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
124
|
Jang H, Na Y, Hong K, Lee S, Moon S, Cho M, Park M, Lee OH, Chang EM, Lee DR, Ko JJ, Lee WS, Choi Y. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27 Kip1 promoter in primordial follicles. J Pineal Res 2017; 63. [PMID: 28658519 DOI: 10.1111/jpi.12432] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy-induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonin's protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin-induced ovarian failure in mouse model. Co-administration of melatonin and ghrelin more effectively prevented cisplatin-induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin-treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co-administration inhibited the cisplatin-induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27Kip1 promoter in primordial follicles. Co-administration of melatonin and ghrelin in cisplatin-treated ovaries restored the expression of p27Kip1 , which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co-administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients.
Collapse
Affiliation(s)
- Hoon Jang
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Gyeonggi, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Sangho Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Sohyeon Moon
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Minha Cho
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Eun Mi Chang
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Jung Jae Ko
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
125
|
Bresciani E, Rizzi L, Molteni L, Ravelli M, Liantonio A, Ben Haj Salah K, Fehrentz JA, Martinez J, Omeljaniuk RJ, Biagini G, Locatelli V, Torsello A. JMV2894, a novel growth hormone secretagogue, accelerates body mass recovery in an experimental model of cachexia. Endocrine 2017; 58:106-114. [PMID: 27896546 DOI: 10.1007/s12020-016-1184-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Oncologic patients subjected to chemotherapy frequently present aphagia, malnutrition, and cachexia. The purpose of this study was to investigate whether selected growth hormone secretagogues including hexarelin, JMV2894 and JMV2951 could antagonize body weight loss and wasting induced by cisplatin administration in rats. The three growth hormone secretagogues behaved as full agonists of the growth hormone secretagogues receptor both in terms of ability to stimulate calcium mobilization in Chinese hamster ovary cells and stimulation of growth hormone release in neonatal rats. Adult rats were (i) treated with vehicle throughout (controls), or (ii) treated with cisplatin (days 1-3) and a growth hormone secretagogues or vehicle, (days 1-12). Body weight and food consumption were measured daily. Although all growth hormone secretagogues caused initial transient acute increases in food intake, the total amount of food eaten by controls and growth hormone secretagogues treated groups over the 12 experimental days was not significantly different. All groups pre-treated with cisplatin lost up to 5-10 % body weight in the first 4 days; they subsequently gained weight at a rate comparable with controls. Interestingly, rats which received JMV2894 demonstrated a faster gain in body weight than any other growth hormone secretagogues treated group and at the end of the protocol reached a weight similar to that of controls. JMV2894 did not stimulate perirenal and epididymal fat accumulation but reduced MuRF mRNA levels in skeletal muscles. In conclusion, our findings demonstrate that JMV2894 antagonizes cisplatin induced weight loss in rats and may prove useful in antagonizing cachexia associated with cancer and chemotherapy in humans.
Collapse
Affiliation(s)
- Elena Bresciani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Rizzi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Molteni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Monica Ravelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Khoubaib Ben Haj Salah
- Max Mousseron Institute of Biomolecules UMR5247, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Max Mousseron Institute of Biomolecules UMR5247, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Jean Martinez
- Max Mousseron Institute of Biomolecules UMR5247, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Robert J Omeljaniuk
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Experimental Epileptology, University of Modena and Reggio Emilia, Modena, Italy
| | - Vittorio Locatelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
126
|
von Haehling S, Ebner N, Anker SD. Oodles of opportunities: the Journal of Cachexia, Sarcopenia and Muscle in 2017. J Cachexia Sarcopenia Muscle 2017; 8:675-680. [PMID: 29076661 PMCID: PMC5659063 DOI: 10.1002/jcsm.12247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
| | - Nicole Ebner
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
| | - Stefan D. Anker
- Division of Cardiology and Metabolism—Heart Failure, Cachexia & Sarcopenia, Department of Cardiology (CVK); and Berlin‐Brandenburg Center for Regenerative Therapies (BCRT); Deutsches Zentrum für Herz‐Kreislauf‐Forschung (DZHK) BerlinCharité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
127
|
Voltarelli FA, Frajacomo FT, Padilha CDS, Testa MTJ, Cella PS, Ribeiro DF, de Oliveira DX, Veronez LC, Bisson GS, Moura FA, Deminice R. Syngeneic B16F10 Melanoma Causes Cachexia and Impaired Skeletal Muscle Strength and Locomotor Activity in Mice. Front Physiol 2017; 8:715. [PMID: 29033844 PMCID: PMC5626871 DOI: 10.3389/fphys.2017.00715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
Muscle wasting has been emerging as one of the principal components of cancer cachexia, leading to progressive impairment of work capacity. Despite early stages melanomas rarely promotes weight loss, the appearance of metastatic and/or solid tumor melanoma can leads to cachexia development. Here, we investigated the B16F10 tumor-induced cachexia and its contribution to muscle strength and locomotor-like activity impairment. C57BL/6 mice were subcutaneously injected with 5 × 104 B16F10 melanoma cells or PBS as a Sham negative control. Tumor growth was monitored during a period of 28 days. Compared to Sham mice, tumor group depicts a loss of skeletal muscle, as well as significantly reduced muscle grip strength and epididymal fat mass. This data are in agreement with mild to severe catabolic host response promoted by elevated serum tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and lactate dehydrogenase (LDH) activity. Tumor implantation has also compromised general locomotor activity and decreased exploratory behavior. Likewise, muscle loss, and elevated inflammatory interleukin were associated to muscle strength loss and locomotor activity impairment. In conclusion, our data demonstrated that subcutaneous B16F10 melanoma tumor-driven catabolic state in response to a pro-inflammatory environment that is associated with impaired skeletal muscle strength and decreased locomotor activity in tumor-bearing mice.
