101
|
Ikegaya Y, Kim JA, Baba M, Iwatsubo T, Nishiyama N, Matsuki N. Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity. J Cell Sci 2001; 114:4083-93. [PMID: 11739640 DOI: 10.1242/jcs.114.22.4083] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Postsynaptic neuronal dendrites undergo functional and morphological changes in response to pathologically excessive synaptic activation. Although rapid formation of segmental focal swelling (varicosity) is the most prominent hallmark in such excitotoxic injury, little is known about the pathophysiological function of these structural alterations. We used cultured rat hippocampal slices to evaluate the relationship between the formation of varicosities and subsequent neuronal death. Substantial numbers of segmental dendritic varicosities were observed all over the hippocampus within 5 minutes of exposure to 30 μM NMDA, although neuronal death was detected only in the CA1 region 24 hours after NMDA exposure. Sublethal NMDA concentrations (1-10 μM) induced reversible focal swelling in all hippocampal subregions. NMDA-induced neuronal death was prevented either by NMDA receptor antagonists or by the use of Ca2+-free medium, whereas varicosity formation was virtually independent of Ca2+ influx. Rather, the Ca2+-free conditions per se produced dendritic focal swelling. Also, NMDA-induced varicosity formation was dependent on extracellular Na+ concentration. Thus, we believe that varicosity formation is not causally related to neuronal injury and that the two phenomena are separable and involve distinct mechanisms. Interestingly, dendrite swelling was accompanied by AMPA receptor internalization and a rapid, long-lasting depression in synaptic transmission. Moreover, low Na+ conditions or treatment with ethacrynic acid or proteinase inhibitors, which effectively prevent varicosity formation, aggravated NMDA-induced excitotoxicity, and eliminated the regional specificity of the toxicity. Therefore, the pathological changes in dendrite morphology and function may be associated with an early, self-protective response against excitotoxicity.
Collapse
Affiliation(s)
- Y Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
We examined the pharmacology of dendritic morphologic changes in cultured cortical neurons exposed to sublethal oxygen-glucose deprivation (OGD). Confocal analysis of DiI-labeled neurons demonstrated transient dendritic swelling and spine loss after OGD. These morphological changes were reproduced by direct application of NMDA, kainate, veratridine, ionomycyin, and gramicidin, but not KCl. Blockade of voltage-gated sodium or calcium channels did not prevent OGD-induced dendritic spine loss. In contrast, the NMDA receptor antagonist, MK-801, fully prevented these changes. An AMPA/kainate receptor antagonist, NBQX, had no effect by itself but reduced spine loss when added to MK-801. While alterations in dendrite morphology may be triggered by activation of disparate ion channels, rapid spine loss in hypoxic cortical neurons is mediated preferentially through activation of the NMDA subtype glutamate receptor.
Collapse
Affiliation(s)
- M J Hasbani
- Department of Neurology, Center for the Study of Nervous System Injury, Campus Box 8111, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
103
|
Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 2001. [PMID: 11404409 DOI: 10.1523/jneurosci.21-12-04237.2001] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed an in situ model to investigate the hypothesis that AMPA/kainate (AMPA/KA) receptor activation contributes to hypoxic-ischemic white matter injury in the adult brain. Acute coronal brain slices, including corpus callosum, were prepared from adult mice. After exposure to transient oxygen and glucose deprivation (OGD), white matter injury was assessed by electrophysiology and immunofluorescence for oligodendrocytes and axonal neurofilaments. White matter cellular components and the stimulus-evoked compound action potential (CAP) remained stable for 12 hr after preparation. OGD for 30 min resulted in an irreversible loss of the CAP as well as structural disruption of axons and subsequent loss of neurofilament immunofluorescence. OGD also caused widespread oligodendrocyte death, demonstrated by the loss of APC labeling and the gain of pyknotic nuclear morphology and propidium iodide labeling. Blockade of AMPA/KA receptors with 30 microm NBQX or the AMPA-selective antagonist 30 microm GYKI 52466 prevented OGD-induced oligodendrocyte death. Oligodendrocytes also were preserved by the removal of Ca(2+), but not by a blockade of voltage-gated Na(+) channels. The protective action of NBQX was still present in isolated corpus callosum slices. CAP areas and axonal structure were preserved by Ca(2+) removal and partially protected by a blockade of voltage-gated Na(+) channels. NBQX prevented OGD-induced CAP loss and preserved axonal structure. These observations highlight convergent pathways leading to hypoxic-ischemic damage of cerebral white matter. In accordance with previous suggestions, the activation of voltage-gated Na(+) channels contributes to axonal damage. Overactivation of glial AMPA/KA receptors leads to oligodendrocyte death and also plays an important role in structural and functional disruption of axons.
