101
|
|
102
|
Bartenbacher S, Östreicher C, Pischetsrieder M. Profiling of antioxidative enzyme expression induced by various food components using targeted proteome analysis. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Sven Bartenbacher
- Food Chemistry Unit; Department of Chemistry and Pharmacy; Emil Fischer Center; Friedrich-Alexander Universität Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Christiane Östreicher
- Food Chemistry Unit; Department of Chemistry and Pharmacy; Emil Fischer Center; Friedrich-Alexander Universität Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Monika Pischetsrieder
- Food Chemistry Unit; Department of Chemistry and Pharmacy; Emil Fischer Center; Friedrich-Alexander Universität Erlangen-Nürnberg (FAU); Erlangen Germany
| |
Collapse
|
103
|
Ishida YI, Aki M, Fujiwara S, Nagahama M, Ogasawara Y. Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids. Hum Cell 2017; 30:279-289. [DOI: 10.1007/s13577-017-0171-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/08/2017] [Indexed: 01/21/2023]
|
104
|
A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal Chim Acta 2017; 964:7-23. [DOI: 10.1016/j.aca.2017.01.059] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/18/2023]
|
105
|
Ozcan S, Cooper JD, Lago SG, Kenny D, Rustogi N, Stocki P, Bahn S. Towards reproducible MRM based biomarker discovery using dried blood spots. Sci Rep 2017; 7:45178. [PMID: 28345601 PMCID: PMC5366927 DOI: 10.1038/srep45178] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
There is an increasing interest in the use of dried blood spot (DBS) sampling and multiple reaction monitoring in proteomics. Although several groups have explored the utility of DBS by focusing on protein detection, the reproducibility of the approach and whether it can be used for biomarker discovery in high throughput studies is yet to be determined. We assessed the reproducibility of multiplexed targeted protein measurements in DBS compared to serum. Eighty-two medium to high abundance proteins were monitored in a number of technical and biological replicates. Importantly, as part of the data analysis, several statistical quality control approaches were evaluated to detect inaccurate transitions. After implementing statistical quality control measures, the median CV on the original scale for all detected peptides in DBS was 13.2% and in Serum 8.8%. We also found a strong correlation (r = 0.72) between relative peptide abundance measured in DBS and serum. The combination of minimally invasive sample collection with a highly specific and sensitive mass spectrometry (MS) technique allows for targeted quantification of multiple proteins in a single MS run. This approach has the potential to fundamentally change clinical proteomics and personalized medicine by facilitating large-scale studies.
Collapse
Affiliation(s)
- Sureyya Ozcan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Jason D Cooper
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Diarmuid Kenny
- Department of Chemical Engineering and Biotechnology, Psynova Neurotech Ltd, Cambridge, United Kingdom
| | - Nitin Rustogi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Pawel Stocki
- Department of Chemical Engineering and Biotechnology, Psynova Neurotech Ltd, Cambridge, United Kingdom
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
106
|
He J, Zhu Y, Aa J, Smith PF, De Ridder D, Wang G, Zheng Y. Brain Metabolic Changes in Rats following Acoustic Trauma. Front Neurosci 2017; 11:148. [PMID: 28392756 PMCID: PMC5364180 DOI: 10.3389/fnins.2017.00148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive "tinnitus-causing" network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine metabolic pathway. Our results provide the first metabolomics evidence that acoustic trauma can induce changes in multiple metabolic pathways. This pilot study also suggests that the metabolomic approach has the potential to identify acoustic trauma-specific metabolic shifts in future studies where metabolic changes are correlated with the animal's tinnitus status.
Collapse
Affiliation(s)
- Jun He
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Yejin Zhu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand; Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand
| | - Dirk De Ridder
- Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand; Department of Neurosurgery, Dunedin Medical School, University of OtagoOtago, New Zealand
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand; Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand
| |
Collapse
|
107
|
Gilquin B, Louwagie M, Jaquinod M, Cez A, Picard G, El Kholy L, Surin B, Garin J, Ferro M, Kofman T, Barau C, Plaisier E, Ronco P, Brun V. Multiplex and accurate quantification of acute kidney injury biomarker candidates in urine using Protein Standard Absolute Quantification (PSAQ) and targeted proteomics. Talanta 2017; 164:77-84. [DOI: 10.1016/j.talanta.2016.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 01/15/2023]
|
108
|
Faktor J, Sucha R, Paralova V, Liu Y, Bouchal P. Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/30/2016] [Accepted: 12/09/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jakub Faktor
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Rita Sucha
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD; Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic; Libechov Czech Republic
| | - Vendula Paralova
- Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
| | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology; ETH Zurich; Zurich Switzerland
| | - Pavel Bouchal
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
- Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
| |
Collapse
|
109
|
Baud A, Wessely F, Mazzacuva F, McCormick J, Camuzeaux S, Heywood WE, Little D, Vowles J, Tuefferd M, Mosaku O, Lako M, Armstrong L, Webber C, Cader MZ, Peeters P, Gissen P, Cowley SA, Mills K. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells. Anal Chem 2017; 89:2440-2448. [PMID: 28192931 DOI: 10.1021/acs.analchem.6b04368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.
