101
|
Fong KP, Goh CB, Tan HM. The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542. Plasmid 2000; 43:103-10. [PMID: 10686128 DOI: 10.1006/plas.1999.1442] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two directly repeated sequences of the IS elements IS1489v1 and IS1489v2 flank the benzene dioxygenase (bedC1C2BA) and the cis-benzene dihydrodiol dehydrogenase (bedD) genes on the catabolic plasmid pHMT112 in Pseudomonas putida ML2, forming a Class-I-type composite transposon, Tn5542. Both IS1489v1 and IS1489v2 contain an identical 1371-bp open reading frame, tnpA, that is preceded by a possible ribosome binding site. The tnpA gene of IS1489v1 is bound by a pair of 40-bp imperfect inverted repeats while that of IS1489v2 is flanked only by the left inverted repeat. The tnpA gene codes for a putative 53-kDa polypeptide of 456 amino acids bearing similarity to transposases encoded on IS elements of P. alcaligenes, P. aeruginosa, P. stutzeri, and Serratia marcescens. The basic nature of the putative TnpA protein with a deduced pI of 8.93 is typical of IS-encoded transposases. Similar to other IS elements, an outward facing promoter was detected at the right end of IS1489v1. Experiments involving the suicide vector, pKNG101, failed to show transposition of Tn5542.
Collapse
Affiliation(s)
- K P Fong
- Department of Microbiology, National University of Singapore, Singapore, 119260
| | | | | |
Collapse
|
102
|
Laramée L, Lawrence JR, Greer CW. Molecular analysis and development of 16S rRNA oligonucleotide probes to characterize a diclofop-methyl-degrading biofilm consortium. Can J Microbiol 2000; 46:133-42. [PMID: 10721481 DOI: 10.1139/w99-129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic DNA from nine individual bacteria, isolated from a diclofop-methyl-degrading biofilm consortium, was extracted for genetic characterization. The degradation of diclofop-methyl produces metabolites that are known intermediates or substrates for bacteria that degrade a variety of chlorinated aromatic compounds. Accordingly, oligonucleotide primers were designed from specific catabolic genes for chlorinated organic degradation pathways, and tested by PCR to determine if these genes are involved in diclofop-methyl degradation. DNA homology between the PCR products and the known catabolic genes investigated by Southern hybridization analysis and by sequencing, suggested that novel catabolic genes are functioning in the isolates. Specific fluorescent oligonucleotides were designed for two of the isolates, following 16S rDNA sequencing and identification of each of the isolates. These probes were successfully used for fluorescent in situ hybridization (FISH) studies of the two isolates in the biofilm consortium.
Collapse
Affiliation(s)
- L Laramée
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | | |
Collapse
|
103
|
Laurie AD, Lloyd-Jones G. Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. Biochem Biophys Res Commun 1999; 262:308-14. [PMID: 10448110 DOI: 10.1006/bbrc.1999.1153] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have compared the sequence and gene order of meta-cleavage pathway operons from alpha- and gamma-subgroups of the Proteobacteria with operons from Burkholderia sp. strain RP007 which belongs to the beta-subgroup of the Proteobacteria. Burkholderia RP007 was isolated for its ability to degrade phenanthrene and contains two meta-cleavage operons. One exhibits a comparable gene order to previously characterised gamma-subgroup Proteobacterial (Pseudomonas) meta operons, whilst the other has distinctive features present in both alpha- and gamma-subgroup Proteobacterial (Sphingomonas and Pseudomonas) meta operons. Gene sequence conservation, highlighted by examining the phylogeny of Proteobacterial catechol 2,3-dioxygenase sequences, reveals that sequences generally cluster in a manner which correlates with the taxonomic grouping of the Proteobacterial subgroup from which they originated.
Collapse
Affiliation(s)
- A D Laurie
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
104
|
Bosch R, García-Valdés E, Moore ER. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 1999; 236:149-57. [PMID: 10433976 DOI: 10.1016/s0378-1119(99)00241-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas stutzeri strain AN10 is a naphthalene-degrading strain whose dissimilatory genes are chromosomally encoded. We sequenced a total of 11514bp including the entire naphthalene-degradation upper pathway (nah) of P. stutzeri AN10. Nine open reading frames, nahAaAbAcAdBFCED, encoding the enzymes for the degradation of naphthalene to salicylate, were identified. The nah genes of P. stutzeri AN10 have been compared with genes encoding isofunctional proteins from other Pseudomonas naphthalene-degradation upper pathways. The implications of the sequence homologies to the evolution of aromatic catabolic pathways are discussed. Our findings indicate that this entire catabolic module of P. stutzeri AN10 was recruited from other microorganisms and a short period of time has elapsed after its incorporation within the P. stutzeri AN10 genome. Comparisons also suggest the coexistence of two entire nah upper pathways in a host strain, and further recombination between them. These events could accelerate the evolution of modern catabolic pathways.
