101
|
Ventura E, Weller M, Macnair W, Eschbach K, Beisel C, Cordazzo C, Claassen M, Zardi L, Burghardt I. TGF-β induces oncofetal fibronectin that, in turn, modulates TGF-β superfamily signaling in endothelial cells. J Cell Sci 2018; 131:jcs.209619. [PMID: 29158223 DOI: 10.1242/jcs.209619] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Gene splicing profiles are frequently altered in cancer, and the splice variants of fibronectin (FN) that contain the extra-domains A (EDA) or B (EDB), referred to as EDA+FN or EDB+FN, are highly upregulated in tumor vasculature. Transforming growth factor β (TGF-β) signaling has been attributed a pivotal role in glioblastoma, with TGF-β promoting angiogenesis and vessel remodeling. By using immunohistochemistry staining, we observed that the oncofetal FN isoforms EDA+FN and EDB+FN are expressed in glioblastoma vasculature. Ex vivo single-cell gene expression profiling of tumors by using CD31 and α-smooth muscle actin (αSMA) as markers for endothelial cells, and pericytes and vascular smooth muscle cells (VSMCs), respectively, confirmed the predominant expression of FN, EDA+FN and EDB+FN in the vascular compartment of glioblastoma. Specifically, within the CD31-positive cell population, we identified a positive correlation between the expression of EDA+FN and EDB+FN, and of molecules associated with TGF-β signaling. Further, TGF-β induced EDA+FN and EDB+FN in human cerebral microvascular endothelial cells and glioblastoma-derived endothelial cells in a SMAD3- and SMAD4-dependent manner. In turn, we found that FN modulated TGF-β superfamily signaling in endothelial cells via the EDA and EDB, pointing towards a bidirectional influence of oncofetal FN and TGF-β superfamily signaling.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Will Macnair
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Katja Eschbach
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Cinzia Cordazzo
- Sirius-biotech, c/o Advanced Biotechnology Center, 16132 Genoa, Italy
| | - Manfred Claassen
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Luciano Zardi
- Sirius-biotech, c/o Advanced Biotechnology Center, 16132 Genoa, Italy
| | - Isabel Burghardt
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| |
Collapse
|
102
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
103
|
McGaraughty S, Davis-Taber RA, Zhu CZ, Cole TB, Nikkel AL, Chhaya M, Doyle KJ, Olson LM, Preston GM, Grinnell CM, Salte KM, Giamis AM, Luo Y, Sun V, Goodearl AD, Gopalakrishnan M, Lacy SE. Targeting Anti-TGF- β Therapy to Fibrotic Kidneys with a Dual Specificity Antibody Approach. J Am Soc Nephrol 2017; 28:3616-3626. [PMID: 28827403 PMCID: PMC5698069 DOI: 10.1681/asn.2017010013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Targeted delivery of a therapeutic agent to a site of pathology to ameliorate disease while limiting exposure at undesired tissues is an aspirational treatment scenario. Targeting diseased kidneys for pharmacologic treatment has had limited success. We designed an approach to target an extracellular matrix protein, the fibronectin extra domain A isoform (FnEDA), which is relatively restricted in distribution to sites of tissue injury. In a mouse unilateral ureteral obstruction (UUO) model of renal fibrosis, injury induced significant upregulation of FnEDA in the obstructed kidney. Using dual variable domain Ig (DVD-Ig) technology, we constructed a molecule with a moiety to target FnEDA and a second moiety to neutralize TGF-β After systemic injection of the bispecific TGF-β + FnEDA DVD-Ig or an FnEDA mAb, chemiluminescent detection and imaging with whole-body single-photon emission computed tomography (SPECT) revealed significantly higher levels of each molecule in the obstructed kidney than in the nonobstructed kidney, the ipsilateral kidney of sham animals, and other tissues. In comparison, a systemically administered TGF-β mAb accumulated at lower concentrations in the obstructed kidney and exhibited a more diffuse whole-body distribution. Systemic administration of the bispecific DVD-Ig or the TGF-β mAb (1-10 mg/kg) but not the FnEDA mAb attenuated the injury-induced collagen deposition detected by immunohistochemistry and elevation in Col1a1, FnEDA, and TIMP1 mRNA expression in the obstructed kidney. Overall, systemic delivery of a bispecific molecule targeting an extracellular matrix protein and delivering a TGF-β mAb resulted in a relatively focal uptake in the fibrotic kidney and reduced renal fibrosis.
Collapse
Affiliation(s)
| | | | - Chang Z Zhu
- AbbVie Discovery Lake County, North Chicago, Illinois; and
| | - Todd B Cole
- AbbVie Discovery Lake County, North Chicago, Illinois; and
| | | | - Meha Chhaya
- AbbVie Bioresearch Center, Worcester, Massachusetts
| | - Kelly J Doyle
- AbbVie Discovery Lake County, North Chicago, Illinois; and
| | - Lauren M Olson
- AbbVie Discovery Lake County, North Chicago, Illinois; and
| | | | | | | | | | - Yanping Luo
- AbbVie Discovery Lake County, North Chicago, Illinois; and
| | - Victor Sun
- AbbVie Bioresearch Center, Worcester, Massachusetts
| | | | | | - Susan E Lacy
- AbbVie Bioresearch Center, Worcester, Massachusetts
| |
Collapse
|
104
|
Turner CJ, Badu-Nkansah K, Hynes RO. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion. Angiogenesis 2017; 20:519-531. [PMID: 28667352 PMCID: PMC5660148 DOI: 10.1007/s10456-017-9563-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022]
Abstract
Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.
Collapse
Affiliation(s)
- Christopher J Turner
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA
- University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Kwabena Badu-Nkansah
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA
- Duke University Medical Center, 307 Research Drive, Durham, NC, 27710, USA
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA.
| |
Collapse
|
105
|
Lo SH, Hsu CT, Niu HS, Niu CS, Cheng JT, Chen ZC. Ginsenoside Rh2 Improves Cardiac Fibrosis via PPARδ-STAT3 Signaling in Type 1-Like Diabetic Rats. Int J Mol Sci 2017; 18:ijms18071364. [PMID: 28672855 PMCID: PMC5535857 DOI: 10.3390/ijms18071364] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 02/08/2023] Open
Abstract
Ginsenoside Rh2 (Rh2) is an active principal ingredient contained in ginseng (Panax ginseng Meyer), a medicinal herb used to enhance health worldwide. The present study is designed to investigate the effect of Rh2 on myocardial fibrosis in diabetic rats. In a streptozotocin-induced model of type-1 diabetic rats (STZ-diabetic rats), the increased fasting blood glucose levels and heart weight/body weight (HW/BW) ratio were substantially alleviated by Rh2. Moreover, Rh2 improved cardiac performance in STZ-diabetic rats. Histological results from Masson staining showed that Rh2 attenuated cardiac fibrosis in STZ-diabetic rats. The effects of Rh2 were reversed by GSK0660 at a dose sufficient to inhibit peroxisome proliferator-activated receptor δ (PPARδ) in STZ-diabetic rats. The role of PPARδ was subsequently investigated in vitro. Rh2 restored the decreased PPARδ expression level in high glucose-cultured cardiomyocytes. Moreover, increased protein levels of fibrotic signals, including signal transducer and activator of transcription 3 (STAT3), connective tissue growth factor (CCN2) and fibronectin, were reduced by Rh2 in high glucose-cultured cardiomyocytes. These effects of Rh2 were reversed by GSK0660 or siRNA specific for PPARδ Taken together, PPARδ activation may inhibit STAT3 activation to reduce CCN2 and fibronectin expression in diabetic rats with cardiac fibrosis. Moreover, Rh2 improves cardiac function and fibrosis by increasing PPARδ signaling. Therefore, Rh2 is suitable to develop as an alternative remedy for cardiac fibrosis.
Collapse
Affiliation(s)
- Shih-Hsiang Lo
- Division of Cardiology, Department of Internal Medicine, Zhongxing Branch of Taipei City Hospital, Taipei 10341, Taiwan.
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97041, Taiwan.
| | - Chao-Tien Hsu
- Department of Pathology, E-DA Hospital, I-Shou University, Yanchao, Kaohsiung 82401, Taiwan.
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97041, Taiwan.
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97041, Taiwan.
| | - Juei-Tang Cheng
- Department of Cardiology and Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan 71003, Taiwan.
- Institute of Medical Sciences, Chang Jung Christian University, Guiren, Tainan 71101, Taiwan.
| | - Zhih-Cherng Chen
- Department of Cardiology and Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan 71003, Taiwan.
- Department of Pharmacy, Chia Nan University of Pharmacy & Science, Jean-Tae 71701, Taiwan.
| |
Collapse
|
106
|
Szlavicz E, Szabo K, Groma G, Bata-Csorgo Z, Pagani F, Kemeny L, Szell M. Splicing factors differentially expressed in psoriasis alter mRNA maturation of disease-associated EDA+ fibronectin. Mol Cell Biochem 2017; 436:189-199. [PMID: 28589370 DOI: 10.1007/s11010-017-3090-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
The EDA+ fibronectin splicing variant is overexpressed in psoriatic non-lesional epidermis and sensitizes keratinocytes to mitogenic signals. However, regulation of its abundance is only partially understood. In our recent cDNA microarray experiment, we identified three SR-rich splicing factors-splicing factor, arginine/serine-rich 18 (SFRS18), peptidyl-prolyl cis-trans isomerase G (PPIG), and luc-7 like protein 3 (LUC7L3)-which might be implicated in the preactivated states of keratinocytes in psoriatic non-involved skin and could also contribute to the regulation of fibronectin mRNA maturation. In this study, we investigated the role of LUC7L3, PPIG, and SFRS18 in psoriasis and in the mRNA maturation process of fibronectin. Regarding tissue staining experiments, we were able to demonstrate a characteristic distribution of the splicing factors in healthy, psoriatic non-involved and involved epidermis. Moreover, the expression profiles of these SR-rich proteins were found to be very similar in synchronized keratinocytes. Contribution of splicing facwwtors to the EDA+ fibronectin formation was also confirmed: their siRNA silencing leads to altered fibronectin mRNA and protein expression patterns, suggesting the participation in the EDA domain inclusion. Our results indicate that LUC7L3, PPIG, and SFRS18 are not only implicated in EDA+ fibronectin formation, but also that they could possess multiple roles in psoriasis-associated molecular abnormalities.
