101
|
Acute Acalculous Cholecystitis Associated with Epstein-Barr Infection: A Case Report and Review of the Literature. Case Rep Med 2020; 2020:9029601. [PMID: 32047519 PMCID: PMC7003250 DOI: 10.1155/2020/9029601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The most common cause of acute cholecystitis (ACC) is cholelithiasis. Acute acalculous cholecystitis (AAC) is well documented in the literature related with critical illness, but viral causes such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV) have also been reported. We present a rare manifestation of EBV infection, reporting a case of a 15-year-old female suffering from acute acalulous cholecystitis, and we review the relevant literature. Clinicians should be aware of this rare complication of EBV infection and properly exclude it in young patients with cholecystitis.
Collapse
|
102
|
Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J Cancer 2020; 11:1737-1750. [PMID: 32194785 PMCID: PMC7052849 DOI: 10.7150/jca.37282] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Epstein Barr virus (EBV) is a cosmopolitan oncogenic virus, infecting about 90% of the world's population and it is associated to tumors originating from both epithelia and hematopoietic cells. Transmission of the virus is mainly through oral secretions; however, transmission through organ transplantation and blood transfusion has been reported. In order to evade immune recognition, EBV establishes latent infection in B lymphocytes where it expresses limited sets of proteins called EBV transcription programs (ETPs), including six nuclear antigens (EBNAs), three latent membrane proteins (LMP), and untranslated RNA called EBV encoded RNA (EBER), shown to efficiently transform B cells into lymphoblastic cells. These programs undergo different patterns of expression which determine the occurrence of distinct types of latency in the pathogenesis of a particular tumor. Hematopoietic cell derived tumors include but not limited to Burkitt's lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and natural killer (NK)/T cell lymphoma. EBV undergoes lytic infection in epithelia cells for amplification of the viral particle for transmission where it expresses lytic stage genes. However, for reasons yet to be unveiled, EBV switches from the expression of lytic stage genes to the expression of ETPs in epithelia cells. The expression of the ETPs lead to the transformation of epithelia cells into permanently proliferating cells, resulting in epithelia cell derived malignancies such as nasopharyngeal cancer, gastric cancer, and breast cancer. In this review, we have summarized the current updates on EBV associated epithelial and B cell-derived malignancies, and the role of EBV latency gene products in the pathogenesis of the cancers, and have suggested areas for future studies when considering therapeutic measures.
Collapse
Affiliation(s)
- Richmond Ayee
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| | | | - Edward Wright
- Department of Biochemistry, University of Sussex, Brighton, U.K
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
103
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
104
|
Feng Y, Wang Y, Zhang S, Haneef K, Liu W. Structural and immunogenomic insights into B-cell receptor activation. J Genet Genomics 2020; 47:27-35. [PMID: 32111437 DOI: 10.1016/j.jgg.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/10/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
B cells express B-cell receptors (BCRs) which recognize antigen to trigger signaling cascades for B-cell activation and subsequent antibody production. BCR activation has a crucial influence on B-cell fate. How BCR is activated upon encountering antigen remains to be solved, although tremendous progresses have been achieved in the past few years. Here, we summarize the models that have been proposed to explain BCR activation, including the cross-linking model, the conformation-induced oligomerization model, the dissociation activation model, and the conformational change model. Especially, we elucidate the partially resolved structures of antibodies and/or BCRs by far and discusse how these current structural and further immunogenomic messages and more importantly the future studies may shed light on the explanation of BCR activation and the relevant diseases in the case of dysregulation.
Collapse
Affiliation(s)
- Yangyang Feng
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shaocun Zhang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Kabeer Haneef
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
105
|
Montes-Mojarro IA, Kim WY, Fend F, Quintanilla-Martinez L. Epstein - Barr virus positive T and NK-cell lymphoproliferations: Morphological features and differential diagnosis. Semin Diagn Pathol 2019; 37:32-46. [PMID: 31889602 DOI: 10.1053/j.semdp.2019.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spectrum of Epstein-Barr virus (EBV)-positive T and NK-cell lymphoproliferations is broad and ranges from reactive self-limited disorders to neoplastic processes with a fulminant clinical course. EBV plays an important role promoting lymphomagenesis, although the precise mechanisms remain elusive. EBV-positive lymphoproliferative disorders (LPD) are more common in East Asia (China, Japan, Korea and Taiwan), and Latin America suggesting a strong genetic predisposition. The revised 2016 World Health Organization (WHO) lymphoma classification recognizes the following malignant NK- and T-cell lymphomas; extranodal NK/T-cell lymphoma, nasal type (ENKTCL), aggressive NK-cell leukemia (ANKL), and the provisional entity within the group of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) "primary EBV-positive nodal T or NK cell lymphoma". Disorders presenting mainly in children and young adults include chronic active EBV infection (CAEBV) - systemic and cutaneous forms - which are not considered malignant disorders but were included in the WHO classification for the first time because of the differential diagnosis with other T- or NK-cell lymphomas. CAEBV, cutaneous form, includes hydroa vacciniforme-like LPD (HV-LPD) and severe mosquito bite allergy (SMBA). Finally, systemic EBV-positive T-cell lymphoma of childhood was recognized as lymphoma because of its fulminant clinical course. Given the shared pathogenesis of these disorders, overlapping features are common demanding a close clinical, morphological and molecular correlation for an accurate diagnosis. This review summarizes the clinical, histopathological and molecular features of EBV-associated T and NK-cell LPD, highlighting the main features that might aid in the differential diagnosis.
