101
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
102
|
Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage 2017; 170:271-282. [PMID: 28536045 DOI: 10.1016/j.neuroimage.2017.05.015] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods.
Collapse
|
103
|
Revisiting bilateral thalamotomy for tremor. Clin Neurol Neurosurg 2017; 158:103-107. [PMID: 28505539 DOI: 10.1016/j.clineuro.2017.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/28/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022]
Abstract
MRI guided focused ultrasound surgery (MRgFUS) has been FDA approved for unilateral treatment of essential tremor (ET). Before this non-incisional lesioning method can be applied to the treatment of both hemispheres the previous experience with bilateral thalamic ablation must be addressed. In particular, the high incidence of worsening of speech and balance associated with bilateral surgical thalamotomy, a rationale for the development of deep brain stimulation. The highest incidence of these complication occurred in the early years of surgery for movement disorders, when neither MRI nor current stereotactic methods were available. The vast majority of these initial patients suffering these complications had Parkinson's disease where approximately 30% developed worsening dysarthria and ataxia after bilateral thalamotomy. Patients suffering these complications commonly had baseline abnormalities in speech and balance or worsening symptoms after a first unilateral procedure. The more contemporary experience with bilateral thalamotomy in the ET population is both much more limited in patient numbers (includes patients after Gamma Knife radiosurgery), and shows a much lower rate of these complications (approximately 5%). This more recent experience suggests that bilateral thalamotomy using closed incisionless methods such as MRgFUS has the potential to safely improve ET patients with axial or bilateral limb involvement, if done in a staged manner excluding patients with baseline dysarthria or ataxia or transient worsening of these symptoms following a unilateral procedure.
Collapse
|
104
|
Coenen VA, Varkuti B, Parpaley Y, Skodda S, Prokop T, Urbach H, Li M, Reinacher PC. Postoperative neuroimaging analysis of DRT deep brain stimulation revision surgery for complicated essential tremor. Acta Neurochir (Wien) 2017; 159:779-787. [PMID: 28283867 PMCID: PMC5385205 DOI: 10.1007/s00701-017-3134-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/20/2017] [Indexed: 11/29/2022]
Abstract
Background We report a patient who received conventional bilateral deep brain stimulation of the ventral intermediate nucleus of thalamus (Vim) for the treatment of medication refractory essential tremor (ET). After initial beneficial effects, therapeutic efficacy was lost due to a loss of control of his proximal trunkal and extremity tremor. The patient received successful diffusion tensor magnetic resonance imaging fiber tractographic (DTI FT)-assisted DBS revision surgery targeting the dentato-rubro-thalamic tract (DRT) in the subthalamic region (STR). Objective To report the concept of DTI FT-assisted DRT DBS revision surgery for ET and to show sophisticated postoperative neuroimaging analysis explaining improved symptom control. Methods Analysis was based on preoperative DTI sequences and postoperative helical computed tomography (hCT). Leads, stimulation fields, and fibers were reconstructed using commercial software systems (Elements, Brainlab AG, Feldkirchen, Germany; GUIDE XT, Boston Scientific Corp., Boston, MA, USA). Results The patient showed immediate and sustained tremor improvement after DTI FT-assisted revision surgery. Analysis of the two implantations (electrode positions in both instances) revealed a lateral and posterior shift in the pattern of modulation of the cortical fiber pathway projection after revision surgery as compared to initial implantation, explaining a more efficacious stimulation. Conclusions Our work underpins a possible superiority of direct targeting approaches using advanced neuroimaging technologies to perform personalized DBS surgery. The evaluation of DBS electrode positions with the herein-described neuroimaging simulation technologies will likely improve targeting and revision strategies. Direct targeting with DTI FT-assisted approaches in a variety of indications is the focus of our ongoing research.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, Freiburg University Medical Center, Freiburg (i.Br.), Germany.
| | | | - Yaroslav Parpaley
- Department of Neurosurgery, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
| | - Sabine Skodda
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Horst Urbach
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Meng Li
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| |
Collapse
|
105
|
Reinacher PC, Krüger MT, Coenen VA, Shah M, Roelz R, Jenkner C, Egger K. Determining the Orientation of Directional Deep Brain Stimulation Electrodes Using 3D Rotational Fluoroscopy. AJNR Am J Neuroradiol 2017; 38:1111-1116. [PMID: 28385887 DOI: 10.3174/ajnr.a5153] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE New deep brain stimulation leads with electrode contacts that are split along their circumference allow steering of the electrical field in a predefined direction. However, imaging-assisted directional stimulation requires detailed knowledge of the exact orientation of the electrode array. The purpose of this study was to evaluate whether this information can be obtained by rotational 3D fluoroscopy. MATERIALS AND METHODS Two directional leads were inserted into a 3D-printed plaster skull filled with gelatin. The torsion of the lead tip versus the lead at the burr-hole level was investigated. Then, 3 blinded raters evaluated 12 3D fluoroscopies with random lead orientations. They determined the lead orientation considering the x-ray marker only and considering the overlap of the gaps between the contact segments. Intraclass correlation coefficients and an extended version of the Bland-Altman plot were used to determine interrater reliability and agreement of the measurements of the different raters. RESULTS Electrode torsion of up to 35° could be demonstrated. Evaluation of the lead rotation considering the x-ray marker only revealed limits of agreement of ±9.37° and an intraclass correlation coefficient of 0.9975. In addition, taking into account the lines resulting from overlapping of the gaps between the electrode segments, the limits of agreement to the mean were ±2.44° and an intraclass correlation coefficient of 0.9998. CONCLUSIONS In directional deep brain stimulation systems, rotational 3D fluoroscopy combined with the described evaluation method allows for determining the exact orientation of the leads, enabling the full potential of imaging-assisted personalized programming.
Collapse
Affiliation(s)
- P C Reinacher
- From the Departments of Stereotactic and Functional Neurosurgery (P.C.R., V.A.C.)
| | | | - V A Coenen
- From the Departments of Stereotactic and Functional Neurosurgery (P.C.R., V.A.C.)
| | - M Shah
- Neurosurgery (M.T.K., M.S., R.R.)
| | - R Roelz
- Neurosurgery (M.T.K., M.S., R.R.)
| | - C Jenkner
- Clinical Trial Unit (C.J.), Freiburg University Medical Center, Freiburg, Germany
| | | |
Collapse
|
106
|
Fenoy AJ, Schiess MC. Deep Brain Stimulation of the Dentato-Rubro-Thalamic Tract: Outcomes of Direct Targeting for Tremor. Neuromodulation 2017; 20:429-436. [DOI: 10.1111/ner.12585] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/22/2016] [Accepted: 01/03/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Albert J. Fenoy
- Department of Neurosurgery, Mischer Neuroscience Institute; McGovern Medical School, University of Texas - Houston Health Science Center; Houston TX USA
| | - Mya C. Schiess
- Department of Neurology, Movement Disorders and Neurodegenerative Disease Program; McGovern Medical School, University of Texas - Houston Health Science Center; Houston TX USA
| |
Collapse
|
107
|
Kim W, Sharim J, Tenn S, Kaprealian T, Bordelon Y, Agazaryan N, Pouratian N. Diffusion tractography imaging-guided frameless linear accelerator stereotactic radiosurgical thalamotomy for tremor: case report. J Neurosurg 2017; 128:215-221. [PMID: 28298033 DOI: 10.3171/2016.10.jns161603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Essential tremor and Parkinson's disease-associated tremor are extremely prevalent within the field of movement disorders. The ventral intermediate (VIM) nucleus of the thalamus has been commonly used as both a neuromodulatory and neuroablative target for the treatment of these forms of tremor. With both deep brain stimulation and Gamma Knife radiosurgery, there is an abundance of literature regarding the surgical planning, targeting, and outcomes of these methodologies. To date, there have been no reports of frameless, linear accelerator (LINAC)-based thalomotomies for tremor. The authors report the case of a patient with tremor-dominant Parkinson's disease, with poor tremor improvement with medication, who was offered LINAC-based thalamotomy. High-resolution 0.9-mm isotropic MR images were obtained, and simulation was performed via CT with 1.5-mm contiguous slices. The VIM thalamic nucleus was determined using diffusion tensor imaging (DTI)-based segmentation on FSL using probabilistic tractography. The supplemental motor and premotor areas were the cortical target masks. The authors centered their isocenter within the region of the DTI-determined target and treated the patient with 140 Gy in a single fraction. The DTI-determined target had coordinates of 14.2 mm lateral and 8.36 mm anterior to the posterior commissure (PC), and 3 mm superior to the anterior commissure (AC)-PC line, which differed by 3.30 mm from the original target determined by anatomical considerations (15.5 mm lateral and 7 mm anterior to the PC, and 0 mm superior to the AC-PC line). There was faint radiographic evidence of lesioning at the 3-month follow-up within the target zone, which continued to consolidate on subsequent scans. The patient experienced continued right upper-extremity resting tremor improvement starting at 10 months until it was completely resolved at 22 months of follow-up. Frameless LINAC-based thalamotomy guided by DTI-based thalamic segmentation is a feasible method for achieving radiosurgical lesions of the VIM thalamus to treat tremor.