Collapse
Affiliation(s)
- Anna Baud
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Frank Wessely
- Department of Physiology, Anatomy & Genetics, Oxford University , Oxford, OX1 3PT, United Kingdom
| | - Francesca Mazzacuva
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - James McCormick
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Stephane Camuzeaux
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Wendy E Heywood
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Jane Vowles
- Oxford Parkinson's Disease Centre, University of Oxford , Oxford, OX1 3QX, United Kingdom
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford , Oxford, OX1 3RE, United Kingdom
| | | | - Olukunbi Mosaku
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University , Newcastle, NE1 3BZ, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University , Newcastle, NE1 3BZ, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy & Genetics, Oxford University , Oxford, OX1 3PT, United Kingdom
| | - M Zameel Cader
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford, OX3 9DS, United Kingdom
| | - Pieter Peeters
- Janssen Research and Development , Beerse, 2340, Belgium
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Sally A Cowley
- Oxford Parkinson's Disease Centre, University of Oxford , Oxford, OX1 3QX, United Kingdom
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford , Oxford, OX1 3RE, United Kingdom
| | - Kevin Mills
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| |
Collapse
|
110
|
Faria SS, Morris CFM, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W. A Timely Shift from Shotgun to Targeted Proteomics and How It Can Be Groundbreaking for Cancer Research. Front Oncol 2017; 7:13. [PMID: 28265552 PMCID: PMC5316539 DOI: 10.3389/fonc.2017.00013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
The fact that cancer is a leading cause of death all around the world has naturally sparked major efforts in the pursuit of novel and more efficient biomarkers that could better serve as diagnostic tools, prognostic predictors, or therapeutical targets in the battle against this type of disease. Mass spectrometry-based proteomics has proven itself as a robust and logical alternative to the immuno-based methods that once dominated the field. Nevertheless, intrinsic limitations of classic proteomic approaches such as the natural gap between shotgun discovery-based methods and clinically applicable results have called for the implementation of more direct, hypothesis-based studies such as those made available through targeted approaches, that might be able to streamline biomarker discovery and validation as a means to increase survivability of affected patients. In fact, the paradigm shifting potential of modern targeted proteomics applied to cancer research can be demonstrated by the large number of advancements and increasing examples of new and more useful biomarkers found during the course of this review in different aspects of cancer research. Out of the many studies dedicated to cancer biomarker discovery, we were able to devise some clear trends, such as the fact that breast cancer is the most common type of tumor studied and that most of the research for any given type of cancer is focused on the discovery diagnostic biomarkers, with the exception of those that rely on samples other than plasma and serum, which are generally aimed toward prognostic markers. Interestingly, the most common type of targeted approach is based on stable isotope dilution-selected reaction monitoring protocols for quantification of the target molecules. Overall, this reinforces that notion that targeted proteomics has already started to fulfill its role as a groundbreaking strategy that may enable researchers to catapult the number of viable, effective, and validated biomarkers in cancer clinical practice.
Collapse
Affiliation(s)
- Sara S Faria
- Mastology Program, Federal University of Uberlandia (UFU) , Uberlandia , Brazil
| | - Carlos F M Morris
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Adriano R Silva
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Micaella P Fonseca
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patrice Forget
- Department of Anesthesiology and Perioperative Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit of Brussel , Brussels , Belgium
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| |
Collapse
|
111
|
Negrão F, de O. Rocha DF, Jaeeger CF, Rocha FJS, Eberlin MN, Giorgio S. Murine cutaneous leishmaniasis investigated by MALDI mass spectrometry imaging. MOLECULAR BIOSYSTEMS 2017; 13:2036-2043. [DOI: 10.1039/c7mb00411g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The MALDI-IMS technique was applied to screen for peptides and low molecular weight proteins to unveil potential biomarkers for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Fernanda Negrão
- ThoMSon Mass Spectrometry Laboratory
- University of Campinas – UNICAMP
- Campinas-SP
- Brazil
- Department of Animal Biology
| | | | - Caroline F. Jaeeger
- ThoMSon Mass Spectrometry Laboratory
- University of Campinas – UNICAMP
- Campinas-SP
- Brazil
| | - Francisca J. S. Rocha
- Department of Tropical Medicine
- Federal University of Pernambuco – UFPE