Collapse
Affiliation(s)
- E Szlavicz
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6 Korányi fasor, Szeged, 6720, Hungary.
| | - K Szabo
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - G Groma
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Z Bata-Csorgo
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6 Korányi fasor, Szeged, 6720, Hungary
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - F Pagani
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - L Kemeny
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6 Korányi fasor, Szeged, 6720, Hungary
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - M Szell
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
107
|
Konieczyńska M, Bryk AH, Malinowski KP, Draga K, Undas A. Interplay between elevated cellular fibronectin and plasma fibrin clot properties in type 2 diabetes. Thromb Haemost 2017; 117:1671-1678. [PMID: 28569923 DOI: 10.1160/th17-04-0259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes is associated with faster formation of poorly lysable, denser fibrin clots and elevated cellular fibronectin (cFn), a marker of vascular injury. We investigated whether cFn affects clot properties in type 2 diabetes. In 200 consecutive patients with type 2 diabetes and 100 control subjects matched for age and sex, we determined plasma cFn along with clot formation and degradation using turbidimetric and permeability assays. Diabetic patients had elevated cFn (median, 3.99 [interquartile range, 2.87-4.81] µg/ml]), increased clot density (MaxAbsC) and prolonged lysis time (LysT) compared with those without type 2 diabetes (all p<0.01). Diabetic patients with documented cardiovascular disease (CVD, n=127, 63.5 %) had increased cFn (4.53 [3.68-4.95] µg/ml), decreased clot permeability (Ks) and increased MaxAbsC compared with those without CVD (all p<0.001). Diabetic patients with cFn in the top quartile (>4.81 µg/ml) were two times more likely to have CVD compared with those in the lowest quartile (odds ratio 1.80, 95 % confidence interval 1.41-2.46, p<0.001). No differences in cFn were observed in relation to microvascular complications. After adjustment for potential confounders, cFn accounted for 10.2 % of variance in Ks, 18.2 % of variance in clot density and 10.2 % of variance in AUC in diabetic patients. This study shows that elevated cFn is associated with unfavourably modified clot properties in type 2 diabetes, especially with concomitant CVD, which indicates novel links between vascular injury and prothrombotic alterations in diabetes. Coagulation, cellular fibronectin, type 2 diabetes, cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | - Anetta Undas
- Anetta Undas, MD, PhD, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St., 31-202 Krakow, Poland, Tel.: +48 12 6143004, Fax: +48 12 6142120, E-mail:
| |
Collapse
|
108
|
He L, Yuan FH, Chen T, Huang Q, Wang Y, Liu ZG. ER stress-mediated cell damage contributes to the release of EDA + fibronectin from hepatocytes in nonalcoholic fatty liver disease. ACTA ACUST UNITED AC 2017; 37:217-225. [PMID: 28397039 DOI: 10.1007/s11596-017-1718-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Fibronectin containing extra domain A (EDA+ FN), a functional glycoprotein participating in several cellular processes, correlates with chronic liver disease. Herein, we aim to investigate the expression and secretion of EDA+ FN from hepatocytes in nonalcoholic fatty liver disease (NAFLD) and the underlying mechanisms. Circulating levels of EDA+ FN were determined by ELISA in clinical samples. Western blotting and flow cytometry were performed on L02 and HepG2 cell lines to analyze whether the levels of EDA+ FN were associated with endoplasmic reticulum (ER) stress-related cell death. Circulating levels of EDA+ FN in NAFLD patients were significantly higher than those in control subjects, and positively related with severity of ultrasonographic steatosis score. In cultured hepatocytes, palmitate up-regulated the expression of EDA+ FN in a dose-dependent manner. Conversely, when the cells were pretreated with 4-phenylbutyrate, a specific inhibitor of ER stress, up-regulation of EDA+ FN could be abrogated. Moreover, silencing CHOP by shRNA enhanced the release of EDA+ FN from hepatocytes following palmitate treatment, which was involved in ER stress-related cell damage. These findings suggest that the up-regulated level of EDA+ FN is associated with liver damage in NAFLD, and ER stress-mediated cell damage contributes to the release of EDA+ FN from hepatocytes.
Collapse
Affiliation(s)
- Lei He
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fa-Hu Yuan
- School of Medicine, Jianghan University, Wuhan, 430000, China
| | - Ting Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qiang Huang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Guo Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
109
|
Analysis of Soluble Molecular Fibronectin-Fibrin Complexes and EDA-Fibronectin Concentration in Plasma of Patients with Atherosclerosis. Inflammation 2017; 39:1059-68. [PMID: 27022744 PMCID: PMC4883272 DOI: 10.1007/s10753-016-0336-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis, a chronic vascular disease, leads to molecular events bound with interplaying processes of inflammation and coagulation. In the present study, fibronectin (FN), FN containing extra domain A (EDA-FN), frequency of occurrence, and relative amounts of soluble plasma FN-fibrin complexes were analyzed in 80 plasma samples of patients suspected of coronary artery disease based on clinical evaluation and changes in arteries found by computed tomographic coronary angiography. The study showed that in the plasma of the patients’ group with high risk of coronary artery disease EDA-FN concentration was significantly higher (3.5 ± 2.5 mg/L; P < 0.025) and the molecular FN-fibrin complexes of 1000 kDa and higher occurred more often than in the groups of patients with mild risk of coronary artery disease and the normal age-matched. The increased level of EDA-FN and occurrence of FN-fibrin complexes could have a potential diagnostic value in the diagnosis and management of patients with coronary artery disease.
Collapse
|
110
|
Weidle UH, Birzele F, Kollmorgen G, Rueger R. Mechanisms and Targets Involved in Dissemination of Ovarian Cancer. Cancer Genomics Proteomics 2017; 13:407-423. [PMID: 27807064 DOI: 10.21873/cgp.20004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
Ovarian carcinoma is associated with the highest death rate of all gynecological tumors. On one hand, its aggressiveness is based on the rapid dissemination of ovarian cancer cells to the peritoneum, the omentum, and organs located in the peritoneal cavity, and on the other hand, on the rapid development of resistance to chemotherapeutic agents. In this review, we focus on the metastatic process of ovarian cancer, which involves dissemination of, homing to and growth of tumor cells in distant organs, and describe promising molecular targets for possible therapeutic intervention. We provide an outline of the interaction of ovarian cancer cells with the microenvironment such as mesothelial cells, adipocytes, fibroblasts, endothelial cells, and other stromal components in the context of approaches for therapeutic interference with dissemination. The targets described in this review are discussed with respect to their validity as drivers of metastasis and to the availability of suitable efficient agents for their blockage, such as small molecules, monoclonal antibodies or antibody conjugates as emerging tools to manage this disease.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hoffmann-LaRoche Ltd., Basel, Switzerland
| | | | - Rüdiger Rueger
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
111
|
Tenascin-C and fibronectin expression divide early stage tongue cancer into low- and high-risk groups. Br J Cancer 2017; 116:640-648. [PMID: 28095396 PMCID: PMC5344290 DOI: 10.1038/bjc.2016.455] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Oral tongue squamous cell carcinoma (OTSCC) metastasises early, especially to regional lymph nodes. There is an ongoing debate on which early stage (T1-T2N0) patients should be treated with elective neck dissection. We need prognosticators for early stage tongue cancer. Methods: Mice immunisation with human mesenchymal stromal cells resulted in production of antibodies against tenascin-C (TNC) and fibronectin (FN), which were used to stain 178 (98 early stage), oral tongue squamous cell carcinoma samples. Tenascin-C and FN expression in the stroma (negative, moderate or abundant) and tumour cells (negative or positive) were assessed. Similar staining was obtained using corresponding commercial antibodies. Results: Expression of TNC and FN in the stroma, but not in the tumour cells, proved to be excellent prognosticators both in all stages and in early stage cases. Among early stages, when stromal TNC was negative, the 5-year survival rate was 88%. Correspondingly, when FN was negative, no cancer deaths were observed. Five-year survival rates for abundant expression of TNC and FN were 43% and 25%, respectively. Conclusions: Stromal TNC and, especially, FN expressions differentiate patients into low- and high-risk groups. Surgery alone of early stage primary tumours might be adequate when stromal FN is negative. Aggressive treatments should be considered when both TNC and FN are abundant.