Collapse
Affiliation(s)
| | - Justin Sharim
- 2David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
108
|
Sajonz BEA, Amtage F, Reinacher PC, Jenkner C, Piroth T, Kätzler J, Urbach H, Coenen VA. Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT): Study Protocol of a Randomized Controlled Feasibility Trial. JMIR Res Protoc 2016; 5:e244. [PMID: 28007690 PMCID: PMC5216255 DOI: 10.2196/resprot.6885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/16/2022] Open
Abstract
Background Essential tremor is a movement disorder that can result in profound disability affecting the quality of life. Medically refractory essential tremor can be successfully reduced by deep brain stimulation (DBS) traditionally targeting the thalamic ventral intermediate nucleus (Vim). Although this structure can be identified with magnetic resonance (MR) imaging nowadays, Vim-DBS electrodes are still implanted in the awake patient with intraoperative tremor testing to achieve satisfactory tremor control. This can be attributed to the fact that the more effective target of DBS seems to be the stimulation of fiber tracts rather than subcortical nuclei like the Vim. There is evidence that current coverage of the dentatorubrothalamic tract (DRT) results in good tremor control in Vim-DBS. Diffusion tensor MR imaging (DTI) tractography-assisted stereotactic surgery targeting the DRT would therefore not rely on multiple trajectories and intraoperative tremor testing in the awake patient, bearing the potential of more patient comfort and reduced operation-related risks. This is the first randomized controlled trial comparing DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia with stereotactic surgery of thalamic/subthalamic region as conventionally used. Objective This clinical pilot trial aims at demonstrating safety of DTI tractography-assisted stereotactic surgery in general anesthesia and proving its equality compared to conventional stereotactic surgery with intraoperative testing in the awake patient. Methods The Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT) trial is a single-center investigator-initiated, randomized, controlled, observer-blinded trial. A total of 24 patients with medically refractory essential tremor will be randomized to either DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia or stereotactic surgery of the thalamic/subthalamic region as conventionally used. The primary objective is to assess the tremor reduction, obtained by the Fahn-Tolosa-Marin Tremor Rating Scale in the 2 treatment groups. Secondary objectives include (among others) assessing the quality of life, optimal electrode contact positions, and safety of the intervention. The study protocol has been approved by the independent ethics committee of the University of Freiburg. Results Recruitment to the DISTINCT trial opened in September 2015 and is expected to close in June 2017. At the time of manuscript submission the trial is open to recruitment. Conclusions The DISTINCT trial is the first to compare DTI tractography-assisted stereotactic surgery with target point of the DRT in general anesthesia to stereotactic surgery of the thalamic/subthalamic region as conventionally used. It can serve as a cornerstone for the evolving technique of DTI tractography-assisted stereotactic surgery. ClinicalTrial ClinicalTrials.gov NCT02491554; https://clinicaltrials.gov/ct2/show/NCT02491554 (Archived by WebCite at http://www.webcitation.org/6mezLnB9D). German Clinical Trials Register DRKS00008913; http://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00008913 (Archived by WebCite at http://www.webcitation.org/6mezCtxhS).
Collapse
Affiliation(s)
- Bastian Elmar Alexander Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Amtage
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Jenkner
- Clinical Trials Unit Freiburg, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Piroth
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kätzler
- Clinical Trials Unit Freiburg, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
109
|
Jang SH, Chang CH, Jung YJ, Kwon HG. Severe ataxia due to injuries of neural tract detected by diffusion tensor tractography in a patient with pontine hemorrhage: A case report. Medicine (Baltimore) 2016; 95:e5590. [PMID: 27977594 PMCID: PMC5268040 DOI: 10.1097/md.0000000000005590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RATIONALE We examined injuries of the dentato-rubro-thalamic tract (DRTT), cortico-ponto-cerebellar tract (CPCT), dorsal spinocerebellar tract (SCT), and inferior cerebellar peduncle (ICP) in a patient with severe ataxia following bilateral tegmental pontine hemorrhage (PH), using diffusion tensor tractography (DTT). PATIENT CONCERNS A 75-year-old female patient underwent conservative management for bilateral tegmental PH. She presented with moderate motor weakness, severe resting and intentional tremor on both hands, and severe truncal ataxia (Scale for Assessment and Rating of Ataxia [25 points/0-40 points: a higher score indicates a worse state]), and she was not able to sit independently. DIAGNOSES AND OUTCOMES On DTT taken at 2 weeks after initial presentation, both DRTTs and the left dorsal SCT were not reconstructed, whereas the CPCTs showed thinning of the entire pathways between the primary sensorimotor cortex and cerebellum in both hemispheres. The right ICP was discontinued at the transverse cerebellar branch of the ICP and thinning of the left ICP was observed in the vertical and transverse cerebellar branch of the ICP. LESSONS Using DTT, concurrent injuries of the DRTT, CPCT, dorsal SCT, and ICP were demonstrated in a patient with severe ataxia following PH. Our result suggests the necessity of evaluation of these neural tracts in patients who develop ataxia after brain injury.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation
| | - Chul Hoon Chang
- Department of Neurosurgery, College of Medicine, Yeungnam University, Daemyung dong, Namku, Daegu, Republic of Korea
| | - Young Jin Jung
- Department of Neurosurgery, College of Medicine, Yeungnam University, Daemyung dong, Namku, Daegu, Republic of Korea
| | | |
Collapse
|
110
|
O'Halloran RL, Chartrain AG, Rasouli JJ, Ramdhani RA, Kopell BH. Case Study of Image-Guided Deep Brain Stimulation: Magnetic Resonance Imaging–Based White Matter Tractography Shows Differences in Responders and Nonresponders. World Neurosurg 2016; 96:613.e9-613.e16. [DOI: 10.1016/j.wneu.2016.08.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
|
111
|
Rozanski VE, da Silva NM, Ahmadi SA, Mehrkens J, da Silva Cunha J, Houde JC, Vollmar C, Bötzel K, Descoteaux M. The role of the pallidothalamic fibre tracts in deep brain stimulation for dystonia: A diffusion MRI tractography study. Hum Brain Mapp 2016; 38:1224-1232. [PMID: 27862612 DOI: 10.1002/hbm.23450] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/14/2016] [Accepted: 10/18/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the Globus pallidus internus (GPi) is gold standard treatment in medically refractory dystonia. Recent evidence indicates that stimulation effects are also due to axonal modulation and affection of a fibre network. For the GPi, the pallidothalamic tracts are known to be the major motor efferent pathways. The aim of this study is to explore the anatomic vicinity of these tracts and DBS electrodes in dystonia applying diffusion tractography. METHODS Diffusion MRI was acquired in ten patients presenting for DBS for dystonia. We applied both a conventionally used probabilistic tractography algorithm (FSL) as well as a probabilistic streamline tracking approach, based on constrained spherical deconvolution and particle filtering with anatomic priors, to the datasets. DBS electrodes were coregistered to the diffusion datasets. RESULTS We were able to delineate the pallidothalamic tracts in all patients. Using the streamline approach, we were able to distinguish between the two sub-components of the tracts, the ansa lenticularis and the fasciculus lenticularis. Clinically efficient DBS electrodes displayed a close anatomic vicinity pathway of the pallidothalamic tracts, and their course was consistent with previous tracer labelling studies. Although we present only anatomic data, we interpret these findings as evidence of the possible involvement of fibre tracts to the clinical effect in DBS. Electrophysiological intraoperative recordings would be needed to complement our findings. In the future, a clear and individual delineation of the pallidothalamic tracts could optimize the stereotactic process of optimal electrode localization. Hum Brain Mapp 38:1224-1232, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Nadia Moreira da Silva
- Department of Engineering, INESC TEC and Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Seyed-Ahmad Ahmadi
- Department of Neurology, Klinikum Grosshadern, University of Munich, Germany
| | - Jan Mehrkens
- Department of Neurosurgery, Klinikum Grosshadern, University of Munich, Germany
| | - Joao da Silva Cunha
- Department of Engineering, INESC TEC and Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Jean-Christophe Houde
- Department of Computer Science, Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christian Vollmar
- Department of Neurology, Klinikum Grosshadern, University of Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Klinikum Grosshadern, University of Munich, Germany
| | - Maxime Descoteaux
- Department of Computer Science, Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
112
|
Boccard SGJ, Rebelo P, Cheeran B, Green A, FitzGerald JJ, Aziz TZ. Post-Traumatic Tremor and Thalamic Deep Brain Stimulation: Evidence for Use of Diffusion Tensor Imaging. World Neurosurg 2016; 96:607.e7-607.e11. [PMID: 27693821 DOI: 10.1016/j.wneu.2016.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a well-established treatment to reduce tremor, notably in Parkinson disease. DBS may also be effective in post-traumatic tremor, one of the most common movement disorders caused by head injury. However, the cohorts of patients often have multiple lesions that may impact the outcome depending on which fiber tracts are affected. CASE DESCRIPTION A 20-year-old man presented after road traffic accident with severe closed head injury and polytrauma. Computed tomography scan showed left frontal and basal ganglia hemorrhagic contusions and intraventricular hemorrhage. A disabling tremor evolved in step with motor recovery. Despite high-intensity signals in the intended thalamic target, a visual analysis of the preoperative diffusion tensor imaging revealed preservation of connectivity of the intended target, ventralis oralis posterior thalamic nucleus (VOP). This was confirmed by the postoperative tractography study presented here. DBS of the VOP/zona incerta was performed. Six months postimplant, marked improvement of action (postural, kinetic, and intention) tremor was achieved. CONCLUSIONS We demonstrated a strong connectivity between the VOP and the superior frontal gyrus containing the premotor cortex and other central brain areas responsible for movement control. In spite of an existing lesion in the target, the preservation of these tracts may be relevant to the improvement of the patient's symptoms by DBS.
