101
|
Wen X, Westergard T, Pasinelli P, Trotti D. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene. Neurosci Lett 2016; 636:16-26. [PMID: 27619540 DOI: 10.1016/j.neulet.2016.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two apparently distinct neurodegenerative diseases, the former characterized by selective loss of motor neurons in the brain and spinal cord and the latter characterized by selective atrophy of frontal and temporal lobes. Over the years, however, growing evidence from clinical, pathological and genetic findings has suggested that ALS and FTD belong to the same clinic-pathological spectrum disorder. This concept has been further supported by the identification of the most common genetic cause for both diseases, an aberrantly expanded hexanucleotide repeat GGGGCC/ CCCCGG sequence located in a non-coding region of the gene C9orf72. Three hypotheses have been proposed to explain how this repeats expansion causes diseases: 1) C9orf72 haploinsufficiency-expanded repeats interfere with transcription or translation of the gene, leading to decreased expression of the C9orf72 protein; 2) RNA gain of function-RNA foci formed by sense and antisense transcripts of expanded repeats interact and sequester essential RNA binding proteins, causing neurotoxicity; 3) Repeat associated non-ATG initiated (RAN) translation of expanded sense GGGGCC and antisense CCCCGG repeats produces potential toxic dipeptide repeat protein (DPR). In this review, we assess current evidence supporting or arguing against each proposed mechanism in C9 ALS/FTD disease pathogenesis. Additionally, controversial findings are also discussed. Lastly, we discuss the possibility that the three pathogenic mechanisms are not mutually exclusive and all three might be involved in disease.
Collapse
Affiliation(s)
- Xinmei Wen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Thomas Westergard
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
102
|
Richard P, Manley JL. R Loops and Links to Human Disease. J Mol Biol 2016; 429:3168-3180. [PMID: 27600412 DOI: 10.1016/j.jmb.2016.08.031] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Aberrant R-loop structures are increasingly being realized as an important contributor to human disease. R loops, which are mainly co-transcriptional, abundant RNA/DNA hybrids, form naturally and can indeed be beneficial for transcription regulation at certain loci. However, their unwanted persistence elsewhere or in particular situations can lead to DNA double-strand breaks, chromosome rearrangements, and hypermutation, which are all sources of genomic instability. Mutations in genes involved in R-loop resolution or mutations leading to R-loop formation at specific genes affect the normal physiology of the cell. We discuss here the examples of diseases for which a link with R loops has been described, as well as how disease-causing mutations might participate in the development and/or progression of diseases that include repeat-associated conditions, other neurological disorders, and cancers.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
103
|
Burrell JR, Halliday GM, Kril JJ, Ittner LM, Götz J, Kiernan MC, Hodges JR. The frontotemporal dementia-motor neuron disease continuum. Lancet 2016; 388:919-31. [PMID: 26987909 DOI: 10.1016/s0140-6736(16)00737-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early reports of cognitive and behavioural deficits in motor neuron disease might have been overlooked initially, but the concept of a frontotemporal dementia-motor neuron disease continuum has emerged during the past decade. Frontotemporal dementia-motor neuron disease is now recognised as an important dementia syndrome, which presents substantial challenges for diagnosis and management. Frontotemporal dementia, motor neuron disease, and frontotemporal dementia-motor neuron disease are characterised by overlapping patterns of TAR DNA binding protein (TDP-43) pathology, while the chromosome 9 open reading frame 72 (C9orf72) repeat expansion is common across the disease spectrum. Indeed, the C9orf72 repeat expansion provides important clues to disease pathogenesis and suggests potential therapeutic targets. Variable diagnostic criteria identify motor, cognitive, and behavioural deficits, but further refinement is needed to define the clinical syndromes encountered in frontotemporal dementia-motor neuron disease.
Collapse
Affiliation(s)
- James R Burrell
- Neuroscience Research Australia, Sydney, NSW, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, NSW, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jillian J Kril
- Disciplines of Medicine and Pathology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Lars M Ittner
- Neuroscience Research Australia, Sydney, NSW, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Matthew C Kiernan
- Neuroscience Research Australia, Sydney, NSW, Australia; Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Neuroscience Research Australia, Sydney, NSW, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
104
|
The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol Psychiatry 2016; 21:1112-24. [PMID: 26481318 PMCID: PMC4960451 DOI: 10.1038/mp.2015.159] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 12/29/2022]
Abstract
Pathological expansion of a G4C2 repeat, located in the 5' regulatory region of C9orf72, is the most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 patients have highly variable onset ages suggesting the presence of modifying factors and/or anticipation. We studied 72 Belgian index patients with FTLD, FTLD-ALS or ALS and 61 relatives with a C9orf72 repeat expansion. We assessed the effect of G4C2 expansion size on onset age, the role of anticipation and the effect of repeat size on methylation and C9orf72 promoter activity. G4C2 expansion sizes varied in blood between 45 and over 2100 repeat units with short expansions (45-78 units) present in 5.6% of 72 index patients with an expansion. Short expansions co-segregated with disease in two families. The subject with a short expansion in blood but an indication of mosaicism in brain showed the same pathology as those with a long expansion. Further, we provided evidence for an association of G4C2 expansion size with onset age (P<0.05) most likely explained by an association of methylation state of the 5' flanking CpG island and expansion size in blood (P<0.0001) and brain (P<0.05). In several informative C9orf72 parent-child transmissions, we identified earlier onset ages, increasing expansion sizes and/or increasing methylation states (P=0.0034) of the 5' CpG island, reminiscent of disease anticipation. Also, intermediate repeats (7-24 units) showed a slightly higher methylation degree (P<0.0001) and a decrease of C9orf72 promoter activity (P<0.0001) compared with normal short repeats (2-6 units). Decrease of transcriptional activity was even more prominent in the presence of small deletions flanking G4C2 (P<0.0001). Here we showed that increased methylation of CpGs in the C9orf72 promoter may explain how an increasing G4C2 size lead to loss-of-function without excluding repeat length-dependent toxic gain-of-function. These data provide insights into disease mechanisms and have important implications for diagnostic counseling and potential therapeutic approaches.
Collapse
|
105
|
Klein HU, De Jager PL. Uncovering the Role of the Methylome in Dementia and Neurodegeneration. Trends Mol Med 2016; 22:687-700. [PMID: 27423266 DOI: 10.1016/j.molmed.2016.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Our understanding of the epigenome has advanced dramatically over the past decade, particularly in terms of DNA methylation, a modification found throughout the genome. Studies of the brain and neurons have outlined an increasingly complex architecture involving not just CG dinucleotide methylation but also methylation of other dinucleotides, and modifications of methylated bases such as 5-hydroxymethylcytosine. Different modifications may play an important role in brain development, function and decline; recent descriptions of the effects of aging and neurodegenerative processes such as Alzheimer disease on methylation profiles have ushered in an era of DNA methylome-wide association studies. Rapidly improving technologies and study designs are returning robust results, and investigations of the human brain's epigenome are increasingly feasible, complementing insights gained from genetic studies.
