101
|
Paula HSC, Santiago SB, Araújo LA, Pedroso CF, Marinho TA, Gonçalves IAJ, Santos TAP, Pinheiro RS, Oliveira GA, Batista KA. An overview on the current available treatment for COVID-19 and the impact of antibiotic administration during the pandemic. Braz J Med Biol Res 2021; 55:e11631. [PMID: 34909910 PMCID: PMC8851906 DOI: 10.1590/1414-431x2021e11631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused several problems in healthcare systems around the world, as to date, there is no effective and specific treatment against all forms of COVID-19. Currently, drugs with therapeutic potential are being tested, including antiviral, anti-inflammatory, anti-malarial, immunotherapy, and antibiotics. Although antibiotics have no direct effect on viral infections, they are often used against secondary bacterial infections, or even as empiric treatment to reduce viral load, infection, and replication of coronaviruses. However, there are many concerns about this therapeutic approach as it may accelerate and/or increase the long-term rates of antimicrobial resistance (AMR). We focused this overview on exploring candidate drugs for COVID-19 therapy, including antibiotics, considering the lack of specific treatment and that it is unclear whether the widespread use of antibiotics in the treatment of COVID-19 has implications for the emergence and transmission of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- H S C Paula
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - S B Santiago
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - L A Araújo
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - C F Pedroso
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - T A Marinho
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - I A J Gonçalves
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - T A P Santos
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - R S Pinheiro
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - G A Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Valparaíso, Valparaíso, GO, Brasil
| | - K A Batista
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| |
Collapse
|
102
|
Jia L, Chen Z, Zhang Y, Ma L, Wang L, Hu X, Liu H, Chen J, Liu D, Guan W. Suppression and Activation of Intracellular Immune Response in Initial Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front Microbiol 2021; 12:768740. [PMID: 34899651 PMCID: PMC8661415 DOI: 10.3389/fmicb.2021.768740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most important emerging pathogen worldwide, but its early transcriptional dynamics and host immune response remain unclear. Herein, the expression profiles of viral interactions with different types of hosts were comprehensively dissected to shed light on the early infection strategy of SARS-CoV-2 and the host immune response against infection. SARS-CoV-2 was found to exhibit a two-stage transcriptional strategy within the first 24 h of infection, comprising a lag phase that ends with the virus being paused and a log phase that starts when the viral load increases rapidly. Interestingly, the host innate immune response was found not to be activated (latent period) until the virus entered the log stage. Noteworthy, when intracellular immunity is suppressed, SARS-CoV-2 shows a correlation with dysregulation of metal ion homeostasis. Herein, the inhibitory activity of copper ions against SARS-CoV-2 was further validated in in vitro experiments. Coronavirus disease 2019-related genes (including CD38, PTX3, and TCN1) were also identified, which may serve as candidate host-restricted factors for interventional therapy. Collectively, these results confirm that the two-stage strategy of SARS-CoV-2 effectively aids its survival in early infection by regulating the host intracellular immunity, highlighting the key role of interferon in viral infection and potential therapeutic candidates for further investigations on antiviral strategies.
Collapse
Affiliation(s)
- Lijia Jia
- Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yecheng Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Li Ma
- Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liying Wang
- Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Hu
- University of Chinese Academy of Sciences, Beijing, China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Haizhou Liu
- Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jianjun Chen
- Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Di Liu
- Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
103
|
Haouzi D, Entezami F, Tuaillon E, Gala A, Ferrières-Hoa A, Brouillet S, Thierry AR, Hamamah S. SARS-CoV-2 and Implantation Window: Gene Expression Mapping of Human Endometrium and Preimplantation Embryo. Life (Basel) 2021; 11:life11121378. [PMID: 34947909 PMCID: PMC8706202 DOI: 10.3390/life11121378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding whether SARS-CoV-2 could infect cells and tissues handled during ART is crucial for risk mitigation, especially during the implantation window when either endometrial biopsies are often practiced for endometrial receptivity assessment or embryo transfer is performed. To address this question, this review analyzed current knowledge of the field and retrospectively examined the gene expression profiles of SARS-CoV-2-associated receptors and proteases in a cohort of ART candidates using our previous Affymetrix microarray data. Human endometrial tissue under natural and controlled ovarian stimulation cycles and preimplantation embryos were analyzed. A focus was particularly drawn on the renin-angiotensin system, which plays a prominent role in the virus infection, and we compared the gene expression levels of receptors and proteases related to SARS-CoV-2 infection in the samples. High prevalence of genes related to the ACE2 pathway during both cycle phases and mainly during the mid-secretory phase for ACE2 were reported. The impact of COS protocols on endometrial gene expression profile of SARS-CoV-2-associated receptors and proteases is minimal, suggesting no additional potential risks during stimulated ART procedure. In blastocysts, ACE2, BSG, CTSL, CTSA and FURIN were detectable in the entire cohort at high expression level. Specimens from female genital tract should be considered as potential targets for SARS-CoV-2, especially during the implantation window.
Collapse
Affiliation(s)
- Delphine Haouzi
- Univ Montpellier, INSERM U1203, DEFE, 34295 Montpellier, France; (D.H.); (F.E.); (A.G.); (A.F.-H.); (S.B.)
- IRMB (Institute for Regenerative Medicine & Biotherapy), Univ Montpellier, INSERM, 34295 Montpellier, France
- CHU Montpellier, ART/PGD Department, Arnaud de Villeneuve Hospital, 34295 Montpellier, France
- Global ART Innovation Network, IRMB, CHU Montpellier, 34295 Montpellier, France
| | - Frida Entezami
- Univ Montpellier, INSERM U1203, DEFE, 34295 Montpellier, France; (D.H.); (F.E.); (A.G.); (A.F.-H.); (S.B.)
- ART Department, American Hospital of Paris, 92200 Neuilly-Sur-Seine, France
| | - Edward Tuaillon
- CHU Montpellier, Bacteriology-Virology Department, 34295 Montpellier, France;
| | - Anna Gala
- Univ Montpellier, INSERM U1203, DEFE, 34295 Montpellier, France; (D.H.); (F.E.); (A.G.); (A.F.-H.); (S.B.)
- CHU Montpellier, ART/PGD Department, Arnaud de Villeneuve Hospital, 34295 Montpellier, France
| | - Alice Ferrières-Hoa
- Univ Montpellier, INSERM U1203, DEFE, 34295 Montpellier, France; (D.H.); (F.E.); (A.G.); (A.F.-H.); (S.B.)
- CHU Montpellier, ART/PGD Department, Arnaud de Villeneuve Hospital, 34295 Montpellier, France
| | - Sophie Brouillet
- Univ Montpellier, INSERM U1203, DEFE, 34295 Montpellier, France; (D.H.); (F.E.); (A.G.); (A.F.-H.); (S.B.)
- IRMB (Institute for Regenerative Medicine & Biotherapy), Univ Montpellier, INSERM, 34295 Montpellier, France
- CHU Montpellier, ART/PGD Department, Arnaud de Villeneuve Hospital, 34295 Montpellier, France
| | - Alain R. Thierry
- Regional Institute of Cancer of Montpellier, 34090 Montpellier, France;
| | - Samir Hamamah
- Univ Montpellier, INSERM U1203, DEFE, 34295 Montpellier, France; (D.H.); (F.E.); (A.G.); (A.F.-H.); (S.B.)
- IRMB (Institute for Regenerative Medicine & Biotherapy), Univ Montpellier, INSERM, 34295 Montpellier, France
- CHU Montpellier, ART/PGD Department, Arnaud de Villeneuve Hospital, 34295 Montpellier, France
- Global ART Innovation Network, IRMB, CHU Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-04-67-33-64-04; Fax: +33-04-67-33-62-90
| |
Collapse
|
104
|
Torres-Peña JD, Katsiki N, Perez-Martinez P. Could Statin Therapy Be Useful in Patients With Coronavirus Disease 2019 (COVID-19)? Front Cardiovasc Med 2021; 8:775749. [PMID: 34778421 PMCID: PMC8578478 DOI: 10.3389/fcvm.2021.775749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), resulting from an exaggerated inflammatory response, is the main cause of death from the coronavirus disease 2019 (COVID-19). Apart from respiratory infection, COVID-19 patients can develop cardiovascular disorders such as myocardial injury and myocarditis, pericarditis, cardiac arrest and arrhythmias, cardiomyopathy, heart failure, coagulation abnormalities and thrombosis. Statins can beneficially affect inflammation, oxidative stress, coagulation, thrombosis, angiotensin converting enzyme receptor, lipid rafts, and endothelial function. In this narrative review, we provide a critical overview of the current evidence and future perspectives on the use of statins to modulate the severity, duration and complications of COVID-19 through their pleiotropic properties.
Collapse
Affiliation(s)
- Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Niki Katsiki
- Division of Endocrinology and Metabolism, First Department of Internal Medicine, Diabetes Center, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| |
Collapse
|
105
|
Hu S, Jiang S, Qi X, Bai R, Ye XY, Xie T. Races of small molecule clinical trials for the treatment of COVID-19: An up-to-date comprehensive review. Drug Dev Res 2021; 83:16-54. [PMID: 34762760 PMCID: PMC8653368 DOI: 10.1002/ddr.21895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease‐19 (COVID‐19) pandemic has become a global threat since its first outbreak at the end of 2019. Several review articles have been published recently, focusing on the aspects of target biology, drug repurposing, and mechanisms of action (MOAs) for potential treatment. This review gathers all small molecules currently in active clinical trials, categorizes them into six sub‐classes, and summarizes their clinical progress. The aim is to provide the researchers from both pharmaceutical industries and academic institutes with the handful information and dataset to accelerate their research programs in searching effective small molecule therapy for treatment of COVID‐19.