Collapse
Affiliation(s)
- Ivonne A Montes-Mojarro
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Wook Youn Kim
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany; Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany.
| |
Collapse
|
106
|
Helicobacter pylori and Epstein-Barr Virus Infection in Gastric Diseases: Correlation with IL-10 and IL1RN Polymorphism. JOURNAL OF ONCOLOGY 2019; 2019:1785132. [PMID: 31885568 PMCID: PMC6918935 DOI: 10.1155/2019/1785132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/10/2019] [Accepted: 08/18/2019] [Indexed: 02/06/2023]
Abstract
Introduction Helicobacter pylori and Epstein–Barr virus (EBV) infection have recently been shown to be associated with gastric diseases. Polymorphisms in genes encoding cytokines such as interleukin 10 (IL-10) and interleukin 1 Receptor (IL-1RN) influence cytokine secretion levels and appear to contribute to the risk of developing gastroduodenal diseases. To our knowledge, this is the first preliminary study to address the association of coinfection with H. pylori and EBV and their correlation with genetic predisposition in the development of gastric diseases. Methods Gastric biopsy samples of 96 patients with different gastric diseases were used. Results Our results showed that the rate of coinfection was higher in patients with gastric cancer than in patients with normal gastric mucosa, active chronic gastritis, and MALT lymphoma. As regards the characterization of H. pilory strains, the polymorphism s1m1i1 of vacA gene was more frequent in patients with MALT Lymphoma in comparison to others, while the polymorphism s2m2i2 was most frequent in patients with normal gastric mucosa. In addition, patients who tested positive for the cagA gene were more frequently those affected with gastric cancer than those with inactive chronic gastritis. Similarly, the patients with oipA gene ON were more frequently those with gastric cancer than those with inactive chronic gastritis. Conclusion According to our analysis, there was no correlation between coinfection and polymorphisms in genes encoding IL-10 and IL-1RN. We conclude that various factors can be involved in the development of gastric diseases.
Collapse
|
107
|
Sepúlveda N, Carneiro J, Lacerda E, Nacul L. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome as a Hyper-Regulated Immune System Driven by an Interplay Between Regulatory T Cells and Chronic Human Herpesvirus Infections. Front Immunol 2019; 10:2684. [PMID: 31824487 PMCID: PMC6883905 DOI: 10.3389/fimmu.2019.02684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and chronic viral infections are recurrent clinical observations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a complex disease with an unknown cause. Given these observations, the regulatory CD4+ T cells (Tregs) show promise to be good candidates for the underlying pathology due to their capacity to suppress the immune responses against both self and microbial antigens. Here, we discussed the overlooked role of these cells in the chronicity of Human Herpes Virus 6 (HHV6), Herpes Simplex 1 (HSV1), and Epstein–Barr virus (EBV), as often reported as triggers of ME/CFS. Using simulations of the cross-regulation model for the dynamics of Tregs, we illustrated that mild infections might lead to a chronically activated immune responses under control of Tregs if the responding clone has a high autoimmune potential. Such infections promote persistent inflammation and possibly fatigue. We then hypothesized that ME/CFS is a condition characterized by a predominance of this type of infections under control of Tregs. In contrast, healthy individuals are hypothesized to trigger immune responses of a virus-specific clone with a low autoimmune potential. According to this hypothesis, simple model simulations of the CD4+ T-cell repertoire could reproduce the increased density and percentages of Tregs observed in patients suffering from the disease, when compared to healthy controls. A deeper analysis of Tregs in the pathogenesis of ME/CFS will help to assess the validity of this hypothesis.
Collapse
Affiliation(s)
- Nuno Sepúlveda
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Centre of Statistics and Its Applications, University of Lisbon, Lisbon, Portugal
| | - Jorge Carneiro
- Quantitative Organism Biology Group, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Eliana Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
108
|
Gallo A, Miele M, Badami E, Conaldi PG. Molecular and cellular interplay in virus-induced tumors in solid organ recipients. Cell Immunol 2019. [DOI: 10.1016/j.cellimm.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
109
|
Pembrey L, Waiblinger D, Griffiths P, Wright J. Age at cytomegalovirus, Epstein Barr virus and varicella zoster virus infection and risk of atopy: The Born in Bradford cohort, UK. Pediatr Allergy Immunol 2019; 30:604-613. [PMID: 31188509 PMCID: PMC6771608 DOI: 10.1111/pai.13093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The prevalence of allergic diseases has increased in recent decades, but the causes remain unclear. Changes in the epidemiology of childhood infections could have contributed, but the current evidence is inconclusive. This study aims to investigate whether age at cytomegalovirus (CMV), Epstein-Barr virus (EBV) or varicella zoster virus (VZV) infection is associated with the development of atopy. METHODS A total of 2559 children were enrolled in the Born in Bradford Allergy and Infection Study. Serum samples collected at 12 and 24 months were tested for CMV-IgG, EBV-IgG and VZV-IgG for 1000 children to establish age at infection. Skin prick testing (SPT) was conducted at age 4 years. RESULTS Serology and SPT results were available for 740 children. Of these, 135 (18%) were atopic. In girls, there was a strong association of CMV infection in the second year with increased odds of atopy (adjusted OR 4.38, 95% CI 1.87-10.29) but this was not observed in boys. Age at EBV or VZV infection was not associated with risk of atopy in unadjusted analysis, but there was effect modification by sex; girls infected with VZV in the second year of life had increased odds of atopy (adjusted OR 2.85, 95% CI 1.29-6.30). CONCLUSIONS Our results highlight potential sex-specific effects of age at CMV infection and age at VZV infection on risk of atopy, which provide insight into the mechanisms involved in the development of atopy.
Collapse
Affiliation(s)
- Lucy Pembrey
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Paul Griffiths
- Centre for Virology, University College London Medical School, London, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford, UK
| |
Collapse
|
110
|
Abstract
Viral infection is a major contributor to the global cancer burden. Recent advances have revealed that seven known oncogenic viruses promote tumorigenesis through shared host cell targets and pathways. A comprehensive understanding of the principles of viral oncogenesis may enable the identification of unknown infectious aetiologies of cancer and the development of therapeutic or preventive strategies for virus-associated cancers. In this Review, we discuss the molecular mechanisms of viral oncogenesis in humans. We highlight recent advances in understanding how viral manipulation of host cellular signalling, DNA damage responses, immunity and microRNA targets promotes the initiation and development of cancer.
