101
|
|
102
|
Yang Y, Engelien W, Xu S, Gu H, Silbersweig DA, Stern E. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med 2000; 44:680-5. [PMID: 11064401 DOI: 10.1002/1522-2594(200011)44:5<680::aid-mrm4>3.0.co;2-q] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transit time and trailing time in pulsed spin-labeling perfusion imaging are likely to be modulated by local blood flow changes, such as those accompanying brain activation. The majority of transit/trailing time is due to the passage of the tagged blood bolus through the arteriole/capillary regions, because of lower blood flow velocity in these regions. Changes of transit/trailing time during activation could affect the quantification of CBF in functional neuroimaging studies, and are therefore important to characterize. In this work, the measurement of transit and trailing times and CBF during sensorimotor activation using multislice perfusion imaging with pulsed arterial spin-labeling is described. While CBF elevated dramatically ( thick similar80.7%) during the sensorimotor activation, sizable reductions of transit time ( thick similar0.11 sec) and trailing time ( thick similar0.26 sec) were observed. Transit and trailing times were dependent on the distances from the leading and trailing edges of the tagged blood bolus to the location of the imaging slices. The effects of transit/trailing time changes on CBF quantification during brain activation were analyzed by simulation studies. Significant errors can be caused in the estimation of CBF if such changes of transit/trailing time are not taken into account.
Collapse
Affiliation(s)
- Y Yang
- Functional Neuroimaging Laboratory, Department of Psychiatry, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Yang Y, Engelien W, Pan H, Xu S, Silbersweig DA, Stern E. A CBF-based event-related brain activation paradigm: characterization of impulse-response function and comparison to BOLD. Neuroimage 2000; 12:287-97. [PMID: 10944411 DOI: 10.1006/nimg.2000.0625] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A perfusion-based event-related functional MRI method for the study of brain activation is presented. In this method, cerebral blood flow (CBF) was measured using a recently developed multislice arterial spin-labeling (ASL) perfusion imaging method with rapid spiral scanning. Temporal resolution of the perfusion measurement was substantially improved by employing intertrial subtraction and stimulus-shifting schemes. Perfusion and blood oxygenation level-dependent (BOLD) signals were obtained simultaneously by subtracting or adding the control and labeled images, respectively, in the same data sets. The impulse response function (IRF) of perfusion during brain activation was characterized for multiple stimulus durations and compared to the simultaneously acquired BOLD response. The CBF response curve preceded the BOLD curve by 0.21 s in the rising phase and 0.64 s in the falling phase. Linear additivity of the CBF and BOLD responses was assessed with rapidly repeated stimulations within single trials, and departure from linearity was found in both responses, characterized as attenuated amplitude and delayed rising time. Event-related visual and sensorimotor activation experiments were successfully performed with the new perfusion technique.
Collapse
Affiliation(s)
- Y Yang
- Functional Neuroimaging Laboratory, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
104
|
Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G. Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging 2000; 12:400-10. [PMID: 10992307 DOI: 10.1002/1522-2586(200009)12:3<400::aid-jmri5>3.0.co;2-c] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A robust whole brain magnetic resonance (MR) bolus tracking technique based on indicator dilution theory, which could quantitatively calculate cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) on a regional basis, was developed and tested. T2*-weighted gradient-echo echoplanar imaging (EPI) volumes were acquired on 40 hyperacute stroke patients after gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) bolus injection. The thalamus, white matter (WM), infarcted area, penumbra, and mirror infarcted and penumbra regions were analyzed. The calculation of the arterial input function (AIF) needed for absolute quantification of CBF, CBV, and MTT was shown to be user independent. The CBF values (ml/min/100 g units) and CBV values (% units, in parentheses) for the thalamus, WM, infarct, mirror infarct, penumbra, and mirror penumbra (averaged over all patients) were 69.8 +/- 22.2 (9.0 +/- 3.0 SD); 28.1 +/- 6.9 (3.9 +/- 1.2); 34.4 +/- 22.4 (7.1 +/- 2.7); 60.3 +/- 20.7 (8.2 +/- 2.3); 50.2 +/- 17.5 (10.4 +/- 2.4); and 64.2 +/- 17.0 (9.5 +/- 2.3), respectively, and the corresponding MTT values (in seconds) were 8.0 +/- 2.1; 8.6 +/- 3.0; 16.1 +/- 8.9; 8.6 +/- 2.9; 13.3 +/- 3.5; and 9.4 +/- 3.2. The infarct and penumbra CBV values were not significantly different from their corresponding mirror values, whereas the CBF and MTT values were (P < 0.01). Quantitative measurements of CBF, CBV, and MTT were calculated on a regional basis on data acquired from hyperacute stroke patients, and the CBF and MTT values showed greater sensitivity to areas with perfusion defects than the CBV values. J. Magn. Reson. Imaging 2000;12:400-410.