Collapse
Affiliation(s)
- Suwen Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China.,Hangzhou Huadong Medicine Group, Pharmaceutical Research Institute Co. Ltd., Hangzhou, China.,Department of Chemistry and Biochemistry Los Angeles, University of California, Los Angeles, California, USA
| | - Songwei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| | - Xiang Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| |
Collapse
|
106
|
Groppa SA, Ciolac D, Duarte C, Garcia C, Gasnaș D, Leahu P, Efremova D, Gasnaș A, Bălănuță T, Mîrzac D, Movila A. Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:1-27. [PMID: 34735712 DOI: 10.1007/5584_2021_675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has dramatically impacted the global healthcare systems, constantly challenging both research and clinical practice. Although it was initially believed that the SARS-CoV-2 infection is limited merely to the respiratory system, emerging evidence indicates that COVID-19 affects multiple other systems including the central nervous system (CNS). Furthermore, most of the published clinical studies indicate that the confirmed CNS inflammatory manifestations in COVID-19 patients are meningitis, encephalitis, acute necrotizing encephalopathy, acute transverse myelitis, and acute disseminated encephalomyelitis. In addition, the neuroinflammation along with accelerated neurosenescence and susceptible genetic signatures in COVID-19 patients might prime the CNS to neurodegeneration and precipitate the occurrence of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Thus, this review provides a critical evaluation and interpretive analysis of existing published preclinical as well as clinical studies on the key molecular mechanisms modulating neuroinflammation and neurodegeneration induced by the SARS-CoV-2. In addition, the essential age- and gender-dependent impacts of SARS-CoV-2 on the CNS of COVID-19 patients are also discussed.
Collapse
Affiliation(s)
- Stanislav A Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Dumitru Ciolac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Daniela Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Pavel Leahu
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Efremova
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Tatiana Bălănuță
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Mîrzac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Institute of Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
107
|
Mobini S, Chizari M, Mafakher L, Rismani E, Rismani E. Structure-based study of immune receptors as eligible binding targets of coronavirus SARS-CoV-2 spike protein. J Mol Graph Model 2021; 108:107997. [PMID: 34343818 PMCID: PMC8317541 DOI: 10.1016/j.jmgm.2021.107997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
One of the most important challenges in the battle against contagious SARS-CoV-2 is subtle identification of the virus pathogenesis. The broad range of COVID-19 clinical manifestations may indicate diversity of virus-host cells. Amongst key manifestations, especially in severe COVID-19 patients, reduction and/or exhaustion of lymphocytes, monocytes, basophils, and dendritic cells are seen.; therefore, it is required to recognize that how the virus infects the cells. Interestingly, angiotensin-converting enzyme 2 (ACE2) as the well-known receptor of SARS-CoV-2 is low or non-expressed in these cells. Using computational approach, several receptor candidates including leukocyte surface molecules and chemokine receptors that expressed in most lineages of immune cells were evaluated as the feasible receptor of spike receptor-binding domain (RBD) of SARS-CoV-2. The results revealed the higher binding affinity of CD26, CD2, CD56, CD7, CCR9, CD150, CD4, CD50, XCR1 and CD106 compared to ACE2. However, the modes of binding and amino acids involved in the interactions with the RBD domain of spike were various. Overall, the affinity of immune receptor candidates in binding to SARS-CoV-2 RBD may offer insight into the recognition of novel therapeutic targets in association with COVID-19.
Collapse
Affiliation(s)
- Saeed Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Chizari
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Elmira Rismani
- Payam Noor University, Biology Department, Tehran, Iran.
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
108
|
Moreira JLDS, Barbosa SMB, Gonçalves Júnior J. Pathophysiology and molecular mechanisms of liver injury in severe forms of COVID-19: An integrative review. Clin Res Hepatol Gastroenterol 2021; 45:101752. [PMID: 34303828 PMCID: PMC8299216 DOI: 10.1016/j.clinre.2021.101752] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS SARS-CoV-2 has primary pulmonary impairment, but other organs such as the liver can also be affected. This implies a worsening of patient's prognosis and an increase in morbidity and mortality. The metabolic pathways and molecular factors involved in the genesis of this injury are still unknown. Therefore, we aimed to carry out an integrative review about the pathophysiology and possible molecular mechanisms of liver injury by COVID-19. METHODS We carried out an integrative literature review in the following databases: PubMed, Scopus, and Embase from December 2020 to March 2021 using the following descriptors: # 1 "COVID-19" (MeSH) AND / OR # 2 "Liver injury" (MeSH) AND / OR # 3 "Pathophysiology" (MesH). RESULTS The data were extracted and divided into two main themes, for heuristic purposes: "Hepatotropism and SARS-CoV-2", and "Pathophysiological hypotheses for liver injury associated with SARS-CoV-2". CONCLUSIONS The virus seems to promote liver damage through five mechanisms: direct injury, humoral and cellular inflammatory response, hypoxemia caused by a decrease in the effective circulating volume, reinfection through the portal system, and use of drugs in the treatment. The literature also points out that the expression of the angiotensin-converting enzyme II and transmembrane serine protease 2 receptors is expressive in cholangiocyte and is present in hepatocytes, which is a risk factor for the virus to enter these cells. Finally, patients with previous liver disease appear to be more susceptible to liver injury by COVID-19.
Collapse
Affiliation(s)
| | | | - Jucier Gonçalves Júnior
- Departament of Internal Medicine - Division of Rheumathology, Universidade de São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
109
|
Giacomelli C, Piccarducci R, Marchetti L, Romei C, Martini C. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem Pharmacol 2021; 193:114812. [PMID: 34687672 PMCID: PMC8546906 DOI: 10.1016/j.bcp.2021.114812] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis (PF) is characterised by several grades of chronic inflammation and collagen deposition in the interalveolar space and is a hallmark of interstitial lung diseases (ILDs). Recently, infectious agents have emerged as driving causes for PF development; however, the role of viral/bacterial infections in the initiation and propagation of PF is still debated. In this context, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the current coronavirus disease 2019 (COVID-19) pandemic, has been associated with acute respiratory distress syndrome (ARDS) and PF development. Although the infection by SARS-CoV-2 can be eradicated in most cases, the development of fibrotic lesions cannot be precluded; furthermore, whether these lesions are stable or progressive fibrotic events is still unknown. Herein, an overview of the main molecular mechanisms driving the fibrotic process together with the currently approved and newly proposed therapeutic solutions was given. Then, the most recent data that emerged from post-COVID-19 patients was discussed, in order to compare PF and COVID-19-dependent PF, highlighting shared and specific mechanisms. A better understanding of PF aetiology is certainly needed, also to develop effective therapeutic strategies and COVID-19 pathology is offering one more chance to do it. Overall, the work reported here could help to define new approaches for therapeutic intervention in the diversity of the ILD spectrum.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Chiara Romei
- Multidisciplinary Team of Interstitial Lung Disease, Radiology Department, Pisa University Hospital, Via Paradisa 2, Pisa 56124, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy,Corresponding author
| |
Collapse
|
110
|
Nair AS. Perioperative melatonin in COVID-19 patients: benefits beyond sedation and analgesia. Med Gas Res 2021; 12:41-43. [PMID: 34677150 PMCID: PMC8562396 DOI: 10.4103/2045-9912.325990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm in coronavirus disease 2019 (COVID-19) patients leads to acute lung injury, acute respiratory distress syndrome, multiorgan dysfunction, shock, and thrombosis thus contributing to significant morbidity and mortality. Several agents like steroids, ascorbic acid, vitamins (C, D, E), glutathione, N-acetylcysteine have been used and several studies are underway to identify its efficacy in addressing undesirable effects due to COVID-19 illness. Among several experimental modalities based on expert opinion and anecdotal data, melatonin is one molecule that appears promising. Owing to its anti-inflammatory, anti-oxidant, and immunomodulatory properties, melatonin can be an important agent used as a component of multimodal analgesia in COVID-19 patients, suspected patients, and patients with exposure to positive patients undergoing emergency or urgent surgeries. Further research is required to know the optimal time of initiation, dose, and duration of melatonin as an adjunct.
Collapse
Affiliation(s)
- Abhijit S Nair
- Department of Anaesthesiology, Ibra Hospital, Ministry of Health-Oman, Ibra, Sultanate of Oman
| |
Collapse
|
111
|
Ai J, Hong W, Wu M, Wei X. Pulmonary vascular system: A vulnerable target for COVID-19. MedComm (Beijing) 2021; 2:531-547. [PMID: 34909758 PMCID: PMC8662299 DOI: 10.1002/mco2.94] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
The number of coronavirus disease 2019 (COVID‐19) cases has been increasing significantly, and the disease has evolved into a global pandemic, posing an unprecedented challenge to the healthcare community. Angiotensin‐converting enzyme 2, the binding and entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in hosts, is also expressed on pulmonary vascular endothelium; thus, pulmonary vasculature is a potential target in COVID‐19. Indeed, pulmonary vascular thickening is observed by early clinical imaging, implying a tropism of SARS‐CoV‐2 for pulmonary vasculature. Recent studies reported that COVID‐19 is associated with vascular endothelial damage and dysfunction along with inflammation, coagulopathy, and microthrombosis; all of these pathologic changes are the hallmarks of pulmonary vascular diseases. Notwithstanding the not fully elucidated effects of COVID‐19 on pulmonary vasculature, the vascular endotheliopathy that occurs after infection is attributed to direct infection and indirect damage mainly caused by renin‐angiotensin‐aldosterone system imbalance, coagulation cascade, oxidative stress, immune dysregulation, and intussusceptive angiogenesis. Degradation of endothelial glycocalyx exposes endothelial cell (EC) surface receptors to the vascular lumen, which renders pulmonary ECs more susceptible to SARS‐CoV‐2 infection. The present article reviews the potential pulmonary vascular pathophysiology and clinical presentations in COVID‐19 to provide a basis for clinicians and scientists, providing insights into the development of therapeutic strategies targeting pulmonary vasculature.