Collapse
Affiliation(s)
- R Bosch
- Departament de Biologia, Microbiologia, Universitat de les Illes Balears, and Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07071, Palma de Mallorca, Spain.
| | | | | |
Collapse
|
105
|
Bosch R, Moore ER, García-Valdés E, Pieper DH. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J Bacteriol 1999; 181:2315-22. [PMID: 10197990 PMCID: PMC93652 DOI: 10.1128/jb.181.8.2315-2322.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genes, nahG and nahW, encoding two independent salicylate 1-hydroxylases have been identified in the naphthalene-degrading strain Pseudomonas stutzeri AN10. While nahG resides in the same transcriptional unit as the meta-cleavage pathway genes, forming the naphthalene degradation lower pathway, nahW is situated outside but in close proximity to this transcriptional unit. The nahG and nahW genes of P. stutzeri AN10 are induced and expressed upon incubation with salicylate, and the enzymes that are encoded, NahG and NahW, are involved in naphthalene and salicylate metabolism. Both genes, nahG and nahW, have been cloned in Escherichia coli JM109. The overexpression of these genes yields peptides with apparent molecular masses of 46 kDa (NahG) and 43 kDa (NahW), respectively. Both enzymes exhibit broad substrate specificities and metabolize salicylate, methylsalicylates, and chlorosalicylates. However, the relative rates by which the substituted analogs are transformed differ considerably.
Collapse
Affiliation(s)
- R Bosch
- Departament de Biologia, Microbiologia, Universitat de les Illes Balears, and Institut Mediterrani d'Estudis Avançats, 07071, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
106
|
Hwang S, Kim SJ, Kim CK, Kim Y, Kim SJ, Kim YC. The phnIJ genes encoding acetaldehyde dehydrogenase (acylating) and 4-hydroxy-2-oxovalerate aldolase in Pseudomonas sp. DJ77 and their evolutionary implications. Biochem Biophys Res Commun 1999; 256:469-73. [PMID: 10080921 DOI: 10.1006/bbrc.1999.0355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two final steps of meta-cleavage pathway for catechol degradation involve conversion of 4-hydroxy-2-oxovalerate, via acetaldehyde, to acetyl coenzyme A. We report here the complete nucleotide sequences and overexpression of the phnIJ genes for an acetaldehyde dehydrogenase (acylating) (ADA) and a 4-hydroxy-2-oxovalerate aldolase (HOA) from the meta-pathway operon of the phenanthrene-degrading bacterium, Pseudomonas sp. strain DJ77. Additional partial sequence analysis of adjacent DNA shows the gene order within the operon to be phnHIJ, identical to the order found for the isofunctional genes in the other meta-pathway operons. The deduced amino acid sequences of the PhnI (312 amino acids) and PhnJ (343 amino acids) have identities of 51-71% with the corresponding genes of dmp, xyl, nah, bph_LB400, bph_KKS102, tod, cum, cmt, and MTCY03C7 operons. The phylogenetic analyses reveal the evolutionary relationships of HOA and ADA.
Collapse
Affiliation(s)
- S Hwang
- School of Life Sciences, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | | | |
Collapse
|
107
|
Mars AE, Kingma J, Kaschabek SR, Reineke W, Janssen DB. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J Bacteriol 1999; 181:1309-18. [PMID: 9973359 PMCID: PMC93510 DOI: 10.1128/jb.181.4.1309-1318.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth. A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol 2,3-dioxygenase (cbzE) was cloned and sequenced. The cbzE gene appeared to be plasmid localized and was found in a region that also harbors genes encoding a transposase, a ferredoxin that was homologous to XylT, an open reading frame with similarity to a protein of a meta-cleavage pathway with unknown function, and a 2-hydroxymuconic semialdehyde dehydrogenase. CbzE was most similar to catechol 2,3-dioxygenases of the 2.C subfamily of type 1 extradiol dioxygenases (L. D. Eltis and J. T. Bolin, J. Bacteriol. 178:5930-5937, 1996). The substrate range and turnover capacity with 3-chlorocatechol were determined for CbzE and four related catechol 2,3-dioxygenases. The results showed that CbzE was the only enzyme that could productively convert 3-chlorocatechol. Besides, CbzE was less susceptible to inactivation by methylated catechols. Hybrid enzymes that were made of CzbE and the catechol 2, 3-dioxygenase of P. putida UCC2 (TdnC) showed that the resistance of CbzE to suicide inactivation and its substrate specificity were mainly determined by the C-terminal region of the protein.