Collapse
Affiliation(s)
- Nathan A Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
111
|
Twist CJ, Hiniker SM, Gratzinger D, Gutkin PM, Merriott DJ, Iagaru A, Link MP, Donaldson SS. Treatment and outcomes in classic Hodgkin lymphoma post-transplant lymphoproliferative disorder in children. Pediatr Blood Cancer 2019; 66:e27803. [PMID: 31062898 DOI: 10.1002/pbc.27803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
Classic Hodgkin lymphoma post-transplant lymphoproliferative disorder (HL-PTLD) has been rarely reported in children, with limited data available to guide treatment decisions. We report a retrospective review of five children diagnosed with classic HL-PTLD following solid organ transplant between 2007 and 2013 at Stanford University. Patients were treated with Stanford V chemotherapy and involved field radiation therapy. With a median follow-up of 7.2 years (range, 4.7-10.5 years) since diagnosis, all patients remain in remission from HL-PTLD and free from graft failure. In this series, combined modality therapy with risk-adapted chemotherapy and radiation therapy was a successful strategy for the treatment of classic HL-PTLD.
Collapse
Affiliation(s)
- Clare J Twist
- Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, New York
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Paulina M Gutkin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - David J Merriott
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Andrei Iagaru
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Michael P Link
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Sarah S Donaldson
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
112
|
High incidence of hematologic malignancy relapse after allogeneic transplantation in patients with low Epstein-Barr virus–specific T-cell counts. Cytotherapy 2019; 21:886-894. [DOI: 10.1016/j.jcyt.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 11/19/2022]
|
113
|
Mechanisms of B-Cell Oncogenesis Induced by Epstein-Barr Virus. J Virol 2019; 93:JVI.00238-19. [PMID: 30971472 PMCID: PMC6580952 DOI: 10.1128/jvi.00238-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus which asymptomatically infects the majority of the world population. Under immunocompromised conditions, EBV can trigger human cancers of epithelial and lymphoid origin. The oncogenic potential of EBV is demonstrated by in vitro infection and transformation of quiescent B cells into lymphoblastoid cell lines (LCLs). These cell lines, along with primary infection using genetically engineered viral particles coupled with recent technological advancements, have elucidated the underlying mechanisms of EBV-induced B-cell lymphomagenesis.
Collapse
|
114
|
Song H, Lim Y, Im H, Bae JM, Kang GH, Ahn J, Baek D, Kim TY, Yoon SS, Koh Y. Interpretation of EBV infection in pan-cancer genome considering viral life cycle: LiEB (Life cycle of Epstein-Barr virus). Sci Rep 2019; 9:3465. [PMID: 30837539 PMCID: PMC6401378 DOI: 10.1038/s41598-019-39706-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
We report a novel transcriptomic analysis workflow called LiEB (Life cycle of Epstein-Barr virus) to characterize distributions of oncogenic virus, Epstein-Barr virus (EBV) infection in human tumors. We analyzed 851 The Cancer Genome Atlas whole-transcriptome sequencing (WTS) data to investigate EBV infection by life cycle information using three-step LiEB workflow: 1) characterize virus infection generally; 2) align transcriptome sequences against a hybrid human-EBV genome, and 3) quantify EBV gene expression. Our results agreed with EBV infection status of public cell line data. Analysis in stomach adenocarcinoma identified EBV-positive cases involving PIK3CA mutations and/or CDKN2A silencing with biologically more determination, compared to previous reports. In this study, we found that a small number of colorectal adenocarcinoma cases involved with EBV lytic gene expression. Expression of EBV lytic genes was also observed in 3% of external colon cancer cohort upon WTS analysis. Gene set enrichment analysis showed elevated expression of genes related to E2F targeting and interferon-gamma responses in EBV-associated tumors. Finally, we suggest that interpretation of EBV life cycle is essential when analyzing its infection in tumors, and LiEB provides high capability of detecting EBV-positive tumors. Observation of EBV lytic gene expression in a subset of colon cancers warrants further research.
Collapse
Affiliation(s)
- Hyojin Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoojoo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hogune Im
- Genome Opinion, Ansan, Gyeonggi-do, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhak Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Youngil Koh
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
115
|
Dong M, Chen JN, Huang JT, Gong LP, Shao CK. The roles of EBV-encoded microRNAs in EBV-associated tumors. Crit Rev Oncol Hematol 2019; 135:30-38. [PMID: 30819444 DOI: 10.1016/j.critrevonc.2019.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is believed to be a pathogen causing a number of human cancers, but the pathogenic mechanisms remain unclear. An increasing number of studies have indicated that EBV-encoded microRNAs (EBV miRNAs) are expressed in a latency type- and tumor type-dependent manner, playing important roles in the development and progression of EBV-associated tumors. By targeting one or more genes of the virus and the host, EBV miRNAs are responsible for the deregulation of a variety of viral and host cell biological processes, including viral replication, latency maintenance, immune evasion, cell apoptosis and metabolism, and tumor proliferation and metastasis. In addition, some EBV miRNAs can be used as excellent diagnostic, prognostic and treatment efficacy predictive biomarkers for EBV-associated tumors. More importantly, EBV miRNA-targeting therapeutics have emerged and have been developing rapidly, which may open a new era in the treatment of EBV-associated tumors in the near future.
