101
|
Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, Weiser D, Hahn H, Carr AN, Syed F, Mavila N, Jha L, Qian J, Marreez Y, Chen G, McGraw DW, Heist EK, Guerrero JL, DePaoli-Roach AA, Hajjar RJ, Kranias EG. Enhancement of Cardiac Function and Suppression of Heart Failure Progression By Inhibition of Protein Phosphatase 1. Circ Res 2005; 96:756-66. [PMID: 15746443 DOI: 10.1161/01.res.0000161256.85833.fa] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal calcium cycling, characteristic of experimental and human heart failure, is associated with impaired sarcoplasmic reticulum calcium uptake activity. This reflects decreases in the cAMP-pathway signaling and increases in type 1 phosphatase activity. The increased protein phosphatase 1 activity is partially due to dephosphorylation and inactivation of its inhibitor-1, promoting dephosphorylation of phospholamban and inhibition of the sarcoplasmic reticulum calcium-pump. Indeed, cardiac-specific expression of a constitutively active inhibitor-1 results in selective enhancement of phospholamban phosphorylation and augmented cardiac contractility at the cellular and intact animal levels. Furthermore, the beta-adrenergic response is enhanced in the transgenic hearts compared with wild types. On aortic constriction, the hypercontractile cardiac function is maintained, hypertrophy is attenuated and there is no decompensation in the transgenics compared with wild-type controls. Notably, acute adenoviral gene delivery of the active inhibitor-1, completely restores function and partially reverses remodeling, including normalization of the hyperactivated p38, in the setting of pre-existing heart failure. Thus, the inhibitor 1 of the type 1 phosphatase may represent an attractive new therapeutic target.
Collapse
Affiliation(s)
- Anand Pathak
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0575, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Lokuta AJ, Maertz NA, Meethal SV, Potter KT, Kamp TJ, Valdivia HH, Haworth RA. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 2005; 111:988-95. [PMID: 15710754 DOI: 10.1161/01.cir.0000156461.81529.d7] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Reduced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a isoform) activity is a major determinant of reduced contractility in heart failure. Ca2+-ATPase inactivation can occur through SERCA2a nitration. We therefore investigated the role of SERCA2a nitration in heart failure. METHODS AND RESULTS We measured SERCA2a levels and nitrotyrosine levels in tissue from normal and failing human hearts using Western blots. We found that nitrotyrosine levels in idiopathic dilated cardiomyopathic (DCM) hearts were almost double those of control hearts in age-matched groups. Nitrotyrosine was dominantly present in a single protein with the molecular weight of SERCA2a, and immunoprecipitation confirmed that the protein recognized by the nitrotyrosine antibody was SERCA2a. There was a positive correlation between the time to half relaxation and the nitrotyrosine/SERCA2a content (P<0.01) in myocytes isolated from control and DCM hearts. In experiments with isolated SR vesicles from porcine hearts, we also showed that the Ca pump is inactivated by peroxynitrite exposure, and inactivation was prevented by protein kinase A pretreatment. CONCLUSIONS We conclude that SERCA2a inactivation by nitration may contribute to Ca pump failure and hence heart failure in DCM.