Collapse
Affiliation(s)
- Hans-Ulrich Klein
- Program in Translational Neuropsychiatric Genomics and Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Philip L De Jager
- Program in Translational Neuropsychiatric Genomics and Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
106
|
Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R, Riancho J, López de Munain A. ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 2016; 142:104-129. [DOI: 10.1016/j.pneurobio.2016.05.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
|
107
|
Todd TW, Petrucelli L. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem 2016; 138 Suppl 1:145-62. [PMID: 27016280 DOI: 10.1111/jnc.13623] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
The identification of a hexanucleotide repeat expansion in a non-coding region of C9orf72 as a major cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) drastically changed the field of research on both of these conditions. Yet, despite the vast amount of work aimed at elucidating the molecular mechanisms underlying the role of this repeat in disease, the exact pathomechanisms are still unclear. A reduction in the expression of the C9orf72 gene is observed in patients, but a gain-of-function model is now preferred. The hexanucleotide repeat expansion forms RNA foci in the central nervous system (CNS) of repeat-positive FTD and ALS patients, and these foci are believed to sequester RNA-binding proteins (RBPs) and impair their function in RNA processing. At the same time, the repeat undergoes repeat-associated non-ATG translation to produce dipeptide repeat proteins that also form inclusions in the patient CNS. Studies from cells and flies suggest that these proteins may also be an important factor in the disease. Finally, the hexanucleotide repeat also induces the mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43) through an as yet unknown mechanism. This review covers the different potential pathogenic factors that have been put forth for C9orf72-repeat-associated FTD and ALS (C9-FTD/ALS), while highlighting some remaining questions. A repeat expansion in C9orf72 is a common cause of both frontal temporal dementia and amyotrophic lateral sclerosis. Although there is a decrease in C9orf72 expression in patients, this repeat is believed to induce disease primarily through an unknown gain-of-function mechanism involving the RNA, repeat-associated non-AUG translation, or both. This review summarizes and discusses current knowledge on C9orf72 repeat-associated pathophysiology. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
108
|
Cleary EM, Pal S, Azam T, Moore DJ, Swingler R, Gorrie G, Stephenson L, Colville S, Chandran S, Porteous M, Warner JP. Improved PCR based methods for detecting C9orf72 hexanucleotide repeat expansions. Mol Cell Probes 2016; 30:218-224. [PMID: 27288208 PMCID: PMC4978699 DOI: 10.1016/j.mcp.2016.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
Abstract
Due to the GC-rich, repetitive nature of C9orf72 hexanucleotide repeat expansions, PCR based detection methods are challenging. Several limitations of PCR have been reported and overcoming these could help to define the pathogenic range. There is also a need to develop improved repeat-primed PCR assays which allow detection even in the presence of genomic variation around the repeat region. We have optimised PCR conditions for the C9orf72 hexanucleotide repeat expansion, using betaine as a co-solvent and specific cycling conditions, including slow ramping and a high denaturation temperature. We have developed a flanking assay, and repeat-primed PCR assays for both 3′ and 5′ ends of the repeat expansion, which when used together provide a robust strategy for detecting the presence or absence of expansions greater than ∼100 repeats, even in the presence of genomic variability at the 3′ end of the repeat. Using our assays, we have detected repeat expansions in 47/442 Scottish ALS patients. Furthermore, we recommend the combined use of these assays in a clinical diagnostic setting. Flanking PCR across C9orf72 repeat expansions up to 900 repeats has been performed. RP-PCR assays described for both 3′ and 5′ ends of the C9orf72 repeat expansion. Robust detection of expansions by RP-PCR for mosaic samples. Limitations of RP-PCR described.
Collapse
Affiliation(s)
- Elaine M Cleary
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom; Euan Macdonald Centre for MND Research, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom.
| | - Suvankar Pal
- Euan Macdonald Centre for MND Research, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Tara Azam
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - David J Moore
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Robert Swingler
- Euan Macdonald Centre for MND Research, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - George Gorrie
- Euan Macdonald Centre for MND Research, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Laura Stephenson
- Euan Macdonald Centre for MND Research, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Shuna Colville
- Euan Macdonald Centre for MND Research, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Siddharthan Chandran
- Euan Macdonald Centre for MND Research, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Mary Porteous
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom; Euan Macdonald Centre for MND Research, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Jon P Warner
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
109
|
The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci 2016; 17:383-95. [PMID: 27150398 DOI: 10.1038/nrn.2016.38] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A nucleotide repeat expansion (NRE) within the chromosome 9 open reading frame 72 (C9orf72) gene was the first of this type of mutation to be linked to multiple neurological conditions, including amyotrophic lateral sclerosis and frontotemporal dementia. The pathogenic mechanisms through which the C9orf72 NRE contributes to these disorders include loss of C9orf72 function and gain-of-function mechanisms of C9orf72 driven by toxic RNA and protein species encoded by the NRE. These mechanisms have been linked to several cellular defects - including nucleocytoplasmic trafficking deficits and nuclear stress - that have been observed in both patients and animal models.
Collapse
|
110
|
Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D, Chun S, Sun S, Ling SC, Myers B, Engelhardt J, Katz M, Baughn M, Platoshyn O, Marsala M, Watt A, Heyser CJ, Ard MC, De Muynck L, Daughrity LM, Swing DA, Tessarollo L, Jung CJ, Delpoux A, Utzschneider DT, Hedrick SM, de Jong PJ, Edbauer D, Van Damme P, Petrucelli L, Shaw CE, Bennett CF, Da Cruz S, Ravits J, Rigo F, Cleveland DW, Lagier-Tourenne C. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron 2016; 90:535-50. [PMID: 27112497 PMCID: PMC4860075 DOI: 10.1016/j.neuron.2016.04.006] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy.
Collapse
Affiliation(s)
- Jie Jiang
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qiang Zhu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Shahram Saberi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amanda Seelman
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer E Stauffer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Kevin Drenner
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Derek Schulte
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seung Chun
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Shuying Sun
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physiology, National University of Singapore, 12 Science Drive 2, Singapore 117549, Singapore
| | - Brian Myers
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Melanie Katz
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael Baughn
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Martin Marsala
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 9, 04001 Kosice, Slovakia
| | - Andy Watt
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Charles J Heyser
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - M Colin Ard
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Louis De Muynck
- Laboratory of Neurobiology, Vesalius Research Center, Experimental Neurology, Department of Neurosciences, KU Leuven/VIB, 3000 Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lillian M Daughrity
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Deborah A Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Chris J Jung
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Arnaud Delpoux
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel T Utzschneider
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen M Hedrick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilians University and Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Philip Van Damme
- Laboratory of Neurobiology, Vesalius Research Center, Experimental Neurology, Department of Neurosciences, KU Leuven/VIB, 3000 Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | - C Frank Bennett
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Clotilde Lagier-Tourenne
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
111
|
Zhang YJ, Gendron TF, Grima JC, Sasaguri H, Jansen-West K, Xu YF, Katzman RB, Gass J, Murray ME, Shinohara M, Lin WL, Garrett A, Stankowski JN, Daughrity L, Tong J, Perkerson EA, Yue M, Chew J, Castanedes-Casey M, Kurti A, Wang ZS, Liesinger AM, Baker JD, Jiang J, Lagier-Tourenne C, Edbauer D, Cleveland DW, Rademakers R, Boylan KB, Bu G, Link CD, Dickey CA, Rothstein JD, Dickson DW, Fryer JD, Petrucelli L. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci 2016; 19:668-677. [PMID: 26998601 PMCID: PMC5138863 DOI: 10.1038/nn.4272] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jonathan C Grima
- Department of Neurology, School of Medicine, Johns Hopkins University, Maryland, USA
- Brain Science Institute, School of Medicine, Johns Hopkins University, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Maryland, USA
| | - Hiroki Sasaguri
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Ya-Fei Xu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jennifer Gass
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Aliesha Garrett
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Zizhao S Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jeremy D Baker
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | - Jie Jiang
- Ludwig Institute, University of California at San Diego, La Jolla, California, USA
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Metabolic Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Don W Cleveland
- Ludwig Institute, University of California at San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Christopher D Link
- Integrative Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | - Chad A Dickey
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | - Jeffrey D Rothstein
- Department of Neurology, School of Medicine, Johns Hopkins University, Maryland, USA
- Brain Science Institute, School of Medicine, Johns Hopkins University, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Maryland, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | |
Collapse
|
112
|
Chi S, Jiang T, Tan L, Yu JT. Distinct neurological disorders with C9orf72 mutations: genetics, pathogenesis, and therapy. Neurosci Biobehav Rev 2016; 66:127-42. [PMID: 27139021 DOI: 10.1016/j.neubiorev.2016.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 12/12/2022]
Abstract
The G4C2 repeat expansion within C9orf72 has been recently identified as the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. This mutation has also been detected in a variety of other neurological diseases with distinct clinical manifestations. The exact mechanisms of how this mutation leads to the wide spectrum of clinical syndromes remain unknown. A series of molecular changes together with some potential modifiers may play a key role. Nucleolar stress, nucleocytoplasmic transport defect, oxidative damage, inhibited stress granules assembly, activated endoplasmic reticulum stress, and inhibited proteasome activity are mechanisms that contribute to the pathogenesis of these diseases. Additional mutations, epigenetic modifiers, and repeat size are potential modifiers that modulate specific phenotypes on the basis of the molecular changes. Here, we summarize distinct C9orf72-related neurological disorders and their corresponding neuropathological changes. Then, we elucidate the existing molecular knowledge and the potential modifiers. Finally, we detail the main target of treatment aiming at controlling expanded RNA transcripts.
