101
|
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochem J 2018; 475:839-852. [PMID: 29511093 PMCID: PMC5840331 DOI: 10.1042/bcj20170714] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection — termed sterile inflammation — is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP–AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases.
Collapse
|
102
|
McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew TL, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, van Delft MF, Kile BT. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 2018; 359:359/6378/eaao6047. [DOI: 10.1126/science.aao6047] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
|
103
|
Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc Natl Acad Sci U S A 2018; 115:E478-E487. [PMID: 29295921 DOI: 10.1073/pnas.1711950115] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circulating mitochondrial DNA (mtDNA) is receiving increasing attention as a danger-associated molecular pattern in conditions such as autoimmunity, cancer, and trauma. We report here that human lymphocytes [B cells, T cells, natural killer (NK) cells], monocytes, and neutrophils derived from healthy blood donors, as well as B cells from chronic lymphocytic leukemia patients, rapidly eject mtDNA as web filament structures upon recognition of CpG and non-CpG oligodeoxynucleotides of class C. The release was quenched by ZnCl2, independent of cell death (apoptosis, necrosis, necroptosis, autophagy), and continued in the presence of TLR9 signaling inhibitors. B-cell mtDNA webs were distinct from neutrophil extracellular traps concerning structure, reactive oxygen species (ROS) dependence, and were devoid of antibacterial proteins. mtDNA webs acted as rapid (within minutes) messengers, priming antiviral type I IFN production. In summary, our findings point at a previously unrecognized role for lymphocytes in antimicrobial defense, utilizing mtDNA webs as signals in synergy with cytokines and natural antibodies, and cast light on the interplay between mitochondria and the immune system.
Collapse
|
104
|
Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2017; 41:37-44. [PMID: 29221810 DOI: 10.1016/j.mito.2017.12.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Inflammation represents a comprehensive host response to external stimuli for the purpose of eliminating the offending agent, minimizing injury to host tissues and fostering repair of damaged tissues back to homeostatic levels. In normal physiologic context, inflammatory response culminates with the resolution of infection and tissue damage response. However, in a pathologic context, persistent or inappropriately regulated inflammation occurs that can lead to chronic inflammatory diseases. Recent scientific advances have integrated the role of innate immune response to be an important arm of the inflammatory process. Accordingly, the dysregulation of innate immunity has been increasingly recognized as a driving force of chronic inflammatory diseases. Mitochondria have recently emerged as organelles which govern fundamental cellular functions including cell proliferation or differentiation, cell death, metabolism and cellular signaling that are important in innate immunity and inflammation-mediated diseases. As a natural consequence, mitochondrial dysfunction has been highlighted in a myriad of chronic inflammatory diseases. Moreover, the similarities between mitochondrial and bacterial constituents highlight the intrinsic links in the innate immune mechanisms that control chronic inflammation in diseases where mitochondrial damage associated molecular patterns (DAMPs) have been involved. Here in this review, the role of mitochondria in innate immune responses is discussed and how it pertains to the mitochondrial dysfunction or DAMPs seen in chronic inflammatory diseases is reviewed.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, United States.
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, United States.
| |
Collapse
|
105
|
Rongvaux A. Innate immunity and tolerance toward mitochondria. Mitochondrion 2017; 41:14-20. [PMID: 29054471 DOI: 10.1016/j.mito.2017.10.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 01/19/2023]
Abstract
Mitochondria are intracellular organelles that originate from a bacterial symbiont, and they retain multiple features of this bacterial ancestry. The immune system evolved to detect the presence of invading pathogens, including bacteria, to eliminate them by a diversity of antimicrobial mechanisms and to mount long-term protective immunity. Due to their bacterial ancestry, mitochondria are sensed by the innate immune system, and trigger inflammatory responses comparable to those induced by pathogenic bacteria. In both cases, innate sensing mechanisms involve Toll-Like Receptors, Formyl Peptide Receptors, inflammasomes or the cGAS/STING pathway. Stressed mitochondria release mitochondrial molecules, such as cardiolipin and mitochondrial DNA, which are sensed as cellular damage potentially caused by infections. Recent research has identified several conditions in which mitochondrial stress-induced immunity is essential to effective antimicrobial defenses. But, in pathological conditions, the abnormal activation of the innate immune system by damaged mitochondria results in auto-inflammatory or autoimmune diseases. To prevent undesirable mitochondria-targeted responses, immune tolerance toward mitochondria must be established, involving regulation of mitophagy and mitochondrial permeability, as well as activation of specific nucleases and pro-apoptotic caspases. Overall, recent findings identify mitochondria as central in the induction of innate immunity, and provide new insights as to how immune responses to these multi-functional organelles might be exploited therapeutically in various disease states.