Collapse
Affiliation(s)
- Sandra G J Boccard
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom.
| | - Pedro Rebelo
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| | - Binith Cheeran
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| | - Alexander Green
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| | - James J FitzGerald
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
113
|
Parpaley Y, Skodda S, Kowoll A. EP 78. Probabilistic imaging of motor projections of dentate nucleus as target structure for deep brain stimulation in tremor. Clin Neurophysiol 2016. [DOI: 10.1016/j.clinph.2016.05.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
114
|
Kim W, Chivukula S, Hauptman J, Pouratian N. Diffusion Tensor Imaging-Based Thalamic Segmentation in Deep Brain Stimulation for Chronic Pain Conditions. Stereotact Funct Neurosurg 2016; 94:225-234. [PMID: 27537848 DOI: 10.1159/000448079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Thalamic deep brain stimulation (DBS) for the treatment of medically refractory pain has largely been abandoned on account of its inconsistent and oftentimes poor efficacy. Our aim here was to use diffusion tensor imaging (DTI)-based segmentation to assess the internal thalamic nuclei of patients who have undergone thalamic DBS for intractable pain and retrospectively correlate lead position with clinical outcome. METHODS DTI-based segmentation was performed on 5 patients who underwent sensory thalamus DBS for chronic pain. Postoperative computed tomography images obtained for electrode placement were fused with preoperative magnetic resonance images that had undergone DTI-based thalamic segmentation. Sensory thalamus maps of 4 patients were analyzed for lead positioning and interpatient variability. RESULTS Four patients who experienced significant pain relief following DBS demonstrated contact positions within the DTI-determined sensory thalamus or in its vicinity, whereas 1 patient who did not respond to stimulation did not. Only 4 voxels (2%) within the sensory thalamus were mutually shared among patients; 108 voxels (58%) were uniquely represented. CONCLUSIONS DTI-based segmentation of the thalamus can be used to confirm thalamic lead placement relative to the sensory thalamus and may serve as a useful tool to guide thalamic DBS electrode implantation in the future.
Collapse
Affiliation(s)
- Won Kim
- Department of Neurological Surgery, University of California, Los Angeles, Calif., USA
| | | | | | | |
Collapse
|
115
|
Coenen VA, Jenkner C, Honey CR, Mädler B. Electrophysiologic Validation of Diffusion Tensor Imaging Tractography during Deep Brain Stimulation Surgery. AJNR Am J Neuroradiol 2016; 37:1470-8. [PMID: 27032969 DOI: 10.3174/ajnr.a4753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Diffusion tensor imaging fiber tractography-assisted planning of deep brain stimulation is an emerging technology. We investigated its accuracy by using electrophysiology under clinical conditions. We hypothesized that a level of concordance between electrophysiology and DTI fiber tractography can be reached, comparable with published modeling approaches for deep brain stimulation surgery. MATERIALS AND METHODS Eleven patients underwent subthalamic nucleus deep brain stimulation. DTI scans and high-resolution T1- and T2-weighted MR imaging was performed at 3T. Corticospinal tracts were traced. We studied electrode positions and current amplitudes that elicited corticospinal tract effects during the operation to determine relative corticospinal tract distance. Postoperatively, 3D deep brain stimulation electrode contact locations and stimulation patterns were applied for the same corticospinal tract distance estimation. RESULTS Intraoperative electrophysiologic (n = 40) clinical effects in 11 patients were detected. The mean intraoperative electrophysiologic corticospinal tract distance was 3.0 ± 0.6 mm; the mean image-derived corticospinal tract distance (DTI fiber tractography) was 3.0 ± 1.3 mm. The 95% limits of agreement were ±2.4 mm. Postoperative electrophysiology (n = 44) corticospinal tract activation effects were encountered in 9 patients; 39 were further evaluated. Mean electrophysiologic corticospinal tract distance was 3.7 ± 0.7 mm; for DTI fiber tractography, it was 3.2 ± 1.9 mm. The 95% limits of agreement were ±2.5 mm. CONCLUSIONS DTI fiber tractography depicted the medial corticospinal tract border with proved concordance. Although the overall range of measurements was relatively small and variance was high, we believe that further use of DTI fiber tractography to assist deep brain stimulation procedures is advisable if inherent limitations are respected. These results confirm our previously published electric field simulation studies.
Collapse
Affiliation(s)
- V A Coenen
- From the Department of Stereotactic and Functional Neurosurgery (V.A.C., B.M.)
| | - C Jenkner
- the Clinical Trial Unit (C.J.), Freiburg University Medical Center, Freiburg, Germany
| | - C R Honey
- Surgical Center for Movement Disorders/Division of Neurosurgery (C.R.H.)
| | - B Mädler
- From the Department of Stereotactic and Functional Neurosurgery (V.A.C., B.M.) Department of Physics and Astronomy (B.M.), University of British Columbia, Vancouver, British Columbia, Canada Philips Healthcare (B.M.), Hamburg, Germany
| |
Collapse
|
116
|
Saleh C, Dooms G, Berthold C, Hertel F. Post-operative imaging in deep brain stimulation: A controversial issue. Neuroradiol J 2016; 29:244-9. [PMID: 27029393 PMCID: PMC4978322 DOI: 10.1177/1971400916639960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In deep brain stimulation (DBS), post-operative imaging has been used on the one hand to assess complications, such as haemorrhage; and on the other hand, to detect misplaced contacts. The post-operative determination of the accurate location of the final electrode plays a critical role in evaluating the precise area of effective stimulation and for predicting the potential clinical outcome; however, safety remains a priority in postoperative DBS imaging. A plethora of diverse post-operative imaging methods have been applied at different centres. There is neither a consensus on the most efficient post-operative imaging methodology, nor is there any standardisation for the automatic or manual analysis of the images within the different imaging modalities. In this article, we give an overview of currently applied post-operative imaging modalities and discuss the current challenges in post-operative imaging in DBS.
Collapse
Affiliation(s)
- Christian Saleh
- Department of Neurology, Centre Hospitalier de Luxembourg, Luxembourg
| | - Georges Dooms
- Department of Neuroradiology, Centre Hospitalier de Luxembourg, Luxembourg
| | | | - Frank Hertel
- Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg
| |
Collapse
|
117
|
Hana A, Hana A, Dooms G, Boecher-Schwarz H, Hertel F. Depiction of dentatorubrothalamic tract fibers in patients with Parkinson's disease and multiple sclerosis in deep brain stimulation. BMC Res Notes 2016; 9:345. [PMID: 27431652 PMCID: PMC4950228 DOI: 10.1186/s13104-016-2162-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We wanted to depict fibers of the dentatorubrothalamic tract in patients with Parkinson's disease and multiple sclerosis in order to use this knowledge for clinical routine and to show its relation to the corticospinal tract for deep brain stimulation. Fibers of these white matter tracts were depicted between February 2014 and February 2015 in nine patients of all ages. There were seven men and two women. The mean age was 60 years. We used a 3DT1 sequence for the navigation. Additional scanning time was less than 9 min. Both tracts were portrayed in all patients. RESULTS We were able to successfully portray these white matter tracts in all patients. We visualized the medial and lateral parts of the corticospinal tract by using a region of interest which covered the whole motor cortex. Furthermore we segmented the motor cortex. The fibers ran from this area of the brain through the internal capsule and they could be followed until their entry in the brainstem. The dentatorubrothalamic tract was smaller than the corticospinal tract. It was situated medio-posteriorly of the corticospinal tract. After decussation to the contralateral red nucleus it was localised next to the midline when it entered the motor cortex. From the thalamus on, it proceeds medially and posteriorly of the corticospinal tract further to the motor cortex. Depiction of the whole tract is essential for the differentiation of the dentatorubrothalamic tract with the corticospinal tract. CONCLUSIONS The depiction of the dentatorubrothalamic tract might be useful for neurosurgeons when deep brain stimulation is planned. Knowing its relation to other white matter tracts can help physicians like neurosurgeons or neurologists avoid side effects and deal with patients with DBS. The position of the electrode might be crucial for a satisfactory outcome.