Collapse
|
104
|
Haller M, Mironov SL, Richter DW. Intrinsic optical signals in respiratory brain stem regions of mice: neurotransmitters, neuromodulators, and metabolic stress. J Neurophysiol 2001; 86:412-21. [PMID: 11431521 DOI: 10.1152/jn.2001.86.1.412] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rhythmic brain stem slice preparation, spontaneous respiratory activity is generated endogenously and can be recorded as output activity from hypoglossal XII rootlets. Here we combine these recordings with measurements of the intrinsic optical signal (IOS) of cells in the regions of the periambigual region and nucleus hypoglossus of the rhythmic slice preparation. The IOS, which reflects changes of infrared light transmittance and scattering, has been previously employed as an indirect sensor for activity-related changes in cell metabolism. The IOS is believed to be primarily caused by cell volume changes, but it has also been associated with other morphological changes such as dendritic beading during prolonged neuronal excitation or mitochondrial swelling. An increase of the extracellular K(+) concentration from 3 to 9 mM, as well as superfusion with hypotonic solution induced a marked increase of the IOS, whereas a decrease in extracellular K(+) or superfusion with hypertonic solution had the opposite effect. During tissue anoxia, elicited by superfusion of N(2)-gassed solution, the biphasic response of the respiratory activity was accompanied by a continuous rise in the IOS. On reoxygenation, the IOS returned to control levels. Cells located at the surface of the slice were observed to swell during periods of anoxia. The region of the nucleus hypoglossus exhibited faster and larger IOS changes than the periambigual region, which presumably reflects differences in sensitivities of these neurons to metabolic stress. To analyze the components of the hypoxic IOS response, we investigated the IOS after application of neurotransmitters known to be released in increasing amounts during hypoxia. Indeed, glutamate application induced an IOS increase, whereas adenosine slightly reduced the IOS. The IOS response to hypoxia was diminished after application of glutamate uptake blockers, indicating that glutamate contributes to the hypoxic IOS. Blockade of the Na(+)/K(+)-ATPase by ouabain did not provoke a hypoxia-like IOS change. The influences of K(ATP) channels were analyzed, because they contribute significantly to the modulation of neuronal excitability during hypoxia. IOS responses obtained during manipulation of K(ATP) channel activity could be explained only by implicating mitochondrial volume changes mediated by mitochondrial K(ATP) channels. In conclusion, the hypoxic IOS response can be interpreted as a result of cell and mitochondrial swelling. Cell swelling can be attributed to hypoxic release of neurotransmitters and neuromodulators and to inhibition of Na(+)/K(+)-pump activity.
Collapse
Affiliation(s)
- M Haller
- Physiologisches Institut, Georg-August-Universität Göttingen, D-37073 Gottingen, Germany.
| | | | | |
Collapse
|
105
|
Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J Neurosci 2001. [PMID: 11264313 DOI: 10.1523/jneurosci.21-07-02393.2001] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During cerebral ischemia, neurons undergo rapid alterations in dendritic structure consisting of focal swelling and spine loss. We used time-lapse microscopy to determine the fate of dendritic spines that disappeared after brief, sublethal hypoxic or excitotoxic exposures. Dendrite and spine morphology were assessed in cultured cortical neurons expressing yellow fluorescent protein or labeled with the fluorescent membrane tracer, DiI. Neurons exposed to NMDA, kainate, or oxygen-glucose deprivation underwent segmental dendritic beading and loss of approximately one-half of dendritic spines. Most spine loss was observed in regions of local dendritic swelling. Despite widespread loss, spines recovered within 2 hr after termination of agonist exposure or oxygen-glucose deprivation and remained stable over the subsequent 24 hr. Recovery was slower after NMDA than AMPA/kainate receptor activation. Time-lapse fluorescence imaging showed that the vast majority of spines reemerged in the same location from which they disappeared. In addition to spine recovery, elaboration of dendritic filopodia was observed in new locations along the dendritic shaft after dendrite recovery. Spine recovery did not depend on actin polymerization because it was not blocked by application of latrunculin-A, which eliminated filamentous actin staining in spines and blocked spine motility. Throughout spine loss and recovery, presynaptic and postsynaptic elements remained in physical proximity. These results suggest that elimination of dendritic spines is not necessarily associated with loss of synaptic contacts. Rapid reestablishment of dendritic spine synapses in surviving neurons may be a substrate for functional recovery after transient cerebral ischemia.