Collapse
Affiliation(s)
- Andrew J Lokuta
- Department of Physiology, University of Wisconsin, Madison, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Cohen N, Ilgiyaev E, Almoznino-Sarafian D, Alon I, Shteinshnaider M, Chachashvily S, Modai D, Gorelik O. Sex-related bedside clinical variables associated with survival of older inpatients with heart failure. Eur J Heart Fail 2004; 6:781-6. [PMID: 15542416 DOI: 10.1016/j.ejheart.2003.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 12/01/2003] [Accepted: 12/24/2003] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Little is known about sex-related differences in factors affecting prognosis of heart failure (HF). We prospectively investigated the relationship between bedside clinical variables and survival of older females vs. males with HF. METHODS Included were consecutive unselected inpatients, age >/=60 years, admitted for various acute conditions. HF was chronic and of diverse etiologies. Follow-up extended up to 5 years. All-cause mortality was registered and statistically analyzed for association with in-hospital clinical variables. RESULTS Included were 162 females and 200 males. Survival rates were 52.4% and 59%, respectively, (P=0.1). Advanced age and renal dysfunction (RD) were associated with low survival in both sexes (P<0.03 and 0.02, P<0.001 and 0.01, respectively). An association with low survival was found with respect to; admission for pulmonary edema (P<0.02), using furosemide >/=80 mg/day (P<0.005) and severe HF [NYHA class III-IV (P<0.01)] in females, as well as for hypokalemia (P<0.03) and hypocalcemia (P<0.03) in males. On multivariate analysis RD (P<0.001), increasing age (P=0.008) and furosemide dosage >/=80 mg (P=0.02) were most significantly associated with low survival in females, while RD only was significantly associated with low survival in males (P=0.03). CONCLUSIONS Several clinical variables, which affect prognosis in older HF patients are sex-related and probably carry practical significance.
Collapse
Affiliation(s)
- Natan Cohen
- Department of Internal Medicine F, Assaf Harofeh Medical Center, Zerifin, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, 70300, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Ren J, Ceylan-Isik AF. Diabetic cardiomyopathy: do women differ from men? Endocrine 2004; 25:73-83. [PMID: 15711018 DOI: 10.1385/endo:25:2:073] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 10/17/2004] [Accepted: 10/21/2004] [Indexed: 11/11/2022]
Abstract
Although many aspects of cardiovascular disease are similar between women and men, it is becoming increasingly obvious that there are significant differences as well. Premenopausal women usually have a lower risk of cardiovascular diseases than age-matched men and postmenopausal women. However, the "female advantage" disappears once women are afflicted with diabetes mellitus. Heart diseases are twice as common in diabetic men and five times as common in diabetic women. It is believed that differences in sex hormones and intrinsic myocardial and endothelial functions between men and women may be responsible for this female "advantage" and "disadvantage" in normal and diabetic conditions. Most experimental and clinical studies on diabetes only included male subjects and failed to address this important gender difference in diabetic heart complications. Although female hearts may be better tolerated to stress (such as ischemia) insults than their male counterparts, female sex hormone such as estrogen may interact with certain risk factors under diabetes which may compromise the overall cardiac function. The benefit versus risk of estrogen replacement therapy on cardiac function and overall cardiovascular health in diabetes remains controversial. This review will focus on gender-related difference in diabetic heart complication--diabetic cardiomyopathy--and if gender differences in intrinsic myocardial contraction, polyol pathway metabolism, and advanced glycation endproduct formation and other neuroendocrinal regulatory mechanisms to the heart may contribute to disparity in diabetic cardiomyopathy between men and women.
Collapse
Affiliation(s)
- Jun Ren
- Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
105
|
Haghighi K, Gregory KN, Kranias EG. Sarcoplasmic reticulum Ca-ATPase–phospholamban interactions and dilated cardiomyopathy. Biochem Biophys Res Commun 2004; 322:1214-22. [PMID: 15336969 DOI: 10.1016/j.bbrc.2004.07.164] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Indexed: 10/26/2022]
Abstract
Dilated cardiomyopathy is a disease of the heart muscle resulting from a diverse array of conditions that damages the heart and impairs myocardial function. Heart failure occurs when the heart is unable to pump blood at a rate which can accommodate the heart muscle's metabolic requirements. Several signaling pathways have been shown to be involved in the induction of cardiac disease and heart failure. Many of these pathways are linked to cardiac sarcoplasmic reticulum (SR) Ca cycling directly or indirectly. A large body of evidence points to the central role of abnormal Ca handling by SR proteins, Ca-ATPase pump (SERCA2a) and phospholamban (PLN), in pathophysiological heart conditions, compromising the contractile state of the cardiomyocytes. This review summarizes studies which highlight the key role of these two SR proteins in the regulation of cardiac function, the significance of SERCA2a-PLN interactions using transgenic approaches, and the recent discoveries of human PLN mutations leading to disease states. Finally, we will discuss extrapolation of experimental paradigms generated in animal models to the human condition.
