101
|
Liu JS, Kuo SR, Makhov AM, Cyr DM, Griffith JD, Broker TR, Chow LT. Human Hsp70 and Hsp40 chaperone proteins facilitate human papillomavirus-11 E1 protein binding to the origin and stimulate cell-free DNA replication. J Biol Chem 1998; 273:30704-12. [PMID: 9804845 DOI: 10.1074/jbc.273.46.30704] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human papillomavirus replication initiator, the E1 helicase, binds weakly to the origin of DNA replication. Purified human chaperone proteins Hsp70 and Hsp40 (HDJ-1 and HDJ-2) independently and additively enhanced E1 binding to the origin. The interaction between E1 and Hsp70 was transient and required ATP hydrolysis, whereas Hsp40 bound to E1 directly and remained in the complex. A peptide of 20 residues spanning the HPD loop and helix II of the J domain of YDJ-1 also stimulated E1 binding to the origin, alone or in combination with Hsp70 or Hsp40. A mutated peptide (H34Q) had a reduced activity, while an adjacent or an overlapping peptide had no effect. Neither Hsp70 nor the J peptide altered the E1/DNA ratio in the complex. Electron microscopy showed that E1 mainly bound to DNA as a hexamer. In the presence of Hsp40, E1 primarily bound to DNA as a dihexamer. Preincubation of chaperones with viral E1 and template shortened the lag time and increased replication in a cell-free system. Since two helicases are essential for bidirectional replication of human papillomavirus DNA, these results demonstrate that, as in prokaryotes, chaperones play an important role in the assembly of preinitiation complexes on the origin.
Collapse
Affiliation(s)
- J S Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Reply to Heat shock proteins, HLA-DR and rheumatoid arthritis. Nat Med 1998. [DOI: 10.1038/3174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
103
|
Rich T, Grüneberg U, Trowsdale J. Heat shock proteins, HLA-DR and rheumatoid arthritis. Nat Med 1998; 4:1210-1. [PMID: 9809521 DOI: 10.1038/3172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
104
|
Goffin L, Georgopoulos C. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ. Mol Microbiol 1998; 30:329-40. [PMID: 9791178 DOI: 10.1046/j.1365-2958.1998.01067.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DnaJ is a universally conserved heat shock protein involved in protein folding. DnaJ contains four conserved domains. The N-terminal 'J-domain' has been shown to be responsible for the recruitment of its specific DnaK partner protein. The 'Gly/Phe'- and 'Cys-rich' domains have been implicated in stabilizing interactions with DnaK. DnaJ is also able to interact independently with unfolded or native polypeptides. Very little is known regarding such binding/chaperone abilities, but it has been suggested that the least conserved carboxy-terminal domain could contribute to these properties. To gain insight into the biological activity of this fourth domain, we deleted two relatively conserved patches of amino acid residues, a 'G-rich' cluster and a 'G-D-L-Y-V' motif, resulting in the DnaJDelta[230-238] and DnaJDelta[242-246] mutant proteins respectively. Both mutant proteins are partially defective in stimulating the ATPase activity of DnaK and in preventing aggregation of firefly luciferase in vitro. Both mutants have lost the ability to regulate the sigma32-dependent heat shock response, as shown in vivo using a heat shock transcriptional fusion. Furthermore, and unlike wild-type DnaJ, DnaJDelta[242-246] is unable to assist the DnaK-dependent refolding of denatured luciferase. In agreement with these results, we found that DnaJDelta[242-246] is unable to restore either the temperature-sensitive phenotype or the motility defect of a dnaJ null mutation. Substitution of amino acids [242-246] by five alanines leads to similar phenotypic defects, suggesting that altering the 'G-D-L-Y-V' motif leads to partial loss of DnaJ activity. Our data clearly support a role in the intrinsic chaperone/substrate binding ability of the carboxy-terminal domain of DnaJ.
Collapse
Affiliation(s)
- L Goffin
- Département de Biochimie Médicale, Centre Médical Universitaire,1, rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
105
|
Affiliation(s)
- J L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
106
|
Abstract
The defining feature of the Hsp40 chaperone family is a approximately 70-amino-acid-residue signature, termed the J domain, that is necessary for orchestrating interactions with its Hsp70 chaperone partner(s). J-domain proteins play important regulatory roles as co-chaperones, recruiting Hsp70 partners and accelerating the ATP-hydrolysis step of the chaperone cycle. Certain proteins could have acquired a J domain in order to present a specific substrate(s) to an Hsp70 partner and thus capitalize upon chaperone activities when carrying out cellular functions. J-domain proteins participate in complex biological processes, such as cell-cycle control by DNA tumor viruses, regulation of protein kinases and exocytosis.
