101
|
Simpkins JW, Singh M. More than a decade of estrogen neuroprotection. Alzheimers Dement 2007; 4:S131-6. [PMID: 18631989 DOI: 10.1016/j.jalz.2007.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
Considerable evidence has emerged through more than a decade of research supporting the neuroprotective and cognition-preserving effects of estrogens. Such basic research coupled with various epidemiological studies led quickly to the assessment of Premarin for the treatment of mild to moderate Alzheimer's disease (AD), initiated by the Alzheimer's Disease Cooperative Study Group and headed by Dr. Leon Thal. While this and subsequent trials with Premarin (Wyeth Research, Monmouth Junction, New Jersey) and PremPro (Wyeth Research), a conjugated equine estrogen preparation plus medoxyprogresterone acetate, have not supported the use of estrogens in treating advanced AD, considerable inferences have been made from these placebo controlled trials of estrogens. Here, we aimed to put these AD trials of estrogens in perspective by considering the potential mechanisms of these potent neuroprotective estrogens, the role of estrogens in other neurodegenerative conditions, such as cerebral ischemia, and based on our current understanding of estrogen neurobiology, offer insight into the design of future clinical trails of estrogens for neuronal protection.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | | |
Collapse
|
102
|
Mechanism of salutary effects of finasteride on post-traumatic immune/inflammatory response: upregulation of estradiol synthesis. Ann Surg 2007; 246:836-43. [PMID: 17968177 DOI: 10.1097/sla.0b013e318158fca0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate whether pretreatment with finasteride, a 5alpha-reductase inhibitor, improves immune functions after trauma-hemorrhage. SUMMARY BACKGROUND DATA A number of studies have provided evidence for a gender dimorphism in host defense after trauma. Under stress conditions, such as trauma-hemorrhage, androgenic hormones have immunosuppressive effects, leading to increased susceptibility to sepsis, morbidity, and mortality. Testosterone is converted by 5alpha-reductase to 5alpha-dihydrotestosterone (DHT), a more potent androgen. METHODS Male C3H/HeN mice (8-10 weeks) were randomly assigned to receive finasteride or vehicle for 2 days and were then subjected to trauma-hemorrhage or sham operation. Trauma-hemorrhage was induced by a midline laparotomy and approximately 90 minutes of hemorrhagic shock (blood pressure, 35 mm Hg), followed by fluid resuscitation. Animals were killed 2 hours after resuscitation or sham procedure. Plasma levels and Kupffer cell production of cytokines (TNF-alpha, IL-6, IL-10, MCP-1, KC, and MIP-1alpha), lung neutrophil infiltration, and edema were evaluated. RESULTS Finasteride administration prevented the increase in cytokine plasma levels, decreased DHT, and increased 17beta-estradiol plasma concentrations. In addition, neutrophil infiltration and edema formation in the lung were reduced by finasteride. The salutary effects of finasteride were abrogated after coadministration with an estrogen receptor inhibitor (ICI 182,780). Increased Kupffer cell cytokine production normally observed after trauma-hemorrhage was prevented by treatment with finasteride. CONCLUSION These results suggest that inhibition of 5alpha-reductase leads to the conversion of testosterone to 17beta-estradiol, which produces salutary effects on the post-traumatic immune response.