Collapse
Affiliation(s)
- Fabrício A Voltarelli
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil.,Department of Physical Education, Faculty of Physical Education, Federal University of Mato GrossoCuiabá, Brazil
| | - Fernando T Frajacomo
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil.,Program of Molecular Carcinogenesis, Brazilian National Institute of CancerRio de Janeiro, Brazil
| | - Camila de Souza Padilha
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Mayra T J Testa
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Paola S Cella
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Diogo F Ribeiro
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Donizete X de Oliveira
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Luciana C Veronez
- Department of Maternal-Infant Nursing and Public Health, Ribeirao Preto College of Nursing, University of São PauloSão Paulo, Brazil
| | - Gabriela S Bisson
- Department of Maternal-Infant Nursing and Public Health, Ribeirao Preto College of Nursing, University of São PauloSão Paulo, Brazil
| | - Felipe A Moura
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Rafael Deminice
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| |
Collapse
|
128
|
Abstract
Introduction Cachexia is a common complication of many and varied chronic disease processes, yet it has received very little attention as an area of clinical research effort until recently. We sought to survey the contemporary literature on published research into cachexia to define where it is being published and the proportion of output classified into the main types of research output. Methods I searched the PubMed listings under the topic research term "cachexia" and related terms for articles published in the calendar years of 2015 and 2016, regardless of language. Searches were conducted and relevant papers extracted by two observers, and disagreements were resolved by consensus. Results There were 954 publications, 370 of which were review articles or commentaries, 254 clinical observations or non-randomised trials, 246 original basic science reports and only 26 were randomised controlled trials. These articles were published in 478 separate journals but with 36% of them being published in a core set of 23 journals. The H-index of these papers was 25 and there were 147 papers with 10 or more citations. Of the top 100 cited papers, 25% were published in five journals. Of the top cited papers, 48% were review articles, 18% were original basic science, and 7% were randomised clinical trials. Discussion This analysis shows a steady but modest increase in publications concerning cachexia with a strong pipeline of basic science research but still a relative lack of randomised clinical trials, with none exceeding 1000 patients. Research in cachexia is still in its infancy, but the solid basic science effort offers hope that translation into randomised controlled clinical trials may eventually lead to effective therapies for this troubling and complex clinical disease process.
Collapse
|
129
|
Abstract
Background: Cancer cachexia is a catabolic syndrome associated with uncontrolled muscle breakdown. There may be associated fat loss. Occurring in high frequency in advanced cancer, it is an indicator of poor prognosis. Besides weight loss, patients experience a cluster of symptoms including anorexia, early satiety, and weakness. The 3 stages of cachexia include stages of precachexia, cachexia, and refractory cachexia. Refractory cachexia is associated with active catabolism or the presence of factors that make active management of weight loss no longer possible. Patients with refractory cachexia often receive glucocorticoids or megasterol acetate. Glucocorticoid effect is short and responses to megasterol are variable. Anamorelin is a new agent for cancer anorexia-cachexia, with trials completed in advanced lung cancer. Acting as an oral mimetic of ghrelin, it improves appetite and muscle mass. This article reviews the pharmacology, pharmacodynamics, and effect on cancer cachexia. Methods: A PubMed search was done using the Medical Subject Headings term anamorelin. Articles were selected to provide a pharmacologic characterization of anamorelin. Results: Anamorelin increases muscle mass in patients with advanced cancer in 2-phase 3 trials. Conclusions: Anamorelin improves anorexia-cachexia symptoms in patients with advanced non–small-cell lung cancer.
Collapse
Affiliation(s)
- Eric Prommer
- UCLA/ VA Hospice & Palliative Medicine UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
130
|
Abstract
Cachexia is a metabolic syndrome driven by inflammation and characterized by loss of muscle with or without loss of fat mass. In cancer cachexia, the tumor burden and host response induce increased inflammation, decreased anabolic tone, and suppressed appetite leading to the clinical presentation of reduced body weight and quality of life (QOL). There is no approved treatment for cancer cachexia, and commonly used nutritional and anti-inflammatory strategies alone have proven ineffective for management of symptoms. Several other pharmacological agents are currently in development and have shown promise as a clinical strategy in early-phase trials. Recently, it has been proposed that multimodal strategies, with an anabolic focus, initiated early in the disease/treatment progression may provide the most therapeutic potential for symptom management. Here we review the data from recent clinical trials in cancer cachexia including pharmacological, exercise, and nutritional interventions.