Collapse
Affiliation(s)
- A M Smith
- Department of Radiology and Medical Imaging, Université Catholique de Louvain, St. Luc University Hospital, B-1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
105
|
Thomas DL, Lythgoe MF, Pell GS, Calamante F, Ordidge RJ. The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging. Phys Med Biol 2000; 45:R97-138. [PMID: 10958179 DOI: 10.1088/0031-9155/45/8/201] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this review is to describe two recent developments in the use of magnetic resonance imaging (MRI) in the study of biological systems: diffusion and perfusion MRI. Diffusion MRI measures the molecular mobility of water in tissue, while perfusion MRI measures the rate at which blood is delivered to tissue. Therefore, both these techniques measure quantities which have direct physiological relevance. It is shown that diffusion in biological systems is a complex phenomenon, influenced directly by tissue microstructure, and that its measurement can provide a large amount of information about the organization of this structure in normal and diseased tissue. Perfusion reflects the delivery of essential nutrients to tissue, and so is directly related to its status. The concepts behind the techniques are explained, and the theoretical models that are used to convert MRI data to quantitative physical parameters are outlined. Examples of current applications of diffusion and perfusion MRI are given. In particular, the use of the techniques to study the pathophysiology of cerebral ischaemia/stroke is described. It is hoped that the biophysical insights provided by this approach will help to define the mechanisms of cell damage and allow evaluation of therapies aimed at reducing this damage.
Collapse
Affiliation(s)
- D L Thomas
- Department of Medical Physics and Bioengineering, University College London, UK.
| | | | | | | | | |
Collapse
|
106
|
Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000; 44:92-100. [PMID: 10893526 DOI: 10.1002/1522-2594(200007)44:1<92::aid-mrm14>3.0.co;2-m] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phase-encoded multishot SPIRAL approaches were used to acquire true 3D cerebral blood flow images of the human head using arterial spin tagging approaches. Multiple-inversion background suppression techniques, which suppress phase noise due to interacquisition fluctuations in the static magnetic field, reduced the temporal standard deviation of true 3D delta M images acquired using arterial spin tagging approaches by approximately 50%. Background suppressed arterial spin tagging (ASSIST) approaches were used to obtain high-resolution isotropic true 3D cerebral blood flow images, and to obtain true 3D activation images during cognitive (working memory) tasks. Magn Reson Med 44:92-100, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- F Q Ye
- Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
107
|
Petrella JR, Provenzale JM. MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol 2000; 175:207-19. [PMID: 10882275 DOI: 10.2214/ajr.175.1.1750207] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J R Petrella
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
108
|
Yongbi MN, Tan CX, Frank JA, Duyn JH. A protocol for assessing subtraction errors of arterial spin-tagging perfusion techniques in human brain. Magn Reson Med 2000; 43:896-900. [PMID: 10861886 DOI: 10.1002/1522-2594(200006)43:6<896::aid-mrm17>3.0.co;2-j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A protocol for assessing signal contributions from static tissue (subtraction errors) in perfusion images acquired with arterial spin-labeling (ASL) techniques in human brain is proposed. The method exploits the reduction of blood T(1) caused by the clinically available paramagnetic contrast agent, gadopentetate dimeglumine (Gd-DTPA). The protocol is demonstrated clinically with multislice FAIR images acquired before, during, and after Gd-DTPA administration using a range of selective inversion widths. Perfusion images acquired postcontrast for selective inversion widths large enough (threshold) to avoid interaction with the imaging slice had signal intensities reduced to noise level, as opposed to subtraction errors manifested on images acquired using inversion widths below the threshold. The need for these experiments to be performed in vivo is further illustrated by comparison with phantom results. The protocol allows a one-time calibration of relevant ASL parameters (e.g., selective inversion widths) in vivo, which may otherwise cause subtraction errors. Magn Reson Med 43:896-900, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- M N Yongbi