Collapse
Affiliation(s)
- Anthony Rongvaux
- Fred Hutchinson Cancer Research Center, Program in Immunology, Clinical Research Division, Seattle, WA 98109, United States; University of Washington School of Medicine, Department of Immunology, Seattle, WA 98109, United States.
| |
Collapse
|
106
|
Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17:363-375. [PMID: 28393922 DOI: 10.1038/nri.2017.21] [Citation(s) in RCA: 720] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial DNA (mtDNA) - which is well known for its role in oxidative phosphorylation and maternally inherited mitochondrial diseases - is increasingly recognized as an agonist of the innate immune system that influences antimicrobial responses and inflammatory pathology. On entering the cytoplasm, extracellular space or circulation, mtDNA can engage multiple pattern-recognition receptors in cell-type- and context-dependent manners to trigger pro-inflammatory and type I interferon responses. Here, we review the expanding research field of mtDNA in innate immune responses to highlight new mechanistic insights and discuss the physiological and pathological relevance of this exciting area of mitochondrial biology.
Collapse
|
107
|
Boyapati RK, Tamborska A, Dorward DA, Ho GT. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res 2017; 6:169. [PMID: 28299196 PMCID: PMC5321122 DOI: 10.12688/f1000research.10397.1] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2017] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.
Collapse
Affiliation(s)
- Ray K Boyapati
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; Department of Gastroenterology, Monash Health, Clayton, VIC, Australia
| | - Arina Tamborska
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David A Dorward
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gwo-Tzer Ho
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
108
|
Roles of Mitochondrial DNA Signaling in Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:39-53. [PMID: 29178068 DOI: 10.1007/978-981-10-6674-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) plays an important role in immune responses during the evolution. The present chapter systemically describes its role on immune-related diseases and its interaction on immune responses. It is important to explore the main function and mechanisms of mtDNA in immune responses by which mtDNA regulates the signaling pathways of Toll-like receptor 9, autophagy, and STING. There are potentials to discover therapeutic targets of mtDNA in immune diseases and inflammation. It will be more exciting if the CRISPR-Cas9 method can be applied for mtDNA gene editing to cure diseases and provide a novel insight of mtDNA in immune responses as well as new therapies.
Collapse
|
109
|
Sudakov NP, Popkova TP, Katyshev AI, Goldberg OA, Nikiforov SB, Pushkarev BG, Klimenkov IV, Lepekhova SA, Apartsin KA, Nevinsky GA, Konstantinov YM. Level of Blood Cell-Free Circulating Mitochondrial DNA as a Novel Biomarker of Acute Myocardial Ischemia. BIOCHEMISTRY (MOSCOW) 2016; 80:1387-92. [PMID: 26567583 DOI: 10.1134/s000629791510020x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in the level of blood cell-free circulating mitochondrial DNA were examined during experimental adrenaline-induced myocardial injury in rats. The amount of mitochondrial DNA in the blood was significantly elevated at 48 and 72 h after subcutaneous injection of adrenaline solution, and it was accompanied by development of multiple small-focal myocardial ischemia. This suggests that the measured level of blood cell-free circulating mitochondrial DNA might be used as a biomarker of acute myocardial ischemia.
Collapse
Affiliation(s)
- N P Sudakov
- Irkutsk Surgery and Traumatology Research Center, Irkutsk, 664003, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice. Exp Gerontol 2016; 83:130-8. [PMID: 27498120 DOI: 10.1016/j.exger.2016.08.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Rapamycin consistently increases longevity in mice although the mechanism of action of this drug is unknown. In the present investigation we studied the effect of rapamycin on mitochondrial oxidative stress at the same dose that is known to increase longevity in mice (14mgofrapamycin/kg of diet). Middle aged mice (16months old) showed significant age-related increases in mitochondrial ROS production at complex I, accumulation of mtDNA fragments inside nuclear DNA, mitochondrial protein lipoxidation, and lipofuscin accumulation compared to young animals (4months old) in the liver. After 7weeks of dietary treatment all those increases were totally or partially (lipofuscin) abolished by rapamycin, middle aged rapamycin-treated animals showing similar levels in those parameters to young animals. The decrease in mitochondrial ROS production was due to qualitative instead of quantitative changes in complex I. The decrease in mitochondrial protein lipoxidation was not due to decreases in the amount of highly oxidizable unsaturated fatty acids. Rapamycin also decreased the amount of RAPTOR (of mTOR complex) and increased the amounts of the PGC1-α and ATG13 proteins. The results are consistent with the possibility that rapamycin increases longevity in mice at least in part by lowering mitochondrial ROS production and increasing autophagy, decreasing the derived final forms of damage accumulated with age which are responsible for increased longevity. The decrease in lipofuscin accumulation induced by rapamycin adds to previous information suggesting that the increase in longevity induced by this drug can be due to a decrease in the rate of aging.
