101
|
Marker C, Zemann A, Terhörst T, Kiefmann M, Kastenmayer JP, Green P, Bachellerie JP, Brosius J, Hüttenhofer A. Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol 2002; 12:2002-13. [PMID: 12477388 DOI: 10.1016/s0960-9822(02)01304-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Genomes from all organisms known to date express two types of RNA molecules: messenger RNAs (mRNAs), which are translated into proteins, and non-messenger RNAs, which function at the RNA level and do not serve as templates for translation. RESULTS We have generated a specialized cDNA library from Arabidopsis thaliana to investigate the population of small non-messenger RNAs (snmRNAs) sized 50-500 nt in a plant. From this library, we identified 140 candidates for novel snmRNAs and investigated their expression, abundance, and developmental regulation. Based on conserved sequence and structure motifs, 104 snmRNA species can be assigned to novel members of known classes of RNAs (designated Class I snmRNAs), namely, small nucleolar RNAs (snoRNAs), 7SL RNA, U snRNAs, as well as a tRNA-like RNA. For the first time, 39 novel members of H/ACA box snoRNAs could be identified in a plant species. Of the remaining 36 snmRNA candidates (designated Class II snmRNAs), no sequence or structure motifs were present that would enable an assignment to a known class of RNAs. These RNAs were classified based on their location on the A. thaliana genome. From these, 29 snmRNA species located to intergenic regions, 3 located to intronic sequences of protein coding genes, and 4 snmRNA candidates were derived from annotated open reading frames. Surprisingly, 15 of the Class II snmRNA candidates were shown to be tissue-specifically expressed, while 12 are encoded by the mitochondrial or chloroplast genome. CONCLUSIONS Our study has identified 140 novel candidates for small non-messenger RNA species in the plant A. thaliana and thereby sets the stage for their functional analysis.
Collapse
Affiliation(s)
- Claudia Marker
- Institute of Experimental Pathology, ZMBE, Von-Esmarch-Str 56, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Hüttenhofer A, Brosius J, Bachellerie JP. RNomics: identification and function of small, non-messenger RNAs. Curr Opin Chem Biol 2002; 6:835-43. [PMID: 12470739 DOI: 10.1016/s1367-5931(02)00397-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the past few years, our knowledge about small non-mRNAs (snmRNAs) has grown exponentially. Approaches including computational and experimental RNomics have led to a plethora of novel snmRNAs, especially small nucleolar RNAs (snoRNAs). Members of this RNA class guide modification of ribosomal and spliceosomal RNAs. Novel targets for snoRNAs were identified such as tRNAs and potentially mRNAs, and several snoRNAs were shown to be tissue-specifically expressed. In addition, previously unknown classes of snmRNAs have been discovered. MicroRNAs and small interfering RNAs of about 21-23 nt, were shown to regulate gene expression by binding to mRNAs via antisense elements. Regulation of gene expression is exerted by degradation of mRNAs or translational regulation. snmRNAs play a variety of roles during regulation of gene expression. Moreover, the function of some snmRNAs known for decades, has been finally elucidated. Many other RNAs were identified by RNomics studies lacking known sequence and structure motifs. Future challenges in the field of RNomics include identification of the novel snmRNA's biological roles in the cell.
Collapse
Affiliation(s)
- Alexander Hüttenhofer
- Institute of Experimental Pathology, ZMBE, Von-Esmarch-Str. 56, 48149, Münster, Germany.
| | | | | |
Collapse
|
103
|
Abstract
In this paper we critically review the 'classical' model for the emergence of the three domains (Archaea, Bacteria, Eucarya), which presents hyperthermophilic procaryotes as the ancestors of all life on this planet. We come to the conclusion that our last common ancestor is likely to have been rather a non-hyperthermophilic protoeucaryote endowed with sn-1,2 glycerol ester lipids (as in modern Bacteria and Eucarya), from which Archaea emerged by streamlining under pressure for adapting to heat, a process which involved an important molecular innovation: the advent of sn-2,3 glycerol ether lipids. The nature of the primeval bacterial lines of descent is less clear; it would appear, nevertheless, that the first extreme- and hyperthermophilic Bacteria emerged by converging mechanisms; lateral gene transfer from Archaea may have played a role in this adaptation.
Collapse
Affiliation(s)
- Ying Xu
- Microbiology, Free University of Brussels (VUB), JM Wiame Institute for Microbiology, 1 avenue Emile Gryzon, B-1070, Brussels, Belgium.
| | | |
Collapse
|
104
|
Higa S, Maeda N, Kenmochi N, Tanaka T. Location of 2(')-O-methyl nucleotides in 26S rRNA and methylation guide snoRNAs in Caenorhabditis elegans. Biochem Biophys Res Commun 2002; 297:1344-9. [PMID: 12372436 DOI: 10.1016/s0006-291x(02)02377-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many nucleotides in rRNAs are modified. We devised a method to locate 2(')-O-methyl nucleotide residues using a conventional DNA sequencer. We found 38 2(')-O-methyl nucleotides in the 26S rRNA of Caenorhabditis elegans using this method. Fourteen of the 38 residues are conserved in both human and yeast rRNAs and 14 residues are conserved in either human or yeast rRNA. The remaining 10 nucleotides are uniquely methylated in C. elegans 26S rRNA. We searched the C. elegans genomic sequence for small nucleolar RNAs (snoRNAs), which guide the methylation of ribose residues, and predicted 18 snoRNA sequences that are expected to guide the methylation of some of these nucleotide residues.