Collapse
|
103
|
Tenenbaum M, Azab AN, Kaplanski J. Effects of estrogen against LPS-induced inflammation and toxicity in primary rat glial and neuronal cultures. ACTA ACUST UNITED AC 2007; 13:158-66. [PMID: 17621558 DOI: 10.1177/0968051907080428] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several lines of evidence link inflammation with neurodegenerative diseases, which are aggravated by the age-related decline in estrogen levels in postmenopausal women. Lipopolysaccharide (LPS) is used widely to stimulate glial cells to produce pro-inflammatory mediators such as NO, PGE(2), and TNF-alpha, and was found to be toxic in high doses. We examined the effects of a physiological dose of 17beta-estradiol (E2) against LPS-induced inflammation and toxicity (cell death) in rat primary glial and neuronal cultures. Cultures were treated with 0.1 nM E2 for 24 h and then exposed to LPS 0.5-200 microg/ml for another 24 h. Levels of NO, PGE(2), and TNF-alpha in the culture medium were determined by the Griess reaction assay, radio-immunoassay, and enzyme-linked immunoassay, respectively. Cell death was quantified by measuring the leakage of lactate dehydrogenase (LDH) into the medium from dead or dying cells using the non-radioactive cytotoxicity assay. E2 significantly reduced the LPS-induced increase in NO and TNF-alpha (but not PGE(2)) production in glial cells. PGE(2) and TNF-alpha were undetectable in neuronal cultures, while only basal levels of NO were detected, even after stimulation with LPS. Moreover, pretreatment with E2 significantly reduced LPS-induced cell death, as measured by the release of LDH, in both glial and neuronal cultures. These results suggest that the neuroprotective effects attributed to E2 are derived, at least in part, from its anti-inflammatory and cytoprotective effects in both glial and neuronal cells.
Collapse
Affiliation(s)
- Meytal Tenenbaum
- Department of Clinical Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
104
|
Tester NJ, Howland DR. Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats. Exp Neurol 2007; 209:483-96. [PMID: 17936753 DOI: 10.1016/j.expneurol.2007.07.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/21/2007] [Accepted: 07/25/2007] [Indexed: 01/08/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are upregulated in the central nervous system following injury. Chondroitin sulfate glycosaminoglycan (CS GAG) side chains substituted on this family of molecules contribute to the limited functional recovery following injury by restricting axonal growth and synaptic plasticity. In the current study, the effects of degrading CS GAGs with Chondroitinase ABC (Ch'ase ABC) in the injured spinal cords of adult cats were assessed. Three groups were evaluated for 5 months following T10 hemisections: lesion-only, lesion+control, and lesion+Ch'ase ABC. Intraspinal control and Ch'ase ABC treatments to the lesion site began immediately after injury and continued every other day, for a total of 15 treatments, using an injectable port system. Delivery and in vivo cleavage were verified anatomically in a subset of cats across the treatment period. Recovery of skilled locomotion (ladder, peg, and beam) was significantly accelerated, on average, by >3 weeks in Ch'ase ABC-treated cats compared to controls. Ch'ase ABC-treated cats also showed greater recovery of specific skilled locomotor features including intralimb movement patterns and significantly greater paw placement onto pegs. Although recovery of basic locomotion (bipedal treadmill and overground) was not accelerated, intralimb movement patterns were more normal in the Ch'ase ABC-treated cats. Qualitative assessment of serotonergic immunoreactivity also suggested that Ch'ase ABC treatment enhanced plasticity. Finally, analyses using fluorophore-assisted carbohydrate electrophoresis (FACE) indicate CS GAG content is similar in cat and human. These findings show, for the first time, that intraspinal cleavage of CS GAGs can enhance recovery of function following spinal cord injury in large animals with sophisticated motor behaviors and axonal growth requirements similar to those encountered in humans.
Collapse
Affiliation(s)
- Nicole J Tester
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
| | | |
Collapse
|
105
|
Fan X, Kim HJ, Warner M, Gustafsson JÅ. Estrogen receptor beta is essential for sprouting of nociceptive primary afferents and for morphogenesis and maintenance of the dorsal horn interneurons. Proc Natl Acad Sci U S A 2007; 104:13696-701. [PMID: 17693550 PMCID: PMC1959444 DOI: 10.1073/pnas.0705936104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen is known to influence pain, but the specific roles of the two estrogen receptors (ERs) in the spinal cord are unknown. In the present study, we have examined the expression of ERalpha and ERbeta in the spinal cord and have looked for defects in pain pathways in ERbeta knockout (ERbeta(-/-)) mice. In the spinal cords of 10-month-old WT mice, ERbeta-positive cells were localized in lamina II, whereas ERalpha-positive cells were mainly localized in lamina I. In ERbeta(-/-) mice, there were higher levels of calcitonin gene-regulated peptide and substance P in spinal cord dorsal horn and isolectin B4 in the dorsal root ganglion. In the superficial layers of the spinal cord, there was a decrease in the number of calretinin (CR)-positive neurons, and in the outer layer II, there was a loss of calbindin-positive interneurons. During embryogenesis, ERbeta was first detectable in the spinal cord at embryonic day 13.5 (E13.5), and ERalpha was first detectable at E15.5. During middle and later embryonic stages, ERbeta was abundantly expressed in the superficial layers of the dorsal horn. ERalpha was also expressed in the dorsal horn but was limited to fewer neurons. Double staining for ERbeta and CR showed that, in the superficial dorsal horn of WT neonates [postnatal day 0 (P0)], most CR neurons also expressed ERbeta. At this stage, few CR-positive cells were detected in the dorsal horn of ERbeta(-/-) mice. Taken together, these findings suggest that, early in embryogenesis, ERbeta is involved in dorsal horn morphogenesis and in sensory afferent fiber projections to the dorsal horn and that ERbeta is essential for survival of dorsal horn interneurons throughout life.