Collapse
|
106
|
Chesnoy-Marchais D, Cathala L. Modulation of glycine responses by dihydropyridines and verapamil in rat spinal neurons. Eur J Neurosci 2001; 13:2195-204. [PMID: 11454022 DOI: 10.1046/j.0953-816x.2001.01599.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although glycine receptors (GlyRs) are responsible for the main spinal inhibitory responses in adult vertebrates, in the embryo they have been reported to mediate depolarizing responses, which can sometimes activate dihydropyridine-sensitive L-type calcium channels. However, these channels are not the only targets of dihydropyridines (DHPs), and we questioned whether GlyRs might be directly modulated by DHPs. By whole-cell recording of cultured spinal neurons, we investigated modulation of glycine responses by the calcium channel antagonists, nifedipine, nitrendipine, nicardipine and (R)-Bay K 8644, and by the calcium channel, agonist (S)-Bay K 8644. At concentrations between 1 and 10 microM, all these DHPs could block glycine responses, even in the absence of extracellular Ca2+. The block was stronger at higher glycine concentrations, and increased with time during each glycine application. Nicardipine blocked GABAA responses from the same neurons in a similar manner. In addition to their blocking effects, nitrendipine and nicardipine potentiated the peak responses to low glycine concentrations. Both effects of extracellular nitrendipine on glycine responses persisted when the drug was present in the intracellular solution. Thus, these modulations are related neither to calcium channel modulation nor to possible intracellular effects of DHPs. Another type of calcium antagonist, verapamil (10-50 microM), also blocked glycine responses. Our results suggest that some of the effects of calcium antagonists, including the neuroprotective and anticonvulsant effects of DHPs, might result partly from their interactions with ligand-gated chloride channels.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chloride Channels/drug effects
- Chloride Channels/metabolism
- Dihydropyridines/pharmacology
- Drug Interactions/physiology
- Glycine/metabolism
- Glycine/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Nicardipine/pharmacology
- Nifedipine/pharmacology
- Nitrendipine/pharmacology
- Rats
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Glycine/drug effects
- Receptors, Glycine/physiology
- Spinal Cord/cytology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- D Chesnoy-Marchais
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, CNRS UMR-8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| | | |
Collapse
|
107
|
Bozyczko-Coyne D, O'Kane TM, Wu ZL, Dobrzanski P, Murthy S, Vaught JL, Scott RW. CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with Abeta-induced cortical neuron apoptosis. J Neurochem 2001; 77:849-63. [PMID: 11331414 DOI: 10.1046/j.1471-4159.2001.00294.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the mechanism of neuronal death in Alzheimer's disease (AD) has yet to be elucidated, a putative role for c-jun in this process has emerged. Thus, it was of interest to delineate signal transduction pathway(s) which regulate the transcriptional activity of c-jun, and relate these to alternate gene inductions and biochemical processes associated with beta-amyloid (Abeta) treatment. In this regard, the survival promoting activity of CEP-1347, an inhibitor of the stress-activated/c-jun N-terminal (SAPK/JNK) kinase pathway, was evaluated against Abeta-induced cortical neuron death in vitro. Moreover, CEP-1347 was used as a pharmacologic probe to associate multiple biochemical events with Abeta-induced activation of the SAPK/JNK pathway. CEP-1347 promoted survival and blocked Abeta-induced activation of JNK kinase (MKK4, also known as MEK-4, JNKK and SEK1) as well as other downstream events associated with JNK pathway activation. CEP-1347 also blocked Abeta-induction of cyclin D1 and DP5 genes and blocked Abeta-induced increases in cytoplasmic cytochrome c, caspase 3-like activity and calpain activation. The critical time window for cell death blockade by CEP-1347 resided within the peak of Abeta-induced MKK4 activation, thus defining this point as the most upstream event correlated to its survival-promoting activity. Together, these data link the SAPK/JNK pathway and multiple biochemical events associated with Abeta-induced neuronal death and further delineate the point of CEP-1347 interception within this signal transduction cascade.