- Recife-PE
- Brazil
| | - Marcos N. Eberlin
- ThoMSon Mass Spectrometry Laboratory
- University of Campinas – UNICAMP
- Campinas-SP
- Brazil
| | - Selma Giorgio
- Department of Animal Biology
- Biology Institute
- University of Campinas UNICAMP
- Campinas-SP
- Brazil
| |
Collapse
|
112
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
113
|
Goh WWB. Fuzzy-FishNET: a highly reproducible protein complex-based approach for feature selection in comparative proteomics. BMC Med Genomics 2016; 9:67. [PMID: 28117654 PMCID: PMC5260792 DOI: 10.1186/s12920-016-0228-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background The hypergeometric enrichment analysis approach typically fares poorly in feature-selection stability due to its upstream reliance on the t-test to generate differential protein lists before testing for enrichment on a protein complex, subnetwork or gene group. Methods Swapping the t-test in favour of a fuzzy rank-based weight system similar to that used in network-based methods like Quantitative Proteomics Signature Profiling (QPSP), Fuzzy SubNets (FSNET) and paired FSNET (PFSNET) produces dramatic improvements. Results This approach, Fuzzy-FishNET, exhibits high precision-recall over three sets of simulated data (with simulated protein complexes) while excelling in feature-selection reproducibility on real data (based on evaluation with real protein complexes). Overlap comparisons with PFSNET shows Fuzzy-FishNET selects the most significant complexes, which are also strongly class-discriminative. Cross-validation further demonstrates Fuzzy-FishNET selects class-relevant protein complexes. Conclusions Based on evaluation with simulated and real datasets, Fuzzy-FishNET is a significant upgrade of the traditional hypergeometric enrichment approach and a powerful new entrant amongst comparative proteomics analysis methods. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0228-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wilson Wen Bin Goh
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
114
|
Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ. Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. Expert Rev Proteomics 2016; 14:69-95. [PMID: 27838931 DOI: 10.1080/14789450.2017.1260450] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are critical mediators of intercellular communication, capable of regulating the transcriptional landscape of target cells through horizontal transmission of biological information, such as proteins, lipids, and RNA species. This capability highlights their potential as novel targets for disease intervention. Areas covered: This review focuses on the emerging importance of discovery proteomics (high-throughput, unbiased quantitative protein identification) and targeted proteomics (hypothesis-driven quantitative protein subset analysis) mass spectrometry (MS)-based strategies in EV biology, especially exosomes and shed microvesicles. Expert commentary: Recent advances in MS hardware, workflows, and informatics provide comprehensive, quantitative protein profiling of EVs and EV-treated target cells. This information is seminal to understanding the role of EV subtypes in cellular crosstalk, especially when integrated with other 'omics disciplines, such as RNA analysis (e.g., mRNA, ncRNA). Moreover, high-throughput MS-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease.
Collapse
Affiliation(s)
- David W Greening
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Rong Xu
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Shashi K Gopal
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Alin Rai
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Richard J Simpson
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
115
|
Guerrero CR, Jagtap PD, Johnson JE, Griffin TJ. Using Galaxy for Proteomics. PROTEOME INFORMATICS 2016. [DOI: 10.1039/9781782626732-00289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The area of informatics for mass spectrometry (MS)-based proteomics data has steadily grown over the last two decades. Numerous, effective software programs now exist for various aspects of proteomic informatics. However, many researchers still have difficulties in using these software. These difficulties arise from problems with running and integrating disparate software programs, scalability issues when dealing with large data volumes, and lack of ability to share and reproduce workflows comprised of different software. The Galaxy framework for bioinformatics provides an attractive option for solving many of these current issues in proteomic informatics. Originally developed as a workbench to enable genomic data analysis, numerous researchers are now turning to Galaxy to implement software for MS-based proteomics applications. Here, we provide an introduction to Galaxy and its features, and describe how software tools are deployed, published and shared via the scalable framework. We also describe some of the existing tools in Galaxy for basic MS-based proteomics data analysis and informatics. Finally, we describe how proteomics tools in Galaxy can be combined with other existing tools for genomic and transcriptomic data analysis to enable powerful multi-omic data analysis applications.