Collapse
Affiliation(s)
- Ardian Hana
- />National Service of Neurosurgery, Centre Hospitalier de Luxembourg, Rue Barblé 25, 1210 Luxembourg, Luxembourg
| | - Anisa Hana
- />Internal Medicine Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Georges Dooms
- />Service of Neuroradiology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Hans Boecher-Schwarz
- />National Service of Neurosurgery, Centre Hospitalier de Luxembourg, Rue Barblé 25, 1210 Luxembourg, Luxembourg
| | - Frank Hertel
- />National Service of Neurosurgery, Centre Hospitalier de Luxembourg, Rue Barblé 25, 1210 Luxembourg, Luxembourg
| |
Collapse
|
118
|
Jakab A, Werner B, Piccirelli M, Kovács K, Martin E, Thornton JS, Yousry T, Szekely G, O'Gorman Tuura R. Feasibility of Diffusion Tractography for the Reconstruction of Intra-Thalamic and Cerebello-Thalamic Targets for Functional Neurosurgery: A Multi-Vendor Pilot Study in Four Subjects. Front Neuroanat 2016; 10:76. [PMID: 27462207 PMCID: PMC4940380 DOI: 10.3389/fnana.2016.00076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/20/2016] [Indexed: 01/28/2023] Open
Abstract
Functional stereotactic neurosurgery by means of deep brain stimulation or ablation provides an effective treatment for movement disorders, but the outcome of surgical interventions depends on the accuracy by which the target structures are reached. The purpose of this pilot study was to evaluate the feasibility of diffusion tensor imaging (DTI) based probabilistic tractography of deep brain structures that are commonly used for pre- and perioperative targeting for functional neurosurgery. Three targets were reconstructed based on their significance as intervention sites or as a no-go area to avoid adverse side effects: the connections propagating from the thalamus to (1) primary and supplementary motor areas, (2) to somatosensory areas and the cerebello-thalamic tract (CTT). We evaluated the overlap of the reconstructed connectivity based targets with corresponding atlas based data, and tested the inter-subject and inter-scanner variability by acquiring repeated DTI from four volunteers, and on three MRI scanners with similar sequence parameters. Compared to a 3D histological atlas of the human thalamus, moderate overlaps of 35-50% were measured between connectivity- and atlas based volumes, while the minimal distance between the centerpoints of atlas and connectivity targets was 2.5 mm. The variability caused by the MRI scanner was similar to the inter-subject variability, except for connections with the postcentral gyrus where it was higher. While CTT resolved the anatomically correct trajectory of the tract individually, high volumetric variability was found across subjects and between scanners. DTI can be applied in the clinical, preoperative setting to reconstruct the CTT and to localize subdivisions within the lateral thalamus. In our pilot study, such subdivisions moderately matched the borders of the ventrolateral-posteroventral (VLpv) nucleus and the ventral-posterolateral (VPL) nucleus. Limitations of the currently used standard DTI protocols were exacerbated by large scanner-to-scanner variability of the connectivity-based targets.
Collapse
Affiliation(s)
- András Jakab
- Center for Magnetic Resonance Imaging Research, University Children's HospitalZürich, Switzerland; Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of ViennaVienna, Austria
| | - Beat Werner
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, University Hospital Zürich Zürich, Switzerland
| | - Kázmér Kovács
- Department of Biomedical Imaging and Laboratory Science, University of Debrecen Debrecen, Hungary
| | - Ernst Martin
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| | | | - Tarek Yousry
- University College London Institute of Neurology London, UK
| | - Gabor Szekely
- Computer Vision Laboratory, ETH Zürich Zürich, Switzerland
| | - Ruth O'Gorman Tuura
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| |
Collapse
|
119
|
Calabrese E. Diffusion Tractography in Deep Brain Stimulation Surgery: A Review. Front Neuroanat 2016; 10:45. [PMID: 27199677 PMCID: PMC4852260 DOI: 10.3389/fnana.2016.00045] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/08/2016] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is believed to exert its therapeutic effects through modulation of brain circuitry, yet conventional preoperative planning does not allow direct targeting or visualization of white matter pathways. Diffusion MRI tractography (DT) is virtually the only non-invasive method of visualizing structural connectivity in the brain, leading many to suggest its use to guide DBS targeting. DT-guided DBS not only has the potential to allow direct white matter targeting for established applications [e.g., Parkinson’s disease (PD), essential tremor (ET), dystonia], but may also aid in the discovery of new therapeutic targets for a variety of other neurologic and psychiatric diseases. Despite these exciting opportunities, DT lacks standardization and rigorous anatomic validation, raising significant concern for the use of such data in stereotactic brain surgery. This review covers the technical details, proposed methods, and initial clinical data for the use of DT in DBS surgery. Rather than focusing on specific disease applications, this review focuses on methods that can be applied to virtually any DBS target.
Collapse
Affiliation(s)
- Evan Calabrese
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center Durham, NC, USA
| |
Collapse
|
120
|
Coenen VA, Rijntjes M, Prokop T, Piroth T, Amtage F, Urbach H, Reinacher PC. One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease. Acta Neurochir (Wien) 2016; 158:773-781. [PMID: 26876564 PMCID: PMC4791468 DOI: 10.1007/s00701-016-2725-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/27/2016] [Indexed: 11/17/2022]
Abstract
Background Refractory tremor in tremor-dominant (TD) or equivalent-type (EQT) idiopathic Parkinson’s syndrome (IPS) poses the challenge of choosing the best target region to for deep brain stimulation (DBS). While the subthalamic nucleus is typically chosen in younger patients as the target for dopamine-responsive motor symptoms, it is more complicated if tremor does not (fully) respond under trial conditions. In this report, we present the first results from simultaneous bilateral DBS of the DRT (dentato-rubro-thalamic tract) and the subthalamic nucleus (STN) in two elderly patients with EQT and TD IPS and dopamine-refractory tremor. Methods Two patients received bilateral octopolar DBS electrodes in the STN additionally traversing the DRT region. Achieved electrode positions were determined with helical CT, overlaid onto DTI tractography data, and compared with clinical data of stimulation response. Results Both patients showed immediate and sustained improvement of their tremor, bilaterally. Conclusions The proposed approach appears to be safe and feasible and a combined stimulation of the two target regions was performed tailored to the patients’ symptoms. Clinically, no neuropsychiatric effects were seen. Our pilot data suggest a viable therapeutic option to treat the subgroup of TD and EQT IPS and with tremor as the predominant symptom. A clinical study to further investigate this approach (OPINION: www.clinicaltrials.gov; NCT02288468) is the focus of our ongoing research.
Collapse
|
121
|
Higuchi Y, Matsuda S, Serizawa T. Gamma knife radiosurgery in movement disorders: Indications and limitations. Mov Disord 2016; 32:28-35. [DOI: 10.1002/mds.26625] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yoshinori Higuchi
- Department of Neurological Surgery; Chiba University Graduate School of Medicine; Chiba Japan
| | - Shinji Matsuda
- Department of Neurology and Strokology; Chiba Central Medical Center; Chiba Japan
| | - Toru Serizawa
- Tokyo Gamma Unit Center; Tsukiji Neurological Clinic; Tokyo Japan
| |
Collapse
|
122
|
García-Gomar MG, Soto-Abraham J, Velasco-Campos F, Concha L. Anatomic characterization of prelemniscal radiations by probabilistic tractography: implications in Parkinson's disease. Brain Struct Funct 2016; 222:71-81. [PMID: 26902343 DOI: 10.1007/s00429-016-1201-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022]
Abstract
To characterize the anatomical connectivity of the prelemniscal radiations (Raprl), a white matter region within the posterior subthalamic area (PSA) that is an effective neurosurgical target for treating motor symptoms of Parkinson's disease (PD). Diffusion-weighted images were acquired from twelve healthy subjects using a 3T scanner. Constrained spherical deconvolution, a method that allows the distinction of crossing fibers within a voxel, was used to compute track-density images with sufficient resolution to accurately delineate distinct PSA regions and probabilistic tractography of Raprl in both hemispheres. Raprl connectivity was reproducible across all subjects and showed fibers traversing through this region towards primary and supplementary motor cortices, the orbitofrontal cortex, ventrolateral thalamus, and the globus pallidus, cerebellum and dorsal brainstem. All brain regions reached by Raprl fibers are part of motor circuits involved in the pathophysiology of PD; while these fiber systems converge at the level of the PSA, they can be spatially segregated. Fibers of distinct and specific motor control networks are identified within Raprl. The description of this anatomical crossroad suggests that, in the future, tractography could allow deep brain stimulation or lesional therapies in white matter targets according to individual patient's symptoms.