Collapse
Affiliation(s)
- Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
106
|
Fan GC, Gregory KN, Zhao W, Park WJ, Kranias EG. Regulation of myocardial function by histidine-rich, calcium-binding protein. Am J Physiol Heart Circ Physiol 2004; 287:H1705-11. [PMID: 15191886 DOI: 10.1152/ajpheart.01211.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Impaired sarcoplasmic reticulum (SR) Ca release has been suggested to contribute to the depressed cardiac function in heart failure. The release of Ca from the SR may be regulated by the ryanodine receptor, triadin, junctin, calsequestrin, and a histidine-rich, Ca-binding protein (HRC). We observed that the levels of HRC were reduced in animal models and human heart failure. To gain insight into the physiological function of HRC, we infected adult rat cardiac myocytes with a recombinant adenovirus that contains the full-length mouse HRC cDNA. Overexpression (1.7-fold) of HRC in adult rat cardiomyocytes was associated with increased SR Ca load (28%) but decreased SR Ca-induced Ca release (37%), resulting in impaired Ca cycling and depressed fractional shortening (36%) as well as depressed rates of shortening (38%) and relengthening (33%). Furthermore, the depressed basal contractile and Ca kinetic parameters in the HRC-infected myocytes remained significantly depressed even after maximal isoproterenol stimulation. Interestingly, HRC overexpresssion was accompanied by increased protein levels of junctin (1.4-fold) and triadin (1.8-fold), whereas the protein levels of ryanodine receptor, calsequestrin, phospholamban, and sarco(endo)plasmic reticulum Ca-ATPase remained unaltered. Collectively, these data indicate that alterations in expression levels of HRC are associated with impaired cardiac SR Ca homeostasis and contractile function.
Collapse
Affiliation(s)
- Guo-Chang Fan
- Dept. of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | | | | | | | | |
Collapse
|
107
|
Zhong Y, Reiser PJ, Matlib MA. Gender differences in myosin heavy chain-beta and phosphorylated phospholamban in diabetic rat hearts. Am J Physiol Heart Circ Physiol 2003; 285:H2688-93. [PMID: 12933346 DOI: 10.1152/ajpheart.00547.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine whether a gender difference exists in myosin heavy chain (MHC) isoform or sarcoplasmic reticulum protein levels in diabetic rat hearts. As is the case with normal rodent hearts, all four chambers of the control rat hearts expressed almost 100% MHC-alpha. In 6-wk diabetic rats, MHC-beta expression in ventricles of males was significantly greater (78 +/- 7%) than in females (50 +/- 5%). The cardiac sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) protein level was decreased and the phospholamban (PLB) protein level was increased in the left ventricle of diabetic rats, but there was no difference between male and female diabetic rats. The phosphorylated PLB level was decreased more in male than in female diabetic rats. Insulin treatment completely normalized blood glucose level, cardiac SERCA2a and PLB protein levels, and the decrease in MHC-beta levels in both male and female diabetic rats. Insulin treatment completely normalized serum insulin and almost completely normalized phosphorylation of PLB at serine 16 in male diabetic rats. Although insulin treatment completely normalized serum insulin levels in male diabetic rats, in females it only partially normalized serum insulin levels. Also, insulin treatment almost completely normalized phosphorylation of PLB at threonine 17 in female diabetic rats; however, the increase was significantly greater than that identified for insulin-treated male diabetic rats. We conclude that higher levels of MHC-beta and dephosphorylated PLB may contribute to more contractile dysfunction in male than in female diabetic rat hearts, and that phosphorylation of PLB at threonine 17 is more responsive to insulin in female diabetic rat hearts.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH 43267-0575, USA
| | | | | |
Collapse
|
108
|