- Laboratory of Diagnostic Radiology Research, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
109
|
Hyder F, Kennan RP, Kida I, Mason GF, Behar KL, Rothman D. Dependence of oxygen delivery on blood flow in rat brain: a 7 tesla nuclear magnetic resonance study. J Cereb Blood Flow Metab 2000; 20:485-98. [PMID: 10724113 DOI: 10.1097/00004647-200003000-00007] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance imaging (MRI) and spectroscopy (MRS) were used at a magnetic field strength of 7 T to measure CBF and CMRO2 in the sensorimotor cortex of mature rats at different levels of cortical activity. In rats maintained on morphine anesthesia, transitions to lower activity and higher activity states were produced by administration of pentobarbital and nicotine, respectively. Under basal conditions of morphine sulfate anesthesia, CBF was 0.75 +/- 0.09 mL x g(-1) x min(-1) and CMRO2 was 3.15 +/- 0.18 micromol x g(-1) x min(-1). Administration of sodium pentobarbital reduced CBF and CMRO2 by 66% +/- 16% and 61% +/- 6%, respectively (i.e., "deactivation"). In contrast, administration of nicotine hydrogen tartrate increased CBF and CMRO2 by 41% +/- 5% and 30% +/- 3%, respectively (i.e., "activation"). The resting values of CBF and CMRO2 for alpha-chloralose anesthetized rats were 0.40 +/- 0.09 mL x g(-1) x min(-1) and 1.51 +/- 0.06 micromol x g(-1) x min(-1), respectively. Upon forepaw stimulation, CBF and CMRO2 were focally increased by 34% +/- 10% and 26% +/- 12%, respectively, above the resting nonanesthetized values (i.e., "activation"). Incremental changes in CBF and CMRO2, when expressed as a percentage change for "deactivation" and "activation" from the respective control conditions, were linear (R2 = 0.997) over the entire range examined with the global and local perturbations. This tight correlation for cerebral oxygen delivery in vivo is supported by a recent model where the consequence of a changing effective diffusivity of the capillary bed for oxygen, D, has been hypothetically shown to be linked to alterations in CMRO2 and CBF. This assumed functional characteristic of the capillary bed can be theoretically assessed by the ratio of fractional changes in D with respect to changes in CBF, signified by omega. A value 0.81 +/- 0.23 was calculated for omega with the in vivo data presented here, which in turn corresponds to a supposition that the effective oxygen diffusivity of the capillary bed is not constant but presumably varies to meet local requirements in oxygen demand in a similar manner with both "deactivation" and "activation."
Collapse
Affiliation(s)
- F Hyder
- Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
110
|
Abstract
The quality of spiral images depends on the accuracy of the k-space sampling locations. Although newer gradient systems can provide more accurate gradient waveforms, the sampling positions can be significantly distorted by timing misregistration between data acquisition and gradient systems. Even after the timing of data acquisition is tuned, minor residual errors can still cause shading artifacts which are problematic for quantitative MR applications such as phase-contrast flow quantitation. These timing errors can ideally be corrected by measuring the actual k-space trajectory, but trajectory measurement requires additional data acquisition and scan time. Therefore, off-centered spiral trajectories which are more robust against timing errors are proposed and applied to the phase-contrast method. The new trajectories turn shading artifacts into a slowly varying linear phase in reconstructed images without affecting the magnitude of images.