Collapse
Affiliation(s)
- Sayomi Higa
- Department of Biochemistry, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, 903-0215, Okinawa, Japan
| | | | | | | |
Collapse
|
105
|
Szewczak LBW, DeGregorio SJ, Strobel SA, Steitz JA. Exclusive interaction of the 15.5 kD protein with the terminal box C/D motif of a methylation guide snoRNP. CHEMISTRY & BIOLOGY 2002; 9:1095-107. [PMID: 12401494 DOI: 10.1016/s1074-5521(02)00239-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Box C/D small nucleolar RNAs (snoRNAs) direct site-specific methylation of ribose 2'-hydroxyls in ribosomal and spliceosomal RNAs. To identify snoRNA functional groups contributing to assembly of an active box C/D snoRNP in Xenopus oocytes, we developed an in vivo nucleotide analog interference mapping procedure. Deleterious substitutions consistent with requirements for binding the 15.5 kD protein clustered within the terminal box C/D motif only. In vitro analyses confirmed a single interaction site for recombinant 15.5 kD protein and identified the exocyclic amine of A89 in box D as essential for binding. Our results argue that the 15.5 kD protein interacts asymmetrically with the two sets of conserved box C/D elements and that its binding is primarily responsible for the stability of box C/D snoRNAs in vivo.
Collapse
|
106
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
107
|
Liang D, Zhou H, Zhang P, Chen YQ, Chen X, Chen CL, Qu LH. A novel gene organization: intronic snoRNA gene clusters from Oryza sativa. Nucleic Acids Res 2002; 30:3262-72. [PMID: 12136108 PMCID: PMC135747 DOI: 10.1093/nar/gkf426] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on the analysis of structural features and conserved elements, 27 novel snoRNA genes have been identified from rice. All of them belong to the C/D box-containing snoRNA family except for one that belongs to the H/ACA box type. The newly found genes fall into six clusters that comprise at least three snoRNA genes, and in one case as many as nine genes. Interestingly, four of the six clusters are located within the largest intron of a protein coding gene. The majority of intronic snoRNA gene clusters are simply formed by multiple copies of the same species of snoRNA gene that possess the identical functional elements. This implies a possible mechanism of duplication for the origin of repeating snoRNA coding regions in one intron. However, a few intronic snoRNA gene clusters consisting of different snoRNAs species were also observed. Polycistronic precursors from two independently transcribed clusters were demonstrated by RT-PCR and individual snoRNAs processed from the polycistronic precursors were positively determined by reverse transcription assay. Analyses of the intergenic spacers in the clusters showed that, in addition to a very high AT content, the processing signals in rice snoRNA polycistronic transcripts might be different from those of yeast. Our results demonstrate that, in both plants and mammals, numerous snoRNAs can be produced simultaneously from an mRNA precursor of a host gene despite the different arrangements. The intronic snoRNA gene cluster is a novel gene organization, which is so far unique to plants. The conservation of intronic snoRNA gene clusters in plants was further demonstrated by the study of a similar snoRNA gene organization in the first intron of a Hsp70 gene from wild rice and Zizania caduciflora.
Collapse
Affiliation(s)
- Dan Liang
- Key Laboratory of Gene Engineering of Education Ministry, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
108
|
Cahill NM, Friend K, Speckmann W, Li ZH, Terns RM, Terns MP, Steitz JA. Site-specific cross-linking analyses reveal an asymmetric protein distribution for a box C/D snoRNP. EMBO J 2002; 21:3816-28. [PMID: 12110593 PMCID: PMC126121 DOI: 10.1093/emboj/cdf376] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 05/21/2002] [Accepted: 05/24/2002] [Indexed: 11/13/2022] Open
Abstract
Methylation of the ribose 2'-hydroxyl, the most widespread modification of ribosomal and splicesomal RNAs, is guided by the box C/D class of small nucleolar RNAs (snoRNAs). Box C/D small nucleolar ribonucleoproteins (snoRNPs) contain four core proteins: fibrillarin, Nop56, Nop58 and 15.5 kDa. We constructed U25 snoRNAs containing a single photoactivatable 4-thiouridine at each U position within the conserved box C/D and C'/D' motifs. Proteins assembled on the snoRNA after injection into Xenopus oocyte nuclei were identified by cross-linking, and reconstituted particles characterized by functional rescue and mutational analyses. Our data argue that box C/D snoRNPs are asymmetric, with the C' box contacting Nop56 and fibrillarin, the C box interacting with Nop58, and the D and D' boxes contacting fibrillarin. No cross-link to 15.5 kDa was detected; its binding is disrupted by 4-thiouridine substitution in position 1 of the C box. Repositioning the guide sequence of U25 upstream of box D instead of D' revealed that both C/D motifs have the potential to function as guide centers, but, surprisingly, there was no alteration in protein cross-linking.