Collapse
Affiliation(s)
- Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
116
|
Tarlinton RE, Khaibullin T, Granatov E, Martynova E, Rizvanov A, Khaiboullina S. The Interaction between Viral and Environmental Risk Factors in the Pathogenesis of Multiple Sclerosis. Int J Mol Sci 2019; 20:ijms20020303. [PMID: 30646507 PMCID: PMC6359439 DOI: 10.3390/ijms20020303] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease of unknown ethology targeting the central nervous system (CNS). MS has a polysymptomatic onset and is usually first diagnosed between the ages of 20–40 years. The pathology of the disease is characterized by immune mediated demyelination in the CNS. Although there is no clinical finding unique to MS, characteristic symptoms include sensory symptoms visual and motor impairment. No definitive trigger for the development of MS has been identified but large-scale population studies have described several epidemiological risk factors for the disease. This list is a confusing one including latitude, vitamin D (vitD) levels, genetics, infection with Epstein Barr Virus (EBV) and endogenous retrovirus (ERV) reactivation. This review will look at the evidence for each of these and the potential links between these disparate risk factors and the known molecular disease pathogenesis to describe potential hypotheses for the triggering of MS pathology.
Collapse
Affiliation(s)
| | - Timur Khaibullin
- Republican Clinical Neurological Center, Republic of Tatarstan, Kazan 420021, Russia.
| | - Evgenii Granatov
- Republican Clinical Neurological Center, Republic of Tatarstan, Kazan 420021, Russia.
| | - Ekaterina Martynova
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
| | - Albert Rizvanov
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
| | - Svetlana Khaiboullina
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
117
|
Macaca arctoides gammaherpesvirus 1 (strain herpesvirus Macaca arctoides): virus sequence, phylogeny and characterisation of virus-transformed macaque and rabbit cell lines. Med Microbiol Immunol 2018; 208:109-129. [PMID: 30291474 DOI: 10.1007/s00430-018-0565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Herpesvirus Macaca arctoides (HVMA) has the propensity to transform macaque lymphocytes to lymphoblastoid cells (MAL-1). Inoculation of rabbits with cell-free virus-containing supernatant resulted in the development of malignant lymphomas and allowed isolation of immortalised HVMA-transformed rabbit lymphocytes (HTRL). In this study, the HVMA genome sequence (approx. 167 kbp), its organisation, and novel aspects of virus latency are presented. Ninety-one open reading frames were identified, of which 86 were non-repetitive. HVMA was identified as a Lymphocryptovirus closely related to Epstein-Barr virus, suggesting the designation as 'Macaca arctoides gammaherpesvirus 1' (MarcGHV-1). In situ lysis gel and Southern blot hybridisation experiments revealed that the MAL-1 cell line contains episomal and linear DNA, whereas episomal DNA is predominantly present in HTRL. Integration of viral DNA into macaque and rabbit host cell genomes was demonstrated by fluorescence in situ hybridisation on chromosomal preparations. Analysis of next-generation sequencing data confirmed this finding. Approximately 400 read pairs represent the overlap between macaque and MarcGHV-1 DNA. Both, MAL-1 cells and HTRL show characteristics of a polyclonal tumour with B- and T-lymphocyte markers. Based on analysis of viral gene expression and immunohistochemistry, the persistence of MarcGHV-1 in MAL-1 cells resemble the latency type III, whereas the expression pattern observed in HTRL was more comparable with latency type II. There was no evidence of the presence of STLV-1 proviral DNA in MAL-1 and HTRL. Due to the similarity to EBV-mediated cell transformation, MarcGHV-1 expands the available in vitro models by simian and rabbit cell lines.
Collapse
|
118
|
Hernández DM, Valderrama S, Gualtero S, Hernández C, López M, Herrera MV, Solano J, Fiorentino S, Quijano S. Loss of T-Cell Multifunctionality and TCR-Vβ Repertoire Against Epstein-Barr Virus Is Associated With Worse Prognosis and Clinical Parameters in HIV + Patients. Front Immunol 2018; 9:2291. [PMID: 30337929 PMCID: PMC6180205 DOI: 10.3389/fimmu.2018.02291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of aggressive and poor-prognosis B-cell lymphomas in patients infected with human immunodeficiency virus (HIV+ patients). The most important risk factors for these malignancies include immune dysfunction, chronic immune activation, and loss of T-cell receptor (TCR) repertoire. The combination of all these factors can favor the reactivation of EBV, malignant cell transformation, and clinical progression toward B-cell lymphomas. The overarching aim of this study was to evaluate the frequency, phenotype, functionality, and distribution of TCR clonotypes for EBV-specific T-cell subpopulations in HIV+ patients at different clinical stages and for HIV+ patients with B-cell lymphoma, as well as to establish their association with clinical variables of prognostic value. Factors were studied in 56 HIV+ patients at different clinical stages and in six HIV+ subjects with diagnosed B-cell lymphoma. We found a significant decrease in all subpopulations of EBV-specific CD4+ T cells from HIV+ patients at stage 3 and with B-cell lymphoma. EBV-specific effector CD8+ T cells, particularly effector memory cells, were also reduced in HIV+ patients with B-cell lymphoma. Interestingly, these cells were unable to produce IFN-γ and lacked multifunctionality in HIV+ patients. The TCR-Vβ repertoire, which is key for protection against EBV in healthy individuals, was less diverse in HIV+ patients due to a lower frequency of TCR-Vβ2+, Vβ4+, Vβ7.1+, Vβ9+, Vβ13.6+, Vβ14+, Vβ17+, Vβ22+ CD4+, Vβ14+, and Vβ17+ CD8+ T cells. HIV+ patients with positive plasma EBV loads (EBV+HIV+) had a noteworthy decrease in the levels of both TNF-α+ and multifunctional TNF-α+/IL-2+ and TNF-α+/IFN-γ+ CD8+ T cells. Altogether, our findings demonstrate that HIV+ patients have significant alterations in the immune response to EBV (poor-quality immunity) that can favor viral reactivation, escalating the risk for developing EBV-associated B-cell lymphomas.