Collapse
Affiliation(s)
- A E Mars
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
108
|
Reineke W. Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 1999; 52:287-331. [PMID: 9891800 DOI: 10.1146/annurev.micro.52.1.287] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The persistence of chloroaromatic compounds can be caused by various bottlenecks, such as incomplete degradative pathways or inappropriate regulation of these pathways. Patchwork assembly of existing pathways in novel combinations provides a general route for the development of strains degrading chloroaromatics. The recruitment of known complementary enzyme sequences in a suitable host organism by conjugative transfer of genes might generate a functioning hybrid pathway for the mineralization of some chloroaromatics not degraded by the parent organisms. The rational combination uses (a) peripheral, funneling degradation sequences originating from aromatics-degrading strains to fulfill the conversion of the respective analogous chloroaromatic compound to chlorocatechols as the central intermediates; (b) a central chlorocatechol degradation sequence, the so-called modified ortho pathway, which brings about elimination of chlorine substituents; and (c) steps of the 3-oxoadipate pathway to reach the tricarboxylic acid cycle. The genetic organization of these pathway segments has been well characterized. The specificity of enzymes of the xylene, benzene, biphenyl, and chlorocatechol pathways and the specificity of the induction systems for the chlorinated substrates are analyzed in various organisms to illustrate eventual bottlenecks and to provide alternatives that are effective in the conversion of the "new" substrate. Hybrid pathways are investigated in "new" strains degrading chlorinated benzoates, toluenes, benzenes, and biphenyls. Problems occurring after the conjugative DNA transfer and the "natural" solution of these are examined, such as the prevention of misrouting into the meta pathway, to give a functioning hybrid pathway. Some examples clearly indicate that patchwork assembly also happens in nature.
Collapse
Affiliation(s)
- W Reineke
- Bergische Universität-Gesamthochschule Wuppertal, Germany.
| |
Collapse
|
109
|
Tsuda M, Tan HM, Nishi A, Furukawa K. Mobile catabolic genes in bacteria. J Biosci Bioeng 1999; 87:401-10. [PMID: 16232491 DOI: 10.1016/s1389-1723(99)80086-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1999] [Accepted: 03/03/1999] [Indexed: 11/29/2022]
Abstract
The recent findings of various mobile catabolic genes have provided some insight into the evolution of microbial degradation systems for xenobiotic compounds. The catabolic genes undergo marked genetic rearrangements due to their presence on transposons or association with mobile genetic elements. Bacterial catabolic transposons fall into three defined structural classes. Class I elements include catabolic genes flanked by two copies of insertion sequences. Class II elements carry short terminal inverted repeats and transpose by the replicative mode in which transposase and resolvase are involved. Conjugative catabolic transposons represent the third class of mobile genetic elements. They carry all the genes required for excision, conjugal transfer to a new host, and integration. This review focuses on the structures, functions and roles of the recently characterized catabolic transposons in bacteria. Also described are the mobile catabolic elements that share structural similarity with the pathogenicity and symbiosis islands.
Collapse
Affiliation(s)
- M Tsuda
- Institute of Genetic Ecology, Tohoku University, Katahira, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
110
|
Wilson MS, Bakermans C, Madsen EL. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl Environ Microbiol 1999; 65:80-7. [PMID: 9872763 PMCID: PMC90986 DOI: 10.1128/aem.65.1.80-87.1999] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen in dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To our knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches.
Collapse
Affiliation(s)
- M S Wilson
- Section of Microbiology, Division of Biological Sciences, Cornell University, Ithaca New York 14853, USA
| | | | | |
Collapse
|
111
|
Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tar-contaminated site are homologous to pDTG1 from pseudomonas putida NCIB 9816-4. Appl Environ Microbiol 1998; 64:3633-40. [PMID: 9758778 PMCID: PMC106482 DOI: 10.1128/aem.64.10.3633-3640.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of a highly conserved nahAc allele among phylogenetically diverse bacteria carrying naphthalene-catabolic plasmids provided evidence for in situ horizontal gene transfer at a coal tar-contaminated site (J. B. Herrick, K. G. Stuart-Keil, W. C. Ghiorse, and E. L. Madsen, Appl. Environ. Microbiol. 63:2330-2337, 1997). The objective of the present study was to identify and characterize the different-sized naphthalene-catabolic plasmids in order to determine the probable mechanism of horizontal transfer of the nahAc gene in situ. Filter matings between naphthalene-degrading bacterial isolates and their cured progeny revealed that the naphthalene-catabolic plasmids were self-transmissible. Limited interstrain transfer was also found. Analysis of the restriction fragment length polymorphism (RFLP) patterns indicated that catabolic plasmids from 12 site-derived isolates were closely related to each other and to the naphthalene-catabolic plasmid (pDTG1) of Pseudomonas putida NCIB 9816-4, which was isolated decades ago in Bangor, Wales. The similarity among all site-derived naphthalene-catabolic plasmids and pDTG1 was confirmed by using the entire pDTG1 plasmid as a probe in Southern hybridizations. Two distinct but similar naphthalene-catabolic plasmids were retrieved directly from the microbial community indigenous to the contaminated site in a filter mating by using a cured, rifampin-resistant site-derived isolate as the recipient. RFLP patterns and Southern hybridization showed that both of these newly retrieved plasmids, like the isolate-derived plasmids, were closely related to pDTG1. These data indicate that a pDTG1-like plasmid is the mobile genetic element responsible for transferring naphthalene-catabolic genes among bacteria in situ. The pervasiveness and persistence of this naphthalene-catabolic plasmid suggest that it may have played a role in the adaptation of this microbial community to the coal tar contamination at our study site.