Collapse
Affiliation(s)
- Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| | - Min Wu
- Department of Biomedical Sciences School of Medicine and Health Sciences University of North Dakota Grand Forks North Dakota USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| |
Collapse
|
112
|
Human Cell Receptors and Downstream Cascades: A Review of Molecular Aspects and Potential Therapeutic Targets in COVID-19. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.113298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: There have been two coronavirus-related pandemics during the past 18 years, including severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV in 2002 and 2012, respectively. In 2019, Seven years after the emergence of MERS, a new coronavirus (i.e., SARS-CoV-2) was detected in several patients. SARS-CoV-2 spread widely, and its high prevalence enabled the virus to start a new pandemic in 2020. It is believed that the higher infectivity of the virus in comparison to that of SARS-CoV is related to its molecular interaction affinity of transmembrane spike glycoprotein and human angiotensin-converting enzyme 2 (ACE-2) cell receptors. Moreover, the primary reason for the high case fatality rate (CFR) is the cytokine storm and acute respiratory distress syndrome (ARDS) because of the immune system response to the invaders. Hence, a solid understanding of the components involved in the mechanism of viral entry and immune system response is crucial for finding approaches to disrupt the virus-cell interplay and neutralizing its impacts on the host immune system. In this review, we investigated the molecular aspect and potential therapeutic targets associated with cell receptors and downstream signaling cascades. Evidence Acquisition: A systematic search was implemented on several online databases, including Google Scholar, PubMed, and Scopus during 2019-2021 using the following keywords: "SARS-CoV-2", "COVID-19", "ACE-2", "Therapeutic Targets", "Acute Respiratory Distress Syndrome", and "Cytokine Storm". Results: Various internal or external agents are responsible for the virus infectivity and stimulating acute immune system response. Since currently there is no cure for the treatment of COVID-19, several repurposed drugs can be employed to disrupt the process of viral entry and mitigate the symptoms raised by the cytokine storm. Inhibition of several agents, including signal transduction mediators and TMPRSS2 may be momentous. Conclusions: Despite the increase in the CFR, no drugs were developed with significant efficacy. Understanding the virus entry mechanism and the immune system’s role could help us surmount the problems in developing a promising drug or employing the repurposed ones.
Collapse
|
113
|
Alturaiki W, Mubarak A, Al Jurayyan A, Hemida MG. The pivotal roles of the host immune response in the fine-tuning the infection and the development of the vaccines for SARS-CoV-2. Hum Vaccin Immunother 2021; 17:3297-3309. [PMID: 34114940 PMCID: PMC8204314 DOI: 10.1080/21645515.2021.1935172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV2 infection induces various degrees of infections ranging from asymptomatic to severe cases and death. Virus/host interplay contributes substantially to these outcomes. This highlights the potential roles of the host immune system in fighting virus infections. SARS-CoV-2. We highlighted the potential roles of host immune response in the modulation of the outcomes of SARS-CoV infections. The newly emerged SARS-CoV-2 mutants complicated the control and mitigation strategies measures. We are highlighting the current progress of some already deployed vaccines worldwide as well as those still in the pipelines. Recent studies from the large ongoing global vaccination campaign are showing promising results in reducing the hospitality rates as well as the number of severe SARS-CoV-2 infected patients. Careful monitoring of the genetic changes of the virus should be practiced. This is to prepare some highly sensitive diagnostic assays as well as to prepare some homologous vaccines matching the circulating strains in the future.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abduallah Al Jurayyan
- Immunology and HLA Department, Pathology and Laboratory Medicine, King Fahad Medical City, Riyadh, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Ash Shaykh, Egypt
| |
Collapse
|
114
|
Peng R, Wu LA, Wang Q, Qi J, Gao GF. Cell entry by SARS-CoV-2. Trends Biochem Sci 2021; 46:848-860. [PMID: 34187722 PMCID: PMC8180548 DOI: 10.1016/j.tibs.2021.06.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome virus 2 (SARS-CoV-2) invades host cells by interacting with receptors/coreceptors, as well as with other cofactors, via its spike (S) protein that further mediates fusion between viral and cellular membranes. The host membrane protein, angiotensin-converting enzyme 2 (ACE2), is the major receptor for SARS-CoV-2 and is a crucial determinant for cross-species transmission. In addition, some auxiliary receptors and cofactors are also involved that expand the host/tissue tropism of SARS-CoV-2. After receptor engagement, specific proteases are required that cleave the S protein and trigger its fusogenic activity. Here we discuss the recent advances in understanding the molecular events during SARS-CoV-2 entry which will contribute to developing vaccines and therapeutics.
Collapse
Affiliation(s)
- Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Lian-Ao Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230039, China
| | - Qingling Wang
- Shanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230039, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|
115
|
Selvaraj K, Ravichandran S, Krishnan S, Radhakrishnan RK, Manickam N, Kandasamy M. Testicular Atrophy and Hypothalamic Pathology in COVID-19: Possibility of the Incidence of Male Infertility and HPG Axis Abnormalities. Reprod Sci 2021; 28:2735-2742. [PMID: 33415647 PMCID: PMC7790483 DOI: 10.1007/s43032-020-00441-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which resulted from the pandemic outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a massive inflammatory cytokine storm leading to multi-organ damage including that of the brain and testes. While the lungs, heart, and brain are identified as the main targets of SARS-CoV-2-mediated pathogenesis, reports on its testicular infections have been a subject of debate. The brain and testes are physiologically synchronized by the action of gonadotropins and sex steroid hormones. Though the evidence for the presence of the viral particles in the testicular biopsies and semen samples from COVID-19 patients are highly limited, the occurrence of testicular pathology due to abrupt inflammatory responses and hyperthermia has incresingly been evident. The reduced level of testosterone production in COVID-19 is associated with altered secretion of gonadotropins. Moreover, hypothalamic pathology which results from SARS-CoV-2 infection of the brain is also evident in COVID-19 cases. This article revisits and supports the key reports on testicular abnormalities and pathological signatures in the hypothalamus of COVID-19 patients and emphasizes that testicular pathology resulting from inflammation and oxidative stress might lead to infertility in a significant portion of COVID-19 survivors. Further investigations are required to monitor the reproductive health parameters and HPG axis abnormalities related to secondary pathological complications in COVID-19 patients and survivors.
Collapse
Affiliation(s)
- Kaviya Selvaraj
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Sowbarnika Ravichandran
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Sushmita Krishnan
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nivethitha Manickam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Mahesh Kandasamy
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, 110002, India.
| |
Collapse
|
116
|
Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology 2021; 27:423-437. [PMID: 33867315 PMCID: PMC8040543 DOI: 10.1016/j.pulmoe.2021.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a new beta coronavirus, similar to SARS-CoV-1, that emerged at the end of 2019 in the Hubei province of China. It is responsible for coronavirus disease 2019 (COVID-19), which was declared a pandemic by the World Health Organization on March 11, 2020. The ability to gain quick control of the pandemic has been hampered by a lack of detailed knowledge about SARS-CoV-2-host interactions, mainly in relation to viral biology and host immune response. The rapid clinical course seen in COVID-19 indicates that infection control in asymptomatic patients or patients with mild disease is probably due to the innate immune response, as, considering that SARS-CoV-2 is new to humans, an effective adaptive response would not be expected to occur until approximately 2-3 weeks after contact with the virus. Antiviral innate immunity has humoral components (complement and coagulation-fibrinolysis systems, soluble proteins that recognize glycans on cell surface, interferons, chemokines, and naturally occurring antibodies) and cellular components (natural killer cells and other innate lymphocytes). Failure of this system would pave the way for uncontrolled viral replication in the airways and the mounting of an adaptive immune response, potentially amplified by an inflammatory cascade. Severe COVID-19 appears to be due not only to viral infection but also to a dysregulated immune and inflammatory response. In this paper, the authors review the most recent publications on the immunobiology of SARS-CoV-2, virus interactions with target cells, and host immune responses, and highlight possible associations between deficient innate and acquired immune responses and disease progression and mortality. Immunotherapeutic strategies targeting both the virus and dysfunctional immune responses are also addressed.