Collapse
Affiliation(s)
- Song Chi
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
113
|
Xiao S, MacNair L, McLean J, McGoldrick P, McKeever P, Soleimani S, Keith J, Zinman L, Rogaeva E, Robertson J. C9orf72 isoforms in Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Brain Res 2016; 1647:43-49. [PMID: 27134035 DOI: 10.1016/j.brainres.2016.04.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022]
Abstract
A hexanucleotide (G4C2) repeat expansion in the 5' non-coding region C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Three modes of toxicity have been proposed: gain of function through formation of RNA foci and sequestration of RNA binding proteins; expression of dipeptide repeat proteins generated by repeat-associated non-ATG translation; and loss of function due to C9orf72 haploinsufficiency. Much is known about the proposed gain of function mechanisms, but there is little knowledge of the normal function of C9orf72 and the cellular consequences if its activity is perturbed. Here we will review what is known of C9orf72 at the transcript and protein levels and how changes in C9orf72 expression could contribute to disease pathogenesis. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Shangxi Xiao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada
| | - Laura MacNair
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jesse McLean
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada
| | - Phillip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada
| | - Paul McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Serena Soleimani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada
| | | | | | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
114
|
Gitler AD, Tsuiji H. There has been an awakening: Emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res 2016; 1647:19-29. [PMID: 27059391 DOI: 10.1016/j.brainres.2016.04.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 12/13/2022]
Abstract
The discovery of C9orf72 mutations as the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has awakened a surge of interest in deciphering how mutations in this mysterious gene cause disease and what can be done to stop it. C9orf72 harbors a hexanucleotide repeat, GGGGCC, in a non-coding region of the gene and a massive expansion of this repeat causes ALS, FTD, or both (FTD/ALS). Many questions lie ahead. What does this gene normally do? What is the consequence of an enormous GGGGCC repeat expansion on that gene's function? Could that hexanucleotide repeat expansion have additional pathological actions unrelated to C9orf72 function? There has been tremendous progress on all fronts in the quest to define how C9orf72 mutations cause disease. Many new experimental models have been constructed and unleashed in powerful genetic screens. Studies in mouse and human patient samples, including iPS-derived neurons, have provided unprecedented insights into pathogenic mechanisms. Three major hypotheses have emerged and are still being hotly debated in the field. These include (1) loss of function owing to decrease in the abundance of C9orf72 protein and its ability to carryout its still unknown cellular role; (2) RNA toxicity from bidirectionally transcribed sense (GGGGCC) and antisense (GGCCCC) transcripts that accumulate in RNA foci and might sequester critical RNA-binding proteins; (3) proteotoxicity from dipeptide repeat proteins produced by an unconventional form of translation from the expanded nucleotide repeats. Here we review the evidence in favor and against each of these three hypotheses. We also suggest additional experiments and considerations that we propose will help clarify which mechanism(s) are most important for driving disease and therefore most critical for considering during the development of therapeutic interventions. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, M322 Alway Building, Stanford, CA 94305, USA.
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
115
|
Esanov R, Belle KC, van Blitterswijk M, Belzil VV, Rademakers R, Dickson DW, Petrucelli L, Boylan KB, Dykxhoorn DM, Wuu J, Benatar M, Wahlestedt C, Zeier Z. C9orf72 promoter hypermethylation is reduced while hydroxymethylation is acquired during reprogramming of ALS patient cells. Exp Neurol 2015; 277:171-177. [PMID: 26746986 DOI: 10.1016/j.expneurol.2015.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022]
Abstract
Among several genetic mutations known to cause amyotrophic lateral sclerosis (ALS), a hexanucleotide repeat expansion in the C9orf72 gene is the most common. In approximately 30% of C9orf72-ALS cases, 5-methylcytosine (5mC) levels within the C9orf72 promoter are increased, resulting in a modestly attenuated phenotype. The developmental timing of C9orf72 promoter hypermethylation and the reason why it occurs in only a subset of patients remain unknown. In order to model the acquisition of C9orf72 hypermethylation and examine the potential role of 5-hydroxymethylcytosine (5hmC), we generated induced pluripotent stem cells (iPSCs) from an ALS patient with C9orf72 promoter hypermethylation. Our data show that 5mC levels are reduced by reprogramming and then re-acquired upon neuronal specification, while 5hmC levels increase following reprogramming and are highest in iPSCs and motor neurons. We confirmed the presence of 5hmC within the C9orf72 promoter in post-mortem brain tissues of hypermethylated patients. These findings show that iPSCs are a valuable model system for examining epigenetic perturbations caused by the C9orf72 mutation and reveal a potential role for cytosine demethylation.
Collapse
Affiliation(s)
- Rustam Esanov
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kinsley C Belle
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, USA; The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, USA
| | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, USA; The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
116
|
Loureiro JR, Oliveira CL, Silveira I. Unstable repeat expansions in neurodegenerative diseases: nucleocytoplasmic transport emerges on the scene. Neurobiol Aging 2015; 39:174-83. [PMID: 26923414 DOI: 10.1016/j.neurobiolaging.2015.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
An astonishing number of neurological diseases result from expansion of unstable repetitive sequences causing alterations in key neuronal processes. Some are progressive late-onset conditions related to aging, such as the spinocerebellar ataxias. In several of these pathologies, the expanded repeat is transcribed, producing an expanded RNA repeat that causes neurodegeneration by a complex mechanism, comprising 3 main pathways. These include (1) accumulation in the nucleus of RNA foci, resulting from sequestration of RNA-binding proteins functioning in important neuronal cascades; (2) decrease in availability of RNA-binding proteins, such as splicing factors, causing alternative splicing misregulation with imbalance in the expression ratio of neuronal isoforms; and (3) generation of neurotoxic peptides, produced from repeat-associated non-ATG-initiated translation across the RNA repeat, in all reading frames. Recently, 2 pathologies characterized by impaired motor function, cognitive decline, or/and degeneration of motor neurons have been found that have broaden our understanding of these diseases. Moreover, the finding of compromised nucleocytoplasmic transport opens new avenues for research. This review will cover the amazing progress regarding these conditions.
Collapse
Affiliation(s)
- Joana R Loureiro
- Group Genetics of Cognitive Dysfunction, i3s- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; ICBAS, Universidade do Porto, Portugal
| | - Claudia L Oliveira
- Group Genetics of Cognitive Dysfunction, i3s- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; ICBAS, Universidade do Porto, Portugal
| | - Isabel Silveira
- Group Genetics of Cognitive Dysfunction, i3s- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; ICBAS, Universidade do Porto, Portugal.
| |
Collapse
|
117
|
Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neurosci Lett 2015; 612:204-209. [PMID: 26690922 DOI: 10.1016/j.neulet.2015.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), together referred to as c9FTD/ALS. It has been suggested that a loss of C9orf72 protein expression, the formation of toxic RNA foci and dipeptide-repeat proteins contribute to C9orf72-related diseases. Interestingly, it has been shown that trimethylation of histones and methylation of CpG islands near the repeat expansion may play a role in the pathogenesis c9FTD/ALS. Recently, methylation of expanded repeat itself has been reported. To further elucidate the mechanisms underlying these diseases, the influence of epigenetic modification in the repeat expansion on its pathogenic effect was assessed. Here, a reduced formation of toxic RNA foci and dipeptide-repeat proteins upon methylation of the GGGGCC repeat in a cellular model of c9FTD/ALS is shown. Additionally, a novel methylcytosine-capture DNA hybridization immunoassay for semi-quantitative detection of the repeat methylation levels is presented, potentially usable for methylation analysis in patients carrying C9orf72 repeat expansion carriers as a diagnostic tool. Presented results suggest that increased level of pathogenic GGGGCC expansion methylation may be sufficient to alleviate the molecular pathology of the C9orf72-related diseases.