Genovesi S, Rivera R, Fabbrini P, Dossi C, Bonforte G, Mircoli L, Ferrari AU, Stella A, Stramba-Badiale M. Dynamic QT interval analysis in uraemic patients receiving chronic haemodialysis. J Hypertens 2003; 21:1921-6. [PMID: 14508199 DOI: 10.1097/00004872-200310000-00020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To analyse the duration of the QT interval and its relationship with heart rate changes in patients with uraemia, before and during haemodialysis. METHODS QT and RR intervals were measured automatically using a dedicated algorithm with 24-h Holter recordings in 29 patients (15 women) receiving chronic haemodialysis. QT corrected for heart rate (QTc) and the slope of QT/RR linear regression were calculated. Arterial blood pressure (ABP) was measured before and during haemodialysis. Plasma concentrations of K+, Mg2+ and Ca2+ were assessed before and after haemodialysis. RESULTS ABP decreased significantly from baseline (102.7 +/- 11.0 mmHg) during the first (100.6 +/- 8.8 mmHg, P < 0.05), second (95.6 +/- 10.6 mmHg, P < 0.05), and third (94.9 +/- 10.3 mmHg, P < 0.05) hours of haemodialysis. QTc was longer during haemodialysis than during a 4-h period of no dialysis (447 +/- 28 ms compared with 429 +/- 22 ms, P < 0.001), and increased progressively during haemodialysis, with the greatest value during the last hour of haemodialysis (454 +/- 32 ms compared with 426 +/- 22 ms, P < 0.001). QT/RR slopes and correlation coefficients were lower during haemodialysis than during the period of no dialysis (0.13 +/- 0.08 compared with 0.20 +/- 0.07, P < 0.001 and 0.48 +/- 0.30 compared with 0.81 +/- 0.20, respectively; P < 0.001), suggesting a reduced ability to adapt the QT interval in response to changes in heart rate. The effects of haemodialysis on QT interval and the QT/RR relationship were greater in women than in men. QTc variations during dialysis were not correlated with changes in ABP, but were inversely related to changes in Ca2+ concentration (r2 = 0.35; P = 0.001). CONCLUSIONS In patients with uraemia, the haemodialysis session induces a progressive increase in QT interval and modifies its relationship with heart rate. These effects may predispose some individuals to ventricular arrhythmias at the end of and immediately after the haemodialysis session.
Collapse
Affiliation(s)
- Simonetta Genovesi
- DIMEP Università degli Studi di Milano Bicocca, Monza, Ospedale di Desio, Desio, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 2003; 4:566-77. [PMID: 12838339 DOI: 10.1038/nrm1151] [Citation(s) in RCA: 806] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heart failure is a major cause of death and disability. Impairments in blood circulation that accompany heart failure can be traced, in part, to alterations in the activity of the sarcoplasmic reticulum Ca2+ pump that are induced by its interactions with phospholamban, a reversible inhibitor. If phospholamban becomes superinhibitory or chronically inhibitory, contractility is diminished, inducing dilated cardiomyopathy in mice and humans. In mice, phospholamban seems to encumber an otherwise healthy heart, but humans with a phospholamban-null genotype develop early-onset dilated cardiomyopathy.
Collapse
Affiliation(s)
- David H MacLennan
- Banting and Best Department of Medical Research, University of Toronto, Charles H. Best Institute, 112 College Street, Toronto, Ontario M5G 1L6, Canada.
| | | |
Collapse
|
110
|
Bernecker OY, del Monte F, Hajjar RJ. Gene therapy for the treatment of heart failure--calcium signaling. Semin Thorac Cardiovasc Surg 2003; 15:268-76. [PMID: 12973704 DOI: 10.1016/s1043-0679(03)70006-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The knowledge of molecular mechanisms indicated in cardiac dysfunction has increased dramatically over the last decade and yields considerable potential for new treatment options in heart failure. Alterations in intracellular calcium signaling play a crucial role in the pathophysiology of heart failure, and in recent years, somatic gene transfer has been identified as an important tool to help understand the relative contribution of specific calcium-handling proteins in heart failure. This article reviews recent advances in gene delivery techniques aimed at global myocardial transfection and discusses molecular therapeutic targets identified within intracellular calcium signaling pathways in heart failure.