Collapse
Affiliation(s)
- W L Kelley
- Dépt de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, Switzerland.
| |
Collapse
|
107
|
Greene MK, Maskos K, Landry SJ. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci U S A 1998; 95:6108-13. [PMID: 9600925 PMCID: PMC27593 DOI: 10.1073/pnas.95.11.6108] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli Hsp40 DnaJ and Hsp70 DnaK cooperate in the binding of proteins at intermediate stages of folding, assembly, and translocation across membranes. Binding of protein substrates to the DnaK C-terminal domain is controlled by ATP binding and hydrolysis in the N-terminal ATPase domain. The interaction of DnaJ with DnaK is mediated at least in part by the highly conserved N-terminal J-domain of DnaJ that includes residues 2-75. Heteronuclear NMR experiments with uniformly 15N-enriched DnaJ2-75 indicate that the chemical environment of residues located in helix II and the flanking loops is perturbed on interaction with DnaK or a truncated DnaK molecule, DnaK2-388. NMR signals corresponding to these residues broaden and exhibit changes in chemical shifts in the presence of DnaK(MgADP). Addition of MgATP largely reversed the broadening, indicating that NMR signals of DnaJ2-75 respond to ATP-dependent changes in DnaK. The J-domain interaction is localized to the ATPase domain of DnaK and is likely to be dominated by electrostatic interactions. The results suggest that the J-domain tethers DnaK to DnaJ-bound substrates, which DnaK then binds with its C-terminal peptide-binding domain.
Collapse
Affiliation(s)
- M K Greene
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| | | | | |
Collapse
|
108
|
Lu Z, Cyr DM. The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J Biol Chem 1998; 273:5970-8. [PMID: 9488737 DOI: 10.1074/jbc.273.10.5970] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ydj1 is a member of the Hsp40 (DnaJ-related) chaperone family that facilitates cellular protein folding by regulating Hsp70 ATPase activity and binding unfolded polypeptides. Ydj1 contains four conserved subdomains that appear to represent functional units. To define the action of these regions, protease-resistant Ydj1 fragments and Ydj1 mutants were analyzed for activities exhibited by the unmodified protein. The Ydj1 mutant proteins analyzed were unable to support growth of yeast at elevated temperatures and were found to have alterations in the J-domain (Ydj1 H34Q), zinc finger-like region (Ydj1 C159T), and conserved carboxyl terminus (Ydj1 G315D). Fragment Ydj1 (1-90) contains the J-domain and a small portion of the G/F-rich region and could regulate Hsp70 ATPase activity but could not suppress the aggregation of the model protein rhodanese. Ydj1 H34Q could not regulate the ATPase activity of Hsp70 but could bind unfolded polypeptides. The J-domain functions independently and was sufficient to regulate Hsp70 ATPase activity. Fragment Ydj1 (179-384) could suppress rhodanese aggregation but was unable to regulate Hsp70. Ydj1 (179-384) contains the conserved carboxyl terminus of DnaJ but is missing the J-domain, G/F-rich region, and a major portion of the zinc finger-like region. Ydj1 G315D exhibited severe defects in its ability to suppress rhodanese aggregation and form complexes with unfolded luciferase. The conserved carboxyl terminus of Ydj1 appeared to participate in the binding of unfolded polypeptides. Ydj1 C159T could form stable complexes with unfolded proteins and suppress protein aggregation but was inefficient at refolding denatured luciferase. The zinc finger-like region of Ydj1 appeared to function in conjunction with the conserved carboxyl terminus to fold proteins. However, Ydj1 does not require an intact zinc finger-like region to bind unfolded polypeptides. These data suggest that the combined functions of the J-domain, zinc finger-like region, and the conserved carboxyl terminus are required for Ydj1 to cooperate with Hsp70 and facilitate protein folding in the cell.