Collapse
Affiliation(s)
- Candace R. Guerrero
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota 321 Church St SE/6-155 Jackson Hall Minneapolis MN 55455 USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota 321 Church St SE/6-155 Jackson Hall Minneapolis MN 55455 USA
- Center for Mass Spectrometry and Proteomics, University of Minnesota 1479 Gortner Avenue, St. Paul MN 55108 USA
| | - James E. Johnson
- Minnesota Supercomputing Institute, University of Minnesota 512 Walter Library, 117 Pleasant Street SE Minneapolis MN 55455 USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota 321 Church St SE/6-155 Jackson Hall Minneapolis MN 55455 USA
- Center for Mass Spectrometry and Proteomics, University of Minnesota 1479 Gortner Avenue, St. Paul MN 55108 USA
| |
Collapse
|
116
|
Percy AJ, Michaud SA, Jardim A, Sinclair NJ, Zhang S, Mohammed Y, Palmer AL, Hardie DB, Yang J, LeBlanc AM, Borchers CH. Multiplexed MRM-based assays for the quantitation of proteins in mouse plasma and heart tissue. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/14/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew J. Percy
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Sarah A. Michaud
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Armando Jardim
- Institute of Parasitology; McGill University; Montreal QC Canada
| | - Nicholas J. Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Suping Zhang
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Yassene Mohammed
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
- Center for Proteomics and Metabolomics; Leiden University Medical Center; ZA Leiden Netherlands
| | - Andrea L. Palmer
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Darryl B. Hardie
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Juncong Yang
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Andre M. LeBlanc
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Christoph H. Borchers
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
- Department of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
117
|
Abstract
Quantitative proteomics represents a powerful approach for the comprehensive analysis of proteins expressed under defined conditions. These properties have been used to investigate the proteome of disease states, including cancer. It has become a major subject of studies to apply proteomics for biomarker and therapeutic target identification. In the last decades, technical advances in mass spectrometry have increased the capacity of protein identification and quantification. Moreover, the analysis of posttranslational modification (PTM), especially phosphorylation, has allowed large-scale identification of biological mechanisms. Even so, increasing evidence indicates that global protein quantification is often insufficient for the explanation of biology and has shown to pose challenges in identifying new and robust biomarkers. As a consequence, to improve the accuracy of the discoveries made using proteomics in human tumors, it is necessary to combine (i) robust and reproducible methods for sample preparation allowing statistical comparison, (ii) PTM analyses in addition to global proteomics for additional levels of knowledge, and (iii) use of bioinformatics for decrypting protein list. Herein, we present technical specificities for samples preparation involving isobaric tag labeling, TiO2-based phosphopeptides enrichment and hydrazyde-based glycopeptides purification as well as the key points for the quantitative analysis and interpretation of the protein lists. The method is based on our experience with tumors analysis derived from hepatocellular carcinoma, chondrosarcoma, human embryonic intervertebral disk, and chordoma experiments.
Collapse
|
118
|
Mataj A, Boysen RI, Hearn MTW. Phosphoprotein Analysis by MALDI-TOF Mass Spectrometry using On-Probe Tandem Proteolysis and Dephosphorylation. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1229785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Agron Mataj
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Reinhard I. Boysen
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Milton T. W. Hearn
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
119
|
Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: Technologies and Their Applications. J Chromatogr Sci 2016; 55:182-196. [PMID: 28087761 DOI: 10.1093/chromsci/bmw167] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Proteomics involves the applications of technologies for the identification and quantification of overall proteins present content of a cell, tissue or an organism. It supplements the other "omics" technologies such as genomic and transcriptomics to expound the identity of proteins of an organism, and to cognize the structure and functions of a particular protein. Proteomics-based technologies are utilized in various capacities for different research settings such as detection of various diagnostic markers, candidates for vaccine production, understanding pathogenicity mechanisms, alteration of expression patterns in response to different signals and interpretation of functional protein pathways in different diseases. Proteomics is practically intricate because it includes the analysis and categorization of overall protein signatures of a genome. Mass spectrometry with LC-MS-MS and MALDI-TOF/TOF being widely used equipment is the central among current proteomics. However, utilization of proteomics facilities including the software for equipment, databases and the requirement of skilled personnel substantially increase the costs, therefore limit their wider use especially in the developing world. Furthermore, the proteome is highly dynamic because of complex regulatory systems that control the expression levels of proteins. This review efforts to describe the various proteomics approaches, the recent developments and their application in research and analysis.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Madiha Basit
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan .,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
120
|
Pontes AH, de Sousa MV. Mass Spectrometry-Based Approaches to Understand the Molecular Basis of Memory. Front Chem 2016; 4:40. [PMID: 27790611 PMCID: PMC5064248 DOI: 10.3389/fchem.2016.00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/27/2016] [Indexed: 01/15/2023] Open
Abstract
The central nervous system is responsible for an array of cognitive functions such as memory, learning, language, and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enabled the identification and quantification of thousands of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.
Collapse
Affiliation(s)
- Arthur H Pontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| |
Collapse
|
121
|
Robinson JL, Nielsen J. Integrative analysis of human omics data using biomolecular networks. MOLECULAR BIOSYSTEMS 2016; 12:2953-64. [PMID: 27510223 DOI: 10.1039/c6mb00476h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-throughput '-omics' technologies have given rise to an increasing abundance of genome-scale data detailing human biology at the molecular level. Although these datasets have already made substantial contributions to a more comprehensive understanding of human physiology and diseases, their interpretation becomes increasingly cryptic and nontrivial as they continue to expand in size and complexity. Systems biology networks offer a scaffold upon which omics data can be integrated, facilitating the extraction of new and physiologically relevant information from the data. Two of the most prevalent networks that have been used for such integrative analyses of omics data are genome-scale metabolic models (GEMs) and protein-protein interaction (PPI) networks, both of which have demonstrated success among many different omics and sample types. This integrative approach seeks to unite 'top-down' omics data with 'bottom-up' biological networks in a synergistic fashion that draws on the strengths of both strategies. As the volume and resolution of high-throughput omics data continue to grow, integrative network-based analyses are expected to play an increasingly important role in their interpretation.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96 Gothenburg, Sweden.