Collapse
Affiliation(s)
| | | | - Wayne Speckmann
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536 and
Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA Corresponding author e-mail:
| | - Zhu-Hong Li
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536 and
Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA Corresponding author e-mail:
| | - Rebecca M. Terns
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536 and
Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA Corresponding author e-mail:
| | - Michael P. Terns
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536 and
Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA Corresponding author e-mail:
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536 and
Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA Corresponding author e-mail:
| |
Collapse
|
109
|
Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Hüttenhofer A. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci U S A 2002; 99:7536-41. [PMID: 12032318 PMCID: PMC124276 DOI: 10.1073/pnas.112047299] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a specialized cDNA library from the archaeon Archaeoglobus fulgidus we have identified a total of 86 different expressed RNA sequences potentially encoding previously uncharacterized small non-messenger RNA (snmRNA) species. Ten of these RNAs resemble eukaryotic small nucleolar RNAs, which guide rRNA 2'-O-methylations (C/D-box type) and pseudouridylations (H/ACA-box type). Thereby, we identified four candidates for H/ACA small RNAs in an archaeal species that are predicted to guide a total of six rRNA pseudouridylations. Furthermore, we have verified the presence of the six predicted pseudouridines experimentally. We demonstrate that 22 snmRNAs are transcribed from a family of short tandem repeats conserved in most archaeal genomes and shown previously to be potentially involved in replicon partitioning. In addition, four snmRNAs derived from the rRNA operon of A. fulgidus were identified and shown to be generated by a splicing/processing pathway of pre-rRNAs. The remaining 50 RNAs could not be assigned to a known class of snmRNAs because of the lack of known structure and/or sequence motifs. Regarding their location on the genome, only nine were located in intergenic regions, whereas 33 were complementary to an ORF, five were overlapping an ORF, and three were derived from the sense orientation within an ORF. Our study further supports the importance of snmRNAs in all three domains of life.
Collapse
Affiliation(s)
- Thean-Hock Tang
- Institute of Experimental Pathology, Von-Esmarch-Strasse 56, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Klein RJ, Misulovin Z, Eddy SR. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc Natl Acad Sci U S A 2002; 99:7542-7. [PMID: 12032319 PMCID: PMC124278 DOI: 10.1073/pnas.112063799] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncoding RNA (ncRNA) genes that produce functional RNAs instead of encoding proteins seem to be somewhat more prevalent than previously thought. However, estimating their number and importance is difficult because systematic identification of ncRNA genes remains challenging. Here, we exploit a strong, surprising DNA composition bias in genomes of some hyperthermophilic organisms: simply screening for GC-rich regions in the AT-rich Methanococcus jannaschii and Pyrococcus furiosus genomes efficiently detects both known and new RNA genes with a high degree of secondary structure. A separate screen based on comparative analysis also successfully identifies noncoding RNA genes in P. furiosus. Nine of the 30 new candidate genes predicted by these screens have been verified to produce discrete, apparently noncoding transcripts with sizes ranging from 97 to 277 nucleotides.
Collapse
Affiliation(s)
- Robert J Klein
- Howard Hughes Medical Institute and Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
111
|
Abstract
Noncoding RNAs (ncRNAs) have been found to have roles in a great variety of processes, including transcriptional regulation, chromosome replication, RNA processing and modification, messenger RNA stability and translation, and even protein degradation and translocation. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined. These findings raise several fundamental questions: How many ncRNAs are encoded by a genome? Given the absence of a diagnostic open reading frame, how can these genes be identified? How can all the functions of ncRNAs be elucidated?
Collapse
MESH Headings
- Animals
- Base Pairing
- Catalysis
- Chromosomes/physiology
- Chromosomes/ultrastructure
- Evolution, Molecular
- Gene Silencing
- Humans
- Protein Biosynthesis
- Protein Transport
- Proteins/metabolism
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/physiology
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
112
|
Omer AD, Ziesche S, Ebhardt H, Dennis PP. In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. Proc Natl Acad Sci U S A 2002; 99:5289-94. [PMID: 11959980 PMCID: PMC122762 DOI: 10.1073/pnas.082101999] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genomes of hyperthermophilic Archaea encode dozens of methylation guide, C/D box small RNAs that guide 2'-O-methylation of ribose to specific sites in rRNA and various tRNAs. The genes encoding the Sulfolobus homologues of eukaryotic proteins that are known to be present in C/D box small nucleolar ribonucleoprotein (snoRNP) complexes were cloned, and the proteins (aFIB, aNOP56, and aL7a) were expressed and purified. The purified proteins along with an in vitro transcript of the Sulfolobus sR1 small RNA were reconstituted in vitro, into an RNP complex. The order of assembly of the three proteins onto the RNA was aL7a, aNOP56, and aFIB. The complex was active in targeting S-adenosyl methionine (SAM)-dependent, site-specific 2'-O-methylation of ribose to a short fragment of ribosomal RNA (rRNA) that was complementary to the D box guide region of the sR1 small RNA. The presence of aFIB was essential for methylation; mutant proteins having amino acid replacements in the SAM-binding motif of aFIB were able to assemble into an RNP complex, but the resulting complexes were defective in methylation activity. These experiments define the minimal number of components and the conditions required to achieve in vitro RNA guide-directed 2'-O-methylation of ribose in a target RNA.