Collapse
Affiliation(s)
- Z Lu
- Department of Cell Biology, School of Medicine, University of Alabama Medical Center, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
109
|
Hoe KL, Won M, Chung KS, Jang YJ, Lee SB, Kim DU, Lee JW, Yun JH, Yoo HS. Isolation of a new member of DnaJ-like heat shock protein 40 (Hsp40) from human liver. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1383:4-8. [PMID: 9546042 DOI: 10.1016/s0167-4838(97)00207-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new member of Hsp40, HLJ1, consisting of 337 amino acids, was cloned from a human liver cDNA library. The deduced amino acid sequence of HLJ1 has an 84% homology (69% identity) with that of HDJ-1 isolated from human placenta. Northern analysis showed that expression of the HLJ1 gene is heat-inducible and its transcription shows some degree of preference in heart, skeletal muscle, and pancreas.
Collapse
Affiliation(s)
- K L Hoe
- Cell Cycle and Signal Research Unit, Korea Research Institute of Bioscience and Biotechnology, Taejon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Affiliation(s)
- B Bukau
- Institut für Biochemie and Molekularbiologie, Universität Freiburg, Germany
| | | |
Collapse
|
111
|
Abstract
DNA replication is a complicated process that is largely regulated during stages of initiation. The Siman Virus 40 in vitro replication system has served as an excellent model for studies of the initiation of DNA replication, and its regulation, in eukaryotes. Initiation of SV40 replication requires a single viral protein termed T-antigen, all other proteins are supplied by the host. The recent determination of the solution structure of the T-antigen domain that recognizes the SV40 origin has provided significant insights into the initiation process. For example, it has afforded a clearer understanding of origin recognition, T-antigen oligomerization, and DNA unwinding. Furthermore, the Simian virus 40 in vitro replication system has been used to study nascent DNA formation in the vicinity of the viral origin of replication. Among the conclusions drawn from these experiments is that nascent DNA synthesis does not initiate in the core origin in vitro and that Okazaki fragment formation is complex. These and related studies demonstrate that significant progress has been made in understanding the initiation of DNA synthesis at the molecular level.
Collapse
Affiliation(s)
- P A Bullock
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
112
|
Chamberlain LH, Burgoyne RD. The molecular chaperone function of the secretory vesicle cysteine string proteins. J Biol Chem 1997; 272:31420-6. [PMID: 9395474 DOI: 10.1074/jbc.272.50.31420] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The "J" domains of eukaryotic DnaJ-like proteins specify interaction with various Hsp70s. The conserved tripeptide, HPD, present in all J domains has been shown to be important for the interaction between yeast and bacterial DnaJ/Hsp70 protein pairs. We have characterized mutations in the HPD motif of the synaptic vesicle protein cysteine-string protein (Csp). Mutation of the histidine (H43Q) or aspartic acid (D45A) residues of this motif reduced the ability of Csp to stimulate the ATPase activity of mammalian Hsc70. The H43Q and D45A mutant proteins were not able to stimulate the ATPase activity of Hsc70 to any significant extent. The mutant proteins were characterized by competition assays, tryptic digestion analysis, and direct binding analysis from which it was seen that these proteins were defective in binding to Hsc70. Thus, the HPD motif of Csp is required for binding to Hsc70. We also analyzed the interaction between Csp and a model substrate protein, denatured firefly luciferase. Both Csp1 and the C-terminally truncated isoform Csp2 were able to prevent aggregation of heat-denatured luciferase, and they also cooperated with Hsc70 to prevent aggregation. In addition, complexes of Csp1 or Csp2 with Hsc70 and luciferase were isolated, confirming that these proteins interact and that Csps can bind directly to denatured proteins. Csp1 and Csp2 isoforms must differ in some aspect other than interaction with Hsc70 and substrate protein. These results show that both Csp1 and Csp2 can bind a partially unfolded protein and act as chaperones. This suggests that Csps may have a general chaperone function in regulated exocytosis.