Collapse
|
112
|
Ferro P, Ventura R, Pérez-Mañá C, Farré M, Segura J. Evaluation of fibronectin 1 in one dried blood spot and in urine after rhGH treatment. Drug Test Anal 2016; 9:1011-1016. [DOI: 10.1002/dta.2108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- P. Ferro
- Bioanalysis Research Group, Neuroscience Research Program; IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - R. Ventura
- Bioanalysis Research Group, Neuroscience Research Program; IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Department of Experimental and Health Sciences; Pompeu Fabra University, Barcelona Biomedical Research Park; Barcelona Spain
| | - C. Pérez-Mañá
- Integrative Pharmacology and Systems Neuroscience Research Group; IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Department of Pharmacology, Therapeutics and Toxicology; Universitat Autònoma de Barcelona-UAB, Cerdanyola del Vallés; Bellaterra Spain
| | - M. Farré
- Integrative Pharmacology and Systems Neuroscience Research Group; IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Department of Pharmacology, Therapeutics and Toxicology; Universitat Autònoma de Barcelona-UAB, Cerdanyola del Vallés; Bellaterra Spain
- Clinical Pharmacology Unit; Hospital Universitari Germans Trias i Pujol-IGTP; Badalona Spain
| | - J. Segura
- Bioanalysis Research Group, Neuroscience Research Program; IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Department of Experimental and Health Sciences; Pompeu Fabra University, Barcelona Biomedical Research Park; Barcelona Spain
| |
Collapse
|
113
|
Fucikova A, Lenco J, Tambor V, Rehulkova H, Pudil R, Stulik J. Plasma concentration of fibronectin is decreased in patients with hypertrophic cardiomyopathy. Clin Chim Acta 2016; 463:62-66. [DOI: 10.1016/j.cca.2016.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/11/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
|
114
|
Gortan Cappellari G, Barazzoni R, Cattin L, Muro AF, Zanetti M. Lack of Fibronectin Extra Domain A Alternative Splicing Exacerbates Endothelial Dysfunction in Diabetes. Sci Rep 2016; 6:37965. [PMID: 27897258 PMCID: PMC5126581 DOI: 10.1038/srep37965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/01/2016] [Indexed: 01/03/2023] Open
Abstract
Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA + FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA + FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA−/−, EDA+/+ (constitutively lacking and expressing EDA + FN respectively), and of wild-type mice (EDAwt/wt), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ + EDA−/− mice exhibited increased endothelial dysfunction compared with STZ + EDA+/+ and with STZ + EDAwt/wt. Analysis of the underlying mechanisms revealed that STZ + EDA−/− mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-β1, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ + EDA+/+ vessels is counteracted by increased eNOS coupling and function. Although EDA + FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress.
Collapse
Affiliation(s)
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Luigi Cattin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrés F Muro
- Mouse Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michela Zanetti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
115
|
Amin A, Chikan NA, Mokhdomi TA, Bukhari S, Koul AM, Shah BA, Gharemirshamlu FR, Wafai AH, Qadri A, Qadri RA. Irigenin, a novel lead from Western Himalayan chemiome inhibits Fibronectin-Extra Domain A induced metastasis in Lung cancer cells. Sci Rep 2016; 6:37151. [PMID: 27849000 PMCID: PMC5111083 DOI: 10.1038/srep37151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/25/2016] [Indexed: 02/08/2023] Open
Abstract
Several lines of evidence indicate that Fibronectin Extra Domain A (EDA) promotes metastatic capacity of tumor cells by engaging cell surface α9β1 integrins. This interaction mediated by the C-C loop of EDA activates pro-oncogenic signaling pathways leading to epithelial to mesenchymal transition (EMT) of tumor cells, thus signifying its importance in control of metastatic progression. In this context the present study was designed to explore the active compounds from selected ethno-medicinal plants of western Himalayan region for targeting EDA of Fibronectin in lung carcinoma cells. Structure based informatics for drug designing and screening was employed to generate a lead compound(s) feed that were conformationally and energetically viable. Out of 120 compounds selected, Irigenin showed best binding-affinity with C-C loop of EDA. Irigenin specifically targeted α9β1 and α4β1 integrin binding sites on EDA comprising LEU46, PHE47, PRO48, GLU58, LEU59 and GLN60 in its C-C loop as evaluated by energy decomposition per residue of Irigenin–EDA complex. In-vitro cell motility assays complemented with EDA knock-in and knockdown assays distinctively demonstrated that Irigenin prevents metastatic capacity of lung cancer cells by selectively blocking EDA. The results presented thus project Irigenin as a lead compound to overcome Fibronectin EDA induced metastatic progression in lung carcinoma cells.
Collapse
Affiliation(s)
- Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar (J and K), 190006, India.,Hybridoma Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Naveed Anjum Chikan
- Department of Biotechnology, University of Kashmir, Srinagar (J and K), 190006, India.,Aaidah Life Sciences Pvt. Ltd., New Delhi, 110025, India
| | - Taseem A Mokhdomi
- Department of Biotechnology, University of Kashmir, Srinagar (J and K), 190006, India
| | - Shoiab Bukhari
- Department of Biotechnology, University of Kashmir, Srinagar (J and K), 190006, India.,Molecular Reproduction, Development &Genetics Lab, Indian Institute of Science, Bangalore, 560 012, India
| | - Aabid M Koul
- Department of Biotechnology, University of Kashmir, Srinagar (J and K), 190006, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Srinagar (J and K), 190006, India
| | | | - Asrar H Wafai
- Department of Biotechnology, University of Kashmir, Srinagar (J and K), 190006, India
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar (J and K), 190006, India
| |
Collapse
|
116
|
Sackey-Aboagye B, Olsen AL, Mukherjee SM, Ventriglia A, Yokosaki Y, Greenbaum LE, Lee GY, Naga H, Wells RG. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy. PLoS One 2016; 11:e0163737. [PMID: 27741254 PMCID: PMC5065221 DOI: 10.1371/journal.pone.0163737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.
Collapse
Affiliation(s)
- Bridget Sackey-Aboagye
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abby L. Olsen
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarmistha M. Mukherjee
- Department of Physiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexander Ventriglia
- Department of Bioengineering, School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Gi Yun Lee
- Department of Bioengineering, School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hani Naga
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca G. Wells
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
117
|
The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. Int J Inflam 2016; 2016:1532832. [PMID: 27795867 PMCID: PMC5067326 DOI: 10.1155/2016/1532832] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/05/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are key players in the pathogenesis of inflammatory conditions including coronary arterial disease (CAD). They are expressed by a variety of immune cells where they recognize pathogen-associated molecular patterns (PAMPs). TLRs recruit adaptor molecules, including myeloid differentiation primary response protein (MYD88) and TIRF-related adaptor protein (TRAM), to mediate activation of MAPKs and NF-kappa B pathways. They are associated with the development of CAD through various mechanisms. TLR4 is expressed in lipid-rich and atherosclerotic plaques. In TLR2−/− and TLR4−/− mice, atherosclerosis-associated inflammation was diminished. Moreover, TLR2 and TLR4 may induce expression of Wnt5a in advanced staged atheromatous plaque leading to activation of the inflammatory processes. TLR9 is activated by CpG motifs in nucleic acids and have been implicated in macrophage activation and the uptake of oxLDL from the circulation. Furthermore, TLR9 also stimulates interferon-α (INF-α) secretion and increases cytotoxic activity of CD4+ T-cells towards coronary artery tunica media smooth muscle cells. This review outlines the pathophysiological role of TLR2, TLR4, and TLR9 in atherosclerosis, focusing on evidence from animal models of the disease.
Collapse
|
118
|
Wang Y, Ni H. Fibronectin maintains the balance between hemostasis and thrombosis. Cell Mol Life Sci 2016; 73:3265-77. [PMID: 27098513 PMCID: PMC11108312 DOI: 10.1007/s00018-016-2225-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
Fibronectin is a dimeric protein widely distributed in solid tissues and blood. This major extracellular matrix protein is indispensable for embryogenesis and plays crucial roles in many physiological and pathological processes. Fibronectin pre-mRNA undergoes alternative splicing to generate over 20 splicing variants, which are categorized as either plasma fibronectin (pFn) or cellular fibronectin (cFn). All fibronectin variants contain integrin binding motifs, as well as N-terminus collagen and fibrin binding motifs. With motifs that can be recognized by platelet integrins and coagulation factors, fibronectin, especially pFn, has long been suspected to be involved in hemostasis and thrombosis, but the exact function of fibronectin in these processes is controversial. The advances made using intravital microscopy models and fibronectin deficient and mutant mice have greatly facilitated the direct investigation of fibronectin function in vivo. Recent studies revealed that pFn is a vital hemostatic factor that is especially crucial for hemostasis in both genetic and anticoagulant-induced deficiencies of fibrin formation. pFn may also be an important self-limiting regulator to prevent hemorrhage as well as excessive thrombus formation and vessel occlusion. In addition to pFn, cFn is found to be prothrombotic and may contribute to thrombotic complications in various diseases. Further investigations of the role of pFn and cFn in thrombotic and hemorrhagic diseases may provide insights into development of novel therapeutic strategies (e.g., pFn transfusion) for the maintenance of the fine balance between hemostasis and thrombosis.
Collapse
Affiliation(s)
- Yiming Wang
- Room 420, LKSKI-Keenan Research Centre for Biomedical Science, Department of Laboratory Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Heyu Ni
- Room 420, LKSKI-Keenan Research Centre for Biomedical Science, Department of Laboratory Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Canadian Blood Services, Toronto, ON, Canada.