Collapse
Affiliation(s)
- C M Tsai
- Department of Electrical Engineering, Stanford University, California, USA.
| | | | | |
Collapse
|
111
|
Tsuchiya K, Katase S, Hachiya J, Kimura T, Yodo K. Cerebral perfusion MRI with arterial spin labeling technique at 0.5 Tesla. J Comput Assist Tomogr 2000; 24:124-7. [PMID: 10667671 DOI: 10.1097/00004728-200001000-00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Our aim was to evaluate the feasibility of cerebral perfusion MRI using an arterial spin labeling technique at 0.5 T. METHOD We performed perfusion imaging with a flow-sensitive alternating inversion recovery (FAIR) sequence in a total of 37 patients with cerebral infarction. RESULTS FAIR perfusion images demonstrated areas of pathological perfusion corresponding (13 patients) or not corresponding (15 patients) to the infarcted area on MR images. Among 19 patients in whom comparison between FAIR perfusion imaging and regional cerebral blood flow single photon emission CT was available, the two studies correlated well in 15 patients. CONCLUSION Our results indicate that the FAIR technique allows reliable cerebral perfusion imaging at 0.5 T.
Collapse
Affiliation(s)
- K Tsuchiya
- Department of Radiology, Kyorin University School of Medicine, Tokyo, Mitaka, Japan
| | | | | | | | | |
Collapse
|
112
|
Yongbi MN, Yang Y, Frank JA, Duyn JH. Multislice perfusion imaging in human brain using the C-FOCI inversion pulse: comparison with hyperbolic secant. Magn Reson Med 1999; 42:1098-105. [PMID: 10571931 DOI: 10.1002/(sici)1522-2594(199912)42:6<1098::aid-mrm14>3.0.co;2-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Perfusion studies based on pulsed arterial spin labeling have primarily applied hyperbolic secant (HS) pulses for spin inversion. To optimize perfusion sensitivity, it is highly desirable to implement the HS pulse with the same slice width as the width of the imaging pulse. Unfortunately, this approach causes interactions between the slice profiles and manifests as residual signal from static tissue in the resultant perfusion image. This problem is currently overcome by increasing the selective HS width relative to the imaging slice width. However, this solution increases the time for the labeled blood to reach the imaging slice (transit time), causing loss of perfusion sensitivity as a result of T(1) relaxation effects. In this study, we demonstrate that the preceding problems can be largely overcome by use of the C-shaped frequency offset corrected inversion (FOCI) pulse [Ordidge et al., Magn Reson Med 1996;36:562]. The implementation of this pulse for multislice perfusion imaging on the cerebrum is presented, showing substantial improvement in slice definition in vivo compared with the HS pulse. The sharper FOCI profile is shown to reduce the physical gap (or "safety margin") between the inversion and imaging slabs, resulting in a significant increase in perfusion signal without residual contamination from static tissue. The mean +/- SE (n = 6) gray matter perfusion-weighted signal (DeltaM/M(o)) without the application of vascular signal suppression gradients were 1.19 +/- 0. 10% (HS-flow-sensitive alternating inversion recovery [FAIR]), and 1. 51 +/- 0.11% for the FOCI-FAIR sequence. The corresponding values with vascular signal suppression were 0.64 +/- 0.14%, and 0.91 +/- 0. 08% using the HS- and FOCI-FAIR sequences, respectively. Compared with the HS-based data, the FOCI-FAIR results correspond to an average increase in perfusion signal of up to between 26%-30%. Magn Reson Med 42:1098-1105, 1999.
Collapse
Affiliation(s)
- M N Yongbi
- Laboratory of Diagnostic Radiology Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
113
|
Abstract
The effect of finite transit times for the tagging bolus is known to be a significant error source for perfusion quantification using the flow-sensitive alternating inversion recovery (FAIR) technique. It is shown that, in the presence of transit times, both the slice-selective (SS) and nonselective (NS) inversion recovery experiments actually consist of an NS period followed by an SS period. This mixed process can be described using a newly defined time constant called the "switching time," which separates the two periods. Calculations predict that finite transit times always lead to decreased flow values in the signal-intensity-difference approach, but that the measured flows in the T(1)-difference approach may be decreased or increased. This theory well explains our recent experimental flow results on cat brain as a function of predelay. The results show the signal-intensity-difference method is superior over the T(1)-difference approach in terms of convenience and ease of quantification. Magn Reson Med 42:890-894, 1999.