Collapse
Affiliation(s)
- L H Chamberlain
- The Physiological Laboratory, Liverpool University, P.O. Box 147, Crown Street, Liverpool L69 3BX, United Kingdom
| | | |
Collapse
|
113
|
Sheng Q, Denis D, Ratnofsky M, Roberts TM, DeCaprio JA, Schaffhausen B. The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function. J Virol 1997; 71:9410-6. [PMID: 9371601 PMCID: PMC230245 DOI: 10.1128/jvi.71.12.9410-9416.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor suppressors of the retinoblastoma susceptibility gene family regulate cell growth and differentiation. Polyomavirus large T antigens (large T) bind Rb family members and block their function. Mutations of large T sequences conserved with the DnaJ family affect large T binding to a cellular DnaK, heat shock protein 70. The same mutations abolish large T activation of E2F-containing promoters and Rb binding-dependent large T activation of cell cycle progression. Cotransfection of a cellular DnaJ domain blocks wild-type large T action, showing that the connection between the chaperone system and tumor suppressors is direct. Although they are inactive in assays dependent on Rb family binding, mutants in the J region retain the ability to associate with pRb, p107, and p130. This suggests that binding of Rb family members by large T is not sufficient for their inactivation and that a functional J domain is required as well. This work connects the DnaJ and DnaK molecular chaperones to regulation of tumor suppressors by polyomavirus large T.
Collapse
Affiliation(s)
- Q Sheng
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
114
|
Westermann B, Neupert W. Mdj2p, a novel DnaJ homolog in the mitochondrial inner membrane of the yeast Saccharomyces cerevisiae. J Mol Biol 1997; 272:477-83. [PMID: 9325105 DOI: 10.1006/jmbi.1997.1267] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Members of the heat shock protein 70 (Hsp70) family mediate import, folding, assembly and degradation of proteins in mitochondria. The function of Hsp70 proteins is dependent on their interaction with cofactors, including members of the DnaJ protein family. The mitochondrial DnaJ homolog, Mdj1p, has been shown to cooperate with the major mitochondrial Hsp70, mt-Hsp70. We describe the identification of a second mitochondrial DnaJ homolog, Mdj2p, in the yeast Saccharomyces cerevisiae. The protein possesses an N-terminal transmembrane domain that anchors it in the mitochondrial inner membrane. The C-terminal J-domain shares 30% amino acid identity with the J-domain of Escherichia coli DnaJ and is exposed to the mitochondrial matrix. Mdj2p carries a putative internal mitochondrial targeting signal and is imported into mitochondria in a membrane potential-dependent manner. Deletion of the MDJ2 gene did not result in a detectable growth defect. Double mutants of mdj1 and mdj2 showed severe growth defects at elevated temperature, indicating a distinct overlap of the functions of Mdj1p and Mdj2p.
Collapse
Affiliation(s)
- B Westermann
- Institut für Physiologische Chemie der Universität München, Goethestrasse 33, München, D-80336, Germany
| | | |
Collapse
|
115
|
Cupp-Vickery JR, Vickery LE. Crystallization and preliminary X-ray crystallographic properties of Hsc20, a J-motif co-chaperone protein from Escherichia coli. Protein Sci 1997; 6:2028-30. [PMID: 9300502 PMCID: PMC2143788 DOI: 10.1002/pro.5560060923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hsc20 is a 20-kDa auxiliary protein that functions with the molecular chaperone Hsc66 in Escherichia coli. Crystals of Hsc20 suitable for X-ray diffraction analysis were grown using the hanging drop vapor diffusion technique in polyethylene glycol 400 containing dioxane as an additive to slow growth. The crystals are monoclinic and belong to the space group C2 with unit cell dimensions a = 125.4 A, b = 71.9 A, c = 68.8 A, and beta = 97.0 degrees. The crystals diffract to a minimum d-spacing of approximately 2.5 A resolution, and a native data set was collected to 2.7 A. The results of a self-rotation function analysis revealed threefold symmetry, suggesting three molecules of Hsc20 in the asymmetric unit and, hence, 12 molecules in the unit cell; this corresponds to a Vm value of 2.6 A3/Da and a solvent content of approximately 53% in the crystals. Structure determination by isomorphous replacement is in progress.
Collapse
Affiliation(s)
- J R Cupp-Vickery
- Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| | | |
Collapse
|
116
|
Ungewickell E, Ungewickell H, Holstein SE. Functional interaction of the auxilin J domain with the nucleotide- and substrate-binding modules of Hsc70. J Biol Chem 1997; 272:19594-600. [PMID: 9235966 DOI: 10.1074/jbc.272.31.19594] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The uncoating of clathrin-coated vesicles requires the DnaJ homologue auxilin for targeting Hsc70 to clathrin coats. This function involves a transient interaction of the auxilin J domain with Hsc70. We have now identified the structural elements of Hsc70 that are responsible for the uncoating activity, and we show that the hitherto accepted view, which implicates the 10-kDa carboxyl-terminal variable domain of Hsc70, is incorrect. A 60-kDa chymotryptic or analogous recombinant fragment of Hsc70, which contains the ATPase- and substrate-binding domains, is sufficient to liberate clathrin from coated vesicles. Consistent with this was the observation that Hsp70 uncoats coated vesicles with the same efficacy as Hsc70 and that DnaK possesses vestigial uncoating activity. Direct binding studies demonstrated that the auxilin J domain undergoes an ATP-dependent reaction only with fragments of Hsc70 that contain both the ATPase- and substrate-binding domains. The individual domains by themselves did not bind to the J domain nor did a recombinant protein that contained the substrate-binding domain attached to the 10-kDa variable domain.