Collapse
Affiliation(s)
| | - Julian Soto-Abraham
- Unit for Stereotactic and Functional Neurosurgery and Radiosurgery, Mexico General Hospital, Mexico City, Mexico
| | - Francisco Velasco-Campos
- Unit for Stereotactic and Functional Neurosurgery and Radiosurgery, Mexico General Hospital, Mexico City, Mexico
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
123
|
Avecillas-Chasin JM, Rascón-Ramírez F, Barcia JA. Tractographical model of the cortico-basal ganglia and corticothalamic connections. Clin Anat 2016; 29:481-92. [DOI: 10.1002/ca.22689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Fernando Rascón-Ramírez
- Department of Neurosurgery; Institute of Neurosciences, Instituto De Investigación Sanitaria San Calos, Hospital Clínico San Carlos; Madrid Spain
| | - Juan A. Barcia
- Department of Neurosurgery; Institute of Neurosciences, Instituto De Investigación Sanitaria San Calos, Hospital Clínico San Carlos; Madrid Spain
| |
Collapse
|
124
|
Manto M, Habas C. Cerebellar disorders: clinical/radiologic findings and modern imaging tools. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:479-491. [PMID: 27432679 DOI: 10.1016/b978-0-444-53485-9.00023-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cerebellar disorders, also called cerebellar ataxias, comprise a large group of sporadic and genetic diseases. Their core clinical features include impaired control of coordination and gait, as well as cognitive/behavioral deficits usually not detectable by a standard neurologic examination and therefore often overlooked. Two forms of cognitive/behavioral syndromes are now well identified: (1) the cerebellar cognitive affective syndrome, which combines an impairment of executive functions, including planning and working memory, deficits in visuospatial skills, linguistic deficiencies such as agrammatism, and inappropriate behavior; and (2) the posterior fossa syndrome, a very acute form of cerebellar cognitive affective syndrome occurring essentially in children. Sporadic ataxias include stroke, toxic causes, immune ataxias, infectious/parainfectious ataxias, traumatic causes, neoplasias and paraneoplastic syndromes, endocrine disorders affecting the cerebellum, and the so-called "degenerative ataxias" (multiple system atrophy, and sporadic adult-onset ataxias). Genetic ataxias include mainly four groups of disorders: autosomal-recessive cerebellar ataxias, autosomal-dominant ataxias (spinocerebellar ataxias and episodic ataxias), mitochondrial disorders, and X-linked ataxias. In addition to biochemical studies and genetic tests, brain imaging techniques are a cornerstone for the diagnosis, clinicoanatomic correlations, and follow-up of cerebellar ataxias. Modern radiologic tools to assess cerebellar ataxias include: functional imaging studies, magnetic resonance spectroscopy, volumetric studies, and tractography. These complementary methods provide a multimodal appreciation of the whole long-range cerebellar network functioning, and allow the extraction of potential biomarkers for prognosis and rating level of recovery after treatment.
Collapse
Affiliation(s)
- Mario Manto
- Department of Neurology, Université Libre de Bruxelles Erasme, Brussels, Belgium.
| | - Christophe Habas
- Neuroimaging Service, Centre National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
125
|
Lefranc M, Carron R, Regis J. Prelemniscal Radiations: A New Reliable Landmark of the Thalamic Nucleus Ventralis Intermedius Location? Stereotact Funct Neurosurg 2015; 93:400-6. [DOI: 10.1159/000441393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022]
|
126
|
Teixeira MJ, Cury RG, Galhardoni R, Barboza VR, Brunoni AR, Alho E, Lepski G, Ciampi de Andrade D. Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. Neurology 2015; 85:2075-6. [DOI: 10.1212/wnl.0000000000002204] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
127
|
Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2015; 115:19-38. [PMID: 26510756 DOI: 10.1152/jn.00281.2015] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.
Collapse
Affiliation(s)
- Todd M Herrington
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jennifer J Cheng
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
128
|
Jang SH, Kwon HG. Injury of the dentato-rubro-thalamic tract in a patient with mild traumatic brain injury. Brain Inj 2015; 29:1725-8. [PMID: 26479208 DOI: 10.3109/02699052.2015.1075170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Several studies using diffusion tensor tractography (DTT) have demonstrated injury of the dentato-rubro-thalamic tract (DRTT) in various brain pathologies. However, no study on traumatic brain injury (TBI) has been reported. This case study attempted to demonstrate injury of the DRTT in a patient with mild TBI, using DTT. CASE DESCRIPTION A 41-year-old female patient suffered from head trauma resulting from flexion-hyperextension injury by being hit from behind by a running car while stopped at an intersection. The patient lost consciousness and experienced post-traumatic amnesia for ∼1minute from the time of the car-accident. The patient's Glasgow Coma Scale score was 15. No specific lesion was observed on brain MRI. At 2 weeks after onset, the patient began to show resting and intentional tremor (more severe in the right upper and lower extremities) and ataxic gait. Her symptoms had been aggravated with the passage of time. On 1-month DTT, the left DRTT, which originated from the left dentate nucleus of the cerebellum, was thinner than the right DRTT. CONCLUSIONS This study demonstrated injury of the DRTT in a patient with tremor and ataxia following mild TBI, using DTT. It is believed that analysis of the DRTT using DTT would be useful in elucidating the cause of post-traumatic abnormal movements.
Collapse
Affiliation(s)
- Sung Ho Jang
- a Department of Physical Medicine and Rehabilitation , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Hyeok Gyu Kwon
- a Department of Physical Medicine and Rehabilitation , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| |
Collapse
|
129
|
Anthofer J, Lange M, Brawanski A, Schlaier J. Letter of response to "Individualization of deep brain stimulation targets for movement disorders". Acta Neurochir (Wien) 2015; 157:1799-800. [PMID: 26264068 DOI: 10.1007/s00701-015-2529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Judith Anthofer
- Department of Neurosurgery, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
| | - Max Lange
- Department of Neurosurgery, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Alexander Brawanski
- Department of Neurosurgery, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Juergen Schlaier
- Department of Neurosurgery, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
130
|
Horn A. A structural group-connectome in standard stereotactic (MNI) space. Data Brief 2015; 5:292-6. [PMID: 26543893 PMCID: PMC4589797 DOI: 10.1016/j.dib.2015.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/28/2015] [Indexed: 12/02/2022] Open
Abstract
A group connectome of 20 subjects has been normalized into standard stereotactic (MNI) space. Data has been processed using the Gibbs' Tracking approach (Reisert et al., 2011) [11] and normalized into standard space using DARTEL (Ashburner, 2007) [1]. All data has been acquired within the scope of the study A. Horn, D. Ostwald, M. Reisert, F. Blankenburg, The structural–functional connectome and the default mode network of the human brain, NeuroImage 102 (2013) 142–151. http://doi.org/10.1016/j.neuroimage.2013.09.069. The utility of this dataset can be described by the following points: In medical studies in which subject-specific dMRI is not available, a standardized connectome may help to gain some canonical insight into white-matter connectivity. The dataset enables scientists who use different modalities (like EEG, MEG etc.) without access to MRI, to combine studies obtained using other methodology with insights from the brain's inner structural formation. The dataset could also extend possible claims made by meta-analyzes/literature-based studies.
Collapse
Affiliation(s)
- Andreas Horn
- Charité - University Medicine, Dpt. for Neurology, Clinical Research Group 247, Movement Disorders Section, Department of Neurology, Charité - University Medicine (CVK), Berlin, Germany
| |
Collapse
|
131
|
Toward a standardized structural-functional group connectome in MNI space. Neuroimage 2015; 124:310-322. [PMID: 26327244 DOI: 10.1016/j.neuroimage.2015.08.048] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 12/22/2022] Open
Abstract
The analysis of the structural architecture of the human brain in terms of connectivity between its subregions has provided profound insights into its underlying functional organization and has coined the concept of the "connectome", a structural description of the elements forming the human brain and the connections among them. Here, as a proof of concept, we introduce a novel group connectome in standard space based on a large sample of 169 subjects from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS). Whole brain structural connectomes of each subject were estimated with a global tracking approach, and the resulting fiber tracts were warped into standard stereotactic (MNI) space using DARTEL. Employing this group connectome, the results of published tracking studies (i.e., the JHU white matter and Oxford thalamic connectivity atlas) could be largely reproduced directly within MNI space. In a second analysis, a study that examined structural connectivity between regions of a functional network, namely the default mode network, was reproduced. Voxel-wise structural centrality was then calculated and compared to others' findings. Furthermore, including additional resting-state fMRI data from the same subjects, structural and functional connectivity matrices between approximately forty thousand nodes of the brain were calculated. This was done to estimate structure-function agreement indices of voxel-wise whole brain connectivity. Taken together, the combination of a novel whole brain fiber tracking approach and an advanced normalization method led to a group connectome that allowed (at least heuristically) performing fiber tracking directly within MNI space. Such an approach may be used for various purposes like the analysis of structural connectivity and modeling experiments that aim at studying the structure-function relationship of the human connectome. Moreover, it may even represent a first step toward a standard DTI template of the human brain in stereotactic space. The standardized group connectome might thus be a promising new resource to better understand and further analyze the anatomical architecture of the human brain on a population level.