Collapse
Affiliation(s)
- Oliver Y Bernecker
- Program in Cardiovascular Gene Therapy, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
111
|
Schwinger RHG, Frank KF. Calcium and the failing heart: phospholamban, good guy or bad guy? SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:pe15. [PMID: 12721389 DOI: 10.1126/stke.2003.180.pe15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In cardiac cells, phospholamban is a potent inhibitor of sarcoplasmic reticulum calcium (Ca(2+)) transport. Overexpression of mutant forms of phospholamban may result in beneficial or detrimental effects on intracellular Ca(2+) handling and cardiac systolic and diastolic function. Mutations in phospholamban have also been linked to human cardiomyopathies, providing important insights into the underlying disease mechanisms and the key role of phospholamban in myocardial excitation-contraction coupling. This Perspective discusses new advances in our understanding of the role of phospholamban in intracellular Ca(2+) handling and the development of human and murine cardiomyopathies.
Collapse
Affiliation(s)
- Robert H G Schwinger
- Laboratory of Muscle Research and Molecular Cardiology, Department of Internal Medicine III, Joseph-Stelzmannstrasse, 50924 Köln, Germany.
| | | |
Collapse
|
112
|
Brittsan AG, Ginsburg KS, Chu G, Yatani A, Wolska BM, Schmidt AG, Asahi M, MacLennan DH, Bers DM, Kranias EG. Chronic SR Ca2+-ATPase inhibition causes adaptive changes in cellular Ca2+ transport. Circ Res 2003; 92:769-76. [PMID: 12637367 DOI: 10.1161/01.res.0000066661.49920.59] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phospholamban, the critical regulator of the cardiac SERCA2a Ca2+ affinity, is phosphorylated at Ser16 and Thr17 during beta-adrenergic stimulation (eg, isoproterenol). To assess the impact of nonphosphorylatable phospholamban, a S16A, T17A double-mutant (DM) was introduced into phospholamban knockout mouse hearts. Transgenic lines expressing DM phospholamban at levels similar to wild types (WT) were identified. In vitro phosphorylation confirmed that DM phospholamban could not be phosphorylated, but produced the same shift in EC50 of SERCA2a for Ca2+ as unphosphorylated WT phospholamban. Rates of basal twitch [Ca2+]i decline were not different in DM versus WT cardiomyocytes. Isoproterenol increased the rates of twitch [Ca2+]i decline in WT, but not DM myocytes, confirming the prominent role of phospholamban phosphorylation in this response. Increased L-type Ca2+ current (ICa) density, with unaltered characteristics, was the major compensation in DM myocytes. Consequently, the normal beta-adrenergic-induced increase in ICa caused larger dynamic changes in absolute ICa density. Isoproterenol increased Ca2+ transients to a comparable amplitude in DM and WT. There were no changes in myofilament Ca2+ sensitivity, or the expression levels and Ca2+ removal activities of other Ca2+-handling proteins. Nor was there evidence of cardiac remodeling up to 10 months of age. Thus, chronic inhibition of SERCA2a by ablation of phospholamban phosphorylation (abolishing its adrenergic regulation) results in a unique cellular adaptation involving greater dynamic ICa modulation. This ICa modulation may partly compensate for the loss in SERCA2a responsiveness and thereby partially normalize beta-adrenergic inotropy in DM phospholamban mice.