Collapse
Affiliation(s)
- J Zhou
- Johns Hopkins University School of Medicine, Department of Radiology, Division of MRI Research, Baltimore, MD 21205-2195, USA.
| | | |
Collapse
|
114
|
Li TQ, Moseley ME, Glover G. A FAIR study of motor cortex activation under normo- and hypercapnia induced by breath challenge. Neuroimage 1999; 10:562-9. [PMID: 10547333 DOI: 10.1006/nimg.1999.0496] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study an arterial spin-tagging technique based on flow-sensitive alternating inversion recovery (FAIR) with single-shot spiral data acquisition was used to study how the basal cerebral blood flow (CBF) elevated by breath holding affects the regional cerebral blood flow (rCBF) response to focal brain activation in the motor cortex. Six subjects were examined using three types of activation studies. These were (a) bilateral finger tapping paced at 4 Hz under normal breathing, (b) repeated expiration breath holding of 30 s, and (c) simultaneous breath holding and finger tapping. It was found that in five of six subjects the prevailing CBF level adjusted by breath challenge and the increase in rCBF in motor cortex associated with bilateral finger tapping were completely additive. This finding from FAIR-based functional magnetic resonance imaging is in accordance with that reported from published positron emission tomography studies. The results indicate that in the majority of the subjects examined the regulatory mechanisms for vasodilatory reaction to CO(2) and rCBF response to neural activation in motor cortex region are independent.
Collapse
Affiliation(s)
- T Q Li
- Lucas MR Imaging and Spectroscopy Center, Stanford University School of Medicine, Stanford, California, 94305-5488, USA
| | | | | |
Collapse
|
115
|
Ye FQ, Yang Y, Duyn J, Mattay VS, Frank JA, Weinberger DR, McLaughlin AC. Quantitation of regional cerebral blood flow increases during motor activation: A multislice, steady-state, arterial spin tagging study. Magn Reson Med 1999; 42:404-7. [PMID: 10440966 DOI: 10.1002/(sici)1522-2594(199908)42:2<404::aid-mrm23>3.0.co;2-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steady-state arterial spin tagging approaches were used to construct multislice images of relative cerebral blood flow changes during finger-tapping tasks. Statistically significant increases in cerebral blood flow were observed in primary sensorimotor cortex in all seven subjects. The mean volume of the activated region in the contralateral primary sensorimotor cortex was 0.9 cm(3), and the mean increase in cerebral blood flow in the activated area was 54% +/- 11%. Although the extended spatial coverage is advantageous for activation studies, the intrinsic sensitivity of the multislice approach is smaller than the intrinsic sensitivity of the single-slice, arterial spin tagging approach. Magn Reson Med 42:404-407, 1999. Published 1999 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- F Q Ye
- Clinical Brain Disorders Branch, National Institute of Mental Health, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Howseman AM, Bowtell RW. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Philos Trans R Soc Lond B Biol Sci 1999; 354:1179-94. [PMID: 10466145 PMCID: PMC1692627 DOI: 10.1098/rstb.1999.0473] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a widely used technique for generating images or maps of human brain activity. The applications of the technique are widespread in cognitive neuroscience and it is hoped they will eventually extend into clinical practice. The activation signal measured with fMRI is predicated on indirectly measuring changes in the concentration of deoxyhaemoglobin which arise from an increase in blood oxygenation in the vicinity of neuronal firing. The exact mechanisms of this blood oxygenation level dependent (BOLD) contrast are highly complex. The signal measured is dependent on both the underlying physiological events and the imaging physics. BOLD contrast, although sensitive, is not a quantifiable measure of neuronal activity. A number of different imaging techniques and parameters can be used for fMRI, the choice of which depends on the particular requirements of each functional imaging experiment. The high-speed MRI technique, echo-planar imaging provides the basis for most fMRI experiments. The problems inherent to this method and the ways in which these may be overcome are particularly important in the move towards performing functional studies on higher field MRI systems. Future developments in techniques and hardware are also likely to enhance the measurement of brain activity using MRI.