Collapse
|
112
|
Shepherd JM, Lloyd-Jones G. Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription, and molecular ecology. Biochem Biophys Res Commun 1998; 247:129-35. [PMID: 9636667 DOI: 10.1006/bbrc.1998.8750] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The degradation of aromatic compounds by bacteria is dependent upon specific catabolic operons. The unique car locus isolated from Sphingomonas CB3 encodes the first four enzymes involved in the catabolism of the azaarene carbazole. These include a class II three-component dioxygenase enzyme system, a dihydrodiol dehydrogenase, an extradiol (meta-cleavage) dioxygenase, and a hydrolase. Homology of deduced amino acid sequences is closer to corresponding biphenyl catabolic genes than to previously characterised carbazole degradation genes. Gene arrangement is also identical to that found in some bph loci. The car genes are transcribed when carbazole is utilised as a sole carbon source, and although biphenyl does not serve as a growth substrate for Sphingomonas CB3 it is able to act as a non-metabolisable inducer of the car locus. Ecologically the car genes were detected in polycyclic aromatic hydrocarbon (PAH) contaminated soil associated with a former town gas site.
Collapse
Affiliation(s)
- J M Shepherd
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
113
|
Aemprapa S, Williams PA. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1387-1396. [PMID: 9611813 DOI: 10.1099/00221287-144-5-1387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida strain O2C2 is able to grow on toluene, m-xylene and p-xylene through benzoate and the corresponding methylbenzoates (toluates). The catabolic genes are encoded on a large TOL plasmid, pWW102, of > 220 kb. The complete catabolic genes were cloned on four large overlapping restriction fragments covering a total of 28 kb of the plasmid, which was carefully mapped by restriction enzyme analysis. The presence of the xyl genes on the cloned DNA was confirmed by assay of representative enzymes of both operons. Virtually all the genes were located on the cloned DNA by hybridization of Southern blots with gene-specific probes from related pathways of other catabolic plasmids. Within the limitations of available restriction sites, the analysis showed that the genes are in two blocks. The major block carries the meta pathway operon xylXYZLTEGFJQKIH with the two regulatory genes xylSR immediately downstream. The upper pathway operon xylUWCMAB(N) is about 2-3 kb downstream of the regulatory genes and transcribed in the same direction as the meta pathway operon. Within each operon the gene order appears to be identical to that found in other TOL plasmids, but the relative location of the operons most closely resembles that found on plasmid pWW53, although there is no evidence of any xyl duplications on pWW102. The nucleotide sequence of the xylQ gene for the acetaldehyde dehydrogenase (acylating; ADA), together with the 3'-end of the upstream xylJ (for 2-oxopent-4-enoate hydratase) and the 5'-end of the downstream xylK (for 4-hydroxy-2-oxovalerate aldolase), was determined. The xylQ gene was ligated into expression vector pTrc99a and high levels of XylQ protein were detected by enzyme assay and by SDS-PAGE. All three genes xylJQK showed a high degree of homology with genes encoding isofunctional proteins from other Pseudomonas meta pathways, the highest being with the naphthalene catabolic genes nahLOM from the plasmid of Pseudomonas sp. NCIB 9816. The implications of the sequence homologies to the evolution of these pathways are discussed.
Collapse
Affiliation(s)
- Sirinun Aemprapa
- School of Biological Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, UK
| | - Peter A Williams
- School of Biological Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
114
|
James KD, Williams PA. ntn genes determining the early steps in the divergent catabolism of 4-nitrotoluene and toluene in Pseudomonas sp. strain TW3. J Bacteriol 1998; 180:2043-9. [PMID: 9555884 PMCID: PMC107128 DOI: 10.1128/jb.180.8.2043-2049.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas sp. strain TW3 is able to oxidatively metabolize 4-nitrotoluene and toluene via a route analogous to the upper pathway of the TOL plasmids. We report the sequence and organization of five genes, ntnWCMAB*, which are very similar to and in the same order as the xyl operon of TOL plasmid pWW0 and present evidence that they encode enzymes which are expressed during growth on both 4-nitrotoluene and toluene and are responsible for their oxidation to 4-nitrobenzoate and benzoate, respectively. These genes encode an alcohol dehydrogenase homolog (ntnW), an NAD+-linked benzaldehyde dehydrogenase (ntnC), a two-gene toluene monooxygenase (ntnMA), and part of a benzyl alcohol dehydrogenase (ntnB*), which have 84 to 99% identity at the nucleotide and amino acid levels with the corresponding xylWCMAB genes. The xylB homolog on the TW3 genome (ntnB*) appears to be a pseudogene and is interrupted by a piece of DNA which destroys its functional open reading frame, implicating an additional and as-yet-unidentified benzyl alcohol dehydrogenase gene in this pathway. This conforms with the observation that the benzyl alcohol dehydrogenase expressed during growth on 4-nitrotoluene and toluene differs significantly from the XylB protein, requiring assay via dye-linked electron transfer rather than through a nicotinamide cofactor. The further catabolism of 4-nitrobenzoate and benzoate diverges in that the former enters the hydroxylaminobenzoate pathway as previously reported, while the latter is further metabolized via the beta-ketoadipate pathway.