Collapse
Affiliation(s)
- E Ungewickell
- Center for Immunology, Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
117
|
Srinivasan A, McClellan AJ, Vartikar J, Marks I, Cantalupo P, Li Y, Whyte P, Rundell K, Brodsky JL, Pipas JM. The amino-terminal transforming region of simian virus 40 large T and small t antigens functions as a J domain. Mol Cell Biol 1997; 17:4761-73. [PMID: 9234732 PMCID: PMC232328 DOI: 10.1128/mcb.17.8.4761] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Simian virus 40 (SV40) encodes two proteins, large T antigen and small t antigen that contribute to virus-induced tumorigenesis. Both proteins act by targeting key cellular regulatory proteins and altering their function. Known targets of the 708-amino-acid large T antigen include the three members of the retinoblastoma protein family (pRb, p107, and p130), members of the CBP family of transcriptional adapter proteins (cap-binding protein [CBP], p300, and p400), and the tumor suppressor p53. Small t antigen alters the activity of phosphatase pp2A and transactivates the cyclin A promoter. The first 82 amino acids of large T antigen and small t antigen are identical, and genetic experiments suggest that an additional target(s) important for transformation interacts with these sequences. This region contains a motif similar to the J domain, a conserved sequence found in the DnaJ family of molecular chaperones. We show here that mutations within the J domain abrogate the ability of large T antigen to transform mammalian cells. To examine whether a purified 136-amino-acid fragment from the T antigen amino terminus acts as a DnaJ-like chaperone, we investigated whether this fragment stimulates the ATPase activity of two hsc70s and discovered that ATP hydrolysis is stimulated four- to ninefold. In addition, ATPase-defective mutants of full-length T antigen, as well as wild-type small t antigen, stimulated the ATPase activity of hsc70. T antigen derivatives were also able to release an unfolded polypeptide substrate from an hsc70, an activity common to DnaJ chaperones. Because the J domain of T antigen plays essential roles in viral DNA replication, transcriptional control, virion assembly, and tumorigenesis, we conclude that this region may chaperone the rearrangement of multiprotein complexes.
Collapse
Affiliation(s)
- A Srinivasan
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Vickery LE, Silberg JJ, Ta DT. Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci 1997; 6:1047-56. [PMID: 9144776 PMCID: PMC2143690 DOI: 10.1002/pro.5560060511] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hscA and hscB genes of Escherichia coli encode novel chaperone and co-chaperone proteins, designated Hsc66 and Hsc20, respectively. We have overproduced and purified Hsc66 and Hsc20 in high yield in E. coli and describe their initial characterization including absorbance, fluorescence, and circular dichroism spectra. Immunoblot analyses of E. coli cultures using antisera to Hsc66 and Hsc20 raised in rabbits establish that Hsc66 and Hsc20 are constitutively expressed at levels corresponding to cell concentration approximately 20 microM and approximately 10 microM, respectively. The levels do not change appreciably following heat shock (44 degrees C), but a small increase in Hsc20 is observed following a shift to 10 degrees C. Purified Hsc66 exhibits a low intrinsic ATPase activity (approximately 0.6 min-1 at 37 degrees C), and Hsc20 was found to stimulate this activity up to 3.8-fold with half-maximal stimulation at a concentration approximately 5 microM. These findings suggest that Hsc66 and Hsc20 comprise a molecular chaperone system similar to the prokaryotic DnaK/DnaJ and eukaryotic hsp70/hsp40 systems. Sequence differences between Hsc66 and Hsc20 compared to other members of this chaperone family, however, suggest that the Hsc66/Hsc20 system will display different peptide binding specificity and that it is likely to be subject to different regulatory mechanisms. The high level of constitutive expression and the lack of a major response to temperature changes suggest that Hsc66 and Hsc20 play an important cellular role(s) under non-stress conditions.