Collapse
|
118
|
Davidson Y, Robinson AC, Liu X, Wu D, Troakes C, Rollinson S, Masuda-Suzukake M, Suzuki G, Nonaka T, Shi J, Tian J, Hamdalla H, Ealing J, Richardson A, Jones M, Pickering-Brown S, Snowden JS, Hasegawa M, Mann DMA. Neurodegeneration in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9orf72 is linked to TDP-43 pathology and not associated with aggregated forms of dipeptide repeat proteins. Neuropathol Appl Neurobiol 2015; 42:242-54. [PMID: 26538301 PMCID: PMC4832296 DOI: 10.1111/nan.12292] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Aims A hexanucleotide expansion in C9orf72 is the major genetic cause of inherited behavioural variant Frontotemporal dementia (bvFTD) and motor neurone disease (MND), although the pathological mechanism(s) underlying disease remains uncertain. Methods Using antibodies to poly‐GA, poly‐GP, poly‐GR, poly‐AP and poly‐PR proteins, we examined sections of cerebral cortex, hippocampus, thalamus, cerebellum and spinal cord, from 20 patients with bvFTD and/or MND bearing an expansion in C9orf72 for aggregated deposits of dipeptide repeat proteins (DPR). Results Antibodies to poly‐GA, poly‐GP and poly‐GR detected numerous rounded cytoplasmic inclusions (NCI) within granule cells of hippocampal dentate gyrus and those of the cerebellum, as well as ‘star‐burst’ shaped NCI in pyramidal neurones of CA3/4 region of hippocampus. NCI were uncommon in Purkinje cells, and only very rarely seen in anterior horn cells. Poly‐PA antibody detected occasional NCI within CA3/4 neurones alone, whereas poly‐PR antibody did not identify any NCI but immunostained the nucleus of anterior horn cells, CA3/4 neurones and Purkinje cells, in patients with or without expansion in C9orf72, as well as in normal controls. Poly‐GA antibody generally detected more DPR than poly‐GP, which in turn was greater than poly‐GR. All patients with bvFTD + MND or MND showed plentiful p62/TDP‐43 positive inclusions in remaining anterior horn cells. Conclusion Degeneration and loss of anterior horn cells associated with expansions in C9orf72 occurs in the absence of DPR, and implies that changes involving loss of nuclear staining for and a cytoplasmic aggregation of TDP‐43 are more likely to be the cause of this.
Collapse
Affiliation(s)
- Y Davidson
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, UK
| | - A C Robinson
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, UK
| | - X Liu
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, UK.,Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, China
| | - D Wu
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, UK.,Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, China
| | - C Troakes
- London Neurodegenerative Diseases Brain Bank, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Rollinson
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - M Masuda-Suzukake
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - G Suzuki
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J Shi
- Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, China
| | - J Tian
- Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, China
| | - H Hamdalla
- Manchester MND Care Centre, Salford Royal Hospital, Manchester, UK
| | - J Ealing
- Manchester MND Care Centre, Salford Royal Hospital, Manchester, UK
| | - A Richardson
- Cerebral Function Unit, Salford Royal Hospital, Manchester, UK
| | - M Jones
- Cerebral Function Unit, Salford Royal Hospital, Manchester, UK
| | - S Pickering-Brown
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - J S Snowden
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, UK.,Cerebral Function Unit, Salford Royal Hospital, Manchester, UK
| | - M Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - D M A Mann
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, UK
| |
Collapse
|
119
|
Wang J, Haeusler AR, Simko EAJ. Emerging role of RNA•DNA hybrids in C9orf72-linked neurodegeneration. Cell Cycle 2015; 14:526-32. [PMID: 25590632 DOI: 10.1080/15384101.2014.995490] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA plays an active role in structural polymorphism of the genome through the formation of stable RNA•DNA hybrids (R-loops). R-loops can modulate normal physiological processes and are also associated with pathological conditions, such as those related to nucleotide repeat expansions. A guanine-rich hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) has been linked to a spectrum of neurological conditions including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we discuss the possible roles, both locally and genome-wide, of R-loops that may arise from the C9orf72 hexanucleotide repeat. R-loops have the potential to influence the pathological processes identified in many repeat expansion diseases, such as repeat instability, transcriptional dysregulation, epigenetic modification, and antisense-mediated gene regulation. We propose that, given the wide-ranging consequences of R-loops in the cell, these structures could underlie multiple pathological processes in C9orf72-linked neurodegeneration.
Collapse
Affiliation(s)
- Jiou Wang
- a Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health ; Johns Hopkins University ; Baltimore , MD USA
| | | | | |
Collapse
|
120
|
Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathol 2015; 130:845-61. [PMID: 26374446 DOI: 10.1007/s00401-015-1476-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of frontotemporal dementia and motor neuron disease. One consequence of the mutation is the formation of different potentially toxic polypeptides composed of dipeptide repeats (DPR) (poly-GA, -GP, -GR, -PA, -PR) generated by repeat-associated non-ATG (RAN) translation. While previous studies focusing on poly-GA pathology have failed to detect any clinico-pathological correlations in C9ORF72 mutation cases, recent data from animal and cell culture models suggested that it may be only specific DPR species that are toxic and only when accumulated in certain intracellular compartments. Therefore, we performed a systematic clinico-pathological correlative analysis with counting of actual numbers of distinct types of inclusion (neuronal cytoplasmic and intranuclear inclusions, dystrophic neurites) for each DPR protein in relevant brain regions (premotor cortex, lower motor neurons) in a cohort of 35 C9ORF72 mutation cases covering the clinical spectrum from those with pure MND, mixed FTD/MND and pure FTD. While each DPR protein pathology had a similar pattern of anatomical distribution, the total amount of inclusions for each DPR protein varied remarkably (poly-GA > GP > GR > PR/PA), indicating that RAN translation seems to be more effective from sense than from antisense transcripts. Importantly, with the exception of moderate associations for the amount of poly-GA-positive dystrophic neurites with degeneration in the frontal cortex and total burden of poly-GA pathology with disease onset, no relationship was identified for any other DPR protein pathology with degeneration or phenotype. Biochemical analysis revealed a close correlation between insoluble DPR protein species and numbers of visible inclusions, while we did not find any evidence for the presence of soluble DPR protein species. Thus, overall our findings strongly argue against a role of DPR protein aggregation as major and exclusive pathomechanism in C9ORF72 pathogenesis. However, this does not exclude that DPR protein formation might be essential in C9ORF72 pathogenesis in interplay with other consequences associated with the C9ORF72 repeat expansion.
Collapse
|
121
|
van Blitterswijk M, Gendron TF, Baker MC, DeJesus-Hernandez M, Finch NA, Brown PH, Daughrity LM, Murray ME, Heckman MG, Jiang J, Lagier-Tourenne C, Edbauer D, Cleveland DW, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Petrucelli L, Boeve BF, Graff-Radford NR, Boylan KB, Dickson DW, Rademakers R. Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathol 2015; 130:863-76. [PMID: 26437865 DOI: 10.1007/s00401-015-1480-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022]
Abstract
The loss of chromosome 9 open reading frame 72 (C9ORF72) expression, associated with C9ORF72 repeat expansions, has not been examined systematically. Three C9ORF72 transcript variants have been described thus far; the GGGGCC repeat is located between two non-coding exons (exon 1a and exon 1b) in the promoter region of transcript variant 2 (NM_018325.4) or in the first intron of variant 1 (NM_145005.6) and variant 3 (NM_001256054.2). We studied C9ORF72 expression in expansion carriers (n = 56) for whom cerebellum and/or frontal cortex was available. Using quantitative real-time PCR and digital molecular barcoding techniques, we assessed total C9ORF72 transcripts, variant 1, variant 2, variant 3, and intron containing transcripts [upstream of the expansion (intron 1a) and downstream of the expansion (intron 1b)]; the latter were correlated with levels of poly(GP) and poly(GA) proteins aberrantly translated from the expansion as measured by immunoassay (n = 50). We detected a decrease in expansion carriers as compared to controls for total C9ORF72 transcripts, variant 1, and variant 2: the strongest association was observed for variant 2 (quantitative real-time PCR cerebellum: median 43 %, p = 1.26e-06, and frontal cortex: median 58 %, p = 1.11e-05; digital molecular barcoding cerebellum: median 31 %, p = 5.23e-10, and frontal cortex: median 53 %, p = 5.07e-10). Importantly, we revealed that variant 1 levels greater than the 25th percentile conferred a survival advantage [digital molecular barcoding cerebellum: hazard ratio (HR) 0.31, p = 0.003, and frontal cortex: HR 0.23, p = 0.0001]. When focusing on intron containing transcripts, analysis of the frontal cortex revealed an increase of potentially truncated transcripts in expansion carriers as compared to controls [digital molecular barcoding frontal cortex (intron 1a): median 272 %, p = 0.003], with the highest levels in patients pathologically diagnosed with frontotemporal lobar degeneration. In the cerebellum, our analysis suggested that transcripts were less likely to be truncated and, excitingly, we discovered that intron containing transcripts were associated with poly(GP) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.33, p = 0.02, and (intron 1b): r = 0.49, p = 0.0004] and poly(GA) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.34, p = 0.02, and (intron 1b): r = 0.38, p = 0.007]. In summary, we report decreased expression of specific C9ORF72 transcripts and provide support for the presence of truncated transcripts as well as pre-mRNAs that may serve as templates for RAN translation. We further show that higher C9ORF72 levels may have beneficial effects, which warrants caution in the development of new therapeutic approaches.