Collapse
Affiliation(s)
- Diana M Hernández
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sandra Valderrama
- Grupo de Investigación en Enfermedades Infecciosas, Hospital Universitario San Ignacio, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sandra Gualtero
- Grupo de Investigación en Enfermedades Infecciosas, Hospital Universitario San Ignacio, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Catalina Hernández
- Grupo de Investigación en Enfermedades Infecciosas, Hospital Universitario San Ignacio, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Marcos López
- Grupo de Investigación Biomédica Traslacional, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | | | - Julio Solano
- Servicio de Hematología Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
119
|
Laryngeal Epstein-Barr Virus-Associated Smooth Muscle Tumor in an Undernourished Child. Head Neck Pathol 2018; 13:722-726. [PMID: 30120720 PMCID: PMC6854134 DOI: 10.1007/s12105-018-0960-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
Smooth muscle tumors associated with Epstein-Barr virus infections (EBV-SMT) of laryngeal origin are exceedingly rare and have been reported in few adult patients, but not in children. This reported case describes a lesion found in the larynx of an 8-year-old Guatemalan undernourished girl. Microscopically, the lesion showed a highly cellular mesenchymal spindle cell tumor, containing frequent lymphocytes. The immunohistochemical analysis revealed positivity for α-smooth muscle actin and h-caldesmon. In addition, most of the tumor cells were positive for EBV by in situ hybridization. To the best of the author's knowledge, this is the first literature-reported case of laryngeal EBV-SMT occurring in an undernourished child.
Collapse
|
120
|
El-Sharkawy A, Al Zaidan L, Malki A. Epstein-Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Front Oncol 2018; 8:265. [PMID: 30116721 PMCID: PMC6082928 DOI: 10.3389/fonc.2018.00265] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Epstein–Barr virus (EBV) is the first herpesvirus identified to be associated with human cancers known to infect the majority of the world population. EBV-associated malignancies are associated with a latent form of infection, and several of the EBV-encoded latent proteins are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins (LMPs). In lymphoid and epithelial tumors, viral latent gene expressions have distinct pattern. In both primary and metastatic tumors, the constant expression of latent membrane protein 2A (LMP2A) at the RNA level suggests that this protein is the key player in the EBV-associated tumorigenesis. While LMP2A contributing to the malignant transformation possibly by cooperating with the aberrant host genome. This can be done in part by dysregulating signaling pathways at multiple points, notably in the cell cycle and apoptotic pathways. Recent studies also have confirmed that LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of these proteins on activation of multiple signaling pathways. This review article aims to investigate the aforementioned EBV-encoded proteins that reveal established roles in tumor formation, with a greater emphasis on the oncogenic LMPs (LMP1 and LMP2A) and their roles in dysregulating signaling pathways. It also aims to provide a quick look on the six members of the EBV nuclear antigens and their roles in dysregulating apoptosis.
Collapse
Affiliation(s)
- Ahmed El-Sharkawy
- Human Molecular Genetics Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB)-CNR, Naples, Italy.,Biomolecular Science Programme, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lobna Al Zaidan
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ahmed Malki
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
121
|
Kodati S, Gangaputra S, Sen HN. Multimodal Imaging of Post-Infectious Unilateral Outer Retinopathy and Choroiditis. Ocul Immunol Inflamm 2018; 27:927-931. [DOI: 10.1080/09273948.2018.1485954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shilpa Kodati
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sapna Gangaputra
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - H. Nida Sen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
122
|
Immune Ecosystem of Virus-Infected Host Tissues. Int J Mol Sci 2018; 19:ijms19051379. [PMID: 29734779 PMCID: PMC5983771 DOI: 10.3390/ijms19051379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.
Collapse
|
123
|
Kozireva S, Rudevica Z, Baryshev M, Leonciks A, Kashuba E, Kholodnyuk I. Upregulation of the Chemokine Receptor CCR2B in Epstein‒Barr Virus-Positive Burkitt Lymphoma Cell Lines with the Latency III Program. Viruses 2018; 10:v10050239. [PMID: 29751565 PMCID: PMC5977232 DOI: 10.3390/v10050239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/19/2022] Open
Abstract
CCR2 is the cognate receptor to the chemokine CCL2. CCR2–CCL2 signaling mediates cancer progression and metastasis dissemination. However, the role of CCR2–CCL2 signaling in pathogenesis of B-cell malignancies is not clear. Previously, we showed that CCR2B was upregulated in ex vivo peripheral blood B cells upon Epstein‒Barr virus (EBV) infection and in established lymphoblastoid cell lines with the EBV latency III program. EBV latency III is associated with B-cell lymphomas in immunosuppressed patients. The majority of EBV-positive Burkitt lymphoma (BL) tumors are characterized by latency I, but the BL cell lines drift towards latency III during in vitro culture. In this study, the CCR2A and CCR2B expression was assessed in the isogenic EBV-positive BL cell lines with latency I and III using RT-PCR, immunoblotting, and immunostaining analyses. We found that CCR2B is upregulated in the EBV-positive BL cells with latency III. Consequently, we detected the migration of latency III cells toward CCL2. Notably, the G190A mutation, corresponding to SNP CCR2-V64I, was found in one latency III cell line with a reduced migratory response to CCL2. The upregulation of CCR2B may contribute to the enhanced migration of malignant B cells into CCL2-rich compartments.
Collapse
Affiliation(s)
- Svetlana Kozireva
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| | - Zhanna Rudevica
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str k-1, 1067 Riga, Latvia.
| | - Mikhail Baryshev
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| | - Ainars Leonciks
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str k-1, 1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobelsväg, Box 280, 171 77 Stockholm, Sweden.
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NASU, 45 Vasylkivska str, 03022 Kyiv, Ukraine.
| | - Irina Kholodnyuk
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| |
Collapse
|
124
|
The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel) 2018; 10:cancers10030083. [PMID: 29558443 PMCID: PMC5876658 DOI: 10.3390/cancers10030083] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.