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
119
|
Foolen J, Shiu JY, Mitsi M, Zhang Y, Chen CS, Vogel V. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis. PLoS One 2016; 11:e0160369. [PMID: 27564551 PMCID: PMC5001707 DOI: 10.1371/journal.pone.0160369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/18/2016] [Indexed: 12/03/2022] Open
Abstract
Generating and maintaining gradients of cell density and extracellular matrix (ECM) components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. 'compact and adsorbed to collagen' versus 'extended and fibrillar' fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin's contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs) and floxed equivalents (Fnf/f MEFs), in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments). In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen decoration of single fibronectin fibers enhanced the non-persistent migration of both Fnf/f and Fn-/- MEFs, the migration speed was increased for Fn-/- MEFs on plasma fibronectin fibers compared to Fnf/f MEFs. In contrast, the average speed was the same for all cells on collagen-coated Fn fibers. A Fn-FRET sensor revealed that fibronectin on average was more extended on the microtissue surface compared to fibronectin in the core. Gradients of collagen-to-fibronectin ratios and of the fraction of collagen-adsorbed to stretched fibrillar fibronectin conformations might thereby provide critical cell migration cues. This study highlights a dominant role for fibronectin in tissue morphogenesis and the development of tissue heterogeneities.
Collapse
Affiliation(s)
- Jasper Foolen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, Switzerland
| | - Jau-Ye Shiu
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, Switzerland
| | - Maria Mitsi
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, Switzerland
| | - Yang Zhang
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, Switzerland
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, Switzerland
| |
Collapse
|
120
|
Detection of Soluble ED-A(+) Fibronectin and Evaluation as Novel Serum Biomarker for Cardiac Tissue Remodeling. DISEASE MARKERS 2016; 2016:3695454. [PMID: 27635109 PMCID: PMC5007333 DOI: 10.1155/2016/3695454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/10/2016] [Indexed: 01/22/2023]
Abstract
Background and Aims. Fibronectin containing the extra domain A (ED-A+ Fn) was proven to serve as a valuable biomarker for cardiac remodeling. The study was aimed at establishing an ELISA to determine ED-A+ Fn in serum of heart failure patients. Methods. ED-A+ Fn was quantified in serum samples from 114 heart failure patients due to ischemic (ICM, n = 44) and dilated (DCM, n = 39) cardiomyopathy as well as hypertensive heart disease (HHD, n = 31) compared to healthy controls (n = 12). Results. In comparison to healthy volunteers, heart failure patients showed significantly increased levels of ED-A+ Fn (p < 0.001). In particular in ICM patients there were significant associations between ED-A+ Fn serum levels and clinical parameters, for example, increased levels with rising NYHA class (p = 0.013), a negative correlation with left ventricular ejection fraction (p = 0.026, r: −0.353), a positive correlation with left atrial diameter (p = 0.008, r: 0.431), and a strong positive correlation with systolic pulmonary artery pressure (p = 0.002, r: 0.485). In multivariate analysis, ED-A+ Fn was identified as an independent predictor of an ischemic heart failure etiology. Conclusions. The current study could clearly show that ED-A+ Fn is a promising biomarker in cardiovascular diseases, especially in heart failure patients due to an ICM. We presented a valid ELISA method, which could be applied for further studies investigating the value of ED-A+ Fn.
Collapse
|
121
|
Kim YG, Kim M, Kang JH, Kim HJ, Park JW, Lee JM, Suh JY, Kim JY, Lee JH, Lee Y. Transcriptome sequencing of gingival biopsies from chronic periodontitis patients reveals novel gene expression and splicing patterns. Hum Genomics 2016; 10:28. [PMID: 27531006 PMCID: PMC4988046 DOI: 10.1186/s40246-016-0084-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Periodontitis is the most common chronic inflammatory disease caused by complex interaction between the microbial biofilm and host immune responses. In the present study, high-throughput RNA sequencing was utilized to systemically and precisely identify gene expression profiles and alternative splicing. METHODS The pooled RNAs of 10 gingival tissues from both healthy and periodontitis patients were analyzed by deep sequencing followed by computational annotation and quantification of mRNA structures. RESULTS The differential expression analysis designated 400 up-regulated genes in periodontitis tissues especially in the pathways of defense/immunity protein, receptor, protease, and signaling molecules. The top 10 most up-regulated genes were CSF3, MAFA, CR2, GLDC, SAA1, LBP, MME, MMP3, MME-AS1, and SAA4. The 62 down-regulated genes in periodontitis were mainly cytoskeletal and structural proteins. The top 10 most down-regulated genes were SERPINA12, MT4, H19, KRT2, DSC1, PSORS1C2, KRT27, LCE3C, AQ5, and LCE6A. The differential alternative splicing analysis revealed unique transcription variants in periodontitis tissues. The EDB exon was predominantly included in FN1, while exon 2 was mostly skipped in BCL2A1. CONCLUSIONS These findings using RNA sequencing provide novel insights into the pathogenesis mechanism of periodontitis in terms of gene expression and alternative splicing.
Collapse
Affiliation(s)
- Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea.,Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, 41940, Korea
| | - Minjung Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Korea
| | - Ji Hyun Kang
- Department of Biochemistry, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Hyo Jeong Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jae-Young Kim
- Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, 41940, Korea.,Department of Biochemistry, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Jae-Hyung Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Korea. .,Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Korea.
| | - Youngkyun Lee
- Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, 41940, Korea. .,Department of Biochemistry, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea.
| |
Collapse
|
122
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
123
|
Xu W, Zhao Y, Zhang B, Xu B, Yang Y, Wang Y, Liu C. Resveratrol attenuates hyperoxia-induced oxidative stress, inflammation and fibrosis and suppresses Wnt/β-catenin signalling in lungs of neonatal rats. Clin Exp Pharmacol Physiol 2016; 42:1075-83. [PMID: 26174235 DOI: 10.1111/1440-1681.12459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/28/2015] [Accepted: 07/04/2015] [Indexed: 11/27/2022]
Abstract
Although survival rate of infants born prematurely has been raised by supplemental oxygen treatment, it is followed by high morbidity of hyperoxia-induced bronchopulmonary dysplasia. In this study, the effect of resveratrol on the lung injury was evaluated in hyperoxia-exposed rats of preterm birth. The results demonstrated that hyperoxia led to thickened alveolar wall, simplified alveolar architecture and fibrosis. In addition, elevated methane dicarboxylic aldehyde level, decreased glutathione level and superoxide dismutase activity were also found in hyperoxic lungs, as well as the increased tumor necrosis factor-α, interleukin-1β and interleukin-6 in the bronchoalveolar lavage fluid. Fibrotic-associated proteins transforming growth factor-β1, α-smooth muscle actin, collagen I and fibronectin deposition were also found in interstitial substance of lungs. Furthermore, Wnt/β-catenin signalling was found to be active in hyperoxia-induced lungs. In addition, expression of SP-C was increased and T1α was decreased in hyperoxia-exposed lungs. Resveratrol intraperitoneal administration alleviated hyperoxia-induced histological injury of lungs, regulated redox balance, decreased pro-inflammatory cytokine release, and down-regulated expression of fibrotic-associated proteins. Furthermore, Wnt/β-catenin signalling was also suppressed by resveratrol, as represented by diminished expression of lymphoid enhancer factor-1, Wnt induced signalling protein-1 and cyclin D1. In addition, the increase of SP-C and decrease of T1α expression was prevented as well. The present study showed that resveratrol could protect lungs from hyperoxia-induced injury through its antioxidant, anti-inflammatory and anti-fibrotic effects. The transdifferentiation of alveolar epithelial type II cells to alveolar epithelial type I cells promotion and Wnt/β-catenin signalling suppression are also involved in the protective effect.
Collapse
Affiliation(s)
- Wei Xu
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhao
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Binglun Zhang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Xu
- Department of Ophthalmology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Yang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yujing Wang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunfeng Liu
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
124
|
Abstract
Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29-31 modules - 12 type I, two type II and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to "beads on a string". There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins.