Collapse
Affiliation(s)
- K D James
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, United Kingdom
| | | |
Collapse
|
115
|
Kim S, Shin HJ, Kim Y, Kim SJ, Kim YC. Nucleotide sequence of the Pseudomonas sp. DJ77 phnG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase. Biochem Biophys Res Commun 1997; 240:41-5. [PMID: 9367878 DOI: 10.1006/bbrc.1997.7595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleotide sequence of a 1520 bp region, spanning the coding region for the meta-cleavage pathway enzyme, 2-hydroxymuconic semialdehyde dehydrogenase, was determined. This enzyme, encoded by the phnG, is the first of three sequential enzymes required for conversion of 2-hydroxymuconic semialdehyde, which is produced from catechol by the PhnE catechol 2,3-dioxygenase, to 2-hydroxypent-2,4-dienoate in the dehydrogenative branch of the pathway. The deduced protein sequence is 484 amino acid residues long with a M(r) of 51504. The phnG has a high degree of homology with genes encoding isofunctional proteins from other Pseudomonas strains. We now show that the relative position of the phnG dehydrogenase gene in the phn operon is unique compared to the other meta-cleavage operons which have a dehydrogenative branch of the pathway.
Collapse
Affiliation(s)
- S Kim
- School of Life Sciences, Chungbuk National University, Cheongju, Korea
| | | | | | | | | |
Collapse
|
116
|
Iwabuchi T, Harayama S. Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol 1997; 179:6488-94. [PMID: 9335300 PMCID: PMC179567 DOI: 10.1128/jb.179.20.6488-6494.1997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
2-Carboxybenzaldehyde dehydrogenase from the phenanthrene-degrading bacterium Nocardioides sp. strain KP7 was purified and characterized. The purified enzyme had a molecular mass of 53 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 205 kDa by gel filtration chromatography. Thus, the homotetramer of the 53-kDa subunit constituted an active enzyme. The apparent Km and kcat values of this enzyme for 2-carboxybenzaldehyde were 100 microM and 39 s(-1), respectively, and those for NAD+ were 83 microM and 32 s(-1), respectively. The structural gene for this enzyme was cloned and sequenced. The length of the gene was 1,455 bp. The nucleotide sequence of the 10,279 bp of DNA around the gene for 2-carboxybenzaldehyde dehydrogenase was also determined, and seven open reading frames were found in this DNA region. These were the genes for 1-hydroxy-2-naphthoate dioxygenase (phdI) and trans-2'-carboxybenzalpyruvate aldolase (phdJ), orf1, the gene for 2-carboxybenzaldehyde dehydrogenase (phdK), orf2/orf3, and orf4. The amino acid sequence of the orf1 product was similar to that of the aromatic hydrocarbon transporter gene (pcaK) in Pseudomonas putida PRS2000. The amino acid sequence of the orf4 product revealed a similarity to cytochrome P-450 proteins. The region between phdK and orf4 encoded orf2 and orf3 on different strands. The amino acid sequences of the orf2 and orf3 products exhibited no significant similarity to the reported sequences in protein databases.
Collapse
Affiliation(s)
- T Iwabuchi
- Marine Biotechnology Institute, Kamaishi Laboratories, Iwate, Japan
| | | |
Collapse
|
117
|
Yrjälä K, Paulin L, Romantschuk M. Novel organization of catechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 1997; 154:403-8. [PMID: 9311141 DOI: 10.1111/j.1574-6968.1997.tb12674.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sphingomonas sp. strain HV3 (formerly Pseudomonas sp. HV3), which degrades aromatics and chloroaromatics, harbors a mega-plasmid, pSKY4. A sequenced 4 kb fragment of the plasmid reveals a novel gene organization for catechol meta-pathway genes. The putative meta operon starts with the cmpF gene encoding a 2-hydroxymuconic semialdehyde hydrolase. The gene has a 6 bp overlap with the previously characterized ring-cleavage gene, catechol 2,3-dioxygenase, cmpE. Downstream of cmpE is a 429 bp open reading frame of unknown function. Gene cmpC, encoding a 2-hydroxymuconic semialdehyde dehydrogenase, starts 44 bp further downstream. It has the highest homology to 2-hydroxymuconic semialdehyde dehydrogenases of dmp and xyl pathways and to XylC from the marine oligotroph Cycloclasticus oligotrophus. The gene organization is different from other known meta pathways. This is the first report of organization of plasmid-encoded meta-pathway genes in the genus Sphingomonas.