Collapse
|
125
|
Mills EA, Mao-Draayer Y. Understanding Progressive Multifocal Leukoencephalopathy Risk in Multiple Sclerosis Patients Treated with Immunomodulatory Therapies: A Bird's Eye View. Front Immunol 2018; 9:138. [PMID: 29456537 PMCID: PMC5801425 DOI: 10.3389/fimmu.2018.00138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The increased use of newer potent immunomodulatory therapies for multiple sclerosis (MS), including natalizumab, fingolimod, and dimethyl fumarate, has expanded the patient population at risk for developing progressive multifocal leukoencephalopathy (PML). These MS therapies shift the profile of lymphocytes within the central nervous system (CNS) leading to increased anti-inflammatory subsets and decreased immunosurveillance. Similar to MS, PML is a demyelinating disease of the CNS, but it is caused by the JC virus. The manifestation of PML requires the presence of an active, genetically rearranged form of the JC virus within CNS glial cells, coupled with the loss of appropriate JC virus-specific immune responses. The reliability of metrics used to predict risk for PML could be improved if all three components, i.e., viral genetic strain, localization, and host immune function, were taken into account. Advances in our understanding of the critical lymphocyte subpopulation changes induced by these MS therapies and ability to detect viral mutation and reactivation will facilitate efforts to develop these metrics.
Collapse
Affiliation(s)
- Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
126
|
Hoeger B, Serwas NK, Boztug K. Human NF-κB1 Haploinsufficiency and Epstein-Barr Virus-Induced Disease-Molecular Mechanisms and Consequences. Front Immunol 2018; 8:1978. [PMID: 29403474 PMCID: PMC5778108 DOI: 10.3389/fimmu.2017.01978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 01/11/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein–Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease.
Collapse
Affiliation(s)
- Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Kathrin Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
127
|
Carpier JM, Lucas CL. Epstein-Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS) Immunodeficiency. Front Immunol 2018; 8:2005. [PMID: 29387064 PMCID: PMC5776011 DOI: 10.3389/fimmu.2017.02005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022] Open
Abstract
Activated PI3Kδ Syndrome (APDS) is an inherited immune disorder caused by heterozygous, gain-of-function mutations in the genes encoding the phosphoinositide 3-kinase delta (PI3Kδ) subunits p110δ or p85δ. This recently described primary immunodeficiency disease (PID) is characterized by recurrent sinopulmonary infections, lymphoproliferation, and susceptibility to herpesviruses, with Epstein–Barr virus (EBV) infection being most notable. A broad range of PIDs having disparate, molecularly defined genetic etiology can cause susceptibility to EBV, lymphoproliferative disease, and lymphoma. Historically, PID patients with loss-of-function mutations causing defective cell-mediated cytotoxicity or antigen receptor signaling were found to be highly susceptible to pathological EBV infection. By contrast, the gain of function in PI3K signaling observed in APDS patients paradoxically renders these patients susceptible to EBV, though the underlying mechanisms are incompletely understood. At a cellular level, APDS patients exhibit deranged B lymphocyte development and defects in class switch recombination, which generally lead to defective immunoglobulin production. Moreover, APDS patients also demonstrate an abnormal skewing of T cells toward terminal effectors with short telomeres and senescence markers. Here, we review APDS with a particular focus on how the altered lymphocyte biology in these patients may confer EBV susceptibility.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, United States
| | - Carrie L Lucas
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
128
|
Yang CS, Hsieh MH, Su HI, Kuo YS. Multiple Evanescent White Dot Syndrome Following Acute Epstein-Barr Virus Infection. Ocul Immunol Inflamm 2017; 27:244-250. [DOI: 10.1080/09273948.2017.1371763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chang-Sue Yang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, National Yang-Ming University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hung Hsieh
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huan-I Su
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yih-Shiuan Kuo
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
129
|
Neves M, Marinho-Dias J, Ribeiro J, Sousa H. Epstein-Barr virus strains and variations: Geographic or disease-specific variants? J Med Virol 2016; 89:373-387. [PMID: 27430663 DOI: 10.1002/jmv.24633] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 12/24/2022]
Abstract
The Epstein-Barr Virus (EBV) is associated with the development of several diseases, including infectious mononucleosis (IM), Burkitt's Lymphoma (BL), Nasopharyngeal Carcinoma, and other neoplasias. The publication of EBV genome 1984 led to several studies regarding the identification of different viral strains. Currently, EBV is divided into EBV type 1 (B95-8 strain) and EBV type 2 (AG876 strain), also known as type A and type B, which have been distinguished based upon genetic differences in the Epstein-Barr nuclear antigens (EBNAs) sequence. Several other EBV strains have been described in the past 10 years considering variations on EBV genome, and many have attempted to clarify if these variations are ethnic or geographically correlated, or if they are disease related. Indeed, there is an increasing interest to describe possible specific disease associations, with emphasis on different malignancies. These studies aim to clarify if these variations are ethnic or geographically correlated, or if they are disease related, thus being important to characterize the epidemiologic genetic distribution of EBV strains on our population. Here, we review the current knowledge on the different EBV strains and variants and its association with different diseases. J. Med. Virol. 89:373-387, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco Neves
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Porto, Portugal.,Faculty of Medicine of University of Porto (FMUP), Porto, Portugal
| | - Joana Marinho-Dias
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences of University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Porto, Portugal.,Faculty of Medicine of University of Porto (FMUP), Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal
| |
Collapse
|
130
|
PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model. PLoS Pathog 2016; 12:e1005642. [PMID: 27186886 PMCID: PMC4871349 DOI: 10.1371/journal.ppat.1005642] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) infection causes B cell lymphomas in humanized mouse models and contributes to a variety of different types of human lymphomas. T cells directed against viral antigens play a critical role in controlling EBV infection, and EBV-positive lymphomas are particularly common in immunocompromised hosts. We previously showed that EBV induces B cell lymphomas with high frequency in a cord blood-humanized mouse model in which EBV-infected human cord blood is injected intraperitoneally into NOD/LtSz-scid/IL2Rγnull (NSG) mice. Since our former studies showed that it is possible for T cells to control the tumors in another NSG mouse model engrafted with both human fetal CD34+ cells and human thymus and liver, here we investigated whether monoclonal antibodies that block the T cell inhibitory receptors, PD-1 and CTLA-4, enhance the ability of cord blood T cells to control the outgrowth of EBV-induced lymphomas in the cord-blood humanized mouse model. We demonstrate that EBV-infected lymphoma cells in this model express both the PD-L1 and PD-L2 inhibitory ligands for the PD-1 receptor, and that T cells express the PD-1 and CTLA-4 receptors. Furthermore, we show that the combination of CTLA-4 and PD-1 blockade strikingly reduces the size of lymphomas induced by a lytic EBV strain (M81) in this model, and that this anti-tumor effect requires T cells. PD-1/CTLA-4 blockade markedly increases EBV-specific T cell responses, and is associated with enhanced tumor infiltration by CD4+ and CD8+ T cells. In addition, PD-1/CTLA-4 blockade decreases the number of both latently, and lytically, EBV-infected B cells. These results indicate that PD-1/CTLA-4 blockade enhances the ability of cord blood T cells to control outgrowth of EBV-induced lymphomas, and suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-induced diseases in humans. EBV is a human herpesvirus that remains in the host for life, but is normally well controlled by the host immune response. Nevertheless, EBV causes lymphomas in certain individuals, particularly when T cell function is impaired. Antibodies against two different inhibitory receptors on T cells, PD-1 and CTLA-4, have been recently shown to improve T cell cytotoxic function against a subset of non-virally associated tumors. Here we have used an EBV-infected cord blood-humanized mouse model to show that EBV-infected lymphomas express both the PD-L1 and PD-L2 inhibitory ligands for PD-1. Importantly, we find that the combination of PD-1 and CTLA-4 blockade decreases the growth of EBV-induced lymphomas in this model, and demonstrate that this anti-tumor effect requires T cells and enhances their responses to EBV. Our results suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-associated diseases in humans.