Collapse
Affiliation(s)
- Arina D Omer
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
113
|
Tang TH, Rozhdestvensky TS, d'Orval BC, Bortolin ML, Huber H, Charpentier B, Branlant C, Bachellerie JP, Brosius J, Hüttenhofer A. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 2002; 30:921-30. [PMID: 11842103 PMCID: PMC100335 DOI: 10.1093/nar/30.4.921] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bulge-helix-bulge (BHB) motif recognised by the archaeal splicing endonuclease is also found in the long processing stems of archaeal rRNA precursors in which it is cleaved to generate pre-16S and pre-23S rRNAs. We show that in two species, Archaeoglobus fulgidus and Sulfolobus solfataricus, representatives from the two major archaeal kingdoms Euryarchaeota and Crenarchaeota, respectively, the pre-rRNA spacers cleaved at the BHB motifs surrounding pre-16S and pre-23S rRNAs subsequently become ligated. In addition, we present evidence that this is accompanied by circularization of ribosomal pre-16S and pre-23S rRNAs in both species. These data reveal a further link between intron splicing and pre-rRNA processing in Archaea, which might reflect a common evolutionary origin of the two processes. One spliced RNA species designated 16S-D RNA, resulting from religation at the BHB motif of 16S pre-rRNA, is a highly abundant and stable RNA which folds into a three-stem structure interrupted by two single-stranded regions as assessed by chemical probing. It spans a region of the pre-rRNA 5' external transcribed spacer exhibiting a highly conserved folding pattern in Archaea. Surprisingly, 16S-D RNA contains structural motifs found in archaeal C/D box small RNAs and binds to the L7Ae protein, a core component of archaeal C/D box RNPs. This supports the notion that it might have an important but still unknown role in pre-rRNA biogenesis or might even target RNA molecules other than rRNA.
Collapse
MESH Headings
- Archaeoglobus fulgidus/genetics
- Archaeoglobus fulgidus/metabolism
- Base Sequence
- Electrophoretic Mobility Shift Assay
- Introns
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splicing
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomal Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Sulfolobus/genetics
- Sulfolobus/metabolism
Collapse
Affiliation(s)
- Thean Hock Tang
- Institut für Experimentelle Pathologie/Molekulare Neurobiologie (ZMBE), Universität Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Kuhn JF, Tran EJ, Maxwell ES. Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. Nucleic Acids Res 2002; 30:931-41. [PMID: 11842104 PMCID: PMC100351 DOI: 10.1093/nar/30.4.931] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent investigations have identified homologs of eukaryotic box C/D small nucleolar RNAs (snoRNAs) in Archaea termed sRNAs. Archaeal homologs of the box C/D snoRNP core proteins fibrillarin and Nop56/58 have also been identified but a homolog for the eukaryotic 15.5kD snoRNP protein has not been described. Our sequence analysis of archaeal genomes reveals that the highly conserved ribosomal protein L7 exhibits extensive homology with the eukaryotic 15.5kD protein. Protein binding studies demonstrate that recombinant Methanoccocus jannaschii L7 protein binds the box C/D snoRNA core motif with the same specificity and affinity as the eukaryotic 15.5kD protein. Identical to the eukaryotic 15.5kD core protein, archaeal L7 requires a correctly folded box C/D core motif and intact boxes C and D. Mutational analysis demonstrates that critical features of the box C/D core motif essential for 15.5kD binding are also required for L7 interaction. These include stem I which juxtaposes boxes C and D, as well as the sheared G:A pairs and protruded pyrimidine nucleotide of the asymmetric bulge region. The demonstrated presence of L7Ae in the Haloarcula marismortui 50S ribosomal subunit, taken with our demonstration of the ability of L7 to bind to the box C/D snoRNA core motif, indicates that this protein serves a dual role in Archaea. L7 functioning as both an sRNP core protein and a ribosomal protein could potentially regulate and coordinate sRNP assembly with ribosome biogenesis.