Collapse
Affiliation(s)
- J L Boechat
- Clinical Immunology Service, Internal Medicine Department, Faculty of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil; Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Portugal
| | - I Chora
- Internal Medicine Service, Department of Medicine, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, Senhora da Hora, Portugal; Department of Medicine, Faculty of Medicine, University of Porto, Portugal
| | - A Morais
- Department of Medicine, Faculty of Medicine, University of Porto, Portugal; Pulmonology Department, Centro Hospitalar e Universitario de Sao Joao, Porto, Portugal
| | - L Delgado
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
117
|
Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, Ma XL. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct Target Ther 2021; 6:317. [PMID: 34446699 PMCID: PMC8390046 DOI: 10.1038/s41392-021-00733-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Owing to the limitations of the present efforts on drug discovery against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of the understanding of the biological regulation mechanisms underlying COVID-19, alternative or novel therapeutic targets for COVID-19 treatment are still urgently required. SARS-CoV-2 infection and immunity dysfunction are the two main courses driving the pathogenesis of COVID-19. Both the virus and host factors are potential targets for antiviral therapy. Hence, in this study, the current therapeutic strategies of COVID-19 have been classified into "target virus" and "target host" categories. Repurposing drugs, emerging approaches, and promising potential targets are the implementations of the above two strategies. First, a comprehensive review of the highly acclaimed old drugs was performed according to evidence-based medicine to provide recommendations for clinicians. Additionally, their unavailability in the fight against COVID-19 was analyzed. Next, a profound analysis of the emerging approaches was conducted, particularly all licensed vaccines and monoclonal antibodies (mAbs) enrolled in clinical trials against primary SARS-CoV-2 and mutant strains. Furthermore, the pros and cons of the present licensed vaccines were compared from different perspectives. Finally, the most promising potential targets were reviewed, and the update of the progress of treatments has been summarized based on these reviews.
Collapse
Affiliation(s)
- Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yao Xie
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian-Sha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya-Juan Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xue-Lei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
118
|
Pata S, Surinkaew S, Takheaw N, Laopajon W, Chuensirikulchai K, Kasinrerk W. Differential CD147 Functional Epitopes on Distinct Leukocyte Subsets. Front Immunol 2021; 12:704309. [PMID: 34421910 PMCID: PMC8371324 DOI: 10.3389/fimmu.2021.704309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
CD147, a member of the immunoglobulin (Ig) superfamily, is widely expressed in several cell types. CD147 molecules have multiple cellular functions, such as migration, adhesion, invasion, energy metabolism and T cell activation. In particular, recent studies have demonstrated the potential application of CD147 as an effective therapeutic target for cancer, as well as autoimmune and inflammatory diseases. In this study, we elucidated the functional epitopes on CD147 extracellular domains in T cell regulation using specific monoclonal antibodies (mAbs). Upon T cell activation, the anti-CD147 domain 1 mAbs M6-1E9 and M6-1D4 and the anti-CD147 domain 2 mAb MEM-M6/6 significantly reduced surface expression of CD69 and CD25 and T cell proliferation. To investigate whether functional epitopes of CD147 are differentially expressed on distinct leukocyte subsets, PBMCs, monocyte-depleted PBMCs and purified T cells were activated in the presence of anti-CD147 mAbs. The mAb M6-1E9 inhibited T cell functions via activation of CD147 on monocytes with obligatory cell-cell contact. Engagement of the CD147 epitope by the M6-1E9 mAb downregulated CD80 and CD86 expression on monocytes and IL-2, TNF-α, IFN-γ and IL-17 production in T cells. In contrast, the mAb M6-1D4 inhibited T cell function via activation of CD147 on T cells by downregulating IL-2, TNF-α and IFN-γ. Herein, we demonstrated that certain epitopes of CD147, expressed on both monocytes and T cells, are involved in the regulation of T cell activation.
Collapse
Affiliation(s)
- Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sirirat Surinkaew
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kantinan Chuensirikulchai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
119
|
Abstract
Basigin, or CD147, has been reported as a coreceptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to invade host cells. Basigin also has a well-established role in Plasmodium falciparum malaria infection of human erythrocytes, where it is bound by one of the parasite's invasion ligands, reticulocyte binding protein homolog 5 (RH5). Here, we sought to validate the claim that the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein can form a complex with basigin, using RH5-basigin as a positive control. Using recombinantly expressed proteins, size exclusion chromatography and surface plasmon resonance, we show that neither RBD nor full-length spike glycoprotein bind to recombinant human basigin (expressed in either Escherichia coli or mammalian cells). Further, polyclonal anti-basigin IgG did not block SARS-CoV-2 infection of Vero E6 cells. Given the immense interest in SARS-CoV-2 therapeutic targets to improve treatment options for those who become seriously ill with coronavirus disease 2019 (COVID-19), we would caution the inclusion of basigin in this list on the basis of its reported direct interaction with SARS-CoV-2 spike glycoprotein. IMPORTANCE Reducing the mortality and morbidity associated with COVID-19 remains a global health priority. Vaccines have proven highly effective at preventing infection and hospitalization, but efforts must continue to improve treatment options for those who still become seriously ill. Critical to these efforts is the identification of host factors that are essential to viral entry and replication. Basigin, or CD147, was previously identified as a possible therapeutic target based on the observation that it may act as a coreceptor for SARS-CoV-2, binding to the receptor binding domain of the spike protein. Here, we show that there is no direct interaction between the RBD and basigin, casting doubt on its role as a coreceptor and plausibility as a therapeutic target.
Collapse
|
120
|
Krishnan S, Dusane A, Morajkar R, Venkat A, Vernekar AA. Deciphering the role of nanostructured materials in the point-of-care diagnostics for COVID-19: a comprehensive review. J Mater Chem B 2021; 9:5967-5981. [PMID: 34254626 DOI: 10.1039/d1tb01182k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The infamous COVID-19 outbreak has left a crippling impact on the economy, healthcare infrastructure, and lives of the general working class, with all the scientists determined to find suitable and efficient diagnostic techniques and therapies to contain its ramifications. This article presents the complete outline of the diagnostic platforms developed using nanoparticles in the detection of SARS-CoV-2, delineating the direct and indirect use of nanomaterials in COVID-19 diagnosis. The properties of nanostructured materials and their relevance in the development of novel point-of-care diagnostic approaches for COVID-19 are highlighted. More importantly, the advantages of nanotechnologies over conventional reverse transcriptase-polymerase chain reaction technique and few other methods used in the detection of SARS-CoV-2 along with the viewpoints are discussed. Also, the future perspectives highlighting the commercial aspects of the nanotechnology-based diagnostic tools developed to combat the COVID-19 pandemic are presented.
Collapse
Affiliation(s)
| | - Apurva Dusane
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai 600 020, India.
| | - Rasmi Morajkar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai 600 020, India.
| | - Akila Venkat
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai 600 020, India.
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai 600 020, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
121
|
Chatterjee S, Mishra S, Chowdhury KD, Ghosh CK, Saha KD. Various theranostics and immunization strategies based on nanotechnology against Covid-19 pandemic: An interdisciplinary view. Life Sci 2021; 278:119580. [PMID: 33991549 PMCID: PMC8114615 DOI: 10.1016/j.lfs.2021.119580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata-700006, India
| | - Snehasis Mishra
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata-700009, India
| | - Chandan Kumar Ghosh
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
122
|
Kaidashev I, Shlykova O, Izmailova O, Torubara O, Yushchenko Y, Tyshkovska T, Kyslyi V, Belyaeva A, Maryniak D. Host gene variability and SARS-CoV-2 infection: A review article. Heliyon 2021; 7:e07863. [PMID: 34458641 PMCID: PMC8382593 DOI: 10.1016/j.heliyon.2021.e07863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is a global threat that influenced healthcare systems around the world. This virus caused an infection in humans with different clinical signs and syndromes, severity, and mortality. The key components of the COVID-19 molecular pathogenesis are coronavirus entry and replication, antigen presentation, humoral and cellular immunity, cytokine storm, coronavirus immune evasion. The analysis of recent literature displayed possible molecular targets in the key components of the COVID-19 pathogenesis. Some of these targets might have gene polymorphisms that influenced the COVID-19 course. Unfortunately, several findings are still putative or extrapolated from SARS and MERS experimental investigations or clinical trials. We systematised original data about gene polymorphisms of possible molecular targets and associations with the COVID-19 course. Most data were obtained for angiotensin-converting enzymes 1 and 2, TMPRSS2 gene polymorphisms. Only a few results were found for gene polymorphisms of adhesion molecules, interferon system components, cytokines, and transcriptional factors, oxidative stress and metabolic molecules, as well as haemocoagulation. Understanding the host gene variability and its associations with COVID-19 can provide insights into the disease pathogenesis, individual susceptibility to SARS-CoV-2 infection, severity, complications, and mortality prognosis for the disease. Besides, these data might help in the identification of appropriate targets for intervention.
Collapse
Affiliation(s)
- I. Kaidashev
- Poltava State Medical University, Poltava, Ukraine
| | - O. Shlykova
- Poltava State Medical University, Poltava, Ukraine
| | - O. Izmailova
- Poltava State Medical University, Poltava, Ukraine
| | - O. Torubara
- Poltava State Medical University, Poltava, Ukraine
| | | | | | - V. Kyslyi
- Poltava State Medical University, Poltava, Ukraine
| | - A. Belyaeva
- Poltava State Medical University, Poltava, Ukraine
| | - D. Maryniak
- Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
123
|
Davies DA, Adlimoghaddam A, Albensi BC. The Effect of COVID-19 on NF-κB and Neurological Manifestations of Disease. Mol Neurobiol 2021; 58:4178-4187. [PMID: 34075562 PMCID: PMC8169418 DOI: 10.1007/s12035-021-02438-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease that presumably began in 2019 (COVID-19) is a highly infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a pandemic. Initially, COVID-19 was thought to only affect respiration. However, accumulating evidence shows a wide range of neurological symptoms are also associated with COVID-19, such as anosmia/ageusia, headaches, seizures, demyelination, mental confusion, delirium, and coma. Neurological symptoms in COVID-19 patients may arise due to a cytokine storm and a heighten state of inflammation. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is a central pathway involved with inflammation and is shown to be elevated in a dose-dependent matter in response to coronaviruses. NF-κB has a role in cytokine storm syndrome, which is associated with greater severity in COVID-19-related symptoms. Therefore, therapeutics that reduce the NF-κB pathway should be considered in the treatment of COVID-19. Neuro-COVID-19 units have been established across the world to examine the neurological symptoms associated with COVID-19. Neuro-COVID-19 is increasingly becoming an accepted term among scientists and clinicians, and interdisciplinary teams should be created to implement strategies for treating the wide range of neurological symptoms observed in COVID-19 patients.