| | | |
Collapse
|
122
|
Avtonomov D, Raskind A, Nesvizhskii AI. BatMass: a Java Software Platform for LC-MS Data Visualization in Proteomics and Metabolomics. J Proteome Res 2016; 15:2500-9. [PMID: 27306858 PMCID: PMC5583644 DOI: 10.1021/acs.jproteome.6b00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mass spectrometry (MS) coupled to liquid chromatography (LC) is a commonly used technique in metabolomic and proteomic research. As the size and complexity of LC-MS-based experiments grow, it becomes increasingly more difficult to perform quality control of both raw data and processing results. In a practical setting, quality control steps for raw LC-MS data are often overlooked, and assessment of an experiment's success is based on some derived metrics such as "the number of identified compounds". The human brain interprets visual data much better than plain text, hence the saying "a picture is worth a thousand words". Here, we present the BatMass software package, which allows for performing quick quality control of raw LC-MS data through its fast visualization capabilities. It also serves as a testbed for developers of LC-MS data processing algorithms by providing a data access library for open mass spectrometry file formats and a means of visually mapping processing results back to the original data. We illustrate the utility of BatMass with several use cases of quality control and data exploration.
Collapse
Affiliation(s)
- Dmitry Avtonomov
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
123
|
Wolters JC, Ciapaite J, van Eunen K, Niezen-Koning KE, Matton A, Porte RJ, Horvatovich P, Bakker BM, Bischoff R, Permentier HP. Translational Targeted Proteomics Profiling of Mitochondrial Energy Metabolic Pathways in Mouse and Human Samples. J Proteome Res 2016; 15:3204-13. [PMID: 27447838 DOI: 10.1021/acs.jproteome.6b00419] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Absolute measurements of protein abundance are important in the understanding of biological processes and the precise computational modeling of biological pathways. We developed targeted LC-MS/MS assays in the selected reaction monitoring (SRM) mode to quantify over 50 mitochondrial proteins in a single run. The targeted proteins cover the tricarboxylic acid cycle, fatty acid β-oxidation, oxidative phosphorylation, and the detoxification of reactive oxygen species. Assays used isotopically labeled concatemers as internal standards designed to target murine mitochondrial proteins and their human orthologues. Most assays were also suitable to quantify the corresponding protein orthologues in rats. After exclusion of peptides that did not pass the selection criteria, we arrived at SRM assays for 55 mouse, 52 human, and 51 rat proteins. These assays were optimized in isolated mitochondrial fractions from mouse and rat liver and cultured human fibroblasts and in total liver extracts from mouse, rat, and human. The developed proteomics approach is suitable for the quantification of proteins in the mitochondrial energy metabolic pathways in mice, rats, and humans as a basis for translational research. Initial data show that the assays have great potential for elucidating the adaptive response of human patients to mutations in mitochondrial proteins in a clinical setting.
Collapse
Affiliation(s)
- Justina C Wolters
- Department of Pharmacy, Analytical Biochemistry, University of Groningen , 9713 AV, Groningen, The Netherlands.,Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands.,Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands
| | - Jolita Ciapaite
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands.,Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands
| | - Karen van Eunen
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands.,Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands
| | - Alix Matton
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands.,Section Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands
| | - Robert J Porte
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands.,Section Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands
| | - Peter Horvatovich
- Department of Pharmacy, Analytical Biochemistry, University of Groningen , 9713 AV, Groningen, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands.,Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Pharmacy, Analytical Biochemistry, University of Groningen , 9713 AV, Groningen, The Netherlands.,Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen , 9713 AV, Groningen, The Netherlands
| | - Hjalmar P Permentier
- Department of Pharmacy, Analytical Biochemistry, University of Groningen , 9713 AV, Groningen, The Netherlands
| |
Collapse
|
124
|
Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016; 16:2160-82. [PMID: 27302376 PMCID: PMC5051956 DOI: 10.1002/pmic.201500449] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ehwang Song
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Song Nie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karin D Rodland
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
125
|
Fabre B, Korona D, Groen A, Vowinckel J, Gatto L, Deery MJ, Ralser M, Russell S, Lilley KS. Analysis of Drosophila melanogaster proteome dynamics during embryonic development by a combination of label-free proteomics approaches. Proteomics 2016; 16:2068-80. [PMID: 27029218 PMCID: PMC5737838 DOI: 10.1002/pmic.201500482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022]
Abstract
During embryogenesis, organisms undergo considerable cellular remodelling requiring the combined action of thousands of proteins. In case of the well-studied model Drosophila melanogaster, transcriptomic studies, most notably from the modENCODE project, have described in detail changes in gene expression at the mRNA level across development. Although such data are clearly very useful to understand how the genome is regulated during embryogenesis, it is important to understand how changes in gene expression are reflected at the level of the proteome. In this study, we describe a combination of two quantitative label-free approaches, SWATH and data-dependent acquisition, to monitor changes in protein expression across a timecourse of D. melanogaster embryonic development. We demonstrate that both approaches provide robust and reproducible methods for the analysis of proteome changes. In a preliminary analysis of Drosophila embryogenesis, we identified several pathways, including the heat-shock response, nuclear protein import and energy production that are regulated during embryo development. In some cases changes in protein expression mirrored transcript levels across development, whereas other proteins showed signatures of post-transcriptional regulation. Taken together, our pilot study provides a solid platform for a more detailed exploration of the embryonic proteome.