Collapse
Affiliation(s)
- Jeffrey F Kuhn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Box 7622, Raleigh, NC 27695-7622, USA
| | | | | |
Collapse
|
115
|
Speckmann WA, Li ZH, Lowe TM, Eddy SR, Terns RM, Terns MP. Archaeal guide RNAs function in rRNA modification in the eukaryotic nucleus. Curr Biol 2002; 12:199-203. [PMID: 11839271 DOI: 10.1016/s0960-9822(02)00655-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In eukaryotes, many Box C/D small nucleolar RNAs base pair with ribosomal RNA through short complementary guide sequences, thereby marking up to 100 individual nucleotides of ribosomal RNA for 2'-O-methylation. Function of the eukaryotic Box C/D RNAs depends upon interaction with at least six known proteins. Box C/D RNAs are not known to exist in Bacteria but were recently identified in Archaea by biochemical analysis and computational genomic screens and have likely evolved independently in Archaea and Eukarya for more than 2000 million years. We have microinjected Box C/D RNAs from Pyrococcus furiosus, a hyperthermophilic archaeon, into the nuclei of oocytes from the aquatic frog Xenopus laevis. Our results show that Box C/D RNAs derived from this prokaryote are retained in the nucleus, localize to nucleoli, and interact with the X. laevis Box C/D RNA binding proteins fibrillarin, Nop56, and Nop58. Furthermore, we have demonstrated the ability of archaeal Box C/D RNAs to direct site-specific 2'-O-methylation of ribosomal RNA. Our studies have revealed the remarkable ability of archaeal Box C/D RNAs to assemble into functional RNA-protein complexes in the eukaryotic nucleus.
Collapse
Affiliation(s)
- Wayne A Speckmann
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
116
|
Schut GJ, Zhou J, Adams MW. DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence for anNew type of sulfur-reducing enzyme complex. J Bacteriol 2001; 183:7027-36. [PMID: 11717259 PMCID: PMC95549 DOI: 10.1128/jb.183.24.7027-7036.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2001] [Accepted: 09/21/2001] [Indexed: 01/01/2023] Open
Abstract
DNA microarrays were constructed by using 271 open reading frame (ORFs) from the genome of the archaeon Pyrococcus furiosus. They were used to investigate the effects of elemental sulfur (S(primary)) on the levels of gene expression in cells grown at 95 degrees C with maltose as the carbon source. The ORFs included those that are proposed to encode proteins mainly involved in the pathways of sugar and peptide catabolism, in the metabolism of metals, and in the biosynthesis of various cofactors, amino acids, and nucleotides. The expression of 21 ORFs decreased by more than fivefold when cells were grown with S(primary) and, of these, 18 encode subunits associated with three different hydrogenase systems. The remaining three ORFs encode homologs of ornithine carbamoyltransferase and HypF, both of which appear to be involved in hydrogenase biosynthesis, as well as a conserved hypothetical protein. The expression of two previously uncharacterized ORFs increased by more than 25-fold when cells were grown with S(primary). Their products, termed SipA and SipB (for sulfur-induced proteins), are proposed to be part of a novel S(primary)-reducing, membrane-associated, iron-sulfur cluster-containing complex. Two other previously uncharacterized ORFs encoding a putative flavoprotein and a second FeS protein were upregulated more than sixfold in S(primary)-grown cells, and these are also thought be involved in S(primary) reduction. Four ORFs that encode homologs of proteins involved in amino acid metabolism were similarly upregulated in S(primary)-grown cells, a finding consistent with the fact that growth on peptides is a S(primary)-dependent process. An ORF encoding a homolog of the eukaryotic rRNA processing protein, fibrillarin, was also upregulated sixfold in the presence of S(primary), although the reason for this is as yet unknown. Of the 20 S(primary)-independent ORFs that are the most highly expressed (at more than 20 times the detection limit), 12 of them represent enzymes purified from P. furiosus, but none of the products of the 34 S(primary)-independent ORFs that are not expressed above the detection limit have been characterized. These results represent the first derived from the application of DNA microarrays to either an archaeon or a hyperthermophile.
Collapse
Affiliation(s)
- G J Schut
- Department of Biochemistry and Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
117
|
Abstract
Non-coding RNA (ncRNA) genes produce functional RNA molecules rather than encoding proteins. However, almost all means of gene identification assume that genes encode proteins, so even in the era of complete genome sequences, ncRNA genes have been effectively invisible. Recently, several different systematic screens have identified a surprisingly large number of new ncRNA genes. Non-coding RNAs seem to be particularly abundant in roles that require highly specific nucleic acid recognition without complex catalysis, such as in directing post-transcriptional regulation of gene expression or in guiding RNA modifications.
Collapse
Affiliation(s)
- S R Eddy
- Howard Hughes Medical Institute and Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
118
|
Clouet d'Orval B, Bortolin ML, Gaspin C, Bachellerie JP. Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 2001; 29:4518-29. [PMID: 11713301 PMCID: PMC92551 DOI: 10.1093/nar/29.22.4518] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following a search of the Pyrococcus genomes for homologs of eukaryotic methylation guide small nucleolar RNAs, we have experimentally identified in Pyrococcus abyssi four novel box C/D small RNAs predicted to direct 2'-O-ribose methylations onto the first position of the anticodon in tRNALeu(CAA), tRNALeu(UAA), elongator tRNAMet and tRNATrp, respectively. Remarkably, one of them corresponds to the intron of its presumptive target, pre-tRNATrp. This intron is predicted to direct in cis two distinct ribose methylations within the unspliced tRNA precursor, not only onto the first position of the anticodon in the 5' exon but also onto position 39 (universal tRNA numbering) in the 3' exon. The two intramolecular RNA duplexes expected to direct methylation, which both span an exon-intron junction in pre-tRNATrp, are phylogenetically conserved in euryarchaeotes. We have experimentally confirmed the predicted guide function of the box C/D intron in halophile Haloferax volcanii by mutagenesis analysis, using an in vitro splicing/RNA modification assay in which the two cognate ribose methylations of pre-tRNATrp are faithfully reproduced. Euryarchaeal pre-tRNATrp should provide a unique system to further investigate the molecular mechanisms of RNA-guided ribose methylation and gain new insights into the origin and evolution of the complex family of archaeal and eukaryotic box C/D small RNAs.