Collapse
Affiliation(s)
- Xiaotang Fan
- *Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 86 Stockholm, Sweden; and
- Department of Neurobiology, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Hyun-Jin Kim
- *Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 86 Stockholm, Sweden; and
| | - Margaret Warner
- *Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 86 Stockholm, Sweden; and
| | - Jan-Åke Gustafsson
- *Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 86 Stockholm, Sweden; and
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
106
|
Leung PY, Johnson CS, Wrathall JR. Comparison of the effects of complete and incomplete spinal cord injury on lower urinary tract function as evaluated in unanesthetized rats. Exp Neurol 2007; 208:80-91. [PMID: 17822702 PMCID: PMC2712947 DOI: 10.1016/j.expneurol.2007.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 06/28/2007] [Accepted: 07/19/2007] [Indexed: 01/13/2023]
Abstract
In rats, phasic external urethral sphincter (EUS) activity (bursting) is postulated to be crucial for efficient voiding. This has been reported to be lost after spinal cord transection (txSCI), contributing to impaired function. However, anesthesia may confound evaluating EUS activity. We therefore evaluated urodynamic parameters in unanesthetized, restrained rats and compared the effects of txSCI to that of a clinically relevant, incomplete, contusive injury (iSCI) on lower urinary tract function. Adult female rats were subjected to txSCI or standardized iSCI at the T8 vertebral level. As expected, all injured rats were initially unable to void but developed a reflex bladder with time, with iSCI rats recovering more rapidly than txSCI rats. LUT function was evaluated urodynamically at 2 and 6 weeks after injury. In response to infusion of saline into the bladder, controls consistently exhibited coordinated contraction of the bladder and activation of the EUS in a phasic pattern and had a high voiding efficiency (86.4+/-2.5%). Voiding efficiency of iSCI rats was reduced to approximately 57% and txSCI rats to approximately 32%. However, two different patterns of EUS activity during voiding were present in both txSCI and iSCI groups at both time points: (1) rats with phasic EUS activity, similar to controls and (2) those that only exhibited tonic EUS activity during voiding. The former had more normal voiding efficiencies. Thus, phasic EUS activity and the improved voiding efficiency associated with it can occur and can be detected in unanesthetized rats after both incomplete and complete SCI.
Collapse
Affiliation(s)
- Philberta Y. Leung
- Department of Neuroscience, Georgetown University Medical Center, Research Building, Rm EG31, 3970 Reservoir Road NW, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Research Building, Rm EG31, 3970 Reservoir Road NW, Washington, DC 20057
| | - Christopher S. Johnson
- Department of Neuroscience, Georgetown University Medical Center, Research Building, Rm EG31, 3970 Reservoir Road NW, Washington, DC 20057
| | - Jean R. Wrathall
- Department of Neuroscience, Georgetown University Medical Center, Research Building, Rm EG31, 3970 Reservoir Road NW, Washington, DC 20057
| |
Collapse
|
107
|
Swartz KR, Fee DB, Joy KM, Roberts KN, Sun S, Scheff NN, Wilson ME, Scheff SW. Gender differences in spinal cord injury are not estrogen-dependent. J Neurotrauma 2007; 24:473-80. [PMID: 17402853 DOI: 10.1089/neu.2006.0167] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent attention has been given to gender differences in neurotrauma, and the anecdotal suggestion is that females have better outcomes than males, suggesting that circulating levels of estrogen (E(2)) may be neuroprotective. In order to address this issue, both young adult male and ovariectomized female rats were subjected to a T10 spinal cord injury (SCI), and E2 levels were maintained at chronic, constant circulating levels. Animals were clinically evaluated for locomotor changes using the Basso-Beattie-Bresnahan (BBB) scoring system. Morphologic differences were evaluated with unbiased stereology. Data analysis failed to reveal any significant benefit for the E2 therapy in either males or females. We did find a non-estrogen-dependent difference between male and female rats in length of injury, and percent of spared tissue, with female outcomes more favorable. These results suggest that E(2) does not provide a viable therapy following SCI.