Collapse
|
122
|
Urbanek MO, Krzyzosiak WJ. RNA FISH for detecting expanded repeats in human diseases. Methods 2015; 98:115-123. [PMID: 26615955 DOI: 10.1016/j.ymeth.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022] Open
Abstract
RNA fluorescence in situ hybridization (FISH) is a widely used technique for detecting transcripts in fixed cells and tissues. Many variants of RNA FISH have been proposed to increase signal strength, resolution and target specificity. The current variants of this technique facilitate the detection of the subcellular localization of transcripts at a single molecule level. Among the applications of RNA FISH are studies on nuclear RNA foci in diseases resulting from the expansion of tri-, tetra-, penta- and hexanucleotide repeats present in different single genes. The partial or complete retention of mutant transcripts forming RNA aggregates within the nucleoplasm has been shown in multiple cellular disease models and in the tissues of patients affected with these atypical mutations. Relevant diseases include, among others, myotonic dystrophy type 1 (DM1) with CUG repeats, Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) with CAG repeats, fragile X-associated tremor/ataxia syndrome (FXTAS) with CGG repeats, myotonic dystrophy type 2 (DM2) with CCUG repeats, amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) with GGGGCC repeats and spinocerebellar ataxia type 32 (SCA32) with GGCCUG. In this article, we summarize the results obtained with FISH to examine RNA nuclear inclusions. We provide a detailed protocol for detecting RNAs containing expanded CAG and CUG repeats in different cellular models, including fibroblasts, lymphoblasts, induced pluripotent stem cells and murine and human neuronal progenitors. We also present the results of the first single-molecule FISH application in a cellular model of polyglutamine disease.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
123
|
Abstract
Genes linked to amyotrophic lateral sclerosis (ALS) susceptibility are being identified at an increasing rate owing to advances in molecular genetic technology. Genetic mechanisms in ALS pathogenesis seem to exert major effects in about 10% of patients, but genetic factors at some level may be important components of disease risk in most patients with ALS. Identification of gene variants associated with ALS has informed concepts of the pathogenesis of ALS, aided the identification of therapeutic targets, facilitated research to develop new ALS biomarkers, and supported the establishment of clinical diagnostic tests for ALS-linked genes.
Collapse
Affiliation(s)
- Kevin Boylan
- Department of Neurology, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
124
|
Zamiri B, Mirceta M, Bomsztyk K, Macgregor RB, Pearson CE. Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGGCC)8•(GGCCCC)8 repeat: effect of CpG methylation. Nucleic Acids Res 2015; 43:10055-64. [PMID: 26432832 PMCID: PMC4787773 DOI: 10.1093/nar/gkv1008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Unusual DNA/RNA structures of the C9orf72 repeat may participate in repeat expansions or pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded repeats are CpG methylated with unknown consequences. Typically, quadruplex structures form by G-rich but not complementary C-rich strands. Using CD, UV and electrophoresis, we characterized the structures formed by (GGGGCC)8 and (GGCCCC)8 strands with and without 5-methylcytosine (5mCpG) or 5-hydroxymethylcytosine (5hmCpG) methylation. All strands formed heterogenous mixtures of structures, with features of quadruplexes (at pH 7.5, in K(+), Na(+) or Li(+)), but no feature typical of i-motifs. C-rich strands formed quadruplexes, likely stabilized by G•C•G•C-tetrads and C•C•C•C-tetrads. Unlike G•G•G•G-tetrads, some G•C•G•C-tetrad conformations do not require the N7-Guanine position, hence C9orf72 quadruplexes still formed when N7-deazaGuanine replace all Guanines. 5mCpG and 5hmCpG increased and decreased the thermal stability of these structures. hnRNPK, through band-shift analysis, bound C-rich but not G-rich strands, with a binding preference of unmethylated > 5hmCpG > 5mCpG, where methylated DNA-protein complexes were retained in the wells, distinct from unmethylated complexes. Our findings suggest that for C-rich sequences interspersed with G-residues, one must consider quadruplex formation and that methylation of quadruplexes may affect epigenetic processes.
Collapse
Affiliation(s)
- Bita Zamiri
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mila Mirceta
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle WA 98109, USA
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
125
|
Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 2015; 130:537-55. [PMID: 26085200 PMCID: PMC4575390 DOI: 10.1007/s00401-015-1450-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/25/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
A massive expansion of a GGGGCC repeat upstream of the C9orf72 coding region is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. Despite its intronic localization and lack of a canonical start codon, both strands are translated into aggregating dipeptide repeat (DPR) proteins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. To address conflicting findings on the predominant toxicity of the different DPR species in model systems, we compared the expression pattern of the DPR proteins in rat primary neurons and postmortem brain and spinal cord of C9orf72 mutation patients. Only poly-GA overexpression closely mimicked the p62-positive neuronal cytoplasmic inclusions commonly observed for all DPR proteins in patients. In contrast, overexpressed poly-GR and poly-PR formed nucleolar p62-negative inclusions. In patients, most of the less common neuronal intranuclear DPR inclusions were para-nucleolar and p62 positive. Neuronal nucleoli in C9orf72 cases showed normal size and morphology regardless of the presence of poly-GR and poly-PR inclusions arguing against widespread nucleolar stress, reported in cellular models. Colocalization of para-nucleolar DPR inclusions with heterochromatin and a marker of transcriptional repression (H3K9me2) indicates a link to gene transcription. In contrast, we detected numerous intranuclear DPR inclusions not associated with nucleolar structures in ependymal and subependymal cells. In patients, neuronal inclusions of poly-GR, poly-GP and the poly-GA interacting protein Unc119 were less abundant than poly-GA inclusions, but showed similar regional and subcellular distribution. Regardless of neurodegeneration, all inclusions were most abundant in neocortex, hippocampus and thalamus, with few inclusions in brain stem and spinal cord. In the granular cell layer of the cerebellum, poly-GA and Unc119 inclusions were significantly more abundant in cases with FTLD than in cases with MND and FTLD/MND. Poly-PR inclusions were rare throughout the brain but significantly more abundant in the CA3/4 region of FTLD cases than in MND cases. Thus, although DPR distribution is not correlated with neurodegeneration spatially, it correlates with neuropathological subtypes.
Collapse
|
126
|
Benussi A, Padovani A, Borroni B. Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia. Front Aging Neurosci 2015; 7:171. [PMID: 26388768 PMCID: PMC4555036 DOI: 10.3389/fnagi.2015.00171] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a genetically and pathologically heterogeneous disorder characterized by personality changes, language impairment, and deficits of executive functions associated with frontal and temporal lobe degeneration. Different phenotypes have been defined on the basis of presenting clinical symptoms, i.e., the behavioral variant of FTD, the agrammatic variant of primary progressive aphasia, and the semantic variant of PPA. Some patients have an associated movement disorder, either parkinsonism, as in progressive supranuclear palsy and corticobasal syndrome, or motor neuron disease (FTD-MND). A family history of dementia is found in 40% of cases of FTD and about 10% have a clear autosomal-dominant inheritance. Genetic studies have identified several genes associated with monogenic FTD: microtubule-associated protein tau, progranulin, TAR DNA-binding protein 43, valosin-containing protein, charged multivesicular body protein 2B, fused in sarcoma, and the hexanucleotide repeat expansion in intron 1 of the chromosome 9 open reading frame 72. Patients often present with an extensive phenotypic variability, even among different members of the same kindred carrying an identical disease mutation. The objective of the present work is to review and evaluate available literature data in order to highlight recent advances in clinical, biological, and neuroimaging features of monogenic frontotemporal lobar degeneration and try to identify different mechanisms underlying the extreme phenotypic heterogeneity that characterizes this disease.