Collapse
Affiliation(s)
- L E Vickery
- Department of Physiology and Biophysics, University of California Irvine 92697, USA.
| | | | | |
Collapse
|
119
|
Campbell KS, Mullane KP, Aksoy IA, Stubdal H, Zalvide J, Pipas JM, Silver PA, Roberts TM, Schaffhausen BS, DeCaprio JA. DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes Dev 1997; 11:1098-110. [PMID: 9159391 DOI: 10.1101/gad.11.9.1098] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The amino-terminal domain of SV40 large tumor antigen (TAg) is required for efficient viral DNA replication. However, the biochemical activity associated with this domain has remained obscure. We show here that the amino-terminal domain of TAg shares functional homology with the J-domain of DnaJ/hsp40 molecular chaperones. DnaJ proteins function as cofactors by regulating the activity of a member of the 70-kD heat shock protein family. Genetic analyses demonstrated that amino-terminal sequences of TAg comprise a novel J-domain that mediates a specific interaction with the constitutively expressed hsc70 and show that the J-domain is also required for efficient viral DNA replication in vivo. Furthermore, we demonstrated that the J-domain of two human DnaJ homologs, HSJ1 or DNAJ2, could substitute functionally for the amino-terminus of TAg in promoting viral DNA replication. Together, our findings suggest that TAg uses its J-domain to support SV40 DNA replication in a manner that is strikingly similar to the use of Escherichia coli DnaJ by bacteriophage lambda in DNA replication. However, TAg has evolved a more efficient strategy of DNA replication through an intrinsic J-domain to associate directly with a partner chaperone protein. Our observations provide evidence of a role for chaperone proteins in the process of eukaryotic DNA replication.
Collapse
Affiliation(s)
- K S Campbell
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
The characterization of molecular chaperones is of central importance for an understanding of cellular protein-folding reactions. Numerous biochemical and genetic studies have now been complemented by the high-resolution structures of Hsp70 and GroEL, representatives of the two major classes of chaperone proteins, and the availability of a complete eukaryotic genome, revealing the presence of 14 distinct genes for Hsp70s in the yeast Saccharomyces cerevisiae. Here, the authors focus on recent progress in understanding the interactions of Hsp70s with their substrates and the enzymology of their regulation.
Collapse
|
121
|
Abstract
Molecular chaperones of the Hsp70 and chaperonin families are basic constituents of the cellular machinery that mediates protein folding. Recent functional and structural studies corroborate existing models for the mechanism of these components. Highlights of the past year include the X-ray crystallographic analysis of the peptide-binding domain of the Escherichia coli Hsp70 homolog, DnaK, the direct demonstration of protein folding in the central cavity of the chaperonin GroEL, and the visualization of conformational changes in GroEL during the chaperonin folding cycle.
Collapse
Affiliation(s)
- J Martin
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J2, Providence, RI 02912, USA
| | | |
Collapse
|
122
|
Llosa M, Aloria K, Campo R, Padilla R, Avila J, Sánchez-Pulido L, Zabala JC. The beta-tubulin monomer release factor (p14) has homology with a region of the DnaJ protein. FEBS Lett 1996; 397:283-9. [PMID: 8955364 DOI: 10.1016/s0014-5793(96)01198-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
p14 is a molecular chaperone involved in beta-tubulin folding which catalyzes the release of beta-tubulin monomers from intermediate complexes. Here we demonstrate that active p14 protein which we have purified from an overproducing Escherichia coli strain can also release beta-tubulin monomers from tubulin dimers in the presence of an additional cofactor (Z). Analysis of p14 secondary structure suggests that this protein may belong to a family of conserved proteins which share structural similarities with the J-domain of DnaJ. We have constructed deletions and site-directed mutations in the p14 gene. A single D to E mutation in the region shown in DnaJ to be an essential loop for its function affected the monomer-release activity of p14. These results support the hypothesis that this p14 loop interacts with beta-tubulin in a similar fashion as DnaJ interacts with DnaK and suggest a possible role of p14 in the folding process.
Collapse
Affiliation(s)
- M Llosa
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
123
|
Liddington R, Frederick C. Paper Alert. Structure 1996. [DOI: 10.1016/s0969-2126(96)00118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|