Collapse
|
111
|
Yue L, Yao H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol 2016; 173:2305-18. [PMID: 27189175 DOI: 10.1111/bph.13518] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are dynamic organelles, which couple the various cellular processes that regulate metabolism, cell proliferation and survival. Environmental stress can cause mitochondrial dysfunction and dynamic changes including reduced mitochondrial biogenesis, oxidative phosphorylation and ATP production, as well as mitophagy impairment, which leads to increased ROS, inflammatory responses and cellular senescence. Oxidative stress, inflammation and cellular senescence all have important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. In this review, we discuss the current state on how mitochondrial dysfunction affects inflammatory responses and cellular senescence, the mechanisms of mitochondrial dysfunction underlying the pathogenesis of chronic lung diseases and the potential of mitochondrial transfer and replacement as treatments for these diseases.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
112
|
The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity 2016; 44:597-608. [PMID: 26944200 DOI: 10.1016/j.immuni.2016.02.004] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 01/17/2023]
Abstract
The cationic polysaccharide chitosan is an attractive candidate adjuvant capable of driving potent cell-mediated immunity, but the mechanism by which it acts is not clear. We show that chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner. The induction of type I IFNs, IFN-stimulated genes and dendritic cell maturation by chitosan required the cytoplasmic DNA sensor cGAS and STING, implicating this pathway in dendritic cell activation. Additionally, this process was dependent on mitochondrial reactive oxygen species and the presence of cytoplasmic DNA. Chitosan-mediated enhancement of antigen specific Th1 and immunoglobulin G2c responses following vaccination was dependent on both cGAS and STING. These findings demonstrate that a cationic polymer can engage the STING-cGAS pathway to trigger innate and adaptive immune responses.
Collapse
|
113
|
Nakahira K, Hisata S, Choi AMK. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal 2015; 23:1329-50. [PMID: 26067258 PMCID: PMC4685486 DOI: 10.1089/ars.2015.6407] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria, vital cellular power plants to generate energy, are involved in immune responses. Mitochondrial damage-associated molecular patterns (DAMPs) are molecules that are released from mitochondria to extracellular space during cell death and include not only proteins but also DNA or lipids. Mitochondrial DAMPs induce inflammatory responses and are critically involved in the pathogenesis of various diseases. RECENT ADVANCES Recent studies elucidate the molecular mechanisms by which mitochondrial DAMPs are released and initiate immune responses by use of genetically modulated cells or animals. Importantly, the levels of mitochondrial DAMPs in patients are often associated with severity and prognosis of human diseases, such as infection, asthma, ischemic heart disease, and cancer. CRITICAL ISSUES Although mitochondrial DAMPs can represent proinflammatory molecules in various experimental models, their roles in human diseases may be multifunctional and complex. It remains unclear where and how mitochondrial DAMPs are liberated into extracellular spaces and exert their biological functions particularly in vivo. In addition, while mitochondria can secrete several types of DAMPs during cell death, the interaction of each mitochondrial DAMP (e.g., synergistic effects) remains unclear. FUTURE DIRECTIONS Regulation of mitochondrial DAMP-mediated immune responses may be important to alter the progression of human diseases. In addition, measuring mitochondrial DAMPs in patients may be clinically useful as biomarkers to predict prognosis or response to therapies. Further studies of the mechanisms by which mitochondrial DAMPs impact the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway. Antioxid.