Collapse
Affiliation(s)
- Lindsey J Anderson
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Eliette D Albrecht
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, 98108, USA.,Yale University, New Haven, CT, 06520, USA
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, 98108, USA. .,Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
131
|
Graf SA, Garcia JM. Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia syndrome: design, development, and potential place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2325-2331. [PMID: 28848326 PMCID: PMC5557912 DOI: 10.2147/dddt.s110131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer anorexia–cachexia syndrome (CACS) is a complex and largely untreatable paraneoplastic complication common in advanced cancer. It is associated with profoundly deleterious effects on quality of life and survival. Since its discovery over a decade ago, anamorelin hydrochloride (anamorelin), a mimetic of the growth hormone secretagogue ghrelin, has shown considerable promise in ameliorating components of CACS when administered to patients with advanced cancer, including loss of lean body mass and reversal of anorexia. This review summarizes the development of anamorelin and its safety and efficacy in clinical investigations. The potential future role of anamorelin in treating CACS is also discussed.
Collapse
Affiliation(s)
- Solomon A Graf
- Veterans Affairs Puget Sound Health Care System.,Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine.,Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System.,Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
132
|
Guillory B, Chen JA, Patel S, Luo J, Splenser A, Mody A, Ding M, Baghaie S, Anderson B, Iankova B, Halder T, Hernandez Y, Garcia JM. Deletion of ghrelin prevents aging-associated obesity and muscle dysfunction without affecting longevity. Aging Cell 2017; 16:859-869. [PMID: 28585250 PMCID: PMC5506439 DOI: 10.1111/acel.12618] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
During aging, decreases in energy expenditure and locomotor activity lead to body weight and fat gain. Aging is also associated with decreases in muscle strength and endurance leading to functional decline. Here, we show that lifelong deletion of ghrelin prevents development of obesity associated with aging by modulating food intake and energy expenditure. Ghrelin deletion also attenuated the decrease in phosphorylated adenosine monophosphate‐activated protein kinase (pAMPK) and downstream mediators in muscle, and increased the number of type IIa (fatigue resistant, oxidative) muscle fibers, preventing the decline in muscle strength and endurance seen with aging. Longevity was not affected by ghrelin deletion. Treatment of old mice with pharmacologic doses of ghrelin increased food intake, body weight, and muscle strength in both ghrelin wild‐type and knockout mice. These findings highlight the relevance of ghrelin during aging and identify a novel AMPK‐dependent mechanism for ghrelin action in muscle.
Collapse
Affiliation(s)
- Bobby Guillory
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
| | - Ji-an Chen
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
- Department of Health Education; College of Preventive Medicine; Third Military Medical University; Chongqing 400038 China
| | - Shivam Patel
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
| | - Jiaohua Luo
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
- Department of Environmental Hygiene; College of Preventive Medicine; Third Military Medical University; Chongqing 400038 China
| | - Andres Splenser
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
| | - Avni Mody
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
| | - Michael Ding
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
- GRECC; VA Puget Sound Health Care System and University of Washington; Seattle WA USA
| | - Shiva Baghaie
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
| | - Barbara Anderson
- GRECC; VA Puget Sound Health Care System and University of Washington; Seattle WA USA
| | - Blaga Iankova
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
| | - Tripti Halder
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
| | - Yamileth Hernandez
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
| | - Jose M. Garcia
- Division of Diabetes; Endocrinology and Metabolism; MCL; Center for Translational Research on Inflammatory Diseases; Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine; Houston TX USA
- GRECC; VA Puget Sound Health Care System and University of Washington; Seattle WA USA
| |
Collapse
|
133
|
The Role of Ghrelin and Ghrelin Signaling in Aging. Int J Mol Sci 2017; 18:ijms18071511. [PMID: 28704966 PMCID: PMC5536001 DOI: 10.3390/ijms18071511] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/20/2023] Open
Abstract
With our aging society, more people hope for a long and healthy life. In recent years, researchers have focused on healthy longevity factors. In particular, calorie restriction delays aging, reduces mortality, and extends life. Ghrelin, which is secreted during fasting, is well known as an orexigenic peptide. Because ghrelin is increased by caloric restriction, ghrelin may play an important role in the mechanism of longevity mediated by calorie restriction. In this review, we will discuss the role of orexigenic peptides with a particular focus on ghrelin. We conclude that the ghrelin-growth hormone secretagogue-R signaling pathway may play an important role in the anti-aging mechanism.