Collapse
Affiliation(s)
- A M Howseman
- Wellcome Department of Cognitive Neurology, Institute of Neurology, London, UK
| | | |
Collapse
|
117
|
Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999; 19:701-35. [PMID: 10413026 DOI: 10.1097/00004647-199907000-00001] [Citation(s) in RCA: 435] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging techniques measuring CBF have developed rapidly in the last decade, resulting in a wide range of available methods. The most successful approaches are based either on dynamic tracking of a bolus of a paramagnetic contrast agent (dynamic susceptibility contrast) or on arterial spin labeling. This review discusses their principles, possible pitfalls, and potential for absolute quantification and outlines clinical and neuroscientific applications.
Collapse
Affiliation(s)
- F Calamante
- RCS Unit of Biophysics, Institute of Child Health, University College London Medical School, United Kingdom
| | | | | | | | | |
Collapse
|
118
|
Tanabe JL, Yongbi M, Branch C, Hrabe J, Johnson G, Helpern JA. MR perfusion imaging in human brain using the UNFAIR technique. Un-inverted flow-sensitive alternating inversion recovery. J Magn Reson Imaging 1999; 9:761-7. [PMID: 10373023 DOI: 10.1002/(sici)1522-2586(199906)9:6<761::aid-jmri2>3.0.co;2-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulsed arterial spin labeling magnetic resonance techniques have been developed recently to estimate cerebral blood flow (CBF). Flow-sensitive alternating inversion recovery (FAIR) is one such technique that has been implemented successfully in humans. Un-inverted FAIR (UNFAIR) is an alternative technique in which the flow-sensitive image is acquired following inversion of all spins outside the slice of interest, and the control image is acquired without any spin labeling. This approach is potentially more efficient than FAIR since the UNFAIR control image is entirely flow independent and need only be acquired once. Here, we describe implementation of the sequence on a clinical 1.5 T magnetic resonance system. Both FAIR and UNFAIR perfusion-weighted images were obtained from six normal volunteers. Wash-in/wash-out curves measured in cortical gray and white matter were practically identical for the two techniques, as predicted by our model.
Collapse
Affiliation(s)
- J L Tanabe
- Center for Advanced Brain Imaging, The Nathan S. Kline Institute, Orangeburg, New York 10962, USA
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
It is shown theoretically that the flow-sensitive alternating inversion recovery (FAIR) signal intensity difference for flow quantification is independent of the length of the predelay between repeated measurements when assuming complete labeling in between scans. Theory also predicts that flows quantified using the concomitant T1 difference increase significantly with decreasing predelay, because the biexponential relaxation behavior after nonselective inversion is fitted as a monoexponential. The new equations include the effect of the unequal relaxation times of water in tissue (T1) and arterial blood (T1a). While this effect is significant for the signal-difference approach, it is negligible for the T1-difference procedure when using maximum inversion-recovery times shorter than 4 sec. Experiments on cat brain using the FAIR excluding radiation damping (FAIRER) pulse sequence at three different predelays (0.8, 2, and 5 sec) confirm the theoretical predictions.
Collapse
Affiliation(s)
- J Zhou
- Department of Radiology, Johns Hopkins University Medical School, Baltimore, Maryland 21205-2195, USA
| | | |
Collapse
|
120
|
Zaharchuk G, Ledden PJ, Kwong KK, Reese TG, Rosen BR, Wald LL. Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 1999; 41:1093-8. [PMID: 10371440 DOI: 10.1002/(sici)1522-2594(199906)41:6<1093::aid-mrm4>3.0.co;2-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An arterial spin labeling technique using separate RF labeling and imaging coils was used to obtain multislice perfusion images of the human brain at 3 T. Continuous RF irradiation at a peak power of 0.3 W was applied to the carotid arteries to adiabatically invert spins. Labeling was achieved without producing magnetization transfer effects since the B1 field of the labeling coil did not extend into the imaging region or couple significant power into the imaging coil. Eliminating magnetization transfer allowed the acquisition of multislice perfusion images of arbitrary orientation. Combining surface coil labeling with a reduced RF duty cycle permitted significantly lower SAR than single coil approaches. The technique was also found to allow selective labeling of blood in either carotid, providing an assessment of the artery's perfusion territory. In normal subjects, these territories were well-defined and localized to the ipsilateral hemisphere.