Collapse
Affiliation(s)
- Bertrand Fabre
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Arnoud Groen
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Jakob Vowinckel
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Laurent Gatto
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Computational Proteomics Unit, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, UK
| | - Steven Russell
- Department of Genetics, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
126
|
Kusebauch U, Campbell DS, Deutsch EW, Chu CS, Spicer DA, Brusniak MY, Slagel J, Sun Z, Stevens J, Grimes B, Shteynberg D, Hoopmann MR, Blattmann P, Ratushny AV, Rinner O, Picotti P, Carapito C, Huang CY, Kapousouz M, Lam H, Tran T, Demir E, Aitchison JD, Sander C, Hood L, Aebersold R, Moritz RL. Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome. Cell 2016; 166:766-778. [PMID: 27453469 PMCID: PMC5245710 DOI: 10.1016/j.cell.2016.06.041] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 02/08/2023]
Abstract
The ability to reliably and reproducibly measure any protein of the human proteome in any tissue or cell type would be transformative for understanding systems-level properties as well as specific pathways in physiology and disease. Here, we describe the generation and verification of a compendium of highly specific assays that enable quantification of 99.7% of the 20,277 annotated human proteins by the widely accessible, sensitive, and robust targeted mass spectrometric method selected reaction monitoring, SRM. This human SRMAtlas provides definitive coordinates that conclusively identify the respective peptide in biological samples. We report data on 166,174 proteotypic peptides providing multiple, independent assays to quantify any human protein and numerous spliced variants, non-synonymous mutations, and post-translational modifications. The data are freely accessible as a resource at http://www.srmatlas.org/, and we demonstrate its utility by examining the network response to inhibition of cholesterol synthesis in liver cells and to docetaxel in prostate cancer lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Slagel
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | | | | | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Alexander V Ratushny
- Institute for Systems Biology, Seattle, WA 98109, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Oliver Rinner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Biognosys AG, 8952 Schlieren, Switzerland
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christine Carapito
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Henry Lam
- Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tommy Tran
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Emek Demir
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John D Aitchison
- Institute for Systems Biology, Seattle, WA 98109, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8006 Zurich, Switzerland.
| | | |
Collapse
|
127
|
Singh SA, Aikawa E, Aikawa M. Current Trends and Future Perspectives of State-of-the-Art Proteomics Technologies Applied to Cardiovascular Disease Research. Circ J 2016; 80:1674-83. [PMID: 27430298 DOI: 10.1253/circj.cj-16-0499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of mass spectrometry (MS)-dependent protein research is increasing in the cardiovascular sciences. A major reason for this is the versatility of and ability for MS technologies to accommodate a variety of biological questions such as those pertaining to basic research and clinical applications. In addition, mass spectrometers are becoming easier to operate, and require less expertise to run standard proteomics experiments. Nonetheless, despite the increasing interest in proteomics, many non-expert end users may not be as familiar with the variety of mass spectrometric tools and workflows available to them. We therefore review the major strategies used in unbiased and targeted MS, while providing specific applications in cardiovascular research. Because MS technologies are developing rapidly, it is important to understand the core concepts, strengths and weaknesses. Most importantly, we hope to inspire the further integration of this exciting technology into everyday research in the cardiovascular sciences. (Circ J 2016; 80: 1674-1683).
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School
| | | | | |
Collapse
|
128
|
Percy AJ, Byrns S, Pennington SR, Holmes DT, Anderson NL, Agreste TM, Duffy MA. Clinical translation of MS-based, quantitative plasma proteomics: status, challenges, requirements, and potential. Expert Rev Proteomics 2016; 13:673-84. [DOI: 10.1080/14789450.2016.1205950] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Andrew J. Percy
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| | - Simon Byrns
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Stephen R. Pennington
- Department of Pathology, School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Daniel T. Holmes
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - N. Leigh Anderson
- Department of Clinical Biomarkers, SISCAPA Assay Technologies, Inc., Washington, DC, USA
| | - Tasha M. Agreste
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| | - Maureen A. Duffy
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| |
Collapse
|
129
|
Mass Spectrometry-Based Metabolomic and Proteomic Strategies in Organic Acidemias. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9210408. [PMID: 27403441 PMCID: PMC4923558 DOI: 10.1155/2016/9210408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/15/2016] [Indexed: 12/17/2022]
Abstract
Organic acidemias (OAs) are inherited metabolic disorders caused by deficiency of enzymatic activities in the catabolism of amino acids, carbohydrates, or lipids. These disorders result in the accumulation of mono-, di-, or tricarboxylic acids, generally referred to as organic acids. The OA outcomes can involve different organs and/or systems. Some OA disorders are easily managed if promptly diagnosed and treated, whereas, in others cases, such as propionate metabolism-related OAs (propionic acidemia, PA; methylmalonic acidemia, MMA), neither diet, vitamin therapy, nor liver transplantation appears to prevent multiorgan impairment. Here, we review the recent developments in dissecting molecular bases of OAs by using integration of mass spectrometry- (MS-) based metabolomic and proteomic strategies. MS-based techniques have facilitated the rapid and economical evaluation of a broad spectrum of metabolites in various body fluids, also collected in small samples, like dried blood spots. This approach has enabled the timely diagnosis of OAs, thereby facilitating early therapeutic intervention. Besides providing an overview of MS-based approaches most frequently used to study the molecular mechanisms underlying OA pathophysiology, we discuss the principal challenges of metabolomic and proteomic applications to OAs.