Collapse
Affiliation(s)
- Lisa M Maurer
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Wenjiang Ma
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Deane F Mosher
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| |
Collapse
|
125
|
Malara A, Gruppi C, Celesti G, Romano B, Laghi L, De Marco L, Muro AF, Balduini A. Brief Report: Alternative Splicing of Extra Domain A (EIIIA) of Fibronectin Plays a Tissue-Specific Role in Hematopoietic Homeostasis. Stem Cells 2016; 34:2263-8. [PMID: 27090359 DOI: 10.1002/stem.2381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 12/18/2022]
Abstract
Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giuseppe Celesti
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Bina Romano
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luigi De Marco
- Department of Laboratory Diagnostics and Cell Therapy, National Cancer Center (IRCCS CRO), Aviano, Italy
| | - Andrés F Muro
- The International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
126
|
Pupek M, Pawłowicz R, Lindner K, Krzyżanowska-Gołąb D, Lemańska-Perek A, Panaszek B, Kątnik-Prastowska I. Occurrence of fibronectin–fibrin complexes in plasma of patients with multimorbidity due to the inflamm-aging phenomenon. Exp Gerontol 2016; 77:19-28. [DOI: 10.1016/j.exger.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 01/14/2023]
|
127
|
Li X, Qian H, Ono F, Tsuchisaka A, Krol RP, Ohara K, Hayakawa T, Matsueda S, Sasada T, Ohata C, Furumura M, Hamada T, Hashimoto T. Human dermal fibroblast migration induced by fibronectin in autocrine and paracrine manners. Exp Dermatol 2016; 23:682-4. [PMID: 24828603 DOI: 10.1111/exd.12447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 11/27/2022]
Abstract
Although fibronectin (FN) is known as a chemoattractant for human dermal fibroblasts (HDFs), it is unclear whether HDF migration is stimulated by FN produced by HDFs (autocrine manner) or by keratinocytes (paracrine manner). In this study, we investigated HDF migration by Boyden chamber assay using conditioned media from HDFs and HaCaT cells (keratinocyte cell line). Immunoblotting and enzyme-linked immunosorbent assay revealed that FN existed in both conditioned media. Boyden chamber assay showed both conditioned media stimulated HDF migration, which was inhibited by anti-FN antibody. Antibodies to both integrin β1and β3 subunits inhibited HDF migration induced by HDF-conditioned medium almost completely and that by HaCaT cell-conditioned medium with 50-60%. These results suggested that HDF migration was stimulated by FN in both autocrine and paracrine manners. However, the mechanisms of HDF migration by FN, particularly the role of integrin β1 and β3 subunits, were slightly different between autocrine and paracrine manners.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Yuan L, Xu H, Yuan J, Deng X, Xiong W, Yang Z, Huang Y, Deng H. A novel FN1 variant associated with familial hematuria: TBMN? Clin Biochem 2016; 49:816-20. [PMID: 26968105 DOI: 10.1016/j.clinbiochem.2016.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Thin basement membrane nephropathy (TBMN), an autosomal dominant inherited condition in general, is characterized clinically by persistent hematuria and pathologically by thinning of glomerular basement membrane. TBMN is occasionally accompanied with proteinuria, hypertension and renal impairment in some cases. The aim of this study is to explore the genetic defect in a Chinese pedigree with familial hematuria. DESIGN AND METHODS A four-generation Chinese Han pedigree with familial hematuria was recruited. Exome sequencing was conducted in the proband diagnosed as TBMN, followed by verification in the proband and other family members with Sanger sequencing. RESULTS A novel missense variant, c.4616C>G (p.S1539C), in the fibronectin 1 gene (FN1), was identified, and it co-segregated with the disease condition in the family. It was not observed in 100 normal controls. CONCLUSIONS A missense variant in the FN1 gene is possibly responsible for familial hematuria or TBMN in this family, which may broaden the phenotype and mutation spectrums of the FN1 gene. A male patient in this family progressed to end-stage renal disease requiring kidney transplantation, supporting that familial hematuria or TBMN may not always be as benign as generally thought. The findings may have new implications for clinical monitoring and genetic counseling of the family, and may also help understand the pathogenesis.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinzhong Yuan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhou Huang
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
129
|
Andrews JP, Marttala J, Macarak E, Rosenbloom J, Uitto J. Keloids: The paradigm of skin fibrosis - Pathomechanisms and treatment. Matrix Biol 2016; 51:37-46. [PMID: 26844756 DOI: 10.1016/j.matbio.2016.01.013] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Keloids, fibroproliferative dermal tumors with effusive accumulation of extracellular matrix (ECM) components, particularly collagen, result from excessive expression of growth factors and cytokines. The etiology of keloids is unknown but they occur after dermal injury in genetically susceptible individuals, and they cause both physical and psychological distress for the affected individuals. Several treatment methods for keloids exist, including the combination therapy of surgical excision followed by intralesional steroid therapy, however, they have high recurrence rate regardless of the current treatment method. Improved understanding of the pathomechanisms leading to keloid formation will hopefully identify pathways that serve as specific targets to improve therapy for this devastating, currently intractable, disorder.
Collapse
Affiliation(s)
- Jonathan P Andrews
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jaana Marttala
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joel Rosenbloom
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
130
|
Special issue: Extracellular matrix: Therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev 2016; 97:1-3. [PMID: 26872878 DOI: 10.1016/j.addr.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) constituents play not only structural roles during development and tissue homeostasis, but also many biological functions throughout life. Molecular diversity and a vast interactome provide the basis for this multi-functionality. Moreover, native or processed ECM molecules interact with various receptors, thereby activating signaling pathways that control cell differentiation, proliferation, adhesion and migration, all relevant to tumor biology. Thus, there is an emerging field focused on exploiting ECM components as novel therapeutic targets in the treatment of cancer and other diseases, providing potent tools to advance drug delivery and tissue penetration. In this special issue we provide a critical appraisal of this emerging field focusing on: 1) ECM proteins (matricellular proteins, collagen, elastin, fibronectin, proteoglycans), integrins, and protease-facilitated drug delivery; 2) ECM-derived therapeutics (hyaluronan, heparin, heparan sulfate), 3) ECM-like biomaterials, and 4) ECM as critical determinant in drug efficacy, with special emphasis on applications in tumor treatment.
Collapse
|
131
|
Fibronectin-targeted drug delivery in cancer. Adv Drug Deliv Rev 2016; 97:101-10. [PMID: 26639577 DOI: 10.1016/j.addr.2015.11.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
Abstract
Fibronectin is an extracellular matrix protein with pivotal physiological and pathological functions in development and adulthood. Alternative splicing of the precursor mRNA, produced from the single copy fibronectin gene, occurs at three sites coding for the EDA, EDB and IIICS domains. Fibronectin isoforms comprising the EDA or EDB domains are known as oncofetal forms due to their developmental importance and their re-expression in tumors, contrasting with restricted presence in normal adult tissues. These isoforms are also recognized as important markers of angiogenesis, a crucial physiological process in development and required by tumor cells in cancer progression. Attributed to this feature, EDA and EDB domains have been extensively used for the targeted delivery of cytokines, cytotoxic agents, chemotherapy drugs and radioisotopes to fibronectin-expressing tumors to exert therapeutic effects on primary cancers and metastatic lesions. In addition to drug delivery, the EDA and EDB domains of fibronectin have also been utilized to develop imaging strategies for tumor tissues. Furthermore, EDA and EDB based vaccines seem to be promising for the treatment and prevention of certain cancer types. In this review, we will summarize recent advances in fibronectin EDA and EDB-based therapeutic strategies developed to treat cancer.
Collapse
|
132
|
Tavares N, Afonso L, Suarez M, Ampuero M, Prates DB, Araújo-Santos T, Barral-Netto M, DosReis GA, Borges VM, Brodskyn C. Degranulating Neutrophils Promote Leukotriene B4 Production by Infected Macrophages To Kill Leishmania amazonensis Parasites. THE JOURNAL OF IMMUNOLOGY 2016; 196:1865-73. [PMID: 26800873 DOI: 10.4049/jimmunol.1502224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/17/2015] [Indexed: 11/19/2022]
Abstract
Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.
Collapse
Affiliation(s)
- Natália Tavares
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Lilian Afonso
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Martha Suarez
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Mariana Ampuero
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Deboraci Brito Prates
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Théo Araújo-Santos
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - George A DosReis
- Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and Instituto Nacional de Saúde e Ambiente na Região Amazônica, Rio de Janeiro, Brazil
| | - Valéria Matos Borges
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil;
| | - Cláudia Brodskyn
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto de Investigação em Imunologia, São Paulo, Brazil;
| |
Collapse
|
133
|
Lu F, Ma FF, Zhang W, Li Y, Wei FY, Zhou L. Qualitative research of alternatively splice variants of fibronectin in different development stage of mice heart. J Thorac Dis 2016; 7:2307-12. [PMID: 26793352 DOI: 10.3978/j.issn.2072-1439.2015.12.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Fibronectin (FN) plays vital roles in cell adhesion, differentiation, proliferation and migration. It is involved in the process of embryonic development and is highly conserved during evolution. The EIIIA and EIIIB of FN show a very high degree of homology among vertebrates. Embryos deleting both EIIIA and EIIIB displayed multiple embryonic cardiovascular defects, implying their crucial role during embryogenesis. The correlation of spliced EIIIB, EIIIA, and IIICS of FN to heart development was studied by observing their chronological expression in mice heart. METHODS C57 mice embryos at E11.5, E12.5, E13.5, E14.5, E15.5, E16.5, E17.5, E18.5, E19.5 days, postnatal day 1 (P1d), and adult male mice (3 months) were used. For each alternatively spliced FN1 domain (EIIIB, EIIIA and IIICS), primer pairs were designed for specific amplification. Total RNA was extracted from the heart tissue, reverse transcripted to cDNA, followed by RT-PCR with specific primers. The PCR amplification was verified by agarose gel electrophoresis, showing specific fragments of the expected sizes. RESULTS In adult mice heart, only alternatively splice variants of EIIIA-, EIIIB-, IIICS+ were expressed. While in embryonic mice, spliced variant of EIIIA+/-, EIIIB+/-, IIICS+ were observed. The expression of EIIIA and EIIIB changed during heart development. CONCLUSIONS FN is crucial for the normal development of the embryonic heart by modulating cardiac neural crest (CNC) proliferation and survival, and maintenance of CNC cells. FN1 gene seems to play a significant role by expression of highly conserved EIIIA and EIIIB in embryonic heart development.