Collapse
|
108
|
Abstract
Studies of neurons from human epilepsy tissue and comparable animal models of focal epilepsy have consistently reported a marked decrease in dendritic spine density on hippocampal and neocortical pyramidal cells. Spine loss is often accompanied by focal varicose swellings or beading of dendritic segments. An ongoing excitotoxic injury of dendrites (dendrotoxicity), produced by excessive release of glutamate during seizures, is often assumed to produce these abnormalities. Indeed, application of glutamate receptor agonists to dendrites can produce both spine loss and beading. However, the cellular mechanisms underlying the two processes appear to be different. One recent study suggests NMDA-induced spine loss is produced by Ca2+-mediated alterations of the spine cytoskeleton. In contrast, dendritic beading is not dependent on extracellular Ca2+; instead, it appears to be produced by the movement of Na+ and Cl- intracellularly and an obligate movement of water to maintain osmolarity. A decrease in dendritic spine density was recently reported in a model of recurrent focal seizures in early life. Unlike results from other models, dendritic beading was not observed, and other signs of neuronal injury and death were absent. Thus, additional mechanisms to those of excitotoxicity may produce dendritic spine loss in epileptic tissue. A hypothesis is presented that spine loss can be a product of a partial deafferentation of pyramidal cells, resulting from an activity-dependent pruning of neuronal connectivity induced by recurring seizures. The dendritic abnormalities observed in epilepsy are commonly suggested to be a product and not a cause of epilepsy. However, anatomical remodeling may be accompanied by alterations in molecular expression and targeting of both voltage- and ligand-gated channels in dendrites. It is conceivable that such changes could contribute to the neuronal hyperexcitability of epilepsy.
Collapse
Affiliation(s)
- J W Swann
- Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
109
|
Al-Noori S, Swann JW. A role for sodium and chloride in kainic acid-induced beading of inhibitory interneuron dendrites. Neuroscience 2001; 101:337-48. [PMID: 11074157 DOI: 10.1016/s0306-4522(00)00384-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Excitotoxic injury of the dendrites of inhibitory interneurons could lead to decreases in their synaptic activation and explain subsequent local circuit hyperexcitability and epilepsy. A hallmark of dendrotoxicity, at least in principal neurons of the hippocampus and cortex, is focal or varicose swellings of dendritic arbors. In experiments reported here, transient (1h) exposure of hippocampal explant cultures to kainic acid produced marked focal swellings of the dendrites of parvalbumin-immunoreactive pyramidal basket cells in a highly reproducible and dose-dependent manner. At 5mM kainic acid, more than half of the immunopositive apical dendrites in area CA(1) had a beaded appearance. However, the somal volumes of these cells were unaltered by the same treatment. The presence of focal swellings was reversible with kainate washout and was not accompanied by interneuronal cell death. In contrast, exposure to much higher concentrations (300mM) of kainic acid resulted in the total loss of parvalbumin-positive interneurons from explants. Surprisingly, kainic acid-induced dendritic beading does not appear to be mediated by extracellular calcium. Beading was unaltered in the presence of N-methyl-D-aspartate receptor antagonists, the L-type calcium channel antagonist, nimodipine, cadmium, or by removing extracellular calcium. However, blockade of voltage-gated sodium channels by either tetrodotoxin or lidocaine abolished dendritic beading, while the activation of existing voltage-gated sodium channels by veratridine mimicked the kainic acid-induced dendritic beading. Finally, the removal of extracellular chloride prevented the kainic acid-induced dendritic beading.Thus, we suggest that the movement of Na(+) and Cl(-), rather than Ca(2+), into cells underlies the focal swellings of interneuron dendrites in hippocampus.