Collapse
|
134
|
Crouch ML, Knowels G, Stuppard R, Ericson NG, Bielas JH, Marcinek DJ, Syrjala KL. Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects. PLoS One 2017; 12:e0181086. [PMID: 28700655 PMCID: PMC5507312 DOI: 10.1371/journal.pone.0181086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Fatigue is the symptom most commonly reported by long-term cancer survivors and is increasingly recognized as related to skeletal muscle dysfunction. Traditional chemotherapeutic agents can cause acute toxicities including cardiac and skeletal myopathies. To investigate the mechanism by which chemotherapy may lead to persistent skeletal muscle dysfunction, mature adult mice were injected with a single cyclophosphamide dose and evaluated for 6 weeks. We found that exposed mice developed a persistent decrease in treadmill running time compared to baseline (25.7±10.6 vs. 49.0±16.8 min, P = 0.0012). Further, 6 weeks after drug exposure, in vivo parameters of mitochondrial function remained below baseline including maximum ATP production (482.1 ± 48.6 vs. 696.2 ± 76.6, P = 0.029) and phosphocreatine to ATP ratio (3.243 ± 0.1 vs. 3.878 ± 0.1, P = 0.004). Immunoblotting of homogenized muscles from treated animals demonstrated a transient increase in HNE adducts 1 week after exposure that resolved by 6 weeks. However, there was no evidence of an oxidative stress response as measured by quantitation of SOD1, SOD2, and catalase protein levels. Examination of mtDNA demonstrated that the mutation frequency remained comparable between control and treated groups. Interestingly, there was evidence of a transient increase in NF-ĸB p65 protein 1 day after drug exposure as compared to saline controls (0.091±0.017 vs. 0.053±0.022, P = 0.033). These data suggest that continued impairment in muscle and mitochondria function in cyclophosphamide-treated animals is not linked to persistent oxidative stress and that alternative mechanisms need to be considered.
Collapse
Affiliation(s)
- Marie-Laure Crouch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Gary Knowels
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rudolph Stuppard
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Nolan G. Ericson
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jason H. Bielas
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - David J. Marcinek
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Karen L. Syrjala
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
135
|
Lonkvist CK, Lønbro S, Vinther A, Zerahn B, Rosenbom E, Primdahl H, Hojman P, Gehl J. Progressive resistance training in head and neck cancer patients during concomitant chemoradiotherapy -- design of the DAHANCA 31 randomized trial. BMC Cancer 2017; 17:400. [PMID: 28578654 PMCID: PMC5457597 DOI: 10.1186/s12885-017-3388-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background Head and neck cancer patients undergoing concomitant chemoradiotherapy (CCRT) frequently experience loss of muscle mass and reduced functional performance. Positive effects of exercise training are reported for many cancer types but biological mechanisms need further elucidation. This randomized study investigates whether progressive resistance training (PRT) may attenuate loss of muscle mass and functional performance. Furthermore, biochemical markers and muscle biopsies will be investigated trying to link biological mechanisms to training effects. Methods At the Departments of Oncology at Herlev and Aarhus University Hospitals, patients with stage III/IV squamous cell carcinoma of the head and neck, scheduled for CCRT are randomized 1:1 to either a 12-week PRT program or control group, both with 1 year follow-up. Planned enrollment is 72 patients, and stratification variables are study site, sex, p16-status, and body mass index. Primary endpoint is difference in change in lean body mass (LBM) after 12 weeks of PRT, assessed by dual-energy X-ray absorptiometry (DXA). The hypothesis is that 12 weeks of PRT can attenuate the loss of LBM by at least 25%. Secondary endpoints include training adherence, changes in body composition, muscle strength, functional performance, weight, adverse events, dietary intake, self-reported physical activity, quality of life, labor market affiliation, blood biochemistry, plasma cytokine concentrations, NK-cell frequency in blood, sarcomeric protein content in muscles, as well as muscle fiber type and fiber size in muscle biopsies. Muscle biopsies are optional. Discussion This randomized study investigates the impact of a 12-week progressive resistance training program on lean body mass and several other physiological endpoints, as well as impact on adverse events and quality of life. Furthermore, a translational approach is integrated with extensive biological sampling and exploration into cytokines and mechanisms involved. The current paper discusses decisions and methods behind exercise in head and neck cancer patients undergoing concomitant chemoradiotherapy. Trial registration Approved by the Regional Ethics Committee for the Capital Region of Denmark (protocol id: H-15003725) and registered retrospectively at ClinicalTrials.gov (NCT02557529) September 11th 2015. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3388-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camilla K Lonkvist
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Simon Lønbro
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.,Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Anders Vinther
- Department of Rehabilitation, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Bo Zerahn
- Department of Clinical Physiology and Nuclear Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Eva Rosenbom
- Nutritional Research Unit, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Hanne Primdahl