Collapse
Affiliation(s)
- Karin R Swartz
- Division of Neurosurgery, Department of Surgery, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Kang SK, Yeo JE, Kang KS, Phinney DG. Cytoplasmic extracts from adipose tissue stromal cells alleviates secondary damage by modulating apoptosis and promotes functional recovery following spinal cord injury. Brain Pathol 2007; 17:263-75. [PMID: 17465991 PMCID: PMC8095508 DOI: 10.1111/j.1750-3639.2007.00070.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) typically results from sustained trauma to the spinal cord, resulting in loss of neurologic function at the level of the injury. However, activation of various physiological mechanisms secondary to the initial trauma including edema, inflammation, excito-toxicity, excessive cytokine release and apoptosis may exacerbate the injury and/or retard natural repair mechanisms. Herein, we demonstrate that cytoplasmic extracts prepared from adipose tissue stromal cells (ATSCs) inhibits H(2)O(2)-mediated apoptosis of cultured spinal cord-derived neural progenitor cells (NPCs) resulting in increased cell survival. The ATSC extracts mediated this effect by decreasing caspase-3 and c-Jun-NH2-terminal kinase (SAPK/JNK) activity, inhibiting cytochrome c release from mitochondria and reducing Bax expression levels in cells. Direct injection of ATSC extracts mixed with Matrigel into the spinal cord immediately after SCI also resulted in reduced apoptotic cell death, astrogliosis and hypo-myelination but did not reduce the extent of microglia infiltration. Moreover, animals injected with the ATSC extract showed significant functional improvement of hind limbs as measured by the BBB (Basso, Beattie and Bresnahan) scale. Collectively, these studies show a prominent therapeutic effect of ATSC cytoplasmic extracts on SCI principally caused by an inhibition of apoptosis-mediated cell death, which spares white matter, oligodendrocytes and neurons at the site of injury. The ability of ATSC extracts to prevent secondary pathological events and improve neurologic function after SCI suggests that extracts prepared from autologous cells harvested from SCI patients may have clinical utility.
Collapse
Affiliation(s)
- Soo Kyung Kang
- Department of Physiology, College of Medicine, Pusan National University, 1-10 Ami-Dong, Busan 602-739, South Korea.