Collapse
|
130
|
White FM, Wolf-Yadlin A. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:295-315. [PMID: 27049636 DOI: 10.1146/annurev-anchem-071015-041542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.
Collapse
Affiliation(s)
- Forest M White
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| | | |
Collapse
|
131
|
Vandemoortele G, Staes A, Gonnelli G, Samyn N, De Sutter D, Vandermarliere E, Timmerman E, Gevaert K, Martens L, Eyckerman S. An extra dimension in protein tagging by quantifying universal proteotypic peptides using targeted proteomics. Sci Rep 2016; 6:27220. [PMID: 27264994 PMCID: PMC4893672 DOI: 10.1038/srep27220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 11/16/2022] Open
Abstract
The use of protein tagging to facilitate detailed characterization of target proteins has not only revolutionized cell biology, but also enabled biochemical analysis through efficient recovery of the protein complexes wherein the tagged proteins reside. The endogenous use of these tags for detailed protein characterization is widespread in lower organisms that allow for efficient homologous recombination. With the recent advances in genome engineering, tagging of endogenous proteins is now within reach for most experimental systems, including mammalian cell lines cultures. In this work, we describe the selection of peptides with ideal mass spectrometry characteristics for use in quantification of tagged proteins using targeted proteomics. We mined the proteome of the hyperthermophile Pyrococcus furiosus to obtain two peptides that are unique in the proteomes of all known model organisms (proteotypic) and allow sensitive quantification of target proteins in a complex background. By combining these 'Proteotypic peptides for Quantification by SRM' (PQS peptides) with epitope tags, we demonstrate their use in co-immunoprecipitation experiments upon transfection of protein pairs, or after introduction of these tags in the endogenous proteins through genome engineering. Endogenous protein tagging for absolute quantification provides a powerful extra dimension to protein analysis, allowing the detailed characterization of endogenous proteins.
Collapse
Affiliation(s)
- Giel Vandemoortele
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - An Staes
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Giulia Gonnelli
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Noortje Samyn
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Delphine De Sutter
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Elien Vandermarliere
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Evy Timmerman
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Lennart Martens
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Sven Eyckerman
- VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
132
|
|
133
|
Gallagher IJ, Jacobi C, Tardif N, Rooyackers O, Fearon K. Omics/systems biology and cancer cachexia. Semin Cell Dev Biol 2016; 54:92-103. [DOI: 10.1016/j.semcdb.2015.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
134
|
Sanchez-Lucas R, Mehta A, Valledor L, Cabello-Hurtado F, Romero-Rodrıguez MC, Simova-Stoilova L, Demir S, Rodriguez-de-Francisco LE, Maldonado-Alconada AM, Jorrin-Prieto AL, Jorrín-Novo JV. A year (2014-2015) of plants in Proteomics journal. Progress in wet and dry methodologies, moving from protein catalogs, and the view of classic plant biochemists. Proteomics 2016; 16:866-76. [PMID: 26621614 DOI: 10.1002/pmic.201500351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/23/2022]
Abstract
The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution.
Collapse
Affiliation(s)
- Rosa Sanchez-Lucas
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia (CENARGEN), Brasília, DF, Brazil
| | - Luis Valledor
- Department of Biology of Organisms and Systems (BOS), University of Oviedo, Oviedo, Spain
| | | | - M Cristina Romero-Rodrıguez
- Centro Multidisciplinario de Investigaciones Tecnológicas, and Departamento de Fitoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Lyudmila Simova-Stoilova
- Plant Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sekvan Demir
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Luis E Rodriguez-de-Francisco
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain.,INTEC-Sto. Domingo, Santo Domingo, República Dominicana
| | - Ana M Maldonado-Alconada
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Ana L Jorrin-Prieto
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Jesus V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| |
Collapse
|
135
|
Karamanos Y, Pottiez G. Proteomics and the blood-brain barrier: how recent findings help drug development. Expert Rev Proteomics 2016; 13:251-8. [PMID: 26778576 DOI: 10.1586/14789450.2016.1143780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The drug discovery and development processes are divided into different stages separated by milestones to indicate that significant progress has been made and that certain criteria for target validation, hits, leads and candidate drugs have been met. Proteomics is a promising approach for the identification of protein targets and biochemical pathways involved in disease process and thus plays an important role in several stages of the drug development. The blood-brain barrier is considered as a major bottleneck when trying to target new compounds to treat neurodegenerative diseases. Based on the survey of recent findings and with a projection on expected improvements, this report attempt to address how proteomics participates in drug development.