Collapse
Affiliation(s)
- Angela G Brittsan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, PO Box 670575, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, Fan GC, Tsiapras D, Hahn HS, Adamopoulos S, Liggett SB, Dorn GW, MacLennan DH, Kremastinos DT, Kranias EG. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003; 111:869-76. [PMID: 12639993 PMCID: PMC153772 DOI: 10.1172/jci17892] [Citation(s) in RCA: 341] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In human disease and experimental animal models, depressed Ca(2+) handling in failing cardiomyocytes is widely attributed to impaired sarcoplasmic reticulum (SR) function. In mice, disruption of the PLN gene encoding phospholamban (PLN) or expression of dominant-negative PLN mutants enhances SR and cardiac function, but effects of PLN mutations in humans are unknown. Here, a T116G point mutation, substituting a termination codon for Leu-39 (L39stop), was identified in two families with hereditary heart failure. The heterozygous individuals exhibited hypertrophy without diminished contractile performance. Strikingly, both individuals homozygous for L39stop developed dilated cardiomyopathy and heart failure, requiring cardiac transplantation at ages 16 and 27. An over 50% reduction in PLN mRNA and no detectable PLN protein were noted in one explanted heart. The expression of recombinant PLN-L39stop in human embryonic kidney (HEK) 293 cells and adult rat cardiomyocytes showed no PLN inhibition of SR Ca(2+)-ATPase and the virtual absence of stable PLN expression; where PLN was expressed, it was misrouted to the cytosol or plasma membrane. These findings describe a naturally-occurring loss-of-function human PLN mutation (PLN null). In contrast to reported benefits of PLN ablation in mouse heart failure, humans lacking PLN develop lethal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, Fan GC, Tsiapras D, Hahn HS, Adamopoulos S, Liggett SB, Dorn GW, MacLennan DH, Kremastinos DT, Kranias EG. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003. [DOI: 10.1172/jci17892 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
115
|
Chen X, Piacentino V, Furukawa S, Goldman B, Margulies KB, Houser SR. L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res 2002; 91:517-24. [PMID: 12242270 DOI: 10.1161/01.res.0000033988.13062.7c] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+ influx through the L-type calcium channel (LTCC) induces Ca2+ release from the sarcoplasmic reticulum (SR) and maintains SR Ca2+ loading. Alterations in LTCC properties, their contribution to the blunted adrenergic responsiveness in failing hearts and their recovery after support with LV assist devices (LVAD) were studied. L-type Ca2+ current (I(Ca,L)) was measured under basal conditions and in the presence of isoproterenol (ISO), dibutyryl-cAMP (db-cAMP), Bay K 8644 (BayK), Okadaic acid (OA, a phosphatase inhibitor), and phosphatase 2A (PP2A) in nonfailing (NF), failing (F), and LVAD-supported human left ventricular myocytes (HVMs). Basal I(Ca,L) density was not different in the 3 groups but I(Ca,L) was activated at more negative voltages in F- and LVAD- versus NF-HVMs (V(0.5): -7.18+/-1.4 and -7.0+/-0.9 versus 0.46+/-1.1 mV). Both ISO and db-cAMP increased I(Ca,L) in NF- and LVAD- significantly more than in F-HVMs (NF >LVAD> F: ISO: 90+/-15% versus 77+/-19% versus 24+/-12%; db-cAMP: 235%>172%>90%). ISO caused a significant leftward shift of the I(Ca,L) activation curve in NF- and LVAD- but not in F-HVMs. After ISO and db-cAMP, the I(Ca,L) activation was not significantly different between groups. BayK also increased I(Ca,L) more in NF- (81+/-30%) and LVAD- (70+/-15%) than in F- (51+/-8%) HVMs. OA increased I(Ca, L) by 85.6% in NF-HVMs but had no effect in F-HVMs, while PP2A decreased I(Ca, L) in F-HVMs by 35% but had no effect in NF-HVMs. These results suggest that the density of LTCC is reduced in F-HVMs but basal I(Ca,L) density is maintained by increasing in LTCC phosphorylation.