Collapse
Affiliation(s)
- Feng Lu
- 1 Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Xiamen Diabetes Institute, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Fang-Fang Ma
- 1 Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Xiamen Diabetes Institute, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Wei Zhang
- 1 Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Xiamen Diabetes Institute, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Ying Li
- 1 Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Xiamen Diabetes Institute, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Fei-Yu Wei
- 1 Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Xiamen Diabetes Institute, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Lei Zhou
- 1 Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Xiamen Diabetes Institute, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| |
Collapse
|
134
|
Gubán B, Vas K, Balog Z, Manczinger M, Bebes A, Groma G, Széll M, Kemény L, Bata-Csörgő Z. Abnormal regulation of fibronectin production by fibroblasts in psoriasis. Br J Dermatol 2016; 174:533-41. [PMID: 26471375 DOI: 10.1111/bjd.14219] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Data indicate that in psoriasis, abnormalities are already present in nonlesional skin. Transforming growth factor-β and keratinocyte growth factor (KGF), together with fibronectin and α5β1 integrin, were suggested to play a crucial role in the pathogenesis of psoriasis by influencing inflammation and keratinocyte hyperproliferation. OBJECTIVES To investigate the expression of KGF, fibroblast growth factor receptor (FGFR)2, fibronectin (FN) and extra domain A (EDA)-positive FN in healthy and nonlesional psoriatic skin, and to study the effect of KGF on the regulation of FN and EDA(+) FN production by fibroblasts. METHODS Healthy, nonlesional psoriatic skin and lesional psoriatic skin were immunostained for α5 integrin, KGF, FGFR2, EDA(+) FN and signal transducer and activator of transcription (STAT)1. KGF-treated cell cultures were analysed for FN and EDA(+) FN mRNA and protein by real-time reverse-transcriptase polymerase chain reaction and flow cytometry, respectively. The major downstream signalling of KGF was investigated by blocking experiments using inhibitors of mitogen-activated protein kinase (MAPK) kinase (MEK1), AKT1/2, STAT1 and STAT3. RESULTS The expression of α5 integrin, EDA(+) FN, KGF and its receptor FGFR2 is elevated in psoriatic nonlesional skin compared with healthy skin. KGF mildly induced EDA(+) FN, but not FN expression in healthy fibroblasts through MAPK signalling. Fibroblasts express the FGFR2-IIIc splice variant. STAT1 negatively regulates both FN and EDA(+) FN expression in healthy fibroblasts, and this regulation is compromised in fibroblasts derived from nonlesional psoriatic dermis. We detected active STAT1 in healthy and lesional skin, similarly to a previous report. However, in the nonlesional skin STAT1 activation was absent in tissues far away from lesions. CONCLUSIONS The production of FN and EDA(+) FN by fibroblasts and the signalling of STAT1 are abnormally regulated in psoriatic nonlesional skin.
Collapse
Affiliation(s)
- B Gubán
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - K Vas
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - Z Balog
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - M Manczinger
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - A Bebes
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - G Groma
- MTA-SZTE Dermatological Research Group, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - M Széll
- MTA-SZTE Dermatological Research Group, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - L Kemény
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - Z Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| |
Collapse
|
135
|
Bachert C, Holtappels G. Pathophysiology of chronic rhinosinusitis, pharmaceutical therapy options. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2015; 14:Doc09. [PMID: 26770283 PMCID: PMC4702058 DOI: 10.3205/cto000124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research in immunology has brought great progress in knowledge of inflammatory processes in the last 2 decades, which also has an impact on the upper airways. Our understanding of the pathophysiology of chronic rhinosinusitis developed from a rather mechanistic point of view with a focus on narrow clefts and mucociliary clearance to the appreciation of a complex network of immunological pathways forming the basis of disease. We today differentiate various forms of inflammation, we start to understand complex immune-regulatory networks and the reasons for their failure, and have already developed innovative approaches for therapy for the most severely ill subjects. Due to this new knowledge in inflammation and remodeling processes within mucosal tissue, specifically on the key driving factors, new diagnostic tools and therapeutic approaches for chronic rhinosinusitis have developed; the differentiation of endotypes based on pathophysiological principles will be crucial for the use of innovative therapies, mostly humanized monoclonal antibodies. Several hundred of those antibodies are currently developed for various indications and will impact our specialty as well as pneumology to a great extent.
Collapse
Affiliation(s)
- Claus Bachert
- Department of Otolaryngology and Upper Airways Research Laboratory, University of Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, University of Stockholm, Sweden
| | - Gabriële Holtappels
- Department of Otolaryngology and Upper Airways Research Laboratory, University of Ghent, Belgium
| |
Collapse
|
136
|
Founds S, Zeng X, Lykins D, Roberts JM. Developing Potential Candidates of Preclinical Preeclampsia. Int J Mol Sci 2015; 16:27208-27. [PMID: 26580600 PMCID: PMC4661881 DOI: 10.3390/ijms161126023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 01/16/2023] Open
Abstract
The potential for developing molecules of interest in preclinical preeclampsia from candidate genes that were discovered on gene expression microarray analysis has been challenged by limited access to additional first trimester trophoblast and decidual tissues. The question of whether these candidates encode secreted proteins that may be detected in maternal circulation early in pregnancy has been investigated using various proteomic methods. Pilot studies utilizing mass spectrometry based proteomic assays, along with enzyme linked immunosorbent assays (ELISAs), and Western immunoblotting in first trimester samples are reported. The novel targeted mass spectrometry methods led to robust multiple reaction monitoring assays. Despite detection of several candidates in early gestation, challenges persist. Future antibody-based studies may lead to a novel multiplex protein panel for screening or detection to prevent or mitigate preeclampsia.
Collapse
Affiliation(s)
- Sandra Founds
- School of Nursing and Magee-Womens Research Institute, University of Pittsburgh, 3500 Victoria St. 448 VB, Pittsburgh, PA 15261, USA.
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center Schools of the Health Sciences, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
| | - David Lykins
- Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue Pittsburgh, PA 15213, USA.
| | - James M Roberts
- School of Medicine, Graduate School of Public Health and Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue Pittsburgh, PA 15213, USA.
| |
Collapse
|
137
|
Dhanesha N, Ahmad A, Prakash P, Doddapattar P, Lentz SR, Chauhan AK. Genetic Ablation of Extra Domain A of Fibronectin in Hypercholesterolemic Mice Improves Stroke Outcome by Reducing Thrombo-Inflammation. Circulation 2015; 132:2237-47. [PMID: 26508731 DOI: 10.1161/circulationaha.115.016540] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/09/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The fibronectin-splicing variant containing extra domain A (Fn-EDA) is present in negligible amounts in the plasma of healthy humans but markedly elevated in patients with comorbid conditions, including diabetes mellitus and hypercholesterolemia, which are risk factors for stroke. It remains unknown, however, whether Fn-EDA worsens stroke outcomes in such conditions. We determined the role of Fn-EDA in stroke outcome in a model of hypercholesterolemia, the apolipoprotein E-deficient (Apoe(-/-)) mouse. METHODS AND RESULTS In a transient cerebral ischemia/reperfusion injury model, Apoe(-/-) mice expressing fibronectin deficient in EDA (Fn-EDA(-/-)Apoe(-/-) mice) exhibited smaller infarcts and improved neurological outcomes at days 1 and 8 (P<0.05 versus Apoe(-/-) mice). Concomitantly, intracerebral thrombosis [assessed by fibrin(ogen) deposition] and postischemic inflammation (phospho-nuclear factor-κB p65, phospho-IκB kinase α/β, interleukin 1β, and tumor necrosis factor-α) within lesions of Fn-EDA(-/-)Apoe(-/-) mice were markedly decreased (P<0.05 versus Apoe(-/-) mice). In an FeCl3 injury-induced carotid artery thrombosis model, thrombus growth rate and the time to occlusion were prolonged in Fn-EDA(-/-)Apoe(-/-) mice (P<0.05 versus Apoe(-/-) mice). Genetic ablation of TLR4 improved stroke outcome in Apoe(-/-) mice (P<0.05) but had no effect on stroke outcome in Fn-EDA(-/-)Apoe(-/-) mice. Bone marrow transplantation experiments revealed that nonhematopoietic cell-derived Fn-EDA exacerbates stroke through Toll-like receptor-4 expressed on hematopoietic cells. Infusion of a specific inhibitor of Fn-EDA into Apoe(-/-) mouse 15 minutes after reperfusion significantly improved stroke outcome. CONCLUSIONS Hypercholesterolemic mice deficient in Fn-EDA exhibit reduced cerebral thrombosis and less inflammatory response after ischemia/reperfusion injury. These findings suggest that targeting Fn-EDA could be an effective therapeutic strategy in stroke associated with hypercholesterolemia.
Collapse
Affiliation(s)
- Nirav Dhanesha
- From the Department of Internal Medicine, University of Iowa, Iowa City
| | - Ajmal Ahmad
- From the Department of Internal Medicine, University of Iowa, Iowa City
| | - Prem Prakash
- From the Department of Internal Medicine, University of Iowa, Iowa City
| | | | - Steven R Lentz
- From the Department of Internal Medicine, University of Iowa, Iowa City
| | - Anil K Chauhan
- From the Department of Internal Medicine, University of Iowa, Iowa City.
| |
Collapse
|
138
|
Femel J, Huijbers EJM, Saupe F, Cedervall J, Zhang L, Roswall P, Larsson E, Olofsson H, Pietras K, Dimberg A, Hellman L, Olsson AK. Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget 2015; 5:12418-27. [PMID: 25360764 PMCID: PMC4322999 DOI: 10.18632/oncotarget.2628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022] Open
Abstract
Therapeutic vaccination targeting self-molecules is an attractive alternative to monoclonal antibody-based therapies for cancer and various inflammatory diseases. However, development of cancer vaccines targeting self-molecules has proven difficult. One complicating factor is that tumor cells have developed strategies to escape recognition by the immune system. Antigens specifically expressed by the tumor vasculature can therefore provide alternative targets. The alternatively spliced extra domain-A and B (ED-A and ED-B) of fibronectin are expressed during vasculogenesis in the embryo, but essentially undetectable under normal conditions in the adult. However, these domains are re-expressed during tumor angiogenesis and matrix remodeling, which renders them highly interesting for targeted cancer therapies. Using the MMTV-PyMT transgenic model of metastatic mammary carcinoma, we show that tumor burden can be significantly decreased by immunization against ED-A in a therapeutic setting. Furthermore, we found that in mice carrying anti-ED-A antibodies the number of metastases was reduced. ED-A immunization increased infiltration of macrophages and compromised tumor blood vessel function. These findings implicate an attack of the tumor vasculature by the immune system, through a polyclonal antibody response. We conclude that tumor vascular antigens are promising candidates for development of therapeutic vaccines targeting growth of primary tumors as well as disseminated disease.