Collapse
|
132
|
Vasques X, Richardet R, Hill SL, Slater D, Chappelier JC, Pralong E, Bloch J, Draganski B, Cif L. Automatic target validation based on neuroscientific literature mining for tractography. Front Neuroanat 2015; 9:66. [PMID: 26074781 PMCID: PMC4445321 DOI: 10.3389/fnana.2015.00066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/09/2015] [Indexed: 11/24/2022] Open
Abstract
Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.
Collapse
Affiliation(s)
- Xavier Vasques
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; IBM Systems France ; Laboratoire de Recherche en Neurosciences Cliniques France
| | - Renaud Richardet
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - David Slater
- Laboratoire de Recherche Neuroimagerie, Université de Lausanne Lausanne, Switzerland ; Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland
| | - Jean-Cedric Chappelier
- School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Etienne Pralong
- Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland
| | - Jocelyne Bloch
- Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratoire de Recherche Neuroimagerie, Université de Lausanne Lausanne, Switzerland ; Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland
| | - Laura Cif
- Laboratoire de Recherche Neuroimagerie, Université de Lausanne Lausanne, Switzerland ; Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland ; Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Université Montpellier 1 Montpellier, France
| |
Collapse
|
133
|
Calabrese E, Hickey P, Hulette C, Zhang J, Parente B, Lad SP, Johnson GA. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Hum Brain Mapp 2015; 36:3167-78. [PMID: 26043869 DOI: 10.1002/hbm.22836] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/08/2015] [Accepted: 04/30/2015] [Indexed: 11/07/2022] Open
Abstract
Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms.
Collapse
Affiliation(s)
- Evan Calabrese
- Department of Radiology, Center for in Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Patrick Hickey
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Christine Hulette
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Jingxian Zhang
- Department of Radiology, Center for in Vivo Microscopy, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Beth Parente
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - G Allan Johnson
- Department of Radiology, Center for in Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
134
|
Abstract
Three main techniques delineate a possible role for intracranial ablative procedures in patients with chronic pain. Recent studies demonstrate a continued need for clinical investigation into central mechanisms of neuroablation to best define its role in the care of patients with otherwise intractable and severe pain syndromes. Cingulotomy can result in long-term pain relief. Although it can be associated with subtle impairments of attention, there is little risk to other cognitive domains.
Collapse
Affiliation(s)
- Jayant P Menon
- Stanford Neurosurgery, 300 Pasteur Drive, Boswell Building, A301, Stanford, CA 94305-5327.
| |
Collapse
|
135
|
Assessment of a method to determine deep brain stimulation targets using deterministic tractography in a navigation system. Neurosurg Rev 2015; 38:739-50; discussion 751. [PMID: 25962557 DOI: 10.1007/s10143-015-0643-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/04/2015] [Accepted: 03/14/2015] [Indexed: 01/18/2023]
Abstract
Recent advances in imaging permit radiologic identification of target structures for deep brain stimulation (DBS) for movement disorders. However, these methods cannot detect the internal subdivision and thus cannot determine the appropriate DBS target located within those subdivisions. The aim of this study is to provide a straightforward method to obtain an optimized target (OT) within DBS target nuclei using a widely available navigation system. We used T1- and T2-weighted images, fluid-attenuated inversion recovery (FLAIR) sequence, and diffusion tensor imaging (DTI) of nine patients operated for DBS in our center. Using the StealthViz® software, we segmented the targeted deep structures (subcortical targets) and the anatomically identifiable areas to which these target nuclei were connected (projection areas). We generated fiber tracts from the projection areas. By identifying their intersections with the subcortical targets, we obtained an OT within the DBS target nuclei. We computed the distances from the clinically effective electrode contacts (CEEC) to the OT obtained by our method and the targets provided by the atlas. These distances were compared using a Wilcoxon signed-rank test, with p < 0.05 considered statistically significant. We were able to identify OT coincident with the motor part of the subthalamic nucleus and the ventral intermediate nucleus. We clinically tested the results and found that the CEEC were significantly more closely related to the OT than with the targets obtained by the atlas. Our present results show that this novel method permits optimization of the stimulation site within the internal subdivisions of target nuclei for DBS.
Collapse
|
136
|
Hale JR, Mayhew SD, Mullinger KJ, Wilson RS, Arvanitis TN, Francis ST, Bagshaw AP. Comparison of functional thalamic segmentation from seed-based analysis and ICA. Neuroimage 2015; 114:448-65. [PMID: 25896929 DOI: 10.1016/j.neuroimage.2015.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 01/07/2023] Open
Abstract
Information flow between the thalamus and cerebral cortex is a crucial component of adaptive brain function, but the details of thalamocortical interactions in human subjects remain unclear. The principal aim of this study was to evaluate the agreement between functional thalamic network patterns, derived using seed-based connectivity analysis and independent component analysis (ICA) applied separately to resting state functional MRI (fMRI) data from 21 healthy participants. For the seed-based analysis, functional thalamic parcellation was achieved by computing functional connectivity (FC) between thalamic voxels and a set of pre-defined cortical regions. Thalamus-constrained ICA provided an alternative parcellation. Both FC analyses demonstrated plausible and comparable group-level thalamic subdivisions, in agreement with previous work. Quantitative assessment of the spatial overlap between FC thalamic segmentations, and comparison of each to a histological "gold-standard" thalamic atlas and a structurally-defined thalamic atlas, highlighted variations between them and, most notably, differences with both histological and structural results. Whilst deeper understanding of thalamocortical connectivity rests upon identification of features common to multiple non-invasive neuroimaging techniques (e.g. FC, structural connectivity and anatomical localisation of individual-specific nuclei), this work sheds further light on the functional organisation of the thalamus and the varying sensitivities of complementary analyses to resolve it.
Collapse
Affiliation(s)
- Joanne R Hale
- School of Psychology, University of Birmingham, Birmingham, United Kingdom.
| | - Stephen D Mayhew
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Karen J Mullinger
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca S Wilson
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Theodoros N Arvanitis
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Andrew P Bagshaw
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
137
|
Lucas-Neto L, Reimão S, Oliveira E, Rainha-Campos A, Sousa J, Nunes RG, Gonçalves-Ferreira A, Campos JG. Advanced MR Imaging of the Human Nucleus Accumbens-Additional Guiding Tool for Deep Brain Stimulation. Neuromodulation 2015; 18:341-8. [DOI: 10.1111/ner.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Lia Lucas-Neto
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| | - Sofia Reimão
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| | - Edson Oliveira
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - Alexandre Rainha-Campos
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - João Sousa
- Instituto de Biofísica e Engenharia Biomédica; Faculdade de Ciências; University of Lisbon; Lisboa Portugal
| | - Rita G. Nunes
- Instituto de Biofísica e Engenharia Biomédica; Faculdade de Ciências; University of Lisbon; Lisboa Portugal
| | - António Gonçalves-Ferreira
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - Jorge G. Campos
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| |
Collapse
|
138
|
Keser Z, Hasan KM, Mwangi BI, Kamali A, Ucisik-Keser FE, Riascos RF, Yozbatiran N, Francisco GE, Narayana PA. Diffusion tensor imaging of the human cerebellar pathways and their interplay with cerebral macrostructure. Front Neuroanat 2015; 9:41. [PMID: 25904851 PMCID: PMC4389543 DOI: 10.3389/fnana.2015.00041] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cerebellar white matter (WM) connections to the central nervous system are classified functionally into the Spinocerebellar (SC), vestibulocerebellar (VC), and cerebrocerebellar subdivisions. The SC pathways project from spinal cord to cerebellum, whereas the VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC) pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC) pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI). Ten right-handed healthy subjects (7 males and 3 females, age range 20–51 years) were studied. DT-MRI data were acquired with a voxel size = 2 mm × 2 mm × 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC), parieto-ponto-cerebellar (PPC), temporo-ponto-cerebellar (TPC) and occipito-ponto-cerebellar (OPC). The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas) were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV).