Collapse
Affiliation(s)
- K Yrjälä
- Department of Biosciences, University of Helsinki, Finland.
| | | | | |
Collapse
|
118
|
Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 1997; 63:2330-7. [PMID: 9172352 PMCID: PMC168525 DOI: 10.1128/aem.63.6.2330-2337.1997] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Horizontal transfer of genes responsible for pollutant biodegradation may play a key role in the evolution of bacterial populations and the adaptation of microbial communities to environmental contaminants. However, field evidence for horizontal gene transfer between microorganisms has traditionally been very difficult to obtain. In this study, the sequences of the 16S rRNA and naphthalene dioxygenase iron-sulfur protein (nahAc) genes of nine naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site, as well as a naphthalene-degrading bacterium from a contaminated site in Washington state and two archetypal naphthalene-degrading strains, were compared. Seven strains from the study site had a single nahAc allele, whereas the 16S rRNA gene sequences of the strains differed by as much as 7.9%. No nahAc alleles from the site were identical to those of the archetypal strains, although the predominant allele was closely related to that of Pseudomonas putida NCIB 9816-4, isolated in the British Isles. However, one site-derived nahAc allele was identical to that of the Washington state strain. Lack of phylogenetic congruence of the nahAc and 16S rRNA genes indicates that relatively recent in situ horizontal transfer of the nahAc gene has occurred, possibly as a direct or indirect consequence of pollutant contamination. Alkaline lysis plasmid preparations and pulsed-field gel electrophoresis have revealed the presence of plasmids ranging in size from 70 to 88 kb in all site isolates. Southern hybridizations with a 407-bp nahAc probe have suggested that the nahAc gene is plasmid borne in all the site isolates but one, a strain isolated from subsurface sediment 400 m upstream from the source of the other site isolates. In this strain and in the naphthalene-degrading strain from Washington state, nahAc appears to be chromosomally located. In addition, one site isolate may carry nahAc on both chromosome and plasmid. Within the group of bacteria with identical nahAc sequences the Southern hybridizations showed that the gene was distributed between plasmids of different sizes and a chromosome. This suggests that plasmid modification after transfer may have been effected by transposons. Horizontal transfer of catabolic genes may play a significant role in the acclimation of microbial communities to pollutants.
Collapse
Affiliation(s)
- J B Herrick
- Section of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | |
Collapse
|
119
|
Dagher F, Déziel E, Lirette P, Paquette G, Bisaillon JG, Villemur R. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can J Microbiol 1997; 43:368-77. [PMID: 9115093 DOI: 10.1139/m97-051] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Five polycyclic aromatic hydrocarbon (PAH) degrading bacterial strains, Pseudomonas putida 34, Pseudomonas fluorescens 62, Pseudomonas aeruginosa 57, Sphingomonas sp. strain 107, and the unidentified strain PL1, were isolated from two contaminated soils and characterized for specific features regarding PAH degradation. Degradation efficiency was determined by the rapidity to form clearing zones around colonies when sprayed with different PAH solutions and the growth in liquid medium with different PAHs as sole source of carbon and energy. The presence of plasmids, the production of biosurfactants, the effect of salicylate on PAH degradation, the transformation of indole to indigo indicating the presence of an aromatic ring dioxygenase activity, and the hybridization with the SphAb prove representing a sequence highly homologous to the naphthalene dioxygenase ferredoxin gene nahAb were examined. The most efficient strain in terms of substrate specificity and rapidity to degrade different PAHs was Sphingomonas sp. strain 107, followed by strain PL1 and P. aeruginosa 57. The less efficient strains were P. putida 34 and P. fluorescens 62. Each strain transformed indole to indigo, except strain PL1. Biosurfactants were produced by P. aeruginosa 57 and P. putida 34, and a bioemulsifier was produced by Sphingomonas sp. strain 107. The presence of salicylate in solid medium has accelerated the formation of clearing zones and the transformation of indole by Sphingomonas sp. strain 107 and P. aeruginosa 57 colonies. Plasmids were found in Sphingomonas sp. strain 107 and strain PL1. The SphAb probe hybridized with DNA extracted from each strain. However, hybridization signals were detected only in the plasmidic fraction of Sphingomonas sp. strain 107 and strain PL1. Using a polymerase chain reaction (PCR) approach, we determined that several genes encoding enzymes involved in the upper catabolic pathway of naphthalene were present in each strain. Sequencing of PCR DNA fragments revealed that, for all the five strains, these genes are highly homologous with respective genes found in the pah, dox, and nah operons, and are arranged in a polycistronic operon. Results suggest that these genes are ordered in the five selected strains like the pah, nah, and dox operons.