Collapse
MESH Headings
- Base Sequence
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- Genome, Archaeal
- Introns/genetics
- Methylation
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Nucleosides/genetics
- Nucleosides/metabolism
- Nucleotides/genetics
- Nucleotides/metabolism
- Phylogeny
- Plasmids/genetics
- Pyrococcus/genetics
- Pyrococcus/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Trp/genetics
- RNA, Transfer, Trp/metabolism
- Ribose/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- B Clouet d'Orval
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
119
|
Abstract
Ribosomal RNAs (rRNAs) from all sources contain modified nucleosides, whose numbers range from a few in mitochondrial rRNA to more than 200 in the complete rRNAs of some higher eukaryotes. In eukaryotic rRNA the great majority of modified nucleosides are 2'-O-methylated nucleosides or pseudouridines. The locations of most of the 2'-O-methylated nucleosides in rRNA from some representative eukaryotes are known from studies whose aim was full characterization of rRNA methylation. More recently, and particularly in connection with the discovery of methylation guide RNAs, it is often required to check for the presence or absence of 2'-O-methyl nucleosides at specified locations within rRNA. Three methods that can be applied for such "local" objectives are reviewed. Two of the methods are based on primer extension by reverse transcriptase. They exploit, respectively, a tendency of 2'-O-methyl groups to impede reverse transcriptase at low dNTP concentrations, or the resistance of phosphodiester bonds adjacent to 2'-O-methyl groups to alkaline hydrolysis. Examples of these methods are summarized. Although the two methods are relatively straightforward, they suffer from various experimental limitations, as discussed. The third method is technically more sophisticated but is capable of overcoming the limitations of the first two methods. It is based on the resistance of a target 2'-O-methylated site to cleavage by RNase H when the site is hybridized to an appropriate chimeric oligonucleotide. An overview of the approaches and methods now available for the complete mapping of 2'-O-methyl groups in rRNA is presented.
Collapse
Affiliation(s)
- B E Maden
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
120
|
King TH, Decatur WA, Bertrand E, Maxwell ES, Fournier MJ. A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins. Mol Cell Biol 2001; 21:7731-46. [PMID: 11604509 PMCID: PMC99944 DOI: 10.1128/mcb.21.22.7731-7746.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of small nucleolar RNA-protein complexes (snoRNPs) consists of synthesis of the snoRNA and protein components, snoRNP assembly, and localization to the nucleolus. Recently, two nucleoplasmic proteins from mice were observed to bind to a model box C/D snoRNA in vitro, suggesting that they function at an early stage in snoRNP biogenesis. Both proteins have been described in other contexts. The proteins, called p50 and p55 in the snoRNA binding study, are highly conserved and related to each other. Both have Walker A and B motifs characteristic of ATP- and GTP-binding and nucleoside triphosphate-hydrolyzing domains, and the mammalian orthologs have DNA helicase activity in vitro. Here, we report that the Saccharomyces cerevisiae ortholog of p50 (Rvb2, Tih2p, and other names) is required for production of C/D snoRNAs in vivo and, surprisingly, H/ACA snoRNAs as well. Point mutations in the Walker A and B motifs cause temperature-sensitive or lethal growth phenotypes and severe defects in snoRNA accumulation. Notably, depletion of p50 (called Rvb2 in this study) also impairs localization of C/D and H/ACA core snoRNP proteins Nop1p and Gar1p, suggesting a defect(s) in snoRNP assembly or trafficking to the nucleolus. Findings from other studies link Rvb2 orthologs with chromatin remodeling and transcription. Taken together, the present results indicate that Rvb2 is involved in an early stage of snoRNP biogenesis and may play a role in coupling snoRNA synthesis with snoRNP assembly and localization.
Collapse
Affiliation(s)
- T H King
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, 01003, USA
| | | | | | | | | |
Collapse
|
121
|
Abstract
In eukaryotes, the C/D box family of small nucleolar (sno)RNAs contain complementary guide regions that are used to direct 2'-O-ribose methylation to specific nucleotide positions within rRNA during the early stages of ribosome biogenesis. Direct cDNA cloning and computational genome searches have revealed homologues of C/D box snoRNAs (called sRNAs) in prokaryotic Archaea that grow at high temperature. The guide sequences within the sRNAs indicate that they are used to direct methylation to nucleotides in both rRNAs and tRNAs. The number of sRNA genes that are detectable within currently sequenced genomes correlates with the optimal growth temperature. We suggest that archaeal sRNAs may have two functions: to guide the deposition of methyl groups at the 2'-O position of ribose, which is an important determinant in RNA structural stability, and to serve as a molecular chaperones to help orchestrate the folding of rRNAs and tRNAs at high temperature.