Collapse
Affiliation(s)
- Xiongwen Chen
- Cardiovascular Research Group, Temple University School of Medicine, Philadelphia, Pa 19140, USA
| | | | | | | | | | | |
Collapse
|
116
|
Rathore SS, Wang Y, Krumholz HM. Sex-based differences in the effect of digoxin for the treatment of heart failure. N Engl J Med 2002; 347:1403-11. [PMID: 12409542 DOI: 10.1056/nejmoa021266] [Citation(s) in RCA: 405] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Digitalis Investigation Group trial reported that treatment with digoxin did not decrease overall mortality among patients with heart failure and depressed left ventricular systolic function, although it did reduce hospitalizations slightly. Even though the epidemiologic features, causes, and prognosis of heart failure vary between men and women, sex-based differences in the effect of digoxin were not evaluated. METHODS We conducted a post hoc subgroup analysis to assess whether there were sex-based differences in the effect of digoxin therapy among the 6800 patients in the Digitalis Investigation Group study. The presence of an interaction between sex and digoxin therapy with respect to the primary end point of death from any cause was evaluated with the use of Mantel-Haenszel tests of heterogeneity and a multivariable Cox proportional-hazards model, adjusted for demographic and clinical variables. RESULTS There was an absolute difference of 5.8 percent (95 percent confidence interval, 0.5 to 11.1) between men and women in the effect of digoxin on the rate of death from any cause (P=0.034 for the interaction). Specifically, women who were randomly assigned to digoxin had a higher rate of death than women who were randomly assigned to placebo (33.1 percent vs. 28.9 percent; absolute difference, 4.2 percent, 95 percent confidence interval, -0.5 to 8.8). In contrast, the rate of death was similar among men randomly assigned to digoxin and men randomly assigned to placebo (35.2 percent vs. 36.9 percent; absolute difference, -1.6 percent; 95 percent confidence interval, -4.2 to 1.0). In the multivariable analysis, digoxin was associated with a significantly higher risk of death among women (adjusted hazard ratio for the comparison with placebo, 1.23; 95 percent confidence interval, 1.02 to 1.47), but it had no significant effect among men (adjusted hazard ratio, 0.93; 95 percent confidence interval, 0.85 to 1.02; P=0.014 for the interaction). CONCLUSIONS The effect of digoxin therapy differs between men and women. Digoxin therapy is associated with an increased risk of death from any cause among women, but not men, with heart failure and depressed left ventricular systolic function.
Collapse
Affiliation(s)
- Saif S Rathore
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale-New Haven Hospital, New Haven, Conn, USA
| | | | | |
Collapse
|
117
|
Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2002; 283:H1398-408. [PMID: 12234790 DOI: 10.1152/ajpheart.00313.2002] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The goal of the study was to determine whether defects in intracellular Ca(2+) signaling contribute to cardiomyopathy in streptozotocin (STZ)-induced diabetic rats. Depression in cardiac systolic and diastolic function was traced from live diabetic rats to isolated individual myocytes. The depression in contraction and relaxation in myocytes was found in parallel with depression in the rise and decline of intracellular free Ca(2+) concentration ([Ca(2+)](i)). The sarcoplasmic reticulum (SR) Ca(2+) store and rates of Ca(2+) release and resequestration into SR were depressed in diabetic rat myocytes. The rate of Ca(2+) efflux via sarcolemmal Na(+)/Ca(2+) exchanger was also depressed. However, there was no change in the voltage-dependent L-type Ca(2+) channel current that triggers Ca(2+) release from the SR. The depression in SR function was associated with decreased SR Ca(2+)-ATPase and ryanodine receptor proteins and increased total and nonphosphorylated phospholamban proteins. The depression of Na(+)/Ca(2+) exchanger activity was associated with a decrease in its protein level. Thus it is concluded that defects in intracellular Ca(2+) signaling caused by alteration of expression and function of the proteins that regulate [Ca(2+)](i) contribute to cardiomyopathy in STZ-induced diabetic rats. The increase in phospholamban, decrease in Na(+)/Ca(2+) exchanger, and unchanged L-type Ca(2+) channel activity in this model of diabetic cardiomyopathy are distinct from other types of cardiomyopathy.
Collapse
Affiliation(s)
- Kin M Choi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Affiliation(s)
- Gerd Hasenfuss
- Department of Cardiology and Pneumology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | |
Collapse
|