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Pernille Hojman
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Julie Gehl
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
136
|
Ishida J, Saitoh M, Springer J. Single-nucleotide polymorphisms in cachexia-related genes: Can they optimize the treatment of cancer cachexia? J Cachexia Sarcopenia Muscle 2017; 8. [PMID: 28631414 PMCID: PMC5476860 DOI: 10.1002/jcsm.12214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Junichi Ishida
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| | - Masakazu Saitoh
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
137
|
Conte E, Camerino GM, Mele A, De Bellis M, Pierno S, Rana F, Fonzino A, Caloiero R, Rizzi L, Bresciani E, Ben Haj Salah K, Fehrentz J, Martinez J, Giustino A, Mariggiò MA, Coluccia M, Tricarico D, Lograno MD, De Luca A, Torsello A, Conte D, Liantonio A. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia. J Cachexia Sarcopenia Muscle 2017; 8:386-404. [PMID: 28294567 PMCID: PMC5703021 DOI: 10.1002/jcsm.12185] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. METHODS By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. RESULTS Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca2+ ]i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in vivo (forelimb force and muscle volume) outcomes in cachectic animals. Administration of hexarelin or JMV2894 markedly reduced the cisplatin-induced alteration of calcium homeostasis by both common as well as drug-specific mechanisms of action. This effect correlated with muscle function preservation as well as amelioration of various atrophic indexes, thus supporting the functional impact of GHS activity on calcium homeostasis. CONCLUSIONS Our findings provide a direct evidence that a dysregulation of calcium homeostasis plays a key role in cisplatin-induced model of cachexia gaining insight into the etiopathogenesis of this form of muscle wasting. Furthermore, our demonstration that GHS administration efficaciously prevents cisplatin-induced calcium homeostasis alteration contributes to elucidate the mechanism of action through which GHS could potentially ameliorate chemotherapy-associated cachexia.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | | | - Antonietta Mele
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Michela De Bellis
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Sabata Pierno
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Francesco Rana
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Adriano Fonzino
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Roberta Caloiero
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Laura Rizzi
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaVia Cadore 4820900MonzaItaly
| | - Elena Bresciani
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaVia Cadore 4820900MonzaItaly
| | - Khoubaib Ben Haj Salah
- Max Mousseron Institute of Biomolecules UMR5247, CNRSUniversity of Montpellier, ENSCMAvenue Charles Flahault BP 14491Montpellier Cedex 5France
| | - Jean‐Alain Fehrentz
- Max Mousseron Institute of Biomolecules UMR5247, CNRSUniversity of Montpellier, ENSCMAvenue Charles Flahault BP 14491Montpellier Cedex 5France
| | - Jean Martinez
- Max Mousseron Institute of Biomolecules UMR5247, CNRSUniversity of Montpellier, ENSCMAvenue Charles Flahault BP 14491Montpellier Cedex 5France
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human OncologyUniversity of BariPiazza Giulio Cesare70125BariItaly
| | - Maria Addolorata Mariggiò
- Department of Biomedical Sciences and Human OncologyUniversity of BariPiazza Giulio Cesare70125BariItaly
| | - Mauro Coluccia
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Domenico Tricarico
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | | | - Annamaria De Luca
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Antonio Torsello
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaVia Cadore 4820900MonzaItaly
| | - Diana Conte
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Antonella Liantonio
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| |
Collapse
|
138
|
Oral Treatment with the Ghrelin Receptor Agonist HM01 Attenuates Cachexia in Mice Bearing Colon-26 (C26) Tumors. Int J Mol Sci 2017; 18:ijms18050986. [PMID: 28475119 PMCID: PMC5454899 DOI: 10.3390/ijms18050986] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/29/2017] [Indexed: 01/13/2023] Open
Abstract
The gastrointestinal hormone ghrelin reduces energy expenditure and stimulates food intake. Ghrelin analogs are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to investigate whether oral treatment with the non-peptidergic ghrelin receptor agonist HM01 counteracts CACS in colon-26 (C26) tumor-bearing mice. The C26 tumor model is characterized by pronounced body weight (BW) loss and muscle wasting in the absence of severe anorexia. We analyzed the time course of BW loss, body composition, muscle mass, bone mineral density, and the cytokines interleukin-6 (IL-6) and macrophage-inhibitory cytokine-1 (MIC-1). Moreover, we measured the expression of the muscle degradation markers muscle RING-finger-protein-1 (MuRF-1) and muscle atrophy F-box (MAFbx). After tumor inoculation, MIC-1 levels increased earlier than IL-6 and both cytokines were elevated before MuRF-1/MAFbx expression increased. Oral HM01 treatment increased BW, fat mass, and neuronal hypothalamic activity in healthy mice. In tumor-bearing mice, HM01 increased food intake, BW, fat mass, muscle mass, and bone mineral density while it decreased energy expenditure. These effects appeared to be independent of IL-6, MIC-1, MuRF-1 or MAFbx, which were not affected by HM01. Therefore, HM01 counteracts cachectic body weight loss under inflammatory conditions and is a promising compound for the treatment of cancer cachexia in the absence of severe anorexia.