Collapse
Affiliation(s)
- S Al-Noori
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
110
|
Altered Cellular Anatomy and Physiology of Acute Brain Injury and Spinal Cord Injury. Crit Care Nurs Clin North Am 2000. [DOI: 10.1016/s0899-5885(18)30077-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
111
|
Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 2000. [PMID: 10844024 DOI: 10.1523/jneurosci.20-12-04545.2000] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms responsible for anchoring molecular components of postsynaptic specializations in the mammalian brain are not well understood but are presumed to involve associations with cytoskeletal elements. Here we build on previous studies of neurotransmitter receptors (Allison et al., 1998) to analyze the modes of attachment of scaffolding and signal transducing proteins of both glutamate and GABA postsynaptic sites to either the microtubule or microfilament cytoskeleton. Hippocampal pyramidal neurons in culture were treated with latrunculin A to depolymerize actin, with vincristine to depolymerize microtubules, or with Triton X-100 to extract soluble proteins. The synaptic clustering of PSD-95, a putative NMDA receptor anchoring protein and a core component of the postsynaptic density (PSD), was unaffected by actin depolymerization, microtubule depolymerization, or detergent extraction. The same was largely true for GKAP, a PSD-95-interacting protein. In contrast, the synaptic clustering of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)alpha, another core component of the PSD, was completely dependent on an intact actin cytoskeleton and was partially disrupted by detergent. Drebrin and alpha-actinin-2, actin-binding proteins concentrated in spines, were also dependent on F-actin for synaptic localization but were unaffected by detergent extraction. Surprisingly, the subcellular distributions of the inhibitory synaptic proteins GABA(A)R and gephyrin, which has a tubulin-binding motif, were unaffected by depolymerization of microtubules or actin or by detergent extraction. These studies reveal an unsuspected heterogeneity in the modes of attachment of postsynaptic proteins to the cytoskeleton and support the idea that PSD-95 and gephyrin may be core scaffolding components independent of the actin or tubulin cytoskeleton.
Collapse
|
112
|
Abstract
Neurotransmitters can have both toxic and trophic functions in addition to their role in neural signaling. Surprisingly, chronic blockade of GABA(A) receptor activity for 5-8 d in vitro enhanced survival of hippocampal neurons, suggesting that GABA(A) receptor overactivation may be neurotoxic. Potentiating GABA(A) receptor activity by chronic treatment with the endogenous neurosteroid (3alpha,5alpha)-3-hydroxypregnan-20-one caused massive cell loss over 1 week in culture. Other potentiators of GABA(A) receptors, including benzodiazepines, mimicked the cell loss, suggesting that potentiating endogenous GABA activity is sufficient to produce neuronal death. Neurosteroid-treated neurons had lower resting intracellular calcium levels than control cells and produced smaller calcium rises in response to depolarizing challenges. Manipulating intracellular calcium levels with chronic elevated extracellular potassium or with the calcium channel agonist Bay K 8644 protected neurons. The results may have implications for the mechanisms of programmed cell death in the developing CNS as well as implications for the long-term consequences of chronic GABAmimetic drug use during development.
Collapse
|
113
|
Jarvis CR, Lilge L, Vipond GJ, Andrew RD. Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice. Neuroimage 1999; 10:357-72. [PMID: 10493895 DOI: 10.1006/nimg.1999.0473] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immediate (acute) neuronal damage in response to overstimulation of glutamate receptors results from toxic exposure to food poisons acting as glutamate analogues. Glutamate agonist application evokes dramatic intrinsic optical signals (IOSs) in the rat hippocampal slice preparation, particularly in the CA1 region. Theoretically IOSs are generated by alterations to neuronal and glial structure that change light transmittance (LT) in live brain tissue. To better understand such signals, IOSs evoked by the glutamate agonist N-methyl-D-aspartate were imaged in the rat hippocampal slice. We correlated these excitotoxic signals with: (1) biophysical principles governing light transport, (2) tissue volume changes as measured using a free intracellular fluorophore (calcein), (3) dendritic morphology visualized by dye injection, and (4) standard histopathology. In theory LT elevation evoked during acute excitotoxic swelling is generated by change to subcellular structure that reduces light scattering during cell swelling. However, in responsive dendritic regions, initial LT elevation caused by cell swelling was overridden by the formation of dendritic beads, a conformation that increased light scattering (thereby reducing LT) even as the calcein signal demonstrated that the tissue continued to swell. Thus IOS imaging reveals acute somatic and dendritic damage during excitotoxic stress that can be monitored across slices of brain tissue in real time.
Collapse
Affiliation(s)
- C R Jarvis
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | |
Collapse
|