Collapse
|
131
|
Analysis of Epstein-Barr virus infection models in a series of pediatric carriers from a developing country. Sci Rep 2016; 6:23303. [PMID: 26988293 PMCID: PMC4796914 DOI: 10.1038/srep23303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/25/2016] [Indexed: 01/04/2023] Open
Abstract
Epstein-Barr virus (EBV) is a B lymphotropic human herpesvirus. Two models, germinal center (GC) and direct infection, describe how EBV infects B-cells. Since in Argentina primary infection is mostly subclinical at young ages, children represent an interesting population where to analyze EBV infection, especially considering that most studies are usually performed in adults. Tonsil biopsies from pediatric carriers were studied to describe infection characteristics. EBV+ lymphocytes at the interfollicular region were mainly observed. Latency III pattern in subepithelial (SubEp) lymphocytes was observed at young ages, probably indicating a recent infection. In older patients EBV was mostly detected in epithelial cells, suggesting that they could have been infected some time ago. This finding was sustained by tonsillar viral load, which was higher in cases with LMP1+SubEp cells vs. LMP1+nonSubEp cells (p = 0.0237, Mann-Whiney test). Latency III was prevalent and related to the GC, while latency II was associated with non-GC (p = 0.0159, χ2 test). EBERs+/IgD+ cells were statistically prevalent over EBERs+/CD27+ cells (p = 0.0021, χ2 test). These findings indicated that both EBV infection models are not mutually exclusive and provide some basis for further understanding of EBV infection dynamics. Moreover, we provide a more accurate explanation of EBV infection in pediatric asymptomatic carriers from a developing country.
Collapse
|
132
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
133
|
Chen JQ, Zilahi E, Papp G, Sipka S, Zeher M. Simultaneously increased expression of microRNA-155 and suppressor of cytokine signaling 1 (SOCS1
) gene in the peripheral blood mononuclear cells of patients with primary Sjögren's syndrome. Int J Rheum Dis 2015; 20:609-613. [DOI: 10.1111/1756-185x.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ji-Qing Chen
- Division of Clinical Immunology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - Erika Zilahi
- Division of Clinical Immunology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - Gábor Papp
- Division of Clinical Immunology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - Sándor Sipka
- Division of Clinical Immunology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - Margit Zeher
- Division of Clinical Immunology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| |
Collapse
|
134
|
Harris-Arnold A, Arnold CP, Schaffert S, Hatton O, Krams SM, Esquivel CO, Martinez OM. Epstein-Barr virus modulates host cell microRNA-194 to promote IL-10 production and B lymphoma cell survival. Am J Transplant 2015; 15:2814-24. [PMID: 26147452 DOI: 10.1111/ajt.13375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/28/2015] [Indexed: 01/25/2023]
Abstract
Epstein-Barr virus (EBV) is a γ-herpesvirus that is linked to the development of posttransplant lymphoproliferative disorder (PTLD) in solid organ recipients. We previously demonstrated that EBV(+) B cell lymphoma cell lines isolated from patients with PTLD produce human IL-10 as an autocrine growth factor. However, little is known regarding IL-10 regulation in B cells. Here we show that EBV infection markedly alters the expression of host B cell microRNA, a class of small noncoding RNA that is an important regulator of transcriptional and posttranscriptional gene expression. Gene arrays reveal unique microRNA profiles in EBV(+) B cell lymphoma lines from patients with PTLD, compared to normal B cells or in vitro generated EBV(+) lymphoblastoid cell lines. We show that microRNA-194 expression is uniquely suppressed in EBV(+) B cell lines from PTLD patients and that the 3'untranslated region of IL-10 is targeted by microRNA-194. Overexpression of microRNA-194 attenuates IL-10 production and increases apoptosis of EBV(+) B cell lymphoma lines. Together, these data indicate that EBV co-opts the host B cell microRNA network and specifically suppresses microRNA-194 to override control of IL-10 expression. Thus, modulation of microRNA-194 may constitute a novel approach to inhibiting proliferation of EBV(+) B cell lymphomas in PTLD.