Collapse
|
139
|
Hirasaka K, Saito S, Yamaguchi S, Miyazaki R, Wang Y, Haruna M, Taniyama S, Higashitani A, Terao J, Nikawa T, Tachibana K. Dietary Supplementation with Isoflavones Prevents Muscle Wasting in Tumor-Bearing Mice. J Nutr Sci Vitaminol (Tokyo) 2017; 62:178-84. [PMID: 27465724 DOI: 10.3177/jnsv.62.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proinflammatory cytokines contribute to the progression of muscle wasting caused by ubiquitin-proteasome-dependent proteolysis. We have previously demonstrated that isoflavones, such as genistein and daidzein, prevent TNF-α-induced muscle atrophy in C2C12 myotubes. In this study, we examined the effect of dietary flavonoids on the wasting of muscle. Mice were divided into the following four groups: vehicle-injected (control) mice fed the normal diet (CN); tumor-bearing mice fed the normal diet (TN); control mice fed the isoflavone diet (CI); and tumor-bearing mice fed the isoflavone diet (TI). There were no significant differences in the intake of food or body weight gain among these four groups. The wet weight and myofiber size of gastrocnemius muscle in TN significantly decreased, compared with those in CN. Interestingly, the wet weight and myofiber size of gastrocnemius muscle in TI were nearly the same as those in CN and CI, although isoflavone supplementation did not affect the increased tumor mass or concentrations of proinflammatory cytokines, such as TNF-α and IL-6, in the blood. Moreover, increased expression of muscle-specific ubiquitin ligase genes encoding MAFbx/Atrogin-1 and MuRF1 in the skeletal muscle of TN was significantly inhibited by the supplementation of isoflavones. In parallel with the expression of muscle-specific ubiquitin ligases, dietary isoflavones significantly suppressed phosphorylation of ERK in tumor-bearing mice. These results suggest that dietary isoflavones improve muscle wasting in tumor-bearing mice via the ERK signaling pathway mediated-suppression of ubiquitin ligases in muscle cells.
Collapse
Affiliation(s)
- Katsuya Hirasaka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Colldén G, Tschöp MH, Müller TD. Therapeutic Potential of Targeting the Ghrelin Pathway. Int J Mol Sci 2017; 18:ijms18040798. [PMID: 28398233 PMCID: PMC5412382 DOI: 10.3390/ijms18040798] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Collapse
Affiliation(s)
- Gustav Colldén
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Institute for Diabetes and Obesity (IDO), Business Campus Garching-Hochbrück, Parkring 13, 85748 Garching, Germany.
| |
Collapse
|
141
|
Stewart Coats AJ, Shewan LG. A comparison of research into cachexia, wasting and related skeletal muscle syndromes in three chronic disease areas. Int J Cardiol 2017; 235:33-36. [PMID: 28291621 DOI: 10.1016/j.ijcard.2017.02.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We compared the frequency of cancer, heart and lung related cachexia and cachexia-related research articles in the specialist journal, Journal of Cachexia, Sarcopenia and Muscle (JCSM) to those seen in a leading European journal in each specialist area during 2015 and 2016 to assess whether work on cachexia and related fields is relatively over or under represented in each specialist area. RESULTS In the dedicated journal, Journal of Cachexia, Sarcopenia and Muscle, there were 44 references related to cancer, 5 related to respiratory disease, 5 related to heart failure, and 21 related to more than one of these chronic diseases. Despite this cancer preponderance, in the European Journal of Cancer in the two publication years, there were only 5 relevant publications (0.67% of the journal output), compared to 16 (1.41%) in the European Respiratory Journal and 10 (2.19%) in the European Journal of Heart Failure. CONCLUSIONS There is considerable under-representation of cancer cachexia-related papers in the major European Cancer journal despite a high proportion in the dedicated cachexia journal. The under-representation is even more marked when expressed as a percentage, 0.67%, compared to 1.41% and 2.19% of the lung and heart journals respectively. These results are consistent with a worrying lack of interest in, or publication of, cachexia and related syndromes research in the cancer literature in Europe compared to its importance as a clinical syndrome. Greater interest is shown in lung and cardiology journals.