Collapse
Affiliation(s)
- Don A Davies
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
124
|
Shabani Z. Demyelination as a result of an immune response in patients with COVID-19. Acta Neurol Belg 2021; 121:859-866. [PMID: 33934300 PMCID: PMC8088756 DOI: 10.1007/s13760-021-01691-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease of 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2), that already appeared as a global pandemic. Presentation of the disease often includes upper respiratory symptoms like dry cough, dyspnea, chest pain, and rhinorrhea that can develop to respiratory failure, needing intubation. Furthermore, the occurrence of acute and subacute neurological manifestations such as stroke, encephalitis, headache, and seizures are frequently stated in patients with COVID-19. One of the reported neurological complications of severe COVID-19 is the demolition of the myelin sheath. Indeed, the complex immunological dysfunction provides a substrate for the development of demyelination. Nevertheless, few published reports in the literature describe demyelination in subjects with COVID-19. In this short narrative review, we discuss probable pathological mechanisms that may trigger demyelination in patients with SARS-CoV-2 infection and summarize the clinical evidence, confirming SARS-CoV-2 condition as a risk factor for the destruction of myelin.
Collapse
Affiliation(s)
- Zahra Shabani
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
125
|
Poyraz BM, Engin ED, Engin AB, Engin A. The effect of environmental diesel exhaust pollution on SARS-CoV-2 infection: The mechanism of pulmonary ground glass opacity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103657. [PMID: 33838330 PMCID: PMC8025547 DOI: 10.1016/j.etap.2021.103657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 05/19/2023]
Abstract
Diesel exhaust particles (DEP) are the major components of atmospheric particulate matter (PM) and chronic exposure is recognized to enhance respiratory system complications. Although the spread of SARS-CoV-2 was found to be associated with the PMs, the mechanism by which exposure to DEP increases the risk of SARS-CoV-2 infection is still under discussion. However, diesel fine PM (dPM) elevate the probability of SARS-CoV-2 infection, as it coincides with the increase in the number of ACE2 receptors. Expression of ACE2 and its colocalized activator, transmembrane protease serine 2 (TMPRSS2) facilitate the entry of SARS-CoV-2 into the alveolar epithelial cells exposed to dPM. Thus, the coexistence of PM and SARS-CoV-2 in the environment augments inflammation and exacerbates lung damage. Increased TGF-β1 expression due to DEP accompanies the proliferation of the extracellular matrix. In this case, "multifocal ground-glass opacity" (GGO) in a CT scan is an indication of a cytokine storm and severe pneumonia in COVID-19.
Collapse
Affiliation(s)
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
126
|
Torshin IY, Gromova OA, Chuchalin AG, Zhuravlev YI. Chemoreactome screening of pharmaceutical effects on SARS-CoV-2 and human virome to help decide on drug-based COVID-19 therapy. FARMAKOEKONOMIKA. MODERN PHARMACOECONOMIC AND PHARMACOEPIDEMIOLOGY 2021; 14:191-211. [DOI: 10.17749/2070-4909/farmakoekonomika.2021.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background. So-called rational drug design is suboptimal when it comes to finding effective and safe drug-based treatment for COVID-19. Another approach seems promising: to reprofile the pharmaceuticals registered in the Anatomical, Therapeutic, and Chemical Classifier (ATC).Material and methods. Chemoreactome screening, a method that simulates the results of inhibiting viral growth in a cell culture, models the effects of pharmaceuticals on the human virome, and estimates the adverse effects of medicines, was used to reprofile about 2700 pharmaceuticals from the ATC. The information technology behind chemoreactome analysis is based on the topological recognition theory advanced by the Institute of Pharmaceutical Informatics, Federal Research Center for Informatics and Control, Russian Academy of Sciences.Results. Sixty two pharmaceuticals and 20 micronutrients were found to have a pronounced antiviral effect with minimal side effects. Comparison against data of basic research and clinical trials showed 31 out of 62 pharmaceuticals to have been independently confirmed usable in COVID-19 treatment. These inhibit coronaviral proteins and/or function as adaptogenic molecules that improve the functioning of cells exposed to viral stress. Glucosamine sulfate was found to have the best safety profile and minimum effects on the healthy human virome out of all the tested anticoronaviral micronutrients.Conclusions. Reprofiling of pharmaceuticals registered in the ATC could significantly speed up the search for more effective and safer drugbased COVID-19 treatments. Several micronutrients show promise for long-term coronavirus prevention, especially in the elderly.
Collapse
Affiliation(s)
- I. Yu. Torshin
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Big Data Storage and Analysis Center, Lomonosov Moscow State University
| | - O. A. Gromova
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Big Data Storage and Analysis Center, Lomonosov Moscow State University
| | | | - Yu. I. Zhuravlev
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences
| |
Collapse
|
127
|
Huang YK, Li YJ, Li B, Wang P, Wang QH. Dysregulated liver function in SARS-CoV-2 infection: Current understanding and perspectives. World J Gastroenterol 2021; 27:4358-4370. [PMID: 34366609 PMCID: PMC8316914 DOI: 10.3748/wjg.v27.i27.4358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/15/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since it was first reported in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread rapidly around the world to cause the ongoing pandemic. Although the clinical manifestations of SARS-CoV-2 infection are predominantly in the respiratory system, liver enzyme abnormalities exist in around half of the cases, which indicate liver injury, and raise clinical concern. At present, there is no consensus whether the liver injury is directly caused by viral replication in the liver tissue or indirectly by the systemic inflammatory response. This review aims to summarize the clinical manifestations and to explore the underlying mechanisms of liver dysfunction in patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yi-Ke Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan Province, China
| | - Yu-Jia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan Province, China
- Joint laboratory on Transfusion-transmitted Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Bin Li
- Joint laboratory on Transfusion-transmitted Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Pan Wang
- Department of Emergency, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu 611130, Sichuan Province, China
| | - Qing-Hua Wang
- Department of Emergency, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu 611130, Sichuan Province, China
| |
Collapse
|
128
|
Ramos E, López-Muñoz F, Gil-Martín E, Egea J, Álvarez-Merz I, Painuli S, Semwal P, Martins N, Hernández-Guijo JM, Romero A. The Coronavirus Disease 2019 (COVID-19): Key Emphasis on Melatonin Safety and Therapeutic Efficacy. Antioxidants (Basel) 2021; 10:1152. [PMID: 34356384 PMCID: PMC8301107 DOI: 10.3390/antiox10071152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections constitute a tectonic convulsion in the normophysiology of the hosts. The current coronavirus disease 2019 (COVID-19) pandemic is not an exception, and therefore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, like any other invading microbe, enacts a generalized immune response once the virus contacts the body. Melatonin is a systemic dealer that does not overlook any homeostasis disturbance, which consequently brings into play its cooperative triad, antioxidant, anti-inflammatory, and immune-stimulant backbone, to stop the infective cycle of SARS-CoV-2 or any other endogenous or exogenous threat. In COVID-19, the corporal propagation of SARS-CoV-2 involves an exacerbated oxidative activity and therefore the overproduction of great amounts of reactive oxygen and nitrogen species (RONS). The endorsement of melatonin as a possible protective agent against the current pandemic is indirectly supported by its widely demonstrated beneficial role in preclinical and clinical studies of other respiratory diseases. In addition, focusing the therapeutic action on strengthening the host protection responses in critical phases of the infective cycle makes it likely that multi-tasking melatonin will provide multi-protection, maintaining its efficacy against the virus variants that are already emerging and will emerge as long as SARS-CoV-2 continues to circulate among us.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain;
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
- Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal
- Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Emilio Gil-Martín
- Nutrition, Food & Plant Science Group NF1, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain;
| | - Javier Egea
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand 248007, India
| | - Natália Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
129
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Is RAS the Link Between COVID-19 and Increased Stress in Head and Neck Cancer Patients? Front Cell Dev Biol 2021; 9:714999. [PMID: 34336866 PMCID: PMC8320172 DOI: 10.3389/fcell.2021.714999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023] Open
Abstract
The COVID-19 pandemic emerged as a largely unexplained outbreak of pneumonia cases, in Wuhan City, China and rapidly spread across the world. By 11th March 2020, WHO declared it as a global pandemic. The resulting restrictions, to contain its spread, demanded a momentous change in the lifestyle of the general population as well as cancer patients. This augmented negative effects on the mental health of patients with head and neck cancer (HNC), who already battle with the stress of cancer diagnosis and treatment. The causative agent of COVID-19, SARS-CoV2, gains entry through the Angiotensin converting enzyme 2 (ACE2) receptor, which is a component of the Renin Angiotensin System (RAS). RAS has been shown to influence cancer and stress such that it can have progressive and suppressive effects on both. This review provides an overview of SARS-CoV2, looks at how the RAS provides a mechanistic link between stress, cancer and COVID-19 and the probable activation of the RAS axis that increase stress (anxiogenic) and tumor progression (tumorigenic), when ACE2 is hijacked by SARS-CoV2. The mental health crises brought about by this pandemic have been highlighted in many studies. The emerging links between cancer and stress make it more important than ever before to assess the stress burden of cancer patients and expand the strategies for its management.