Collapse
Affiliation(s)
- Alberto Benussi
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
127
|
Suh E, Lee EB, Neal D, Wood EM, Toledo JB, Rennert L, Irwin DJ, McMillan CT, Krock B, Elman LB, McCluskey LF, Grossman M, Xie SX, Trojanowski JQ, Van Deerlin VM. Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration. Acta Neuropathol 2015; 130:363-72. [PMID: 26022924 DOI: 10.1007/s00401-015-1445-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
We investigated whether chromosome 9 open reading frame 72 hexanucleotide repeat expansion (C9orf72 expansion) size in peripheral DNA was associated with clinical differences in frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) linked to C9orf72 repeat expansion mutations. A novel quantification workflow was developed to measure C9orf72 expansion size by Southern blot densitometry in a cross-sectional cohort of C9orf72 expansion carriers with FTD (n = 39), ALS (n = 33), both (n = 35), or who are unaffected (n = 21). Multivariate linear regressions were performed to assess whether C9orf72 expansion size from peripheral DNA was associated with clinical phenotype, age of disease onset, disease duration and age at death. Mode values of C9orf72 expansion size were significantly shorter in FTD compared to ALS (p = 0.0001) but were not associated with age at onset in either FTD or ALS. A multivariate regression model correcting for patient's age at DNA collection and disease phenotype revealed that C9orf72 expansion size is significantly associated with shorter disease duration (p = 0.0107) for individuals with FTD, but not with ALS. Despite considerable somatic instability of the C9orf72 expansion, semi-automated expansion size measurements demonstrated an inverse relationship between C9orf72 expansion size and disease duration in patients with FTD. Our finding suggests that C9orf72 repeat size may be a molecular disease modifier in FTD linked to hexanucleotide repeat expansion.
Collapse
Affiliation(s)
- EunRan Suh
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104-4283, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Xiao S, MacNair L, McGoldrick P, McKeever PM, McLean JR, Zhang M, Keith J, Zinman L, Rogaeva E, Robertson J. Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann Neurol 2015; 78:568-83. [PMID: 26174152 DOI: 10.1002/ana.24469] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVE A noncoding hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). It has been reported that the repeat expansion causes a downregulation of C9orf72 transcripts, suggesting that haploinsufficiency may contribute to disease pathogenesis. Two protein isoforms are generated from three alternatively spliced transcripts of C9orf72; a long form (C9-L) and a short form (C9-S), and their function(s) are largely unknown owing to lack of specific antibodies. METHODS To investigate C9orf72 protein properties, we developed novel antibodies that recognize either C9-L or C9-S. Multiple techniques, including Western blot, immunohistochemistry, and coimmunoprecipitation, were used to determine the expression levels and subcellular localizations of C9-L and C9-S. RESULTS Investigation of expression of C9-L and C9-S demonstrated distinct biochemical profiles, region-specific changes, and distinct subcellular localizations in ALS tissues. In particular, C9-L antibody exhibited a diffuse cytoplasmic staining in neurons and labeled large speckles in cerebellar Purkinje cells. In contrast, C9-S antibody gave very specific labeling of the nuclear membrane in healthy neurons, with apparent relocalization to the plasma membrane of diseased motor neurons in ALS. Coimmunoprecipitation experiments revealed an interaction of the C9-isoforms with both Importin β1 and Ran-GTPase, components of the nuclear pore complex. INTERPRETATION Using these antibodies, we have shown that C9orf72 may be involved in nucleocytoplasmic shuttling and this may have relevance to pathophysiology of ALS/FTLD. Our antibodies have provided improved detection of C9orf72 protein isoforms, which will help elucidate its physiological function and role in ALS/FTLD.
Collapse
Affiliation(s)
- Shangxi Xiao
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Laura MacNair
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Philip McGoldrick
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Paul M McKeever
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jesse R McLean
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Ming Zhang
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Lorne Zinman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Janice Robertson
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
129
|
Brčić J, Plavec J. Solution structure of a DNA quadruplex containing ALS and FTD related GGGGCC repeat stabilized by 8-bromodeoxyguanosine substitution. Nucleic Acids Res 2015; 43:8590-600. [PMID: 26253741 PMCID: PMC4787828 DOI: 10.1093/nar/gkv815] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
A prolonged expansion of GGGGCC repeat within non-coding region of C9orf72 gene has been identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which are devastating neurodegenerative disorders. Formation of unusual secondary structures within expanded GGGGCC repeat, including DNA and RNA G-quadruplexes and R-loops was proposed to drive ALS and FTD pathogenesis. Initial NMR investigation on DNA oligonucleotides with four repeat units as the shortest model with the ability to form an unimolecular G-quadruplex indicated their folding into multiple G-quadruplex structures in the presence of K+ ions. Single dG to 8Br-dG substitution at position 21 in oligonucleotide d[(G4C2)3G4] and careful optimization of folding conditions enabled formation of mostly a single G-quadruplex species, which enabled determination of a high-resolution structure with NMR. G-quadruplex structure adopted by d[(G4C2)3GGBrGG] is composed of four G-quartets, which are connected by three edgewise C-C loops. All four strands adopt antiparallel orientation to one another and have alternating syn-anti progression of glycosidic conformation of guanine residues. One of the cytosines in every loop is stacked upon the G-quartet contributing to a very compact and stable structure.
Collapse
Affiliation(s)
- Jasna Brčić
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia EN-FIST Center of Excellence, Ljubljana, Slovenia
| |
Collapse
|
130
|
Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, Brown P, Ravenscroft T, van Blitterswijk M, Nicholson AM, DeTure M, Knopman DS, Josephs KA, Parisi JE, Petersen RC, Boylan KB, Boeve BF, Graff-Radford NR, Veltman JA, Gilissen C, Murray ME, Dickson DW, Rademakers R. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 2015; 130:77-92. [PMID: 25943890 DOI: 10.1007/s00401-015-1436-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP) is the most common pathology associated with frontotemporal dementia (FTD). Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) and mutations in progranulin (GRN) are the major known genetic causes of FTLD-TDP; however, the genetic etiology in the majority of FTLD-TDP remains unexplained. In this study, we performed whole-genome sequencing in 104 pathologically confirmed FTLD-TDP patients from the Mayo Clinic brain bank negative for C9ORF72 and GRN mutations and report on the contribution of rare single nucleotide and copy number variants in 21 known neurodegenerative disease genes. Interestingly, we identified 5 patients (4.8 %) with variants in optineurin (OPTN) and TANK-binding kinase 1 (TBK1) that are predicted to be highly pathogenic, including two double mutants. Case A was a compound heterozygote for mutations in OPTN, carrying the p.Q235* nonsense and p.A481V missense mutation in trans, while case B carried a deletion of OPTN exons 13-15 (p.Gly538Glufs*27) and a loss-of-function mutation (p.Arg117*) in TBK1. Cases C-E carried heterozygous missense mutations in TBK1, including the p.Glu696Lys mutation which was previously reported in two amyotrophic lateral sclerosis (ALS) patients and is located in the OPTN binding domain. Quantitative mRNA expression and protein analysis in cerebellar tissue showed a striking reduction of OPTN and/or TBK1 expression in 4 out of 5 patients supporting pathogenicity in these specific patients and suggesting a loss-of-function disease mechanism. Importantly, neuropathologic examination showed FTLD-TDP type A in the absence of motor neuron disease in 3 pathogenic mutation carriers. In conclusion, we highlight TBK1 as an important cause of pure FTLD-TDP, identify the first OPTN mutations in FTLD-TDP, and suggest a potential oligogenic basis for at least a subset of FTLD-TDP patients. Our data further add to the growing body of evidence linking ALS and FTD and suggest a key role for the OPTN/TBK1 pathway in these diseases.
Collapse
Affiliation(s)
- Cyril Pottier
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Yanovsky-Dagan S, Mor-Shaked H, Eiges R. Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells. World J Stem Cells 2015; 7:823-838. [PMID: 26131313 PMCID: PMC4478629 DOI: 10.4252/wjsc.v7.i5.823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/22/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations.
Collapse
|
132
|
Zeier Z, Esanov R, Belle KC, Volmar CH, Johnstone AL, Halley P, DeRosa BA, Khoury N, van Blitterswijk M, Rademakers R, Albert J, Brothers SP, Wuu J, Dykxhoorn DM, Benatar M, Wahlestedt C. Bromodomain inhibitors regulate the C9ORF72 locus in ALS. Exp Neurol 2015; 271:241-50. [PMID: 26099177 DOI: 10.1016/j.expneurol.2015.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
A hexanucleotide repeat expansion residing within the C9ORF72 gene represents the most common known cause of amyotrophic lateral sclerosis (ALS) and places the disease among a growing family of repeat expansion disorders. The presence of RNA foci, repeat-associated translation products, and sequestration of RNA binding proteins suggests that toxic RNA gain-of-function contributes to pathology while C9ORF72 haploinsufficiency may be an additional pathological factor. One viable therapeutic strategy for treating expansion diseases is the use of small molecule inhibitors of epigenetic modifier proteins to reactivate expanded genetic loci. Indeed, previous studies have established proof of this principle by increasing the drug-induced expression of expanded (and abnormally heterochromatinized) FMR1, FXN and C9ORF72 genes in respective patient cells. While epigenetic modifier proteins are increasingly recognized as druggable targets, there have been few screening strategies to address this avenue of drug discovery in the context of expansion diseases. Here we utilize a semi-high-throughput gene expression based screen to identify siRNAs and small molecule inhibitors of epigenetic modifier proteins that regulate C9ORF72 RNA in patient fibroblasts, lymphocytes and reprogrammed motor neurons. We found that several bromodomain small molecule inhibitors increase the expression of C9ORF72 mRNA and pre-mRNA without affecting repressive epigenetic signatures of expanded C9ORF72 alleles. These data suggest that bromodomain inhibition increases the expression of unexpanded C9ORF72 alleles and may therefore compensate for haploinsufficiency without increasing the production of toxic RNA and protein products, thereby conferring therapeutic value.