Collapse
Affiliation(s)
- Zafer Keser
- Department of Physical Medicine and Rehabilitation and TIRR Memorial Hermann Neuro-Recovery Research Center, University of Texas Health Science Center Houston Houston, TX, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Radiology, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Benson I Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center Houston, TX, USA
| | - Arash Kamali
- Department of Diagnostic Radiology, Division of Neuroradiology, Johns Hopkins University Baltimore, MD, USA
| | - Fehime Eymen Ucisik-Keser
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Roy F Riascos
- Department of Diagnostic and Interventional Radiology, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Nuray Yozbatiran
- Department of Physical Medicine and Rehabilitation and TIRR Memorial Hermann Neuro-Recovery Research Center, University of Texas Health Science Center Houston Houston, TX, USA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation and TIRR Memorial Hermann Neuro-Recovery Research Center, University of Texas Health Science Center Houston Houston, TX, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Radiology, University of Texas Health Science Center at Houston Houston, TX, USA
| |
Collapse
|
139
|
Döbrössy MD, Furlanetti LL, Coenen VA. Electrical stimulation of the medial forebrain bundle in pre-clinical studies of psychiatric disorders. Neurosci Biobehav Rev 2014; 49:32-42. [PMID: 25498857 DOI: 10.1016/j.neubiorev.2014.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/22/2022]
Abstract
Modulating neuronal activity by electrical stimulation has expanded from the realm of motor indications into the field of psychiatric disorders in the past 10 years. The medial forebrain bundle (MFB), with a seminal role in motor, reward orientated and affect regulation behaviors, and its afferent and efferent loci, have been targeted in several DBS trials in patients with psychiatric disorders. However, little is known about the consequences of modulating the MFB in affective disorders. The paper reviews the relevant pre-clinical literature investigating electrical stimulation of regions associated with the MFB in the context of several models of psychiatric disorders, in particular depression. The clinical data is promising but limited, and pre-clinical studies are essential for improved understanding of the anatomy, the connectivity, and the consequences of stimulation of the MFB and regions associated with the neurocircuitry of psychiatric disorders. Current data suggests that the MFB is at a "privileged" position on this circuitry and its stimulation can simultaneously modulate activity at other key sites, such as the nucleus accumbens, the ventromedial prefrontal cortex or the ventral tegmental area. Future experimental work will need to shed light on the anti-depressive mechanisms of MFB stimulation in order to optimize clinical interventions.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Freiburg-Medical Center, Germany.
| | - Luciano L Furlanetti
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Freiburg-Medical Center, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Freiburg-Medical Center, Germany
| |
Collapse
|
140
|
Kovanlikaya I, Heier L, Kaplitt M. Treatment of chronic pain: diffusion tensor imaging identification of the ventroposterolateral nucleus confirmed with successful deep brain stimulation. Stereotact Funct Neurosurg 2014; 92:365-71. [PMID: 25359091 DOI: 10.1159/000366002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS A variety of pain syndromes have been treated successfully with deep brain stimulation (DBS) by targeting the thalamic ventroposterolateral (VPL) nucleus. The purpose of this study was to preoperatively identify the thalamic VPL nucleus by diffusion tensor imaging (DTI) fiber tractography (FT) and confirm it intraoperatively. METHODS AND RESULTS FT was performed to identify the thalamic VPL nucleus in 6 healthy volunteers and a patient with intractable chronic pain. The patient had preoperative DTI followed by DBS with the electrode placed by conventional stereotactic methods. Postoperative CT images of the DBS electrode tip were fused with the preoperative DTI and the electrode was noted to be in the position of the VPL nucleus predicted preoperatively by FT. The electrode was then used as a seed region of interest (ROI) to confirm FT back to the somatosensory cortex. Clinical confirmation was also achieved with the patient's pain relief. In all volunteers, VPL nuclei were identified in similar locations in both thalami, although slight inter- and intrasubject differences were observed. CONCLUSION DTI has the potential to identify the thalamic nuclei in individuals, which would be more accurate than anatomical localization and likely identical to intraoperative physiological testing. Postoperative DBS electrode placement and the affected cortical areas can be confirmed with coregistration of CT and FT using the electrode as a seed ROI.
Collapse
Affiliation(s)
- Ilhami Kovanlikaya
- Department of Radiology, Weill Cornell Medical College, New York, N.Y., USA
| | | | | |
Collapse
|
141
|
Said N, Elias WJ, Raghavan P, Cupino A, Tustison N, Frysinger R, Patrie J, Xin W, Wintermark M. Correlation of diffusion tensor tractography and intraoperative macrostimulation during deep brain stimulation for Parkinson disease. J Neurosurg 2014; 121:929-35. [DOI: 10.3171/2014.6.jns131673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The purpose of this study was to investigate whether diffusion tensor imaging (DTI) of the corticospinal tract (CST) is a reliable surrogate for intraoperative macrostimulation through the deep brain stimulation (DBS) leads. The authors hypothesized that the distance on MRI from the DBS lead to the CST as determined by DTI would correlate with intraoperative motor thresholds from macrostimulations through the same DBS lead.
Methods
The authors retrospectively reviewed pre- and postoperative MRI studies and intraoperative macrostimulation recordings in 17 patients with Parkinson disease (PD) treated by DBS stimulation. Preoperative DTI tractography of the CST was coregistered with postoperative MRI studies showing the position of the DBS leads. The shortest distance and the angle from each contact of each DBS lead to the CST was automatically calculated using software-based analysis. The distance measurements calculated for each contact were evaluated with respect to the intraoperative voltage thresholds that elicited a motor response at each contact.
Results
There was a nonsignificant trend for voltage thresholds to increase when the distances between the DBS leads and the CST increased. There was a significant correlation between the angle and the voltage, but the correlation was weak (coefficient of correlation [R] = 0.36).
Conclusions
Caution needs to be exercised when using DTI tractography information to guide DBS lead placement in patients with PD. Further studies are needed to compare DTI tractography measurements with other approaches such as microelectrode recordings and conventional intraoperative MRI–guided placement of DBS leads.
Collapse
Affiliation(s)
| | | | | | - Alan Cupino
- 1Departments of Radiology, Neuroradiology Division
| | | | | | - James Patrie
- 3Public Health Sciences, University of Virginia, Charlottesville, Virginia; and
| | - Wenjun Xin
- 3Public Health Sciences, University of Virginia, Charlottesville, Virginia; and
| | - Max Wintermark
- 1Departments of Radiology, Neuroradiology Division
- 4Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
142
|
Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci U S A 2014; 111:E4367-75. [PMID: 25267639 DOI: 10.1073/pnas.1405003111] [Citation(s) in RCA: 426] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Brain stimulation, a therapy increasingly used for neurological and psychiatric disease, traditionally is divided into invasive approaches, such as deep brain stimulation (DBS), and noninvasive approaches, such as transcranial magnetic stimulation. The relationship between these approaches is unknown, therapeutic mechanisms remain unclear, and the ideal stimulation site for a given technique is often ambiguous, limiting optimization of the stimulation and its application in further disorders. In this article, we identify diseases treated with both types of stimulation, list the stimulation sites thought to be most effective in each disease, and test the hypothesis that these sites are different nodes within the same brain network as defined by resting-state functional-connectivity MRI. Sites where DBS was effective were functionally connected to sites where noninvasive brain stimulation was effective across diseases including depression, Parkinson's disease, obsessive-compulsive disorder, essential tremor, addiction, pain, minimally conscious states, and Alzheimer's disease. A lack of functional connectivity identified sites where stimulation was ineffective, and the sign of the correlation related to whether excitatory or inhibitory noninvasive stimulation was found clinically effective. These results suggest that resting-state functional connectivity may be useful for translating therapy between stimulation modalities, optimizing treatment, and identifying new stimulation targets. More broadly, this work supports a network perspective toward understanding and treating neuropsychiatric disease, highlighting the therapeutic potential of targeted brain network modulation.
Collapse
|
143
|
Schlaier J, Anthofer J, Steib K, Fellner C, Rothenfusser E, Brawanski A, Lange M. Deep Brain Stimulation for Essential Tremor: Targeting the Dentato-Rubro-Thalamic Tract? Neuromodulation 2014; 18:105-12. [PMID: 25209587 DOI: 10.1111/ner.12238] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/08/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Juergen Schlaier
- Department of Neurosurgery; Medical Center; University of Regensburg; Regensburg Germany
| | - Judith Anthofer
- Department of Neurosurgery; Medical Center; University of Regensburg; Regensburg Germany
| | - Kathrin Steib
- Department of Neurosurgery; Medical Center; University of Regensburg; Regensburg Germany
| | - Claudia Fellner
- Institute of Radiology; Medical Center; University of Regensburg; Regensburg Germany
| | - Eva Rothenfusser
- Department of Neurology; Medical Center; University of Regensburg; Regensburg Germany
| | - Alexander Brawanski
- Department of Neurosurgery; Medical Center; University of Regensburg; Regensburg Germany
| | - Max Lange
- Department of Neurosurgery; Medical Center; University of Regensburg; Regensburg Germany
| |
Collapse
|
144
|
Coenen VA, Allert N, Paus S, Kronenbu¨rger M, Urbach H, Ma¨dler B. Modulation of the Cerebello-Thalamo-Cortical Network in Thalamic Deep Brain Stimulation for Tremor. Neurosurgery 2014; 75:657-69; discussion 669-70. [PMID: 25161000 DOI: 10.1227/neu.0000000000000540] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background:
Deep brain stimulation alleviates tremor of various origins. Several regions like the ventralis intermediate nucleus of thalamus, the caudal zona incerta, and the posterior subthalamic region are generally targeted. Previous work with fiber tractography has shown the involvement of the cerebello-thalamo-cortical network in tremor control.
Objective:
To report the results of a prospective trial in a group of patients with tremor who underwent post hoc tractographic analysis after treatment with traditional thalamic deep brain stimulation.