Collapse
Affiliation(s)
- P P Dennis
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | | | | |
Collapse
|
122
|
Barneche F, Gaspin C, Guyot R, Echeverría M. Identification of 66 box C/D snoRNAs in Arabidopsis thaliana: extensive gene duplications generated multiple isoforms predicting new ribosomal RNA 2'-O-methylation sites. J Mol Biol 2001; 311:57-73. [PMID: 11469857 DOI: 10.1006/jmbi.2001.4851] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dozens of box C/D small nucleolar RNAs (snoRNAs) have recently been found in eukaryotes (vertebrates, yeast), ancient eukaryotes (trypanosomes) and archae, that specifically target ribosomal RNA sites for 2'-O-ribose methylation. Although early biochemical data revealed that plant rRNAs are among the most highly ribomethylated in eukaryotes, only a handful of methylation guide snoRNAs have been characterized in this kingdom. We report 66 novel box C/D snoRNAs identified by computational screening of Arabidopsis genomic sequences that are expressed in vivo from either single genes, 17 different clusters or three introns. At the structural level, many box C/D snoRNAs have dual antisense elements often matching rRNA regions close to each other on the rRNA secondary structure, which is reminiscent of their archaeal counterparts. Remarkable specimens are found that display two antisense elements having the potential to form an extended snoRNA-rRNA duplex of 23 to 30 nt, in line with the hypothetical function of box C/D snoRNAs in pre-rRNA folding or chaperoning. In contrast to other species, many Arabidopsis snoRNAs are found in multiple isoforms mainly resulting from two different mechanisms: large chromosomal duplications and small tandem duplications producing polycistronic genes. The discovery of numerous different snoRNAs, some of them arising from common ancestors, provide new insights to understand snoRNAs evolution and the birth of new rRNA methylation sites in plants and other organisms.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Chromosomes/genetics
- Computational Biology
- Evolution, Molecular
- Gene Duplication
- Genes, Duplicate/genetics
- Genes, Plant/genetics
- Genetic Variation/genetics
- Methylation
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribose/chemistry
- Ribose/metabolism
- Ribosomal Proteins/metabolism
- Tandem Repeat Sequences/genetics
Collapse
Affiliation(s)
- F Barneche
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, UMR CNRS 5096, 52 Avenue de Villeneuve, Perpignan Cedex, 66860, France
| | | | | | | |
Collapse
|
123
|
Affiliation(s)
- T Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
124
|
Cavaillé J, Vitali P, Basyuk E, Hüttenhofer A, Bachellerie JP. A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J Biol Chem 2001; 276:26374-83. [PMID: 11346658 DOI: 10.1074/jbc.m103544200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antisense box C/D small nucleolar RNAs (snoRNAs) guide the 2'-O-ribose methylations of eukaryotic rRNAs and small nuclear RNAs (snRNAs) through formation of a specific base pairing at each RNA methylation site. By analysis of a box C/D snoRNA cDNA library constructed from rat brain RNAs, we have identified a novel box C/D snoRNA, RBII-36, which is devoid of complementarity to rRNA or an snRNA and exhibits a brain-specific expression pattern. It is uniformly expressed in all major areas of adult rat brain (except for choroid plexus) and throughout rat brain ontogeny but exclusively detected in neurons in which it exhibits a nucleolar localization. In vertebrates, known methylation guide snoRNAs are intron-encoded and processed from transcripts of housekeeping genes. In contrast, RBII-36 snoRNA is intron-encoded in a gene preferentially expressed in the rat central nervous system and not in proliferating cells. Remarkably, this host gene, which encodes a previously reported noncoding RNA, Bsr, spans tandemly repeated 0.9-kilobase units including the snoRNA-containing intron. The novel brain-specific snoRNA appears to result not only from processing of the debranched lariat but also from endonucleolytic cleavages of unspliced Bsr RNA (i.e. an alternative splicing-independent pathway unreported so far for mammalian intronic snoRNAs). Sequences homologous to RBII-36 snoRNA were exclusively detected in the Rattus genus of rodents, suggesting a very recent origin of this brain-specific snoRNA.
Collapse
Affiliation(s)
- J Cavaillé
- UMR5099, Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul-Sabatier, 118 route de Narbonne, Toulouse 31062, France.
| | | | | | | | | |
Collapse
|
125
|
Collins BM, Harrop SJ, Kornfeld GD, Dawes IW, Curmi PM, Mabbutt BC. Crystal structure of a heptameric Sm-like protein complex from archaea: implications for the structure and evolution of snRNPs. J Mol Biol 2001; 309:915-23. [PMID: 11399068 DOI: 10.1006/jmbi.2001.4693] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautotrophicum at 2.0 A resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta-strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta-sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis.