Collapse
Affiliation(s)
- Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rustam Esanov
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kinsley C Belle
- John P. Hussman Institute for Human Genomics and The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea L Johnstone
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paul Halley
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brooke A DeRosa
- John P. Hussman Institute for Human Genomics and The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, USA
| | - Nathalie Khoury
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | - Shaun P Brothers
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics and The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
133
|
C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function? Curr Opin Neurol 2015; 27:515-23. [PMID: 25188012 PMCID: PMC4165481 DOI: 10.1097/wco.0000000000000130] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review The molecular mechanisms that underlie chromosome 9 open reading frame 72 (C9orf72)-associated amyotrophic lateral sclerosis and frontotemporal dementia are rapidly emerging. Two potential disease mechanisms have been postulated – gain or loss of function. We provide an overview of recent advances that support or oppose gain-of-function and loss-of-function mechanisms. Recent findings Since the discovery that a noncoding repeat expansion in C9orf72 was responsible for chromosome 9-linked amyotrophic lateral sclerosis and frontotemporal dementia in 2011, a plethora of studies have investigated clinical, pathological and mechanistic aspects of the disease. Loss of function is supported by reduced levels of C9orf72 in patient brain and functional work, revealing a role of the C9orf72 protein in endocytic and autophagic pathways and motor function. Gain of function is supported by the presence in patient brain of both repeat RNA and protein aggregates. Repeat RNA aggregates termed RNA foci, a hallmark of noncoding repeat expansion diseases, have been shown to sequester proteins involved in RNA splicing, editing, nuclear export and nucleolar function. Repeat-associated non-ATG dependent translation gives rise to toxic dipeptide repeat proteins that form inclusions in patient tissue. Antisense oligonucleotides targeting C9orf72 have shown promise for combating gain-of-function toxicity. Summary Rapid progress is being made towards understanding this common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Overall, the weight of data currently sits in favour of gain of function as the most important disease mechanism, which has important implications for the development of effective and targeted therapies.
Collapse
|
134
|
The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol 2015; 129:715-27. [PMID: 25716178 DOI: 10.1007/s00401-015-1401-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
The most common cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a G4C2-repeat expansion in C9orf72. However, the lower limit for pathological repeats has not been established and expansions with different sizes could have different pathological consequences. One of the implicated disease mechanisms is haploinsufficiency. Previously, we identified expansion-specific hypermethylation at the 5' CpG-island near the G4C2-repeat, but only in a fraction of carriers (up to 36 %). Here, we tested the hypothesis that the G4C2-repeat itself could be the main site of methylation. To evaluate (G4C2)n -methylation, we developed a novel assay, which was validated by an independent methylation-sensitive restriction enzyme assay. Notably, both assays are qualitative but not quantitative. Blood DNA was available for 270 unrelated individuals, including 71 expansion carriers. In addition, we investigated blood DNA from family members of 16 probands, and 38 DNA samples from multiple tissues of 10 expansion carriers. Finally, we tested DNA from different tissues of an ALS patient carrying a somatically unstable 90-repeat. We demonstrated that the G4C2-expansion is generally methylated in unrelated carriers of alleles >50 repeats (97 %), while small (<22 repeats) or intermediate (22-90 repeats) alleles were completely unmethylated. The presence of (G4C2)n -methylation does not separate the C9orf72-phenotypes (ALS vs. ALS/FTLD vs. FTLD), but has the potential to predict large vs. intermediate repeat length. Our results suggest that (G4C2)n -methylation might sometimes spread to the 5'-upstream region, but not vice versa. It is stable over time, since (G4C2)n -methylation was detected in carriers with a wide range of ages (24-74 years). It was identified in both blood and brain tissues for the same individual, implying its potential use as a biomarker. Furthermore, our findings may open up new perspectives for studying disease mechanisms, such as determining whether methylated and unmethylated repeats have the same ability to form a G-quadruplex configuration.
Collapse
|
135
|
Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol 2015; 11:266-79. [PMID: 25896087 DOI: 10.1038/nrneurol.2015.57] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor neurons, which results in weakness and atrophy of voluntary skeletal muscles. Treatments do not modify the disease trajectory effectively, and only modestly improve survival. A complex interaction between genes, environmental exposure and impaired molecular pathways contributes to pathology in patients with ALS. Epigenetic mechanisms control the hereditary and reversible regulation of gene expression without altering the basic genetic code. Aberrant epigenetic patterns-including abnormal microRNA (miRNA) biogenesis and function, DNA modifications, histone remodeling, and RNA editing-are acquired throughout life and are influenced by environmental factors. Thus, understanding the molecular processes that lead to epigenetic dysregulation in patients with ALS might facilitate the discovery of novel therapeutic targets and biomarkers that could reduce diagnostic delay. These achievements could prove crucial for successful disease modification in patients with ALS. We review the latest findings regarding the role of miRNA modifications and other epigenetic mechanisms in ALS, and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ximena Paez-Colasante
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- The A. Alfred Taubman Medical Research Institute, University of Michigan, 109 Zina Pitcher Place, 5017 A. Alfred Taubman Biomedical Science Research Building, Ann Arbor, MI 48109, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| |
Collapse
|
136
|
Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, Lee VMY, Trojanowski JQ. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 2015; 129:469-91. [PMID: 25549971 PMCID: PMC4369168 DOI: 10.1007/s00401-014-1380-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.
Collapse
Affiliation(s)
- David J Irwin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nigel J. Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna M. Van Deerlin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
137
|
Cooper-Knock J, Kirby J, Highley R, Shaw PJ. The Spectrum of C9orf72-mediated Neurodegeneration and Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12:326-39. [PMID: 25731823 PMCID: PMC4404438 DOI: 10.1007/s13311-015-0342-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery that a hexanucleotide repeat expansion in C9orf72 is the most numerous genetic variant of both amyotrophic lateral sclerosis and frontotemporal dementia has opened a rapidly growing field, which may provide long hoped for advances in the understanding and treatment of these devastating diseases. In this review we describe the various phenotypes, clinical and pathological, associated with expansion of C9orf72, which go beyond amyotrophic lateral sclerosis and frontotemporal dementia to include neurodegeneration more broadly. Next we take a step back and summarize the current understanding of the C9orf72 expansion and its protein products at a molecular level. Three mechanisms are prominent: toxicity mediated directly by RNA transcribed from the repeat; toxicity mediated by dipeptide repeat proteins translated from the repeat sequence; and haploinsufficiency resulting from reduced transcription of the C9orf72 exonic sequence. A series of exciting advances have recently described how dipeptide repeat proteins might interfere with the normal role of the nucleolus in maturation of RNA binding proteins and in production of ribosomes. Importantly, these mechanisms are unlikely to be mutually exclusive. We draw attention to the fact that clinical and pathological similarities to other genetic variants without a repeat expansion must not be overlooked in ascribing a pathogenic mechanism to C9orf72-disease. Finally, with a view to impact on patient care, we discuss current practice with respect to genetic screening in patients with and without a family history of disease, and the most promising developments towards therapy that have been reported to date.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Robin Highley
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| |
Collapse
|
138
|
McMillan CT, Russ J, Wood EM, Irwin DJ, Grossman M, McCluskey L, Elman L, Van Deerlin V, Lee EB. C9orf72 promoter hypermethylation is neuroprotective: Neuroimaging and neuropathologic evidence. Neurology 2015; 84:1622-30. [PMID: 25795648 DOI: 10.1212/wnl.0000000000001495] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To use in vivo neuroimaging and postmortem neuropathologic analysis in C9orf72 repeat expansion patients to investigate the hypothesis that C9orf72 promoter hypermethylation is neuroprotective and regionally selective. METHODS Twenty patients with a C9orf72 repeat expansion participating in a high-resolution MRI scan and a clinical examination and a subset of patients (n = 11) were followed longitudinally with these measures. Gray matter (GM) density was related to C9orf72 promoter hypermethylation using permutation-based testing. Regional neuronal loss was measured in an independent autopsy series (n = 35) of C9orf72 repeat expansion patients. RESULTS GM analysis revealed that hippocampus, frontal cortex, and thalamus are associated with hypermethylation and thus appear to be relatively protected from mutant C9orf72. Neuropathologic analysis demonstrated an association between reduced neuronal loss and hypermethylation in hippocampus and frontal cortex. Longitudinal neuroimaging revealed that hypermethylation is associated with reduced longitudinal decline in GM regions protected by hypermethylation and longitudinal neuropsychological assessment demonstrated that longitudinal decline in verbal recall is protected by hypermethylation. CONCLUSIONS These cross-sectional and longitudinal neuroimaging studies, along with neuropathologic validation studies, provide converging evidence for neuroprotective properties of C9orf72 promoter hypermethylation. These findings converge with prior postmortem studies suggesting that C9orf72 promoter hypermethylation may be a neuroprotective target for drug discovery.