Methods:
A total of 11 patients (aged 64 ± 17 years, 6 male) were enrolled (essential tremor [6], Parkinson tremor [3], and myoclonic tremor in myoclonus dystonia [2]). Patients received 1 (3 patients), 2 (7 patients), or 3 (1 patient) quadripolar electrodes. A 32-direction diffusion tensor magnetic resonance imaging sequence was acquired preoperatively. Tractography was processed postoperatively for evaluation and the dentato-rubro-thalamic tract (DRT) was individually tracked. Electrode positions were determined with helical computed tomography. Electric fields (EFs) were simulated according to individual stimulation parameters in a standardized atlas brain space (ICBM-MNI 152).
Results:
Tremor was reduced in all patients (69.4% mean) on the global (bilateral) tremor score. Effective contacts were located inside or in proximity to the DRT. In moderate tremor reduction (2 patients), the EFs were centered on its anterior border. In good and excellent tremor reduction (9 patients), EFs focused on its center.
Conclusion:
Deep brain stimulation of the cerebello-thalamo-cortical network reduces tremor. The DRT connects 3 traditional target regions for deep brain stimulation in tremor disease. Tractography techniques can be used to directly visualize the DRT and, therefore, optimize target definition in individual patients.
Collapse
Affiliation(s)
- Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Niels Allert
- Neurological Rehabilitation Cente “Godeshöhe,” Bonn, Germany
| | - Sebastian Paus
- Department of Neurology, University Hospita Bonn, Bonn, Germany
| | - Martin Kronenbu¨rger
- Johns Hopkin University School of Medicine, Depart ment of Neurology, Baltimore, Maryland
| | - Horst Urbach
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.) Germany
| | - Burkhard Ma¨dler
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| |
Collapse
|
145
|
Anthofer J, Steib K, Fellner C, Lange M, Brawanski A, Schlaier J. The variability of atlas-based targets in relation to surrounding major fibre tracts in thalamic deep brain stimulation. Acta Neurochir (Wien) 2014; 156:1497-504; discussion 1504. [PMID: 24829155 DOI: 10.1007/s00701-014-2103-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND In essential tremor (ET), the main target for deep brain stimulation (DBS) is the thalamic ventralis intermedius nucleus (Vim). This target cannot be identified on conventional magnetic resonance imaging (MRI). Therefore, targeting depends on probabilistic coordinates derived from stereotactic atlases. The goal of our study was to investigate the variability of atlas-based Vim targets in relation to surrounding major fibre tracts. METHODS With the MRI and computed tomography (CT) scan data of ten patients who underwent DBS, we planned atlas based Vim targets in both hemispheres. We also performed deterministic fibre-tracking with diffusion tensor imaging (DTI) of the dentato-rubro-thalamic tract (DRTT), pyramidal tract (PT) and lemniscus medialis (LM) in all 20 hemispheres. Subsequently, we measured the distance from the atlas-based Vim target to each tract along the medial/lateral (x-coordinate), anterior/posterior (y-coordinate) and superior/inferior axis (z-coordinate). RESULTS Seventeen out of 20 DRTTs could be depicted with our standardised DTI/fibre-tracking parameters. The PT and the LM could be displayed in all 20 hemispheres. The atlas-based Vim target was found inside the DRTT in 11 (concerning the x-coordinate) and 10 hemispheres (concerning the z-coordinate). Regarding the anterior/posterior direction, the target was posterior to the DRTT in 11 cases. In 19 hemispheres the Vim target was located medial and superior to the PT and in 17 hemispheres posterior to it. Concerning the LM, the Vim target was found inside the LM in 16 (regarding the x-coordinate) and in 14 cases (regarding the z-coordinate). In eight cases it was located inside and in 12 cases anterior to the LM concerning the y-coordinate. CONCLUSIONS We found a considerable variability of the location of atlas-based target points of the ventralis intermedius nucleus in relation to neighbouring major fibre tracts in individual patients. These results suggest that individualised targeting to structures not directly visible on conventional MRI is necessary.
Collapse
|
146
|
Morishita T, Fayad SM, Higuchi MA, Nestor KA, Foote KD. Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics 2014; 11:475-84. [PMID: 24867326 PMCID: PMC4121451 DOI: 10.1007/s13311-014-0282-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a widespread, severe, debilitating disorder that markedly diminishes quality of life. Medication is commonly effective, but 20-30 % of patients are refractory to medical therapy. The surgical treatment of psychiatric disorders has a negative stigma associated with it owing to historical abuses. Various ablative surgeries for MDD have been attempted with marginal success, but these studies lacked standardized outcome measures. The recent development of neuromodulation therapy, especially deep brain stimulation (DBS), has enabled controlled studies with sham stimulation and presents a potential therapeutic option that is both reversible and adjustable. We performed a systematic review of the literature pertaining to DBS for treatment-resistant depression to evaluate the safety and efficacy of this procedure. We included only studies using validated outcome measures. Our review identified 22 clinical research papers with 5 unique DBS approaches using different targets, including nucleus accumbens, ventral striatum/ventral capsule, subgenual cingulate cortex, lateral habenula, inferior thalamic nucleus, and medial forebrain bundle. Among the 22 published studies, only 3 were controlled trials, and 2, as yet unpublished, multicenter, randomized, controlled trials evaluating the efficacy of subgenual cingulate cortex and ventral striatum/ventral capsule DBS were recently discontinued owing to inefficacy based on futility analyses. Overall, the published response rate to DBS therapy, defined as the percentage of patients with > 50 % improvement on the Hamilton Depression Rating Scale, is reported to be 40-70 %, and outcomes were comparable across studies. We conclude that DBS for MDD shows promise, but remains experimental and further accumulation of data is warranted.
Collapse
Affiliation(s)
- Takashi Morishita
- />Department of Neurosurgery, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, 1149 South Newell Drive, Gainesville, FL 32611 USA
| | - Sarah M. Fayad
- />Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, Gainesville, FL USA
| | - Masa-aki Higuchi
- />Department of Neurology, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, Gainesville, FL USA
| | - Kelsey A. Nestor
- />Department of Neurosurgery, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, 1149 South Newell Drive, Gainesville, FL 32611 USA
| | - Kelly D. Foote
- />Department of Neurosurgery, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, 1149 South Newell Drive, Gainesville, FL 32611 USA
| |
Collapse
|
147
|
Torres CV, Manzanares R, Sola RG. Integrating Diffusion Tensor Imaging-Based Tractography into Deep Brain Stimulation Surgery: A Review of the Literature. Stereotact Funct Neurosurg 2014; 92:282-90. [DOI: 10.1159/000362937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/13/2014] [Indexed: 11/19/2022]
|
148
|
Merkl A, Schneider GH, Schönecker T, Aust S, Kühl KP, Kupsch A, Kühn AA, Bajbouj M. Antidepressant effects after short-term and chronic stimulation of the subgenual cingulate gyrus in treatment-resistant depression. Exp Neurol 2013; 249:160-8. [DOI: 10.1016/j.expneurol.2013.08.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 01/19/2023]
|
149
|
Williams NR, Okun MS. Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J Clin Invest 2013; 123:4546-56. [PMID: 24177464 DOI: 10.1172/jci68341] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) is an emerging interventional therapy for well-screened patients with specific treatment-resistant neuropsychiatric diseases. Some neuropsychiatric conditions, such as Parkinson disease, have available and reasonable guideline and efficacy data, while other conditions, such as major depressive disorder and Tourette syndrome, have more limited, but promising results. This review summarizes both the efficacy and the neuroanatomical targets for DBS in four common neuropsychiatric conditions: Parkinson disease, Tourette syndrome, major depressive disorder, and obsessive-compulsive disorder. Based on emerging new research, we summarize novel approaches to optimization of stimulation for each neuropsychiatric disease and we review the potential positive and negative effects that may be observed following DBS. Finally, we summarize the likely future innovations in the field of electrical neural-network modulation.
Collapse
|
150
|
Rozanski VE, Vollmar C, Cunha JP, Tafula SMN, Ahmadi SA, Patzig M, Mehrkens JH, Bötzel K. Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. Neuroimage 2013; 84:435-42. [PMID: 24045076 DOI: 10.1016/j.neuroimage.2013.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022] Open
Abstract
Deep brain stimulation (DBS) of the internal pallidal segment (GPi: globus pallidus internus) is gold standard treatment for medically intractable dystonia, but detailed knowledge of mechanisms of action is still not available. There is evidence that stimulation of ventral and dorsal GPi produces opposite motor effects. The aim of this study was to analyse connectivity profiles of ventral and dorsal GPi. Probabilistic tractography was initiated from DBS electrode contacts in 8 patients with focal dystonia and connectivity patterns compared. We found a considerable difference in anterior-posterior distribution of fibres along the mesial cortical sensorimotor areas between the ventral and dorsal GPi connectivity. This finding of distinct GPi connectivity profiles further confirms the clinical evidence that the ventral and dorsal GPi belong to different functional and anatomic motor subsystems. Their involvement could play an important role in promoting clinical DBS effects in dystonia.
Collapse
Affiliation(s)
- Verena E Rozanski
- Department of Neurology, University of Munich at Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|