| | | | | | | |
Collapse
|
109
|
Park SW, Yi JH, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, Vemuganti R. Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 2007; 320:1002-12. [PMID: 17167171 DOI: 10.1124/jpet.106.113472] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thiazolidinediones (TZDs) are potent synthetic agonists of the ligand-activated transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma). TZDs were shown to induce neuroprotection after cerebral ischemia by blocking inflammation. As spinal cord injury (SCI) induces massive inflammation that precipitates secondary neuronal death, we currently analyzed the therapeutic efficacy of TZDs pioglitazone and rosiglitazone after SCI in adult rats. Both pioglitazone and rosiglitazone (1.5 mg/kg i.p.; four doses at 5 min and 12, 24, and 48 h) significantly decreased the lesion size (by 57 to 68%, p < 0.05), motor neuron loss (by 3- to 10-fold, p < 0.05), myelin loss (by 66 to 75%, p < 0.05), astrogliosis (by 46 to 61%, p < 0.05), and microglial activation (by 59 to 78%, p < 0.05) after SCI. TZDs significantly enhanced the motor function recovery (at 7 days after SCI, the motor scores were 37 to 45% higher in the TZD groups over the vehicle group; p < 0.05), but the treatment was effective only when the first injection was given by 2 h after SCI. At 28 days after SCI, chronic thermal hyperalgesia was decreased significantly (by 31 to 39%; p < 0.05) in the pioglitazone group compared with the vehicle group. At 6 h after SCI, the pioglitazone group showed significantly less induction of inflammatory genes [interleukin (IL)-6 by 83%, IL-1beta by 87%, monocyte chemoattractant protein-1 by 75%, intracellular adhesion molecule-1 by 84%, and early growth response-1 by 67%] compared with the vehicle group (p < 0.05 in all cases). Pioglitazone also significantly enhanced the post-SCI induction of neuroprotective heat shock proteins and antioxidant enzymes. Pretreatment with a PPARgamma antagonist, 2-chloro-5-nitro-N-phenyl-benzamide (GW9662), prevented the neuroprotection induced by pioglitazone.
Collapse
Affiliation(s)
- Seung-Won Park
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Sribnick EA, Matzelle DD, Ray SK, Banik NL. Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis. J Neurosci Res 2006; 84:1064-75. [PMID: 16902996 DOI: 10.1002/jnr.21016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurologic injury, and currently, the only recommended pharmacotherapy is high-dose methylprednisolone, which has limited efficacy. Estrogen is a multi-active steroid with anti-oxidant and anti-apoptotic effects. Estrogen may modulate intracellular Ca2+ and prevent inflammation. For this study, male rats were divided into three groups. Sham-group animals received a laminectomy at T12. Injured rats received both laminectomy and 40 gram centimeter force SCI. Estrogen-group rats received 4 mg/kg 17beta-estradiol (estrogen) at 15 min and 24 hr post-injury, and vehicle-group rats received equal volumes of dimethyl sulfoxide. Animals were sacrificed at 48 hr post-injury, and 1-cm segments of the lesion, rostral penumbra, and caudal penumbra were excised. The degradation of 68 kD neurofilament protein (NFP) and estrogen receptors (ER) was examined by Western blot analysis. Protein levels of calpain and the activities of calpain and caspase-3 were also examined. Levels of cytochrome c were determined in both cytosolic and mitochondrial fractions. Cell death with DNA fragmentation was examined using the TUNEL assay. At the lesion, samples from both vehicle and estrogen treated animals showed increased levels of 68 kD NFP degradation, calpain content, calpain activity, cytochrome c release, and degradation of ERalpha and ERbeta, as compared to sham. In the caudal penumbra, estrogen treatment significantly attenuated 68 kD NFP degradation, calpain content, calpain activity, levels of cytosolic cytochrome c, and ERbeta degradation. At the lesion, vehicle-treated animals displayed more TUNEL+ cells, and estrogen treatment significantly attenuated this cell death marker. We conclude that estrogen may inhibit cell death in SCI through calpain inhibition.
Collapse
Affiliation(s)
- Eric Anthony Sribnick
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
111
|
Abstract
Hormonal and locally produced steroids act in the nervous system as neuroendocrine regulators, as trophic factors and as neuromodulators and have a major impact on neural development and function. Glial cells play a prominent role in the local production of steroids and in the mediation of steroid effects on neurons and other glial cells. In this review, we examine the role of glia in the synthesis and metabolism of steroids and the functional implications of glial steroidogenesis. We analyze the mechanisms of steroid signaling on glia, including the role of nuclear receptors and the mechanisms of membrane and cytoplasmic signaling mediated by changes in intracellular calcium levels and activation of signaling kinases. Effects of steroids on functional parameters of glia, such as proliferation, myelin formation, metabolism, cytoskeletal reorganization, and gliosis are also reviewed, as well as the implications of steroid actions on glia for the regulation of synaptic function and connectivity, the regulation of neuroendocrine events, and the response of neural tissue to injury.