Collapse
Affiliation(s)
- Yannis Karamanos
- a Laboratoire de la Barrière Hématoencéphalique (LBHE) , Univesrité d'Artois EA2465 , Lens , France
| | - Gwënaël Pottiez
- a Laboratoire de la Barrière Hématoencéphalique (LBHE) , Univesrité d'Artois EA2465 , Lens , France
| |
Collapse
|
136
|
Zeidán-Chuliá F, Gürsoy M, Neves de Oliveira BH, Özdemir V, Könönen E, Gürsoy UK. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways. Front Cell Infect Microbiol 2016; 5:102. [PMID: 26793622 PMCID: PMC4707239 DOI: 10.3389/fcimb.2015.00102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/15/2015] [Indexed: 01/27/2023] Open
Abstract
Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.
Collapse
Affiliation(s)
- Fares Zeidán-Chuliá
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Department of Periodontology, Institute of Dentistry, University of TurkuTurku, Finland
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku Turku, Finland
| | - Ben-Hur Neves de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Vural Özdemir
- Faculty of Communications and Office of the President, International Technology and Innovation Policy, Gaziantep UniversityGaziantep, Turkey; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham (Amrita University)Kollam, India
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of TurkuTurku, Finland; Oral Health Care, Welfare DivisionTurku, Finland
| | - Ulvi K Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku Turku, Finland
| |
Collapse
|
137
|
|
138
|
Vetter DE, Basappa J. Multiplexed Isobaric Tagging Protocols for Quantitative Mass Spectrometry Approaches to Auditory Research. Methods Mol Biol 2016; 1427:109-33. [PMID: 27259924 DOI: 10.1007/978-1-4939-3615-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Modern biologists have at their disposal a large array of techniques used to assess the existence and relative or absolute quantity of any molecule of interest in a sample. However, implementing most of these procedures can be a daunting task for the first time, even in a lab with experienced researchers. Just choosing a protocol to follow can take weeks while all of the nuances are examined and it is determined whether a protocol will (a) give the desired results, (b) result in interpretable and unbiased data, and (c) be amenable to the sample of interest. We detail here a robust procedure for labeling proteins in a complex lysate for the ultimate differential quantification of protein abundance following experimental manipulations. Following a successful outcome of the labeling procedure, the sample is submitted for mass spectrometric analysis, resulting in peptide quantification and protein identification. While we will concentrate on cells in culture, we will point out procedures that can be used for labeling lysates generated from tissues, along with any minor modifications required for such samples. We will also outline, but not fully document, other strategies used in our lab to label proteins prior to mass spectrometric analysis, and describe under which conditions each procedure may be desirable. What is not covered in this chapter is anything but the most brief introduction to mass spectrometry (instrumentation, theory, etc.), nor do we attempt to cover much in the way of software used for post hoc analysis. These two topics are dependent upon one's resources, and where applicable, one's collaborators. We strongly encourage the reader to seek out expert advice on topics not covered here.
Collapse
Affiliation(s)
- Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, Univ. Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Johnvesly Basappa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
139
|
Murphy S, Ohlendieck K. The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle. Comput Struct Biotechnol J 2015; 14:20-7. [PMID: 26793286 PMCID: PMC4688399 DOI: 10.1016/j.csbj.2015.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The development of advanced mass spectrometric methodology has decisively enhanced the analytical capabilities for studies into the composition and dynamics of multi-subunit protein complexes and their associated components. Large-scale complexome profiling is an approach that combines the systematic isolation and enrichment of protein assemblies with sophisticated mass spectrometry-based identification methods. In skeletal muscles, the membrane cytoskeletal protein dystrophin of 427 kDa forms tight interactions with a variety of sarcolemmal, cytosolic and extracellular proteins, which in turn associate with key components of the extracellular matrix and the intracellular cytoskeleton. A major function of this enormous assembly of proteins, including dystroglycans, sarcoglycans, syntrophins, dystrobrevins, sarcospan, laminin and cortical actin, is postulated to stabilize muscle fibres during the physical tensions of continuous excitation-contraction-relaxation cycles. This article reviews the evidence from recent proteomic studies that have focused on the characterization of the dystrophin-glycoprotein complex and its central role in the establishment of the cytoskeleton-sarcolemma-matrisome axis. Proteomic findings suggest a close linkage of the core dystrophin complex with a variety of protein species, including tubulin, vimentin, desmin, annexin, proteoglycans and collagens. Since the almost complete absence of dystrophin is the underlying cause for X-linked muscular dystrophy, a more detailed understanding of the composition, structure and plasticity of the dystrophin complexome may have considerable biomedical implications.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|