Collapse
Affiliation(s)
| | | | | | | | - Ian Ellis
- Unit of Cell and Molecular Biology, The Dental School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
130
|
Sfera A, Osorio C, Maguire G, Rahman L, Afzaal J, Cummings M, Maldonado JC. COVID-19, ferrosenescence and neurodegeneration, a mini-review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110230. [PMID: 33373681 PMCID: PMC7832711 DOI: 10.1016/j.pnpbp.2020.110230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Exacerbation of cognitive, motor and nonmotor symptoms have been described in critically ill COVID-19 patients, indicating that, like prior pandemics, neurodegenerative sequelae may mark the aftermath of this viral infection. Moreover, SARS-CoV-2, the causative agent of COVID-19 disease, was associated with hyperferritinemia and unfavorable prognosis in older individuals, suggesting virus-induced ferrosenescence. We have previously defined ferrosenescence as an iron-associated disruption of both the human genome and its repair mechanisms, leading to premature cellular senescence and neurodegeneration. As viruses replicate more efficiently in iron-rich senescent cells, they may have developed the ability to induce this phenotype in host tissues, predisposing to both immune dysfunction and neurodegenerative disorders. In this mini-review, we summarize what is known about the SARS-CoV-2-induced cellular senescence and iron dysmetabolism. We also take a closer look at immunotherapy with natural killer cells, angiotensin II receptor blockers ("sartans"), iron chelators and dipeptidyl peptidase 4 inhibitors ("gliptins") as adjunct treatments for both COVID-19 and its neurodegenerative complications.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, California, United States of America.
| | | | - Gerald Maguire
- University of California, Riverside, United States of America
| | - Leah Rahman
- Patton State Hospital, California, United States of America
| | - Jafri Afzaal
- Patton State Hospital, California, United States of America
| | | | | |
Collapse
|
131
|
Bhandari R, Khanna G, Kaushik D, Kuhad A. Divulging the Intricacies of Crosstalk Between NF-Kb and Nrf2-Keap1 Pathway in Neurological Complications of COVID-19. Mol Neurobiol 2021; 58:3347-3361. [PMID: 33683626 PMCID: PMC7938034 DOI: 10.1007/s12035-021-02344-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 01/06/2023]
Abstract
The severity of COVID-19 infection is surging day by day. With the cases increasing daily, it is becoming more and more essential to understand the pathogenic mechanisms underlying the severity of the disease. It is now well known that the infection manifests itself primarily as respiratory, but the involvement of the other organ systems has now been documented in many studies. SARS-CoV-2 can invade the nervous system by a multitude of proposed mechanisms that have been discussed in this review. NF-κB and Nrf2 are transcription factors that regulate genes responsible for inflammatory and anti-oxidant response respectively. Specific focus in this review has been given to NF-κB and Nrf2 pathways that are involved in the cytokine storm and oxidative stress that are the hallmarks of COVID-19. As the immune injury is an important mechanism of neuro-invasion and neuroinflammation, there is the possible involvement of these two pathways in the neurological complications. The crosstalk mechanisms of these signaling pathways have also been discussed. Immuno-modulators both synthetic and natural are promising candidates in catering to the pathologies targeted in the aforementioned pathways.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| | - Garima Khanna
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Dhriti Kaushik
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
132
|
Vianello A, Del Turco S, Babboni S, Silvestrini B, Ragusa R, Caselli C, Melani L, Fanucci L, Basta G. The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity? Biomedicines 2021; 9:710. [PMID: 34201505 PMCID: PMC8301470 DOI: 10.3390/biomedicines9070710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The interaction between the membrane spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the transmembrane angiotensin-converting enzyme 2 (ACE2) receptor of the human epithelial host cell is the first step of infection, which has a critical role for viral pathogenesis of the current coronavirus disease-2019 (COVID-19) pandemic. Following the binding between S1 subunit and ACE2 receptor, different serine proteases, including TMPRSS2 and furin, trigger and participate in the fusion of the viral envelope with the host cell membrane. On the basis of the high virulence and pathogenicity of SARS-CoV-2, other receptors have been found involved for viral binding and invasiveness of host cells. This review comprehensively discusses the mechanisms underlying the binding of SARS-CoV2 to ACE2 and putative alternative receptors, and the role of potential co-receptors and proteases in the early stages of SARS-CoV-2 infection. Given the short therapeutic time window within which to act to avoid the devastating evolution of the disease, we focused on potential therapeutic treatments-selected mainly among repurposing drugs-able to counteract the invasive front of proteases and mild inflammatory conditions, in order to prevent severe infection. Using existing approved drugs has the advantage of rapidly proceeding to clinical trials, low cost and, consequently, immediate and worldwide availability.
Collapse
Affiliation(s)
- Annamaria Vianello
- Department of Information Engineering, Telemedicine Section, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.F.)
| | - Serena Del Turco
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Serena Babboni
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Beatrice Silvestrini
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, 56122 Pisa, Italy;
| | - Rosetta Ragusa
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Chiara Caselli
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Luca Melani
- Department of Territorial Medicine, ASL Toscana Nord-Ovest, 56121 Pisa, Italy;
| | - Luca Fanucci
- Department of Information Engineering, Telemedicine Section, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.F.)
| | - Giuseppina Basta
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| |
Collapse
|
133
|
Sena K, Furue K, Setoguchi F, Noguchi K. Altered expression of SARS-CoV-2 entry and processing genes by Porphyromonas gingivalis-derived lipopolysaccharide, inflammatory cytokines and prostaglandin E 2 in human gingival fibroblasts. Arch Oral Biol 2021; 129:105201. [PMID: 34174588 PMCID: PMC8215882 DOI: 10.1016/j.archoralbio.2021.105201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Objective The aim of this in vitro study was to investigate the expression of SARS-CoV-2 entry and processing genes in human gingival fibroblasts (HGnF) following treatment with Porphyromonas gingivalis-derived lipopolysaccharide (PgLPS) or inflammatory cytokines/mediators. Design We assessed the expression of SARS-CoV-2 entry and processing genes; angiotensin-converting enzyme 2 (ACE2), cellular serine proteases transmembrane serine protease 2 (TMPRSS2), Furin, and basigin (BSG) in HGnF by real-time PCR. To further asses the contribution of PgLPS and inflammatory cytokines/mediators to proliferation and SARS-CoV-2 entry and processing gene expression, HGnF were treated with PgLPS, IL1β, TNFα, and PGE2. Results The expression for ACE2 in HGnF was significantly elevated after PgLPS or IL1β, TNFα, PGE2 treatment. The expression of TMPRSS2 was increased by PgLPS, IL1β, or PGE2 while BSG was elevated by PgLPS and IL1β. The expression of BSG and FURIN decreased after TNFα treatment. Conclusion SARS-CoV-2 entry and processing genes are expressed in human gingival fibroblasts and their expressions are altered by PgLPS, IL1β, TNFα and PGE2 treatment.
Collapse
Affiliation(s)
- Kotaro Sena
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Kirara Furue
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Fumiaki Setoguchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Kazuyuki Noguchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
134
|
Mariappan V, Manoharan PS, R P, Shanmugam L, Rao SR, Pillai AB. Potential biomarkers for the early prediction of SARS-COV-2 disease outcome. Microb Pathog 2021; 158:105057. [PMID: 34153419 PMCID: PMC8215377 DOI: 10.1016/j.micpath.2021.105057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
The current pandemic due to the fast spreading of SARS-CoV-2 infection has caused severe impairment in health, social, economic, scientific, and medical sectors across the globe. Owing to the not so well understood mechanism of disease pathogenesis in terms of variations in immune responses, there remains obscure why some of the patients who are infected by the novel SARS-CoV-2 develop an unpredictable clinical course that rapidly causes severe and deadly complications/manifestations. Currently, several assays are available for the confirmation of SARS-CoV-2 infection at the point of care. However, none of these assays can predict the severity of the COVID-19 disease. Thus, the identification of a prognostic biomarker that forecasts the condition of SARS-CoV-2 patients to develop a severe form of the disease could enable the clinicians for more efficient patient triage and treatment. In this regard, the present review describes the role of selected biomolecules that are crucially involved in the immune-pathogenesis of SARS-CoV-2 infection such as hyper-immune responsiveness, bradykinin storm and vascular leakage assuming these may serve as an effective prognostic biomarker in COVID-19 to understand the outcome of the disease. Based on the review, we also propose the development of a cost-effective SERS-based prognostic biosensor for the detection and quantification of biomolecules for use as a point-of-care system during a disease outbreak.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - P S Manoharan
- Indira Gandhi Institute of Dental Science (IGIDS), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Pajanivel R
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Lokesh Shanmugam
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - S R Rao
- Vice-President (Research, Innovation & Development), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| |
Collapse
|
135
|
Giamarellos-Bourboulis EJ, Daikos GL, Gargalianos P, Gogos C, Lazanas M, Panagopoulos P, Poulakou G, Sambatakou H, Samarkos M. The Role of Macrolides for the Management of Community-Acquired Pneumonia and Pneumonia by the Novel Coronavirus SARS-CoV-2 (COVID-19): A Position Paper by Four Medical Societies from Greece. Infect Dis Ther 2021; 10:1-15. [PMID: 34155472 PMCID: PMC8208612 DOI: 10.1007/s40121-021-00471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/26/2021] [Indexed: 10/28/2022] Open
Abstract
In light of the accumulating evidence for survival benefit coming from the use of macrolides for community-acquired pneumonia (CAP), a group of experts from the field of internal medicine and infectious diseases frame a position statement on the use of macrolides for the management of bacterial CAP and for infection by the novel coronavirus (COVID-19). The statement is framed taking into consideration existing publications and own research experience. The main content of this statement is that the combination of one β-lactam and a macrolide should be the first treatment of choice for patients with severe bacterial CAP. Severity is assessed as scoring 2 or more points on the CURB65 scoring system of severity or as pneumonia severity index III to V or C-reactive protein more than 150 mg/l; the suggested macrolide is either azithromycin or clarithromycin. The experts also suggest that in COVID-19 pneumonia, the combination of one β-lactam and a macrolide should be reserved only when there is strong suspicion of bacterial co-infection.