Collapse
Affiliation(s)
- Corey T McMillan
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Jenny Russ
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Elisabeth M Wood
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - David J Irwin
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Murray Grossman
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Leo McCluskey
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Lauren Elman
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Vivanna Van Deerlin
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Edward B Lee
- From the Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G.), Penn Medicine Neuroscience Center at Pennsylvania Hospital (L.M., L.E.), Department of Neurology (C.T.M., D.J.I., M.G., L.M., L.E.), Translational Neuropathology Research Laboratory (J.R., E.B.L.), Center for Neurodegenerative Disease Research, Department of Pathology & Laboratory Medicine (E.M.W., D.J.I., V.V.D.), Institute for Translation Medicine & Therapeutics (C.T.M., D.J.I.), the University of Pennsylvania Perelman School of Medicine, Philadelphia.
| |
Collapse
|
139
|
|
140
|
Russ J, Liu EY, Wu K, Neal D, Suh E, Irwin DJ, McMillan CT, Harms MB, Cairns NJ, Wood EM, Xie SX, Elman L, McCluskey L, Grossman M, Van Deerlin VM, Lee EB. Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 2015; 129:39-52. [PMID: 25388784 DOI: 10.1007/s00401-014-1365-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 12/12/2022]
Abstract
C9orf72 promoter hypermethylation inhibits the accumulation of pathologies which have been postulated to be neurotoxic. We tested here whether C9orf72 hypermethylation is associated with prolonged disease in C9orf72 mutation carriers. C9orf72 methylation was quantified from brain or blood using methylation-sensitive restriction enzyme digest-qPCR in a cross-sectional cohort of 118 C9orf72 repeat expansion carriers and 19 non-carrier family members. Multivariate regression models were used to determine whether C9orf72 hypermethylation was associated with age at onset, disease duration, age at death, or hexanucleotide repeat expansion size. Permutation analysis was performed to determine whether C9orf72 methylation is heritable. We observed a high correlation between C9orf72 methylation across tissues including cerebellum, frontal cortex, spinal cord and peripheral blood. While C9orf72 methylation was not significantly different between ALS and FTD and did not predict age at onset, brain and blood C9orf72 hypermethylation was associated with later age at death in FTD (brain: β = 0.18, p = 0.006; blood: β = 0.15, p < 0.001), and blood C9orf72 hypermethylation was associated with longer disease duration in FTD (β = 0.03, p = 0.007). Furthermore, C9orf72 hypermethylation was associated with smaller hexanucleotide repeat length (β = -16.69, p = 0.033). Finally, analysis of pedigrees with multiple mutation carriers demonstrated a significant association between C9orf72 methylation and family relatedness (p < 0.0001). C9orf72 hypermethylation is associated with prolonged disease in C9orf72 repeat expansion carriers with FTD. The attenuated clinical phenotype associated with C9orf72 hypermethylation suggests that slower clinical progression in FTD is associated with reduced expression of mutant C9orf72. These results support the hypothesis that expression of the hexanucleotide repeat expansion is associated with a toxic gain of function.
Collapse
|
141
|
Chan HYE. RNA-mediated pathogenic mechanisms in polyglutamine diseases and amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:431. [PMID: 25565965 PMCID: PMC4271607 DOI: 10.3389/fncel.2014.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/29/2014] [Indexed: 12/12/2022] Open
Abstract
Gene transcription produces a wide variety of ribonucleic acid (RNA) species in eukaryotes. Individual types of RNA, such as messenger, structural and regulatory RNA, are known to play distinct roles in the cell. Recently, researchers have identified a large number of RNA-mediated toxicity pathways that play significant pathogenic roles in numerous human disorders. In this article, we describe various common RNA toxicity pathways, namely epigenetic gene silencing, nucleolar stress, nucleocytoplasmic transport, bi-directional gene transcription, repeat-associated non-ATG translation, RNA foci formation and cellular protein sequestration. We emphasize RNA toxicity mechanisms that involve nucleotide repeat expansion, such as those related to polyglutamine (polyQ) disorders and frontotemporal lobar degeneration-amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China ; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
142
|
Mann DMA. Dipeptide repeat protein toxicity in frontotemporal lobar degeneration and in motor neurone disease associated with expansions in C9ORF72-a cautionary note. Neurobiol Aging 2014; 36:1224-6. [PMID: 25457023 DOI: 10.1016/j.neurobiolaging.2014.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 12/12/2022]
Affiliation(s)
- David M A Mann
- Clinical and Cognitive Neuroscience Research Group, Institute of Brain Behaviour and Mental Health, University of Manchester, Salford Royal Hospital, Salford, UK.
| |
Collapse
|
143
|
Zhang YJ, Jansen-West K, Xu YF, Gendron TF, Bieniek KF, Lin WL, Sasaguri H, Caulfield T, Hubbard J, Daughrity L, Chew J, Belzil VV, Prudencio M, Stankowski JN, Castanedes-Casey M, Whitelaw E, Ash PEA, DeTure M, Rademakers R, Boylan KB, Dickson DW, Petrucelli L. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 2014; 128:505-24. [PMID: 25173361 PMCID: PMC4159567 DOI: 10.1007/s00401-014-1336-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022]
Abstract
The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the "c9RAN proteins" thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Ya-Fei Xu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Kevin F. Bieniek
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Hiroki Sasaguri
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Jaime Hubbard
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | | | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | | | | | - Ena Whitelaw
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Peter E. A. Ash
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118 USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Kevin B. Boylan
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| |
Collapse
|
144
|
Wojciechowska M, Olejniczak M, Galka-Marciniak P, Jazurek M, Krzyzosiak WJ. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders. Nucleic Acids Res 2014; 42:11849-64. [PMID: 25217582 PMCID: PMC4231732 DOI: 10.1093/nar/gku794] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeat-associated disorders caused by expansions of short sequences have been classified as coding and noncoding and are thought to be caused by protein gain-of-function and RNA gain-of-function mechanisms, respectively. The boundary between such classifications has recently been blurred by the discovery of repeat-associated non-AUG (RAN) translation reported in spinocerebellar ataxia type 8, myotonic dystrophy type 1, fragile X tremor/ataxia syndrome and C9ORF72 amyotrophic lateral sclerosis and frontotemporal dementia. This noncanonical translation requires no AUG start codon and can initiate in multiple frames of CAG, CGG and GGGGCC repeats of the sense and antisense strands of disease-relevant transcripts. RNA structures formed by the repeats have been suggested as possible triggers; however, the precise mechanism of the translation initiation remains elusive. Templates containing expansions of microsatellites have also been shown to challenge translation elongation, as frameshifting has been recognized across CAG repeats in spinocerebellar ataxia type 3 and Huntington's disease. Determining the critical requirements for RAN translation and frameshifting is essential to decipher the mechanisms that govern these processes. The contribution of unusual translation products to pathogenesis needs to be better understood. In this review, we present current knowledge regarding RAN translation and frameshifting and discuss the proposed mechanisms of translational challenges imposed by simple repeat expansions.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marta Olejniczak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| |
Collapse
|