Collapse
Affiliation(s)
- F Dagher
- Centre de recherche en microbiologie appliquée, Institut Armand-Frappier, Laval, QC, Canada
| | | | | | | | | | | |
Collapse
|
120
|
Ferrández A, Garciá JL, Díaz E. Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. J Bacteriol 1997; 179:2573-81. [PMID: 9098055 PMCID: PMC179006 DOI: 10.1128/jb.179.8.2573-2581.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the complete nucleotide sequence of the gene cluster encoding the 3-(3-hydroxyphenyl)propionate (3-HPP) catabolic pathway of Escherichia coli K-12. Sequence analysis revealed the existence of eight genes that map at min 8 of the chromosome, between the lac and hemB regions. Six enzyme-encoding genes account for a flavin-type monooxygenase (mhpA), the extradiol dioxygenase (mhpB), and the meta-cleavage pathway (mhpCDFE). The order of these catabolic genes, with the sole exception of mhpF, parallels that of the enzymatic steps of the pathway. The mhpF gene may encode the terminal acetaldehyde dehydrogenase (acylating) not reported previously in the proposed pathway. Enzymes that catalyze the early reactions of the pathway, MhpA and MhpB, showed the lowest level of sequence similarity to analogous enzymes of other aromatic catabolic pathways. However, the genes mhpCDFE present the same organization and appear to be homologous to the Pseudomonas xyl, dmp, and nah meta-pathway genes, supporting the hypothesis of the modular evolution of catabolic pathways and becoming the first example of this type of catabolic module outside the genus Pseudomonas. Two bacterial interspersed mosaic elements were found downstream of the mhpABCDFE locus and flank a gene, orfT, which encodes a protein related to the superfamily of transmembrane facilitators that might be associated with transport. All of the genes of the 3-HPP cluster are transcribed in the same direction, with the sole exception of mhpR. Inducible expression of the mhp catabolic genes depends upon the presence, in the cis or trans position, of a functional mhpR gene, which suggests that the mhpR gene product is the activator of the 3-HPP biodegradative pathway. The primary structure of MhpR revealed significant similarities to that of members of the IclR subfamily of transcriptional regulators. A 3-HPP catabolic DNA cassette was engineered and shown to be functional not only in enteric bacteria (E. coli and Salmonella typhimurium) but also in Pseudomonas putida and Rhizobium meliloti, thus facilitating its potential application to improve the catabolic abilities of bacterial strains for degradation of aromatic compounds.
Collapse
Affiliation(s)
- A Ferrández
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
121
|
Wikström P, Wiklund A, Andersson AC, Forsman M. DNA recovery and PCR quantification of catechol 2,3-dioxygenase genes from different soil types. J Biotechnol 1996; 52:107-20. [PMID: 9084210 DOI: 10.1016/s0168-1656(96)01635-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With the objective of monitoring xenobiotic degrading bacteria in soil, a method for rapid extraction of DNA from soil, amenable to amplification by PCR, was developed. The method was based on lysis by freeze-thawing and subsequent addition of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide and proteinase K. The extraction method required 2 h and was tested on six different soils differing in organic content, water holding capacity and pH, including ones from which DNA extraction is difficult. DNA yields from the soils ranged from 6.1 to 54.0 micrograms of DNA per g soil. The efficiency and reproducibility of the DNA extraction method were evaluated by competitive PCR. The organic content in the soils was a major factor affecting the amount of obtained DNA amenable for amplification by PCR. A PCR primer-pair was designed on the basis of the known nucleotide sequences of several catechol 2,3-dioxygenase genes. The specificity of the primer-pair was demonstrated on different sequenced catechol 2,3-dioxygenase genes and on site-specific bacterial isolates from polycyclic aromatic hydrocarbon (PAH)-contaminated soil. The concentration of catechol 2,3-dioxygenase DNA in PAH-contaminated sediment undergoing an ex situ compost process was quantified by competitive PCR over a period of 16 weeks. The concentration of PAHs and catechol 2,3-dioxygenase DNA in the soil samples, was found to correlate.
Collapse
Affiliation(s)
- P Wikström
- Department of Microbiology, Defence Research Establishment, Umeå, Sweden
| | | | | | | |
Collapse
|
122
|
Wang Y, Lau PC, Button DK. A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads. Appl Environ Microbiol 1996; 62:2169-73. [PMID: 8787414 PMCID: PMC167995 DOI: 10.1128/aem.62.6.2169-2173.1996] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The far-ranging distribution of genes for aromatic hydrocarbon catabolism, predominantly studied in soil pseudomonads, is extended to a marine oligobacterium by finding five homologous sequences in a 5.7-kb chromosomal DNA from a new isolate, Cycloclasticus oligotrophus RB1. RB1 is capable of growth in unamended seawater or mineral salts media supplemented with a variety of aromatic compounds, including toluene, o-, m-, or p-xylenes, as sole carbon sources. The five open reading frames, designated xylM, K, G, C1, and C2, are 57% A+T-rich. XylM is predicted to be an integral membrane protein; XylK and XylG possess glutathione S-transferase (GST) and 2-hydroxy-5methyl-6-oxohexa2,4-dienoate dehydrogenase activities, respectively; XylC1C2 are homologs of the large and small subunits of the iron sulfur protein component of the biphenyl dioxygenase (e.g., BphA1A2).