Collapse
Affiliation(s)
- Kiichi Nakahira
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Shu Hisata
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Augustine M K Choi
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
114
|
Jung SS, Moon JS, Xu JF, Ifedigbo E, Ryter SW, Choi AMK, Nakahira K. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1058-67. [PMID: 25770182 DOI: 10.1152/ajplung.00400.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/08/2015] [Indexed: 01/25/2023] Open
Abstract
Inflammasomes are cytosolic protein complexes that promote the cleavage of caspase-1, which leads to the maturation and secretion of proinflammatory cytokines, including interleukin-1β (IL-1β) and IL-18. Among the known inflammasomes, the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3)-dependent inflammasome is critically involved in the pathogenesis of various acute or chronic inflammatory diseases. Carbon monoxide (CO), a gaseous molecule physiologically produced in cells and tissues during heme catabolism, can act as an anti-inflammatory molecule and a potent negative regulator of Toll-like receptor signaling pathways. To date, the role of CO in inflammasome-mediated immune responses has not been fully investigated. Here, we demonstrated that CO inhibited caspase-1 activation and the secretion of IL-1β and IL-18 in response to lipopolysaccharide (LPS) and ATP treatment in bone marrow-derived macrophages. CO also inhibited IL-18 secretion in response to LPS and nigericin treatment, another NLRP3 inflammasome activation model. In contrast, CO did not suppress IL-18 secretion in response to LPS and poly(dA:dT), an absent in melanoma 2 (AIM2)-mediated inflammasome model. LPS and ATP stimulation induced the formation of complexes between NLRP3 and apoptosis-associated speck-like protein, or NLRP3 and caspase-1. CO treatment inhibited these molecular interactions that were induced by LPS and ATP. Furthermore, CO inhibited mitochondrial ROS generation and the decrease of mitochondrial membrane potential induced by LPS and ATP in macrophages. We also observed that the inhibitory effect of CO on the translocation of mitochondrial DNA into the cytosol was associated with suppression of cytokine secretion. Our results suggest that CO negatively regulates NLRP3 inflammasome activation by preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sung-Soo Jung
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Department of Internal Medicine, Chungnam National University Medical School Daejeon, Republic of Korea
| | - Jong-Seok Moon
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Jin-Fu Xu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Emeka Ifedigbo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Kiichi Nakahira
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
115
|
Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc Natl Acad Sci U S A 2015; 112:E497-505. [PMID: 25605902 DOI: 10.1073/pnas.1417108112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases.
Collapse
|
116
|
Kosterina YA, Kozenkov II, Kasymov VA, Kamensky PA, Dominova IN, Korolyova YA, Patrusheva VY, Bogachev RS, Litvinova LS, Babak SV, Moiseeva YM, Bogdanov YA, Mukhortova OA, Vavilina YS, Mikhalchenkova TA, Patrushev MV. MITOCHONDRIAL PROTEIN PROFILE AND ITS ROLE IN PATHOLOGIC PROCESSES. BULLETIN OF SIBERIAN MEDICINE 2013. [DOI: 10.20538/1682-0363-2013-3-5-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitochondria import hundreds of different precursor proteins from the cytosol, and only 13 proteins are encoded by mtDNA itself. Recent investigations demonstrated real size of mitochondrial proteome and complexity of their functions There are many methods using for mitochondrial proteome profiling, that help to understand a molecular mechanisms of mitochondrial functions and identify the causes of disruptions that lead to different disorders. In this review we discuss a recent data in the field of mitochondrial proteomics.
Collapse
Affiliation(s)
| | | | - V. A. Kasymov
- Immanuel Kant Baltic Federal University, Kaliningrad
| | | | | | | | | | | | | | - S. V. Babak
- Immanuel Kant Baltic Federal University, Kaliningrad
| | | | | | | | | | | | | |
Collapse
|
117
|
Sanchez-Roman I, Barja G. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 2013; 48:1030-42. [PMID: 23454735 DOI: 10.1016/j.exger.2013.02.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 11/25/2022]
Abstract