Collapse
Affiliation(s)
| | - George L. Daikos
- 1st Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Charalambos Gogos
- Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Marios Lazanas
- Department of Internal Medicine, Iaso General Athens Hospital, Athens, Greece
| | - Periklis Panagopoulos
- 2nd Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Garyphallia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Sambatakou
- 2nd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Samarkos
- 1st Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
136
|
SARS-CoV-2 and Plasmodium falciparum are probably adopting Analogous strategy to invade erythrocytes. J Infect Public Health 2021; 14:883-885. [PMID: 34118739 PMCID: PMC8189613 DOI: 10.1016/j.jiph.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
|
137
|
Khodajou-Masouleh H, Shahangian SS, Rasti B. Reinforcing our defense or weakening the enemy? A comparative overview of defensive and offensive strategies developed to confront COVID-19. Drug Metab Rev 2021; 53:508-541. [PMID: 33980089 DOI: 10.1080/03602532.2021.1928686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Developing effective strategies to confront coronavirus disease 2019 (COVID-19) has become one of the greatest concerns of the scientific community. In addition to the vast number of global mortalities due to COVID-19, since its outbreak, almost every aspect of human lives has changed one way or another. In the present review, various defensive and offensive strategies developed to confront COVID-19 are illustrated. The Administration of immune-boosting micronutrients/agents, as well as the inhibition of the activity of incompetent gatekeepers, including some host cell receptors (e.g. ACE2) and proteases (e.g. TMPRSS2), are some efficient defensive strategies. Antibody/phage therapies and specifically vaccines also play a prominent role in the enhancement of host defense against COVID-19. Nanotechnology, however, can considerably weaken the virulence of SARS-CoV-2, utilizing fake cellular locks (compounds mimicking cell receptors) to block the viral keys (spike proteins). Generally, two strategies are developed to interfere with the binding of spike proteins to the host cell receptors, either utilizing fake cellular locks to block the viral keys or utilizing fake viral keys to block the cellular locks. Due to their evolutionary conserved nature, viral enzymes, including 3CLpro, PLpro, RdRp, and helicase are highly potential targets for drug repurposing strategy. Thus, various steps of viral replication/transcription can effectively be blocked by their inhibition, leading to the elimination of SARS-CoV-2. Moreover, RNA decoy and CRISPR technologies likely offer the best offensive strategies after viral entry into the host cells, inhibiting the viral replication/assembly in the infected cells and substantially reducing the quantity of viral progeny.
Collapse
Affiliation(s)
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|
138
|
Hanan N, Doud RL, Park IW, Jones HP, Mathew SO. The Many Faces of Innate Immunity in SARS-CoV-2 Infection. Vaccines (Basel) 2021; 9:vaccines9060596. [PMID: 34199761 PMCID: PMC8228170 DOI: 10.3390/vaccines9060596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
The innate immune system is important for initial antiviral response. SARS-CoV-2 can result in overactivity or suppression of the innate immune system. A dysregulated immune response is associated with poor outcomes; with patients having significant Neutrophil-to-Lymphocyte ratios (NLR) due to neutrophilia alongside lymphopenia. Elevated interleukin (IL)-6 and IL-8 leads to overactivity and is a prominent feature of severe COVID-19 patients. IL-6 can result in lymphopenia; where COVID-19 patients typically have significantly altered lymphocyte subsets. IL-8 attracts neutrophils; which may play a significant role in lung tissue damage with the formation of neutrophil extracellular traps leading to cytokine storm or acute respiratory distress syndrome. Several factors like pre-existing co-morbidities, genetic risks, viral pathogenicity, and therapeutic efficacy act as important modifiers of SARS-CoV-2 risks for disease through an interplay with innate host inflammatory responses. In this review, we discuss the role of the innate immune system at play with other important modifiers in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicholas Hanan
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
| | - Ronnie L. Doud
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
| | - In-Woo Park
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Harlan P. Jones
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Stephen O. Mathew
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-5407
| |
Collapse
|
139
|
Ratajczak MZ. How to "Detronize" Virus in Crown - Questions to Current Stem Cell Therapies. Stem Cell Rev Rep 2021; 16:425-426. [PMID: 32318958 PMCID: PMC7171434 DOI: 10.1007/s12015-020-09978-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
140
|
Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids 2021; 53:813-842. [PMID: 33950300 PMCID: PMC8097256 DOI: 10.1007/s00726-021-02991-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19). The World Health Organization (WHO) has announced that COVID-19 is a pandemic having a higher spread rate rather than the mortality. Identification of a potential approach or therapy against COVID-19 is still under consideration. Therefore, it is essential to have an insight into SARS-CoV-2, its interacting partner, and domains for an effective treatment. The present study is divided into three main categories, including SARS-CoV-2 prominent receptor and its expression levels, other interacting partners, and their binding domains. The first section focuses primarily on coronaviruses' general aspects (SARS-CoV-2, SARS-CoV, and the Middle East Respiratory Syndrome Coronaviruses (MERS-CoV)) their structures, similarities, and mode of infections. The second section discusses the host receptors which includes the human targets of coronaviruses like dipeptidyl peptidase 4 (DPP4), CD147, CD209L, Angiotensin-Converting Enzyme 2 (ACE2), and other miscellaneous targets (type-II transmembrane serine proteases (TTSPs), furin, trypsin, cathepsins, thermolysin, elastase, phosphatidylinositol 3-phosphate 5-kinase, two-pore segment channel, and epithelium sodium channel C-α subunit). The human cell receptor, ACE2 plays an essential role in the Renin-Angiotensin system (RAS) pathway and COVID-19. Thus, this section also discusses the ACE2 expression and risk of COVID-19 infectivity in various organs and tissues such as the liver, lungs, intestine, heart, and reproductive system in the human body. Absence of ACE2 protein expression in immune cells could be used for limiting the SARS-CoV-2 infection. The third section covers the current available approaches for COVID-19 treatment. Overall, this review focuses on the critical role of human cell receptors involved in coronavirus pathogenesis, which would likely be used in designing target-specific drugs to combat COVID-19.
Collapse
Affiliation(s)
| | - Keerthana Kalyanaraman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Dinesh Kumar
- ICMR-National Institute of Cancer Prevention & Research, Noida, 201301, India.
| |
Collapse
|
141
|
Bayat M, Asemani Y, Mohammadi MR, Sanaei M, Namvarpour M, Eftekhari R. An overview of some potential immunotherapeutic options against COVID-19. Int Immunopharmacol 2021; 95:107516. [PMID: 33765610 PMCID: PMC7908848 DOI: 10.1016/j.intimp.2021.107516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
After the advent of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) in the late 2019, the resulting severe and pernicious syndrome (COVID-19) immediately was deployed all around the world. To date, despite relentless efforts to control the disease by drug repurposing, there is no approved specific therapy for COVID-19. Given the role of innate and acquired immune components in the control and elimination of viral infections and inflammatory mutilations during SARS-CoV2 pathogenesis, immunotherapeutic strategies appear to be beneficent. Passive immunotherapies such as convalescent plasma, which has received much attention especially in severe cases, as well as suppressing inflammatory cytokines, interferon administration, inhibition of kinases and complement cascade, virus neutralization with key engineered products, cell-based therapies, immunomodulators and anti-inflammatory drugs are among the key immunotherapeutic approaches to deal with COVID-19, which is discussed in this review. Also, details of leading COVID-19 vaccine candidates as the most potent immunotherapy have been provided. However, despite salient improvements, there is still a lack of completely assured vaccines for universal application. Therefore, adopting proper immunotherapies according to the cytokine pattern and involved immune responses, alongside engineered biologics specially ACE2-Fc to curb SARS-CoV2 infection until achieving a tailored vaccine is probably the best strategy to better manage this pandemic. Therefore, gaining knowledge about the mechanism of action, potential targets, as well as the effectiveness of immune-based approaches to confront COVID-19 in the form of a well-ordered review study is highly momentous.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sanaei
- Department of Environmental, Polymer and Organic Chemistry, School of Chemistry, Damghan University, Damghan, Iran
| | - Mozhdeh Namvarpour
- Department of Immunology, Shahid Sadoughi University of Medical Science and services, Yazd, Iran
| | - Reyhaneh Eftekhari
- Department of Microbiology, Faculty of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
142
|
Mathew A, Vignesh Balaji E, Pai SRK, Kishore A, Pai V, Chandrashekar KS. ABO phenotype and SARS-CoV-2 infection: Is there any correlation? INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 90:104751. [PMID: 33540085 PMCID: PMC8035048 DOI: 10.1016/j.meegid.2021.104751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/17/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 is the currently evolving viral disease worldwide. It mainly targets the respiratory organs, tissues and causes illness. A plethora of studies has been performing to bring proper treatment and prevent people from the infection. Likewise, susceptibility to some infectious diseases has been associated with blood group phenotypes. The co-relationship of blood group with the occurrence of SARS-CoV-2 infection and death has been examined in numerous studies. This review explained the described studies regarding the correlation of blood group and the other essential factors with COVID-19.