Collapse
Affiliation(s)
- A Harris-Arnold
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA.,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA
| | - C P Arnold
- Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA
| | - S Schaffert
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA.,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA
| | - O Hatton
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA.,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA
| | - S M Krams
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA.,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA
| | - C O Esquivel
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA
| | - O M Martinez
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA.,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
135
|
Abate F, Ambrosio MR, Mundo L, Laginestra MA, Fuligni F, Rossi M, Zairis S, Gazaneo S, De Falco G, Lazzi S, Bellan C, Rocca BJ, Amato T, Marasco E, Etebari M, Ogwang M, Calbi V, Ndede I, Patel K, Chumba D, Piccaluga PP, Pileri S, Leoncini L, Rabadan R. Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma. PLoS Pathog 2015; 11:e1005158. [PMID: 26468873 PMCID: PMC4607508 DOI: 10.1371/journal.ppat.1005158] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL) is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively.
Collapse
Affiliation(s)
- Francesco Abate
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | | | - Lucia Mundo
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Fabio Fuligni
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maura Rossi
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Sara Gazaneo
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Giulia De Falco
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Bruno Jim Rocca
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Teresa Amato
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | | | | | | | | | | | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Stefano Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
- Unit of Haematopathology, European Institute of Oncology, Milan and Bologna University School of Medicine, Bologna, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Raul Rabadan
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| |
Collapse
|
136
|
Merkenschlager J, Kassiotis G. Narrowing the Gap: Preserving Repertoire Diversity Despite Clonal Selection during the CD4 T Cell Response. Front Immunol 2015; 6:413. [PMID: 26322045 PMCID: PMC4531291 DOI: 10.3389/fimmu.2015.00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/28/2015] [Indexed: 01/14/2023] Open
Abstract
T cell immunity relies on the generation and maintenance of a diverse repertoire of T cell antigen receptors (TCRs). The strength of signaling emanating from the TCR dictates the fate of T cells during development, as well as during the immune response. Whereas development of new T cells in the thymus increases the available TCR repertoire, clonal selection during the immune response narrows TCR diversity through the outgrowth of clonotypes with the fittest TCR. To ensure maintenance of TCR diversity in the antigen-selected repertoire, specific mechanisms can be envisaged that facilitate the participation of T cell clonotypes with less than best fit TCRs. Here, we summarize the evidence for the existence of such mechanisms that can prevent the loss of diversity. A number of T cell-autonomous or extrinsic factors can reverse clonotypic hierarchies set by TCR affinity for given antigen. Although not yet complete, understanding of these factors and their mechanism of action will be critical in interventional attempts to mold the antigen-selected TCR repertoire.
Collapse
Affiliation(s)
| | - George Kassiotis
- Mill Hill Laboratory, The Francis Crick Institute , London , UK ; Department of Medicine, Faculty of Medicine, Imperial College London , London , UK
| |
Collapse
|
137
|
Chen Y, Zhao W, Lin L, Xiao X, Zhou X, Ming H, Huang T, Liao J, Li Y, Zeng X, Huang G, Ye W, Zhang Z. Nasopharyngeal Epstein-Barr Virus Load: An Efficient Supplementary Method for Population-Based Nasopharyngeal Carcinoma Screening. PLoS One 2015; 10:e0132669. [PMID: 26151639 PMCID: PMC4495031 DOI: 10.1371/journal.pone.0132669] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
Serological detection of Epstein-Barr virus (EBV) antibodies is frequently used in nasopharyngeal carcinoma (NPC) mass screening. However, the large number of seropositive subjects who require close follow-up is still a big burden. The present study aimed to detect the nasopharyngeal EBV load in a high-risk population seropositive for antibodies against EBV, as well as to examine whether assay for nasopharyngeal EBV DNA load might reduce the number of high-risk subjects for follow-up and improve early detection of NPC. A prospective and population-based cohort study was conducted in southern China from 2006 through 2013. Among 22,186 participants, 1045 subjects with serum immunoglobulin A (IgA) antibodies against viral capsid antigen (VCA) titers ≥ 1:5 were defined as high-risk group, and were then followed-up for NPC occurrence. Qualified nasopharyngeal swab specimens were available from 905 participants and used for quantitative PCR assay. Our study revealed that 89% (802/905) subjects showed positive EBV DNA in nasopharyngeal swab. The nasopharyngeal EBV load in females was higher than that in males. The nasopharyngeal EBV load increased with increasing serum VCA/IgA titers. Eight cases of newly diagnosed NPC showed an extremely elevated EBV load, and 87.5% (7 of 8 patients) were early-stage NPCs. The EBV loads of 8 NPCs were significantly higher than those of 897 NPC-free subjects (mean, 2.8 × 10(6) copies/swab [range 4.8 × 10(4)-1.1 × 10(8)] vs. 5.6 × 10(3) [range 0-3.8 × 10(6)]). Using mean EBV load in NPC-free population plus two standard deviations as cut-off value, a higher diagnostic performance was obtained for EBV load test than serum VCA/IgA test (area under ROC, 0.980 vs 0.895). In conclusion, in a prospective and population-based study we demonstrated that an additional assay of EBV load in the nasopharynx among high-risk individuals may reduce the number of subjects needed to be closely followed up and could serve as part of a NPC screening program in high-risk populations.
Collapse
Affiliation(s)
- Yufeng Chen
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Department of Epidemiology, School of public health, Guangxi Medical University, Nanning, Guangxi, China
| | - Weilin Zhao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Longde Lin
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Department of Epidemiology, School of public health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoying Zhou
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huixin Ming
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tingting Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Jian Liao
- Cancer Institute of Cangwu County, Wuzhou, Guangxi, China
| | - Yancheng Li
- Cancer Institute of Cangwu County, Wuzhou, Guangxi, China
| | - Xiaoyun Zeng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Department of Epidemiology, School of public health, Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
138
|
Prognostic significance of circulating CD19+ B lymphocytes in EBV-associated nasopharyngeal carcinoma. Med Oncol 2014; 31:198. [DOI: 10.1007/s12032-014-0198-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|