Collapse
Affiliation(s)
- Julia Femel
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala
| | - Elisabeth J M Huijbers
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala
| | - Falk Saupe
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala
| | - Lei Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala
| | - Pernilla Roswall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm
| | - Erik Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala
| | - Helena Olofsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala
| | - Kristian Pietras
- Department of Laboratory Medicine, Lund University, Medicon Village AB, Lund
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala
| |
Collapse
|
139
|
Doddapattar P, Gandhi C, Prakash P, Dhanesha N, Grumbach IM, Dailey ME, Lentz SR, Chauhan AK. Fibronectin Splicing Variants Containing Extra Domain A Promote Atherosclerosis in Mice Through Toll-Like Receptor 4. Arterioscler Thromb Vasc Biol 2015; 35:2391-400. [PMID: 26427793 DOI: 10.1161/atvbaha.115.306474] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/14/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Cellular fibronectin containing extra domain A (EDA(+)-FN) is abundant in the arteries of patients with atherosclerosis. Several in vitro studies suggest that EDA(+)-FN interacts with Toll-like receptor 4 (TLR4). We tested the hypothesis that EDA(+)-FN exacerbates atherosclerosis through TLR4 in a clinically relevant model of atherosclerosis, the apolipoprotein E-deficient (Apoe(-/-)) mouse. APPROACH AND RESULTS The extent of atherosclerosis was evaluated in whole aortae and cross sections of the aortic sinus in male and female EDA(-/-)Apoe(-/-) mice (which lack EDA(+)-FN), EDA(fl/fl)Apoe(-/-) mice (which constitutively express EDA(+)-FN), and control Apoe(-/-) mice fed a high-fat Western diet for 14 weeks. Irrespective of sex, EDA(fl/fl)Apoe(-/-) mice exhibited a 2-fold increase in atherosclerotic lesions (aorta and aortic sinus) and macrophage content within plaques, whereas EDA(-/-)Apoe(-/-) mice exhibited reduced atherosclerotic lesions (P<0.05 versus Apoe(-/-), n=10-12 mice/group), although cholesterol and triglyceride levels and circulating leukocytes were similar. Genetic ablation of TLR4 partially reversed atherosclerosis exacerbation in EDA(fl/fl)Apoe(-/-) mice (P<0.05) but had no effect on atherosclerotic lesions in EDA(-/-)Apoe(-/-) mice. Purified cellular FN, which contains EDA, potentiated dose-dependent NFκB-mediated inflammation (increased phospho-NFκB p65/NFκB p65, tumor necrosis factor-α, and interleukin-1β) in bone marrow-derived macrophages from EDA(-/-)Apoe(-/-) mice but not from EDA(-/-)TLR4(-/-)Apoe(-/-) mice. Finally, using immunohistochemistry, we provide evidence for the first time that EDA(+)-FN colocalizes with macrophage TLR4 in murine aortic lesions and human coronary artery atherosclerotic plaques. CONCLUSIONS Our findings reveal that TLR4 signaling contributes to EDA(+)-FN-mediated exacerbation of atherosclerosis. We suggest that EDA(+)-FN could be a therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Prakash Doddapattar
- From the Department of Internal Medicine (P.D., C.G., P.P., N.D., I.M.G., S.R.L., A.K.C.), and Department of Biology (M.E.D.), University of Iowa, Iowa City
| | - Chintan Gandhi
- From the Department of Internal Medicine (P.D., C.G., P.P., N.D., I.M.G., S.R.L., A.K.C.), and Department of Biology (M.E.D.), University of Iowa, Iowa City
| | - Prem Prakash
- From the Department of Internal Medicine (P.D., C.G., P.P., N.D., I.M.G., S.R.L., A.K.C.), and Department of Biology (M.E.D.), University of Iowa, Iowa City
| | - Nirav Dhanesha
- From the Department of Internal Medicine (P.D., C.G., P.P., N.D., I.M.G., S.R.L., A.K.C.), and Department of Biology (M.E.D.), University of Iowa, Iowa City
| | - Isabella M Grumbach
- From the Department of Internal Medicine (P.D., C.G., P.P., N.D., I.M.G., S.R.L., A.K.C.), and Department of Biology (M.E.D.), University of Iowa, Iowa City
| | - Michael E Dailey
- From the Department of Internal Medicine (P.D., C.G., P.P., N.D., I.M.G., S.R.L., A.K.C.), and Department of Biology (M.E.D.), University of Iowa, Iowa City
| | - Steven R Lentz
- From the Department of Internal Medicine (P.D., C.G., P.P., N.D., I.M.G., S.R.L., A.K.C.), and Department of Biology (M.E.D.), University of Iowa, Iowa City
| | - Anil K Chauhan
- From the Department of Internal Medicine (P.D., C.G., P.P., N.D., I.M.G., S.R.L., A.K.C.), and Department of Biology (M.E.D.), University of Iowa, Iowa City.
| |
Collapse
|
140
|
Musumeci M, Vadalà G, Russo F, Pelacchi F, Lanotte A, Denaro V. Dupuytren's disease therapy: targeting the vicious cycle of myofibroblasts? Expert Opin Ther Targets 2015; 19:1677-87. [PMID: 26690790 DOI: 10.1517/14728222.2015.1068758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dupuytren's disease (DD) is a proliferative fibromatosis of the hand, which causes permanent flexion contracture of the digits and, ultimately, loss of function. The treatment of DD is complex and involves surgical and nonsurgical approaches, with the goal of removing the affected tissue. New biological targets are under investigation in order to develop innovative therapies. AREAS COVERED The etiology of DD is still unknown. Several authors who focused their studies on the genetics of DD recognized an inherited autosomal dominant pattern. Actually, DD is a multifactorial and complex disease. Myofibroblasts are thought to play a crucial role in its pathogenesis, although their origin is not clear. EXPERT OPINION There is a general consensus that a better understanding of cellular and molecular mechanisms of DD will lead to the design of more specific and effective treatment alternatives. In this review, the authors hypothesize a new biological model for DD pathology, where myofibroblasts enhance the reservoir of the disease acting as if in a vicious cycle. This could help, ultimately, in identifying new therapeutic strategies to treat this common and disabling fibroproliferative disorder.
Collapse
Affiliation(s)
- Maria Musumeci
- a 1 Campus Bio-Medico University of Rome, Department of Orthopaedic and Trauma Surgery , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 06 2254111192 ; +39 06 225411638 ;
| | - Gianluca Vadalà
- a 1 Campus Bio-Medico University of Rome, Department of Orthopaedic and Trauma Surgery , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 06 2254111192 ; +39 06 225411638 ; .,b 2 Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan, Italy
| | - Fabrizio Russo
- a 1 Campus Bio-Medico University of Rome, Department of Orthopaedic and Trauma Surgery , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 06 2254111192 ; +39 06 225411638 ;
| | - Federica Pelacchi
- a 1 Campus Bio-Medico University of Rome, Department of Orthopaedic and Trauma Surgery , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 06 2254111192 ; +39 06 225411638 ;
| | - Angela Lanotte
- a 1 Campus Bio-Medico University of Rome, Department of Orthopaedic and Trauma Surgery , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 06 2254111192 ; +39 06 225411638 ;
| | - Vincenzo Denaro
- a 1 Campus Bio-Medico University of Rome, Department of Orthopaedic and Trauma Surgery , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 06 2254111192 ; +39 06 225411638 ;
| |
Collapse
|
141
|
Bhattacharyya S, Varga J. Emerging roles of innate immune signaling and toll-like receptors in fibrosis and systemic sclerosis. Curr Rheumatol Rep 2015; 17:474. [PMID: 25604573 DOI: 10.1007/s11926-014-0474-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathological fibrosis is a distinguishing hallmark of systemic sclerosis (SSc) as well as a number of more common conditions. Fibrosis is a complex and dynamic process associated with immune dysregulation, vasculopathy, and uncontrolled extracellular matrix production leading to intractable scar formation in the skin and internal organs. Persistent or recurrent chemical, infectious, mechanical, or autoimmune injury in genetically predisposed individuals causes sustained fibroblasts activation. Innate immune signaling via toll-like receptors (TLRs) is increasingly recognized as a key player driving the persistent fibrotic response in SSc. In particular, expression of TLR4 as well as its endogenous ligands are elevated in lesional tissue from patients with SSc. Ligand-induced TLR4 activation elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation. Furthermore, TLR4 appears to sensitize fibroblasts to the profibrotic stimulatory effect of transforming growth factor-β. This review highlights recent advances and emerging paradigms for understanding the regulation, complex functional roles, and therapeutic potential of TLRs in SSc pathogenesis.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, 240 E. Huron St., Chicago, IL, 60611, USA,
| | | |
Collapse
|
142
|
Pulakazhi Venu VK, Uboldi P, Dhyani A, Patrini A, Baetta R, Ferri N, Corsini A, Muro AF, Catapano AL, Norata GD. Fibronectin extra domain A stabilises atherosclerotic plaques in apolipoprotein E and in LDL-receptor-deficient mice. Thromb Haemost 2015; 114:186-97. [PMID: 25881051 DOI: 10.1160/th14-09-0790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/05/2015] [Indexed: 11/05/2022]
Abstract