Collapse
Affiliation(s)
| | - Louise G Shewan
- Monash University, Australia; University of Warwick, Coventry, UK
| |
Collapse
|
142
|
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and Cancer. Annu Rev Immunol 2017; 35:199-228. [PMID: 28142322 DOI: 10.1146/annurev-immunol-051116-052133] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ernesto Perez-Chanona
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
143
|
Au ED, Desai AP, Koniaris LG, Zimmers TA. The MEK-Inhibitor Selumetinib Attenuates Tumor Growth and Reduces IL-6 Expression but Does Not Protect against Muscle Wasting in Lewis Lung Cancer Cachexia. Front Physiol 2017; 7:682. [PMID: 28149280 PMCID: PMC5241300 DOI: 10.3389/fphys.2016.00682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023] Open
Abstract
Cachexia, or wasting of skeletal muscle and fat, afflicts many patients with chronic diseases including cancer, organ failure, and AIDS. Muscle wasting reduces quality of life and decreases response to therapy. Cachexia is caused partly by elevated inflammatory cytokines, including interleukin-6 (IL-6). Others and we have shown that IL-6 alone is sufficient to induce cachexia both in vitro and in vivo. The mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor Selumetinib has been tested in clinical trials for various cancers. Moreover, Selumetinib has also been shown to inhibit the production of IL-6. In a retrospective analysis of a phase II clinical trial in advanced cholangiocarcinoma, patients treated with Selumetinib experienced significant gains in skeletal muscle vs. patients receiving standard therapy. However, the use of Selumetinib as a treatment for cachexia has yet to be investigated mechanistically. We sought to determine whether MEK inhibition could protect against cancer-induced cachexia in mice. In vitro, Selumetinib induced C2C12 myotube hypertrophy and nuclear accretion. Next we tested Selumetinib in the Lewis lung carcinoma (LLC) model of cancer cachexia. Treatment with Selumetinib reduced tumor mass and reduced circulating and tumor IL-6; however MEK inhibition did not preserve muscle mass. Similar wasting was seen in limb muscles of Selumetinib and vehicle-treated LLC mice, while greater fat and carcass weight loss was observed with Selumetinib treatment. As well, Selumetinib did not block wasting in C2C12 myotubes treated with LLC serum. Taken together, out results suggest that this MEK inhibitor is not protective in LLC cancer cachexia despite lowering IL-6 levels, and further that it might exacerbate tumor-induced weight loss. Differences from other studies might be disease, species or model-specific.
Collapse
Affiliation(s)
- Ernie D Au
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolis, IN, USA; Indiana University Simon Cancer CenterIndianapolis, IN, USA
| | - Aditya P Desai
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Indiana University Simon Cancer CenterIndianapolis, IN, USA
| | - Leonidas G Koniaris
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Indiana University Simon Cancer CenterIndianapolis, IN, USA; IUPUI Center for Cachexia Research, Innovation and TherapyIndianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolis, IN, USA; Indiana University Simon Cancer CenterIndianapolis, IN, USA; IUPUI Center for Cachexia Research, Innovation and TherapyIndianapolis, IN, USA; Department of Otolaryngology, Head and Neck Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
144
|
Frajacomo FTT, de Souza Padilha C, Marinello PC, Guarnier FA, Cecchini R, Duarte JAR, Deminice R. Solid Ehrlich carcinoma reproduces functional and biological characteristics of cancer cachexia. Life Sci 2016; 162:47-53. [DOI: 10.1016/j.lfs.2016.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022]
|
145
|
von Haehling S, Ebner N, Anker SD. Moving upwards - the journal of cachexia, sarcopenia and muscle in 2016. J Cachexia Sarcopenia Muscle 2016; 7:391-5. [PMID: 27625918 PMCID: PMC5011813 DOI: 10.1002/jcsm.12142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stephan von Haehling
- Innovative Clinical Trial, Department of Cardiology and Pneumology University of Göttingen Medical School Göttingen Germany
| | - Nicole Ebner
- Innovative Clinical Trial, Department of Cardiology and Pneumology University of Göttingen Medical School Göttingen Germany
| | - Stefan D Anker
- Innovative Clinical Trial, Department of Cardiology and Pneumology University of Göttingen Medical School Göttingen Germany
| |
Collapse
|
146
|
Sever S, White DL, Garcia JM. Is there an effect of ghrelin/ghrelin analogs on cancer? A systematic review. Endocr Relat Cancer 2016; 23:R393-409. [PMID: 27552970 PMCID: PMC5064755 DOI: 10.1530/erc-16-0130] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022]
Abstract
Ghrelin is a hormone with multiple physiologic functions, including promotion of growth hormone release, stimulation of appetite and regulation of energy homeostasis. Treatment with ghrelin/ghrelin-receptor agonists is a prospective therapy for disease-related cachexia and malnutrition. In vitro studies have shown high expression of ghrelin in cancer tissue, although its role including its impact in cancer risk and progression has not been established. We performed a systematic literature review to identify peer-reviewed human or animal in vivo original research studies of ghrelin, ghrelin-receptor agonists, or ghrelin genetic variants and the risk, presence, or growth of cancer using structured searches in PubMed database as well as secondary searches of article reference lists, additional reviews and meta-analyses. Overall, 45 (73.8%) of the 61 studies reviewed, including all 11 involving exogenous ghrelin/ghrelin-receptor agonist treatment, reported either a null (no statistically significant difference) or inverse association of ghrelin/ghrelin-receptor agonists or ghrelin genetic variants with cancer risk, presence or growth; 10 (16.7%) studies reported positive associations; and 6 (10.0%) reported both negative or null and positive associations. Differences in serum ghrelin levels in cancer cases vs controls (typically lower) were reported for some but not all cancers. The majority of in vivo studies showed a null or inverse association of ghrelin with risk and progression of most cancers, suggesting that ghrelin/ghrelin-receptor agonist treatment may have a favorable safety profile to use for cancer cachexia. Additional large-scale prospective clinical trials as well as basic bioscientific research are warranted to further evaluate the safety and benefits of ghrelin treatment in patients with cancer.