Collapse
|
112
|
Nishio Y, Koda M, Kamada T, Someya Y, Yoshinaga K, Okada S, Harada H, Okawa A, Moriya H, Yamazaki M. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine 2006; 5:424-433. [PMID: 17120892 DOI: 10.3171/spi.2006.5.5.424] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The use of human umbilical cord blood (HUCB) cells has been reported to improve functional recovery in cases of central nervous system injuries such as stroke, traumatic brain injury, and spinal cord injury (SCI). The authors investigated the effects of hemopoietic stem cells that were derived from HUCB and transplanted into the injured spinal cords of rats. METHODS One week after injury, an HUCB fraction enriched in CD34-positive cells was transplanted into the experimental group. In control animals, vehicle (Matrigel) was transplanted. Recovery of motor functions was assessed using the Basso-Beattie-Bresnahan Locomotor Scale, and immunohistochemical examinations were performed. Cells from HUCB that were CD34 positive improved functional recovery, reduced the area of the cystic cavity at the site of injury, increased the volume of residual white matter, and promoted the regeneration or sparing of axons in the injured spinal cord. Immunohistochemical examination revealed that transplanted CD34-positive cells survived in the host spinal cord for at least 3 weeks after transplantation but had disappeared by 5 weeks. The transplanted cells were not positive for neural markers, but they were positive for hemopoietic markers. There was no evidence of an immune reaction at the site of injury in either group. CONCLUSIONS These results suggest that transplantation of a CD34-positive fraction from HUCB may have therapeutic effects for SCI. The results of this study provide important preclinical data regarding HUCB stem cell-based therapy for SCI.
Collapse
Affiliation(s)
- Yutaka Nishio
- Department of Orthopaedic Surgery, Chiba University Graduate School of dicine, Tougane Chiba Prefecture Hospital, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Chaovipoch P, Jelks KAB, Gerhold LM, West EJ, Chongthammakun S, Floyd CL. 17beta-estradiol is protective in spinal cord injury in post- and pre-menopausal rats. J Neurotrauma 2006; 23:830-52. [PMID: 16774470 DOI: 10.1089/neu.2006.23.830] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The neuroprotective effects of 17 beta -estradiol have been shown in models of central nervous system injury, including ischemia, brain injury, and more recently, spinal cord injury (SCI). Recent epidemiological trends suggest that SCIs in elderly women are increasing; however, the effects of menopause on estrogen-mediated neuroprotection are poorly understood. The objective of this study was to evaluate the effects of 17beta-estradiol and reproductive aging on motor function, neuronal death, and white matter sparing after SCI of post- and pre-menopausal rats. Two-month-old or 1- year-old female rats were ovariectomized and implanted with a silastic capsule containing 180 microg/mL of 17beta-estradiol or vehicle. Complete crush SCI at T8-9 was performed 1 week later. Additional animals of each age group were left ovary-intact but were spinal cord injured. The Basso, Beattie, Bresnahan (BBB) locomotor test was performed. Spinal cords were collected on post-SCI days 1, 7, and 21, and processed for histological markers. Administration of 17beta-estradiol to ovariectomized rats improved recovery of hind-limb locomotion, increased white matter sparing, and decreased apoptosis in both the post- and pre-menopausal rats. Also, ovary-intact 1-year-old rats did worse than ovary-intact 2-month-old rats, suggesting that endogenous estrogen confers neuroprotection in young rats, which is lost in older animals. Taken together, these data suggest that estrogen is neuroprotective in SCI and that the loss of endogenous estrogen-mediated neuroprotective seen in older rats can be attenuated with exogenous administration of 17beta-estradiol.