Collapse
Affiliation(s)
- B M Collins
- Department of Chemistry, Macquarie University, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
126
|
Qu LH, Meng Q, Zhou H, Chen YQ, Liang-Hu Q, Qing M, Hui Z, Yue-Qin C. Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana. Nucleic Acids Res 2001; 29:1623-30. [PMID: 11266566 PMCID: PMC31268 DOI: 10.1093/nar/29.7.1623] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Revised: 02/05/2001] [Accepted: 02/05/2001] [Indexed: 11/13/2022] Open
Abstract
Ten novel small nucleolar RNA (snoRNA) gene clusters, consisting of two or three snoRNA genes, respectively, were identified from Arabidopsis thaliana. Twelve of the 25 snoRNA genes in these clusters are homologous to those of yeast and mammals according to the conserved antisense sequences that guide 2'-O-ribose methylation of rRNA. The remaining 13 snoRNA genes, including two 5.8S rRNA methylation guides, are new genes identified from A.thaliana. Interestingly, seven methylated nucleotides, predicted by novel snoRNAs Z41a-Z46, are methylated neither in yeast nor in vertebrates. Using primer extension at low dNTP concentration the six methylation sites were determined as expected. These snoRNAs were recognized as specific guides for 2'-O:-ribose methylation of plant rRNAs. Z42, however, did not guide the expected methylation of 25S rRNA in our assay. Thus, its function remains to be elucidated. The intergenic spacers of the gene clusters are rich in uridine (up to 40%) and most of them range in size from 35 to 100 nt. Lack of a conserved promoter element in each spacer and the determination of polycistronic transcription from a cluster by RT-PCR assay suggest that the snoRNAs encoded in the clusters are transcribed as a polycistron under an upstream promoter, and individual snoRNAs are released after processing of the precursor. Numerous snoRNA gene clusters identified from A.thaliana and other organisms suggest that the snoRNA gene cluster is an ancient gene organization existing abundantly in plants.
Collapse
Affiliation(s)
- L H Qu
- Key Laboratory of Gene Engineering of Education Ministry, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Most box C/D small nucleolar RNAs (snoRNAs) direct the formation of 2'-O-methylated nucleotides in ribosomal RNA and, apparently, other RNAs present in the nucleolar complex. Sites to be modified are selected by a long (>10-nt) antisense guide sequence in the snoRNA and a distance measurement from a box D or D' element that follows the snoRNA guide sequence. Modification of the substrate occurs in the region of complementarity, at a position five nucleotides upstream from box D/D'. Methylation can be targeted to novel sites by expressing a snoRNA with a new guide sequence. In some cases methylation impairs the growth rate of the cell, indicating that a functionally important nucleotide has been altered. With a view to harnessing snoRNA-directed methylation for functional mapping, we have developed a method for constructing libraries of snoRNA genes that, in principle, can introduce methylation point mutations into any rRNA segment of interest. The strategy and procedures are described here, and preliminary results are presented that show the feasibility of using this technology to probe a region of the yeast large subunit rRNA that includes the core of the peptidyltransferase center.
Collapse
Affiliation(s)
- B Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
128
|
Mayer C, Suck D, Poch O. The archaeal homolog of the Imp4 protein, a eukaryotic U3 snoRNP component. Trends Biochem Sci 2001; 26:143-4. [PMID: 11246005 DOI: 10.1016/s0968-0004(00)01779-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Homologs of the Imp4 protein, a component specific to the eukaryotic U3 snoRNP complex, have been found in all archaeal genomes. The archaeal and eukaryotic Imp4 proteins that are related to four other protein families, the Imp4-like, the SSF1 homologs and two sets of hypothetical proteins, are characterized by the Imp4 signature pattern. These findings, together with the presence of other snoRNPs homologs in Archaea, provide evidence for similar RNA processing and folding in Eukarya and Archaea.
Collapse
Affiliation(s)
- C Mayer
- Structural and Computational Biology Programme, EMBL, Meyerhofstr. 1, 69012 Heidelberg, Germany.
| | | | | |
Collapse
|
129
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
130
|
Filipowicz W. Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc Natl Acad Sci U S A 2000; 97:14035-7. [PMID: 11121012 PMCID: PMC34092 DOI: 10.1073/pnas.97.26.14035] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- W Filipowicz
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland.
| |
Collapse
|
131
|
Watkins NJ, Ségault V, Charpentier B, Nottrott S, Fabrizio P, Bachi A, Wilm M, Rosbash M, Branlant C, Lührmann R. A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell 2000; 103:457-66. [PMID: 11081632 DOI: 10.1016/s0092-8674(00)00137-9] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The box C/D snoRNAs function in directing 2'-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5 kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5 kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/ 15.5 kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Evolution, Molecular
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Deletion
- HeLa Cells
- Humans
- Molecular Weight
- Nucleic Acid Conformation
- Precipitin Tests
- Protein Binding
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/isolation & purification
- Ribonucleoproteins, Small Nucleolar/metabolism
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Substrate Specificity
- Yeasts/genetics
- Yeasts/metabolism
Collapse
Affiliation(s)
- N J Watkins
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Zelluläre Biochemie, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|