Collapse
Affiliation(s)
- G Zaharchuk
- Division of Health Sciences and Technology, MIT/Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
121
|
Smith AM, Lewis BK, Ruttimann UE, Ye FQ, Sinnwell TM, Yang Y, Duyn JH, Frank JA. Investigation of low frequency drift in fMRI signal. Neuroimage 1999; 9:526-33. [PMID: 10329292 DOI: 10.1006/nimg.1999.0435] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low frequency drift (0.0-0.015 Hz) has often been reported in time series fMRI data. This drift has often been attributed to physiological noise or subject motion, but no studies have been done to test this assumption. Time series T*2-weighted volumes were acquired on two clinical 1.5 T MRI systems using spiral and EPI readout gradients from cadavers, a normal volunteer, and nonhomogeneous and homogeneous phantoms. The data were tested for significant differences (P = 0.001) from Gaussian noise in the frequency range 0.0-0.015 Hz. The percentage of voxels that were significant in data from the cadaver, normal volunteer, nonhomogeneous and homogeneous phantoms were 13.7-49.0%, 22.1-61.9%, 46.4-68.0%, and 1.10%, respectively. Low frequency drift was more pronounced in regions with high spatial intensity gradients. Significant drifting was present in data acquired from cadavers and nonhomogeneous phantoms and all pulse sequences tested, implying that scanner instabilities and not motion or physiological noise may be the major cause of the drift.
Collapse
Affiliation(s)
- A M Smith
- Laboratory of Diagnostic Radiology Research, National Institute of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Frank JA, Ostuni JL, Yang Y, Shiferaw Y, Patel A, Qin J, Mattay VS, Lewis BK, Levin RL, Duyn JH. Technical solution for an interactive functional MR imaging examination: application to a physiologic interview and the study of cerebral physiology. Radiology 1999; 210:260-8. [PMID: 9885618 DOI: 10.1148/radiology.210.1.r99ja23260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Studies with functional magnetic resonance (MR) imaging produce large unprocessed raw data sets in minutes. The analysis usually requires transferring of the data to an off-line workstation, and this process frequently occurs after the subject has left the MR unit. The authors describe a hardware configuration and processing software that captures whole-brain raw data files as they are being produced from the MR unit. It then performs the reconstruction, registration, and statistical analysis, and displays the results in seconds after completion of the MR image acquisition.
Collapse
Affiliation(s)
- J A Frank
- Laboratory of Diagnostic Radiology Research, Clinical Center, Bethesda, MD 20892-1074, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
It is shown that the flow-sensitive alternating inversion recovery (FAIR) technique is complicated by the effect of radiation damping, leading to problems in calibrating this method on phantoms and to inaccuracies in measured flows. A modified scheme called FAIRER (FAIR excluding radiation damping) is proposed, which suppresses the damping effects by employing very weak magnetic field gradients (0.06 G/cm) during the inversion recovery, spin-echo, and predelay periods. Results on phantoms and in vivo on cat brain are presented that demonstrate that FAIRER effectively solves these problems.
Collapse
Affiliation(s)
- J Zhou
- Johns Hopkins University Medical School, Department of Radiology, Baltimore, Maryland 21205-2195, USA
| | | | | |
Collapse
|
124
|
Ye FQ, Smith AM, Mattay VS, Ruttimann UE, Frank JA, Weinberger DR, McLaughlin AC. Quantitation of regional cerebral blood flow increases in prefrontal cortex during a working memory task: a steady-state arterial spin-tagging study. Neuroimage 1998; 8:44-9. [PMID: 9698574 DOI: 10.1006/nimg.1998.0342] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Steady-state arterial spin-tagging MRI approaches were used to quantitate regional cerebral blood flow increases in prefrontal cortex during a working memory ("two-back") task in six normal subjects. Statistically significant increases in cerebral blood flow in prefrontal cortex were observed in all six subjects: the average increase in cerebral blood flow in activated prefrontal cortex regions was 22 +/- 5 cc/100 g/min (23 +/- 7%). The results demonstrate that spin-tagging approaches can be used to follow focal activation in prefrontal cortex during cognitive tasks.
Collapse
Affiliation(s)
- F Q Ye
- Clinical Brain Disorders Branch, NIMH, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|