Collapse
Affiliation(s)
- Y Wang
- Biotechnology Research Institute, National Research Council of Canada, Montréal Quebec, Canada
| | | | | |
Collapse
|
123
|
Dyreborg S, Arvin E, Broholm K. Effects of creosote compounds on the aerobic bio-degradation of benzene. Biodegradation 1996; 7:191-201. [PMID: 8782391 DOI: 10.1007/bf00058179] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The inhibitory effect of creosote compounds on the aerobic degradation of benzene was studied in microcosm experiments. A total removal of benzene was observed after twelve days of incubation in microcosms where no inhibition was observed. Thiophene and benzothiophene, two heterocyclic aromatic compounds containing sulfur (S-compounds), had a significant inhibitory effect on the degradation of benzene, but also an inhibitory effect of benzofuran (an O-compound) and 1-methylpyrrole (a N-compound) could be observed, although the effect was weaker. The NSO-compounds also had an inhibitory effect on the degradation of p-xylene, o-xylene, and naphthalene, while they only had a weak influence on the degradation of 1-methylnaphthalene, o-cresol and 2,4-dimethylphenol. The phenolic compounds seemed to have a weak stimulating effect on the degradation of benzene whereas the monoaromatic hydrocarbons and the naphthalenes had no significant influence on the benzene degradation. The inhibitory effect of the NSO-compounds on the aerobic degradation of benzene could be identified as three different phenomena. The lag phase increased, the degradation rate decreased, and a residual concentration of benzene was observed in microcosms when NSO-compounds were present. The results show that NSO-compounds can have a potential inhibitory effect on the degradation of many creosote compounds, and that inhibitory effects in mixtures can be important for the degradation of different compounds.
Collapse
Affiliation(s)
- S Dyreborg
- Institute of Environmental Science, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
124
|
Pellizari VH, Bezborodnikov S, Quensen JF, Tiedje JM. Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability. Appl Environ Microbiol 1996; 62:2053-8. [PMID: 8787402 PMCID: PMC167982 DOI: 10.1128/aem.62.6.2053-2058.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Approximately equal numbers of bacteria were isolated from primarily tropical soils by growth on biphenyl and naphthalene to compare their competence in polychlorinated biphenyl (PCB) degradation. The strains isolated by growth on biphenyl catalyzed more extensive PCB degradation than the strains isolated by growth on naphthalene, suggesting that naphthalene cocontamination may be only partially effective in stimulating the cometabolism of lower chlorinated PCBs. Probes were made from the bph, nah, and tod genes encoding the large iron iron sulfur protein of the dioxygenase complex and hybridized to 19 different strains. The hybridization patterns did not correlate well with the substrates of isolation, suggesting that there is considerable diversity in these genes in nature and that probe hybridization is not a reliable indication of catabolic capacity. The strains with the most extensive PCB degradation capacity did strongly hybridize to the bph probe, but a few strains that exhibited strong hybridization had poor PCB-degrading ability. Of the 19 strains studied, 5 hybridized to more than one probe and 2, including one strong PCB degrader, hybridized to all three probes. Southern blots showed that the bph and nah probes hybridized to separate bands, suggesting that multiple dioxygenases were present. Multiple dioxygenases may be an important feature of competitive decomposers in nature and hence may not be rare. Most of the isolates identified were members of the beta subgroup of the Proteobacteria, a few were gram positive, and none were true Pseudomonas species.
Collapse
Affiliation(s)
- V H Pellizari
- Center for Microbial Ecology, Michigan State University, East Lansing, 48824, USA
| | | | | | | |
Collapse
|
125
|
Gene organization and low regiospecificity in aromatic-ring hydroxylation of a benzene monooxygenase of Pseudomonas aeruginosa JI104. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0922-338x(97)86976-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
126
|
Cloning and characterization of extradiol aromatic ring-cleavage dioxygenases of Pseudomonas aeruginosa JI104. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)88811-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
127
|
Abstract
The structure and function of transposable elements that code for catabolic pathways involved in the biodegradation of organic compounds are reviewed. Seven of these catabolic transposons have structural features that place them in the Class I (composite) or Class II (Tn3-family) bacterial elements. One is a conjugative transposon. Another three have been found to have properties of transposable elements but have not been characterized sufficiently to assign to a known class. Structural features of the toluene (Tn4651/Tn4653) and naphthalene (Tn4655) elements that illustrate the enormous potential for acquisition, deletion and rearrangement of DNA within catabolic transposons are discussed. The recently characterized chlorobenzoate (Tn5271) and chlorobenzene (Tn5280) catabolic transposons encode different aromatic ring dioxygenases, however they both illustrate the constraints that must be overcome when recipients of catabolic transposons assemble and regulate complete metabolic pathways for environmental pollutants. The structures of the chlorobenzoate catabolic transposon Tn5271 and the related haloacetate dehalogenase catabolic element of plasmid pUO1 are compared and a hypothesis for their formation is discussed. The structures and activities of catabolic transposons of unknown class coding for the catabolism of halogenated alkanoic acids (DEH) and chlorobiphenyl (Tn4371) are also reviewed.
Collapse
Affiliation(s)
- R C Wyndham
- Ottawa-Carleton Institute of Biology, Carleton University, ON Canada
| | | | | | | |
Collapse
|
128
|
Powlowski J, Shingler V. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 1994; 5:219-36. [PMID: 7765834 DOI: 10.1007/bf00696461] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid located dmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-known meta-cleavage pathway for catechol, and include the recently discovered meta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of these meta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to the meta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations between meta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.
Collapse
Affiliation(s)
- J Powlowski
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|