Collapse
Affiliation(s)
- Sakine Sever
- Division of EndocrinologyDiabetes, and Metabolism, Baylor College of Medicine, Alkek Building for Biomedical Research, Houston, Texas, USA
| | - Donna L White
- Section of Gastroenterology and HepatologyBaylor College of Medicine Medical Center, Houston, Texas, USA Clinical Epidemiology and Comparative Effectiveness ProgramSection of Health Services Research (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, HSR&D Center of Innovation (152), Houston, Texas, USA Texas Medical Center Digestive Disease CenterBaylor College of Medicine, Houston, Texas, USA Dan L. Duncan Comprehensive Cancer CenterBaylor College of Medicine, Houston, Texas, USA Center for Translational Research on Inflammatory Diseases (CTRID)Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - José M Garcia
- Division of EndocrinologyDiabetes, and Metabolism, Baylor College of Medicine, Alkek Building for Biomedical Research, Houston, Texas, USA Center for Translational Research on Inflammatory Diseases (CTRID)Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA Department of Molecular and Cellular BiologyBaylor College of Medicine, Houston, Texas, USA Huffington Center on AgingBaylor College of Medicine, Houston, Texas, USA Geriatrics Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington, USA
| |
Collapse
|
147
|
Recent Advances in Sarcopenia Research in Asia: 2016 Update From the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2016; 17:767.e1-7. [DOI: 10.1016/j.jamda.2016.05.016] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022]
|
148
|
Khatib MN, Shankar A, Kirubakaran R, Gaidhane A, Gaidhane S, Simkhada P, Quazi Syed Z. Ghrelin for the management of cachexia associated with cancer. Hippokratia 2016. [DOI: 10.1002/14651858.cd012229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mahalaqua Nazli Khatib
- Datta Meghe Institute of Medical Sciences; Department of Physiology; Sawangi Meghe Wardha Maharashtra India 442004
| | - Anuraj Shankar
- Harvard University; Department of Nutrition; 655 Huntington Avenue Building 2, Room 331A Boston Massachusetts USA 02115
| | - Richard Kirubakaran
- Christian Medical College; South Asian Cochrane Network & Center, Prof. BV Moses Center for Evidence-Informed Health Care and Health Policy; Carman Block II Floor CMC Campus, Bagayam Vellore Tamil Nadu India 632002
| | - Abhay Gaidhane
- Datta Meghe Institute of Medical Sciences; Department of Community Medicine; Sawangi Meghe Wardha Maharashtra State India 442004
| | - Shilpa Gaidhane
- Datta Meghe Institute of Medical Sciences; Department of Medicine; Sawangi Meghe Wardha Maharashtra State India 442004
| | - Padam Simkhada
- Liverpool John Moores University; Centre for Public Health; Henry Cotton Building 15-21 Webster Street Liverpool UK L3 2ET
| | - Zahiruddin Quazi Syed
- Datta Meghe Institute of Medical Sciences; Department of Community Medicine; Sawangi Meghe Wardha Maharashtra State India 442004
| |
Collapse
|
149
|
Grisold W, Grisold A, Löscher WN. Neuromuscular complications in cancer. J Neurol Sci 2016; 367:184-202. [PMID: 27423586 DOI: 10.1016/j.jns.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/08/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Cancer is becoming a treatable and even often curable disease. The neuromuscular system can be affected by direct tumor invasion or metastasis, neuroendocrine, metabolic, dysimmune/inflammatory, infections and toxic as well as paraneoplastic conditions. Due to the nature of cancer treatment, which frequently is based on a DNA damaging mechanism, treatment related toxic side effects are frequent and the correct identification of the causative mechanism is necessary to initiate the proper treatment. The peripheral nervous system is conventionally divided into nerve roots, the proximal nerves and plexus, the peripheral nerves (mono- and polyneuropathies), the site of neuromuscular transmission and muscle. This review is based on the anatomic distribution of the peripheral nervous system, divided into cranial nerves (CN), motor neuron (MND), nerve roots, plexus, peripheral nerve, the neuromuscular junction and muscle. The various etiologies of neuromuscular complications - neoplastic, surgical and mechanic, toxic, metabolic, endocrine, and paraneoplastic/immune - are discussed separately for each part of the peripheral nervous system.
Collapse
Affiliation(s)
- W Grisold
- Department of Neurology, Kaiser Franz Josef Hospital, Vienna, Austria.
| | - A Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - W N Löscher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
150
|
Protein breakdown in cancer cachexia. Semin Cell Dev Biol 2016; 54:11-9. [DOI: 10.1016/j.semcdb.2015.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
|