Collapse
Affiliation(s)
- Pimonporn Chaovipoch
- Department of Neurological Surgery, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Kyung KS, Gon JH, Geun KY, Sup JJ, Suk WJ, Ho KJ. 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury. Eur J Neurosci 2006; 24:1042-52. [PMID: 16930431 DOI: 10.1111/j.1460-9568.2006.04908.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) results in progressive waves of secondary injuries, which via the activation of a barrage of noxious pathological mechanisms exacerbate the injury to the spinal cord. Secondary injuries are associated with edema, inflammation, excitotoxicity, excessive cytokine release, caspase activation and cell apoptosis. This study was aimed at investigating the possible neuroprotective effects of 6-shogaol purified from Zingiber officinale by comparing an experimental SCI rat group with SCI control rats. Shogaol attenuated apoptotic cell death, including poly(ADP-ribose) polymerase activity, and reduced astrogliosis and hypomyelination which occurs in areas of active cell death in the spinal cords of SCI rats. The foremost protective effect of shogaol in SCI would therefore be manifested in the suppression of the acute secondary apoptotic cell death. However, it does not attenuate active microglia and macrophage infiltration. This finding is supported by a lack of histopathological changes in the areas of the lesion in the shogaol-treated SCI rats. Moreover, shogaol-mediated neuroprotection has been linked with shogaol's attenuation of p38 mitogen-activated protein kinase, p-SAPK/JNK and signal transducer, and with transcription-3 activation. Our results demonstrate that shogaol administrated immediately after SCI significantly diminishes functional deficits. The shogaol-treated group recovered hindlimb reflexes more rapidly and a higher percentage of these rats regained responses compared with the untreated injured rats. The overall hindlimb functional improvement of hindlimbs, as measured by the Basso, Beattie and Bresnahan scale, was significantly enhanced in the shogaol-treated group relative to the SCI control rats. Our data show that the therapeutic outcome of shogaol probably results from its comprehensive effects of blocking apoptotic cell death, resulting in the protection of white matter, oligodendrocytes and neurons, and inhibiting astrogliosis. Our finding that the administration of shogaol prevents secondary pathological events in traumatic SCIs and promotes recovery of motor functions in an animal model raises the issue of whether shogaol could be used therapeutically in humans after SCI.
Collapse
Affiliation(s)
- Kang Soo Kyung
- Department of Physiology, School of Medicine, Pusan National University, 1-10 Ami-Dong, Seo-Gu, Busan, South Korea.
| | | | | | | | | | | |
Collapse
|
115
|
Morales LBJ, Loo KK, Liu HB, Peterson C, Tiwari-Woodruff S, Voskuhl RR. Treatment with an estrogen receptor alpha ligand is neuroprotective in experimental autoimmune encephalomyelitis. J Neurosci 2006; 26:6823-33. [PMID: 16793889 PMCID: PMC6673842 DOI: 10.1523/jneurosci.0453-06.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is an inflammatory, neurodegenerative disease for which experimental autoimmune encephalomyelitis (EAE) is a model. Treatments with estrogens have been shown to decrease the severity of EAE through anti-inflammatory mechanisms. Here we investigated whether treatment with an estrogen receptor alpha (ERalpha) ligand could recapitulate the estrogen-mediated protection in clinical EAE. We then went on to examine both anti-inflammatory and neuroprotective mechanisms. EAE was induced in wild-type, ERalpha-, or ERbeta-deficient mice, and each was treated with the highly selective ERalpha agonist, propyl pyrazole triol, to determine the effect on clinical outcomes, as well as on inflammatory and neurodegenerative changes. ERalpha ligand treatment ameliorated clinical disease in both wild-type and ERbeta knock-out mice, but not in ERalpha knock-out mice, thereby demonstrating that the ERalpha ligand maintained ERalpha selectivity in vivo during disease. ERalpha ligand treatment also induced favorable changes in autoantigen-specific cytokine production in the peripheral immune system [decreased TNFalpha, interferon-gamma, and interleukin-6, with increased interleukin-5] and decreased CNS white matter inflammation and demyelination. Interestingly, decreased neuronal staining [NeuN+ (neuronal-specific nuclear protein)/beta3-tubulin+/Nissl], accompanied by increased immunolabeling of microglial/monocyte (Mac 3+) cells surrounding these abnormal neurons, was observed in gray matter of spinal cords of EAE mice at the earliest stage of clinical disease, 1-2 d after the onset of clinical signs. Treatment with either estradiol or the ERalpha ligand significantly reduced this gray matter pathology. In conclusion, treatment with an ERalpha ligand is highly selective in vivo, mediating both anti-inflammatory and neuroprotective effects in EAE.
Collapse
|