Comparative studies indicate that long-lived mammals have low rates of mitochondrial reactive oxygen species production (mtROSp) and oxidative damage in their mitochondrial DNA (mtDNA). Dietary restriction (DR), around 40%, extends the mean and maximum life span of a wide range of species and lowers mtROSp and oxidative damage to mtDNA, which supports the mitochondrial free radical theory of aging (MFRTA). Regarding the dietary factor responsible for the life extension effect of DR, neither carbohydrate nor lipid restriction seems to modify maximum longevity. However protein restriction (PR) and methionine restriction (at least 80% MetR) increase maximum lifespan in rats and mice. Interestingly, only 7weeks of 40% PR (at least in liver) or 40% MetR (in all the studied organs, heart, brain, liver or kidney) is enough to decrease mtROSp and oxidative damage to mtDNA in rats, whereas neither carbohydrate nor lipid restriction changes these parameters. In addition, old rats also conserve the capacity to respond to 7weeks of 40% MetR with these beneficial changes. Most importantly, 40% MetR, differing from what happens during both 40% DR and 80% MetR, does not decrease growth rate and body size of rats. All the available studies suggest that the decrease in methionine ingestion that occurs during DR is responsible for part of the aging-delaying effect of this intervention likely through the decrease of mtROSp and ensuing DNA damage that it exerts. We conclude that lowering mtROS generation is a conserved mechanism, shared by long-lived species and dietary, protein, and methionine restricted animals, that decreases damage to macromolecules situated near the complex I mtROS generator, especially mtDNA. This would decrease the accumulation rate of somatic mutations in mtDNA and maybe finally also in nuclear DNA.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Spain
| | | |
Collapse
|
118
|
Klimenko ES, Mileiko VA, Morozkin ES, Laktionov PP, Konstantinov YM. Study of DNA import and export in potato (Solanum tuberosum) mitochondria using quantitative PCR. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2011. [DOI: 10.1134/s1990747811030044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
119
|
Gasiev AI, Shaikhaev GO. Lesions of the mitochondrial genome and ways of its preservation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
120
|
Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci U S A 2007; 104:18091-6. [PMID: 17986607 DOI: 10.1073/pnas.0708959104] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polyphosphate (polyP) consists of tens to hundreds of phosphates, linked by ATP-like high-energy bonds. Although polyP is present in mammalian mitochondria, its physiological roles there are obscure. Here, we examine the involvement of polyP in mitochondrial energy metabolism and ion transport. We constructed a vector to express a mitochondrially targeted polyphosphatase, along with a GFP fluorescent tag. Specific reduction of mitochondrial polyP, by polyphosphatase expression, significantly modulates mitochondrial bioenergetics, as indicated by the reduction of inner membrane potential and increased NADH levels. Furthermore, reduction of polyP levels increases mitochondrial capacity to accumulate calcium and reduces the likelihood of the calcium-induced mitochondrial permeability transition, a central event in many types of necrotic cell death. This confers protection against cell death, including that induced by beta-amyloid peptide, a pathogenic agent in Alzheimer's disease. These results demonstrate a crucial role played by polyP in mitochondrial function of mammalian cells.
Collapse
|
121
|
García N, Chávez E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size. Life Sci 2007; 81:1160-6. [PMID: 17870132 DOI: 10.1016/j.lfs.2007.08.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/16/2007] [Accepted: 08/17/2007] [Indexed: 11/22/2022]
Abstract
In the present work, we show that after induction of mitochondrial damage by oxidative stress, in the presence of calcium, matrix DNA content decreased to 42+/-6%. Mitochondrial damage was analyzed by measuring aconitase activity, a marker enzyme of mitochondrial oxidative stress. The genes were identified by amplifying them through the polymerase chain reaction (PCR), using specific primers for each mitochondrial gene (MTCO1, MTCO2, MTCO3, MTND3, MTND5, MTATP6, MTATP8, and MTCYB). The results show that after oxidative stress, the amount of MTCO1, MTND3, and MTCYB genes in the mitochondria approximately decreased by 46, 22, and 54%, respectively. This effect was inhibited in the presence of cyclosporin A. These genes were found outside the mitochondria after permeability transition was induced. Mitochondrial integrity was evaluated by observing the activity of adenylate kinase and malate dehydrogenase.
Collapse
Affiliation(s)
- Noemí García
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano # 1 Col. Sección XVI, México D.F. 14080, México.
| | | |
Collapse
|
122
|
Patrushev M, Kasymov V, Patrusheva V, Ushakova T, Gogvadze V, Gaziev AI. Release of mitochondrial DNA fragments from brain mitochondria of irradiated mice. Mitochondrion 2006; 6:43-7. [PMID: 16413832 DOI: 10.1016/j.mito.2005.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recently, we demonstrated that the release of mtDNA fragments from mitochondria occurs as a result of the opening of a non-specific pore in the inner mitochondrial membrane. Here, we show that irradiation of mice stimulates the appearance of mtDNA fragments in the cytosolic fractions of the brain. The fragments of mtDNA were found as early as 1h after irradiation, when no observable alteration of mitochondrial functioning occurred. The involvement of mitochondrial permeability transition in this process is discussed.
Collapse
Affiliation(s)
- Maxim Patrushev
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russian Federation
| | | | | | | | | | | |
Collapse
|