The primary transcript of fibronectin undergoes alternative splicing in the cassette-type EDA and EDB exons and in the IIICs segment to generate different protein isoforms. Human carotid atherosclerotic plaques with a more stable phenotype are enriched with EDA containing fibronectin (FN-EDA). The aim of this study was to investigate the role of EDA containing fibronectin during atherogenesis. Mice constitutively expressing or lacking the EDA domain of fibronectin (EDA+/+ or EDA-/-)were crossed with ApoE-/- or LDL-R-/- mice and fed with a western type diet for 12 weeks. Lack of FN-EDA resulted in reduced atherosclerosis and in a plaque phenotype characterised by decreased calponin positive VSMC's (-15 %) and increased macrophages (+20 %). This was paralleled by increased MMP2, MMP9, and reduced TIMP2, collagen 1A1, 1A2 and 3A1 gene expression compared to that of wild-type and EDA+/+ mice. In vitro, VSMCs and macrophages isolated from EDA-/- miceshowed increased MMPs expression and activity compared to wild-type or EDA+/+ mice. Albumin-Cre recombinase/EDA+/+/ApoE-/- mice, which produceEDA containing FN only in peripheral tissues, presented an extension, a composition and a gene expression pattern in the atherosclerotic lesions similar to that of controls. The inclusion of EDA in FN results in larger atherosclerotic plaques compared to mice lacking EDA but with a more favourable phenotype in two animals models of atherosclerosis. This effect depends on the EDA-containing fibronectin produced by cells in the vasculature but not in the liver. These observations set the stage for investigating the properties of circulating EDA containing FN in improving plaque stability.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Biomarkers/metabolism
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Collagen/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Fibronectins/deficiency
- Fibronectins/genetics
- Fibronectins/metabolism
- Genotype
- Macrophages/metabolism
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Tissue Inhibitor of Metalloproteinase-2/metabolism
- Calponins
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alberico Luigi Catapano
- Alberico Luigi Catapano, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy, Tel.: +39 02 50318302, Fax: +39 02 50318386, E-mail:
| | - Giuseppe Danilo Norata
- Giuseppe Danilo Norata, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy, Tel.: +39 02 50318313, Fax: +39 02 50318386, E-mail:
| |
Collapse
|
143
|
Danan-Gotthold M, Golan-Gerstl R, Eisenberg E, Meir K, Karni R, Levanon EY. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res 2015; 43:5130-44. [PMID: 25908786 PMCID: PMC4446417 DOI: 10.1093/nar/gkv210] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer is a complex disease that involves aberrant gene expression regulation. Discriminating the modified expression patterns driving tumor biology from the many that have no or little contribution is important for understanding cancer molecular basis. Recurrent deregulation patterns observed in multiple cancer types are enriched for such driver events. Here, we studied splicing alterations in hundreds of matched tumor and normal RNA-seq samples of eight solid cancer types. We found hundreds of cassette exons for which splicing was altered in multiple cancer types and identified a set of highly frequent altered splicing events. Specific splicing regulators, including RBFOX2, MBNL1/2 and QKI, appear to account for many splicing alteration events in multiple cancer types. Together, our results provide a first global analysis of regulated splicing alterations in cancer and identify common events with a potential causative role in solid tumor development.
Collapse
Affiliation(s)
- Miri Danan-Gotthold
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Regina Golan-Gerstl
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, 91120 Jerusalem, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren Meir
- Department of Pathology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, 91120 Jerusalem, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
144
|
Wang HC, Yang Y, Xu SY, Peng J, Jiang JH, Li CY. The CRISPR/Cas system inhibited the pro-oncogenic effects of alternatively spliced fibronectin extra domain A via editing the genome in salivary adenoid cystic carcinoma cells. Oral Dis 2015; 21:608-18. [PMID: 25684411 DOI: 10.1111/odi.12323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Affiliation(s)
- H-C Wang
- The Central Laboratory; Peking University School and Hospital of Stomatology; Haidian District Beijing China
| | - Y Yang
- The Central Laboratory; Peking University School and Hospital of Stomatology; Haidian District Beijing China
| | - S-Y Xu
- Department of Oral Implanting; Shandong University School of Stomatology; Lixia District Jinan China
| | - J Peng
- The Central Laboratory; Peking University School and Hospital of Stomatology; Haidian District Beijing China
| | - J-H Jiang
- The Department of Orthodontics; Peking University School and Hospital of Stomatology; Haidian District China
| | - C-Y Li
- The Central Laboratory; Peking University School and Hospital of Stomatology; Haidian District Beijing China
| |
Collapse
|
145
|
Krzyżanowska-Gołąb D, Lemańska-Perek A, Pupek M, Lindner K, Polańska B, Porębska I, Kątnik-Prastowska I. Identification of soluble supramolecular FN-fibrin complexes in human plasma. J Immunoassay Immunochem 2015; 35:412-27. [PMID: 24547768 DOI: 10.1080/15321819.2014.885448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SDS-agarose FN immunoblotting of 257 normal and pathological human plasma samples revealed the ladder pattern of multiple plasma FN bands which corresponded to FN monomer and dimer, and 5 FN-fibrin bands with increasing molecular masses. The FN-fibrin bands of about 750 kDa, 1000 kDa, 1300 kDa, 1600 kDa, and 1900 kDa appeared more frequently and in significantly higher relative amounts in the pathological samples (P < 0.000) than in relatively healthy individuals. The revealing of high-molecular FN-fibrin complexes by SDS-agarose FN immunobloting might have the potential to become a laboratory biomarker of some diseases in which the coagulation system is triggered.
Collapse
|
146
|
Cellular fibronectin containing extra domain A promotes arterial thrombosis in mice through platelet Toll-like receptor 4. Blood 2015; 125:3164-72. [PMID: 25700433 DOI: 10.1182/blood-2014-10-608653] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/11/2015] [Indexed: 12/19/2022] Open
Abstract
Cellular fibronectin containing extra domain A (Fn-EDA+), which is produced in response to tissue injury in several disease states, has prothrombotic activity and is known to interact with Toll-like-receptor 4 (TLR4). The underlying mechanism and cell types involved in mediating the prothrombotic effect of Fn-EDA+ still remain unknown. Using intravital microscopy, we evaluated susceptibility to carotid artery thrombosis after FeCl3-induced injury in mice expressing Fn lacking EDA (Fn-EDA(-/-) mice) or Fn containing EDA (Fn-EDA(+/+) mice). Fn-EDA(-/-) mice exhibited prolonged times to first thrombus formation and complete occlusion and a significant decrease in the rate of thrombus growth (P < .05 vs Fn-EDA(+/+) mice). Genetic deletion of TLR4 reversed the accelerated thrombosis in Fn-EDA(+/+) mice (P < .05) but had no effect in Fn-EDA(-/-) mice. Bone marrow transplantation experiments revealed that TLR4 expressed on hematopoietic cells contributes to accelerated thrombosis in Fn-EDA(+/+) mice. In vitro studies showed that cellular Fn-EDA+ interacts with platelet TLR4 and promotes agonist-induced platelet aggregation. Finally, Fn-EDA(+/+) mice specifically lacking platelet TLR4 exhibited prolonged times to first thrombus formation and complete occlusion (P < .05 vs Fn-EDA(+/+) mice containing platelet TLR4). We conclude that platelet TLR4 contributes to the prothrombotic effect of cellular Fn-EDA+, suggesting another link between thrombosis and innate immunity.
Collapse
|
147
|
|
148
|
Nasal Immunity, Rhinitis, and Rhinosinusitis. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
149
|
Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia. Am J Obstet Gynecol 2015; 212:82.e1-9. [PMID: 25086276 DOI: 10.1016/j.ajog.2014.07.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/28/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We assessed the association of glycosylated fibronectin (GlyFn) with preeclampsia and its performance in a point-of-care (POC) test. STUDY DESIGN GlyFn, placental growth factor (PlGF), and soluble vascular endothelial growth factor receptor 1 (sFlt1) levels were determined in serum samples from 107 pregnant women. In all, 45 were normotensive and 62 were diagnosed with preeclampsia. The ability of GlyFn to assess preeclampsia status and relationships between GlyFn and maternal characteristics and pregnancy outcomes were analyzed. RESULTS GlyFn serum levels in the first trimester were significantly higher in women with preeclampsia (P < .01) and remained higher throughout pregnancy (P < .01). GlyFn, sFlt1, PlGF, and the sFlt1/PlGF ratio were significantly associated (P < .01) with preeclampsia status, and the classification performance of these analytes represented by area under the receiver operating characteristic curve was 0.99, 0.96, 0.94, and 0.98, respectively, with 95% confidence intervals of 0.98-1.00, 0.89-1.00, 0.86-1.00, and 0.94-1.00, respectively. Increased GlyFn levels were significantly associated with gestational age at delivery (P < .01), blood pressure (P = .04), and small-for-gestational-age neonates. Repeated-measures analysis of the difference in weekly GlyFn change in the third trimester demonstrated that mild preeclampsia was associated with a weekly change of 81.7 μg/mL (SE 94.1) vs 195.2 μg/mL (SE 88.2) for severe preeclampsia. The GlyFn POC demonstrated similar performance to a plate assay with an area under the receiver operating characteristic curve of 0.93 and 95% confidence interval of 0.85-1.00. CONCLUSION GlyFn is a robust biomarker for monitoring of preeclampsia in both a standard and POC format, which supports its utility in diverse settings.
Collapse
|
150
|
|