Collapse
Affiliation(s)
- Anna Mathew
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vasudev Pai
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K S Chandrashekar
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
143
|
Gomez Marti JL, Brufsky AM. Considerations of the effects of commonly investigated drugs for COVID-19 in the cholesterol synthesis pathway. Expert Opin Pharmacother 2021; 22:947-952. [PMID: 33703986 PMCID: PMC7967711 DOI: 10.1080/14656566.2021.1897104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Juan Luis Gomez Marti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adam M. Brufsky
- UPMC Hillman Cancer Center Magee Women’s Hospital Suite 4628,Pittsburgh, PAUSA
| |
Collapse
|
144
|
Antony P, Vijayan R. Role of SARS-CoV-2 and ACE2 variations in COVID-19. Biomed J 2021; 44:235-244. [PMID: 34193390 PMCID: PMC8059258 DOI: 10.1016/j.bj.2021.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the worst medical emergencies that has hit the world in almost a century. The virus has now spread to a large number of countries/territories and has caused over three million deaths. Evidently, the virus has been mutating and adapting during this period. Significant effort has been spent on identifying these variations and their impact on transmission, virulence and pathogenicity of SARS-CoV-2. Binding of the SARS-CoV-2 spike protein to the angiotensin converting enzyme 2 (ACE2) promotes cellular entry. Therefore, human ACE2 variations could also influence susceptibility or resistance to the virus. A deeper understanding of the evolution and genetic variations in SARS-CoV-2 as well as ACE2 could contribute to the development of effective treatment and preventive measures. Here, we review the literature on SARS-CoV-2 and ACE2 variations and their role in COVID-19.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
145
|
Role of host factors in SARS-CoV-2 entry. J Biol Chem 2021; 297:100847. [PMID: 34058196 PMCID: PMC8160279 DOI: 10.1016/j.jbc.2021.100847] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The zoonotic transmission of highly pathogenic coronaviruses into the human population is a pressing concern highlighted by the ongoing SARS-CoV-2 pandemic. Recent work has helped to illuminate much about the mechanisms of SARS-CoV-2 entry into the cell, which determines host- and tissue-specific tropism, pathogenicity, and zoonotic transmission. Here we discuss current findings on the factors governing SARS-CoV-2 entry. We first reviewed key features of the viral spike protein (S) mediating fusion of the viral envelope and host cell membrane through binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2. We then examined the roles of host proteases including transmembrane protease serine 2 and cathepsins in processing S for virus entry and the impact of this processing on endosomal and plasma membrane virus entry routes. We further discussed recent work on several host cofactors that enhance SARS-CoV-2 entry including Neuropilin-1, CD147, phosphatidylserine receptors, heparan sulfate proteoglycans, sialic acids, and C-type lectins. Finally, we discussed two key host restriction factors, i.e., interferon-induced transmembrane proteins and lymphocyte antigen 6 complex locus E, which can disrupt SARS-CoV-2 entry. The features of SARS-CoV-2 are presented in the context of other human coronaviruses, highlighting unique aspects. In addition, we identify the gaps in understanding of SARS-CoV-2 entry that will need to be addressed by future studies.
Collapse
|
146
|
Khezri MR, Zolbanin NM, Ghasemnejad-Berenji M, Jafari R. Azithromycin: Immunomodulatory and antiviral properties for SARS-CoV-2 infection. Eur J Pharmacol 2021; 905:174191. [PMID: 34015317 PMCID: PMC8127529 DOI: 10.1016/j.ejphar.2021.174191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Azithromycin, a member of the macrolide family of antibiotics, is commonly used to treat respiratory bacterial infections. Nevertheless, multiple pharmacological effects of the drug have been revealed in several investigations. Conceivably, the immunomodulatory properties of azithromycin are among its critical features, leading to its application in treating inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Additionally, azithromycin may directly inhibit viral load as well as its replication, or it could demonstrate indirect inhibitory impacts that might be associated with the expression of antiviral genes. Currently, coronavirus disease 2019 (COVID-19) is an extra urgent issue affecting the entire world, and it is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute respiratory distress syndrome (ARDS), which is associated with hyper inflammation due to cytokine release, is among the leading causes of death in COVID-19 patients with critical conditions. The present paper aims to review the immunomodulatory and antiviral properties of azithromycin as well as its potential clinical applications in the management of COVID-19 patients.
Collapse
Affiliation(s)
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
147
|
Fakhri S, Nouri Z, Moradi SZ, Akkol EK, Piri S, Sobarzo-Sánchez E, Farzaei MH, Echeverría J. Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates. Molecules 2021; 26:2917. [PMID: 34068970 PMCID: PMC8156180 DOI: 10.3390/molecules26102917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey;
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
148
|
Chekol Abebe E, Mengie Ayele T, Tilahun Muche Z, Asmamaw Dejenie T. Neuropilin 1: A Novel Entry Factor for SARS-CoV-2 Infection and a Potential Therapeutic Target. Biologics 2021; 15:143-152. [PMID: 33986591 PMCID: PMC8110213 DOI: 10.2147/btt.s307352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic is severely challenging the healthcare systems and economies of the world, which urgently demand vaccine and therapy development to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, advancing our understanding of the comprehensive entry mechanisms of SARS-CoV-2, especially the host factors that facilitate viral infection, is crucial for the discovery of effective vaccines and antiviral drugs. SARS-CoV-2 has previously been documented to reach cells by binding with ACE2 and CD147 receptors in host cells that interact with the spike (S) protein of SARS-CoV-2. A novel entry factor, called neuropilin 1(NRP1), has recently been discovered as a co-receptor facilitating the entry of SARS-CoV-2. NRP1 is a single-pass transmembrane glycoprotein widely distributed throughout the tissues of the body and acts as a multifunctional co-receptor to bind with different ligand proteins and play diverse physiological roles as well as pathological and therapeutic roles in different clinical conditions/diseases, including COVID-19. The current review, therefore, briefly provides the overview of SARS-CoV-2 entry mechanisms, the structure of NRP1, and their roles in health and various diseases, as well as extensively discusses the current understanding of the potential implication of NRP1 in SARS-CoV-2 entry and COVID-19 treatment.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
149
|
Yim J, Lim HH, Kwon Y. COVID-19 and pulmonary fibrosis: therapeutics in clinical trials, repurposing, and potential development. Arch Pharm Res 2021; 44:499-513. [PMID: 34047940 PMCID: PMC8161353 DOI: 10.1007/s12272-021-01331-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
In 2019, an unprecedented disease named coronavirus disease 2019 (COVID-19) emerged and spread across the globe. Although the rapid transmission of COVID-19 has resulted in thousands of deaths and severe lung damage, conclusive treatment is not available. However, three COVID-19 vaccines have been authorized, and two more will be approved soon, according to a World Health Organization report on December 12, 2020. Many COVID-19 patients show symptoms of acute lung injury that eventually leads to pulmonary fibrosis. Our aim in this article is to present the relationship between pulmonary fibrosis and COVID-19, with a focus on angiotensin converting enzyme-2. We also evaluate the radiological imaging methods computed tomography (CT) and chest X-ray (CXR) for visualization of patient lung condition. Moreover, we review possible therapeutics for COVID-19 using four categories: treatments related and unrelated to lung disease and treatments that have and have not entered clinical trials. Although many treatments have started clinical trials, they have some drawbacks, such as short-term and small-group testing, that need to be addressed as soon as possible.
Collapse
Affiliation(s)
- Joowon Yim
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea
| | - Hee Hyun Lim
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea.
| |
Collapse
|
150
|
Jia W, Wang J, Sun B, Zhou J, Shi Y, Zhou Z. The Mechanisms and Animal Models of SARS-CoV-2 Infection. Front Cell Dev Biol 2021; 9:578825. [PMID: 33987176 PMCID: PMC8111004 DOI: 10.3389/fcell.2021.578825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has aroused great public health concern worldwide. Currently, COVID-19 epidemic is spreading in many countries and regions around the world. However, the study of SARS-CoV-2 is still in its infancy, and there is no specific therapeutics. Here, we summarize the genomic characteristics of SARS-CoV-2. In addition, we focus on the mechanisms of SARS-CoV-2 infection, including the roles of angiotensin converting enzyme II (ACE2) in cell entry, COVID-19 susceptibility and COVID-19 symptoms, as well as immunopathology such as antibody responses, lymphocyte dysregulation, and cytokine storm. Finally, we introduce the research progress of animal models of COVID-19, aiming at a better understanding of the pathogenesis of COVID-19 and providing new ideas for the treatment of this contagious disease.
Collapse
Affiliation(s)
- Wenrui Jia
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiecan Zhou
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yamin Shi
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|