101
|
Parangi T. A Review on Electrochemical and Photochemical Processes for Hydrogen Production. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2021.2013827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tarun Parangi
- Applied Chemistry Department, Faculty of Technology & Engineering, the M. S. University of Baroda, Vadodara, India
| |
Collapse
|
102
|
Yu M, Budiyanto E, Tüysüz H. Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mingquan Yu
- Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Eko Budiyanto
- Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Harun Tüysüz
- Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
103
|
Yu M, Budiyanto E, Tüysüz H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202103824. [PMID: 34138511 PMCID: PMC9291824 DOI: 10.1002/anie.202103824] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/15/2022]
Abstract
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.
Collapse
Affiliation(s)
- Mingquan Yu
- Department of Heterogeneous CatalysisMax-Planck-Institute für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Eko Budiyanto
- Department of Heterogeneous CatalysisMax-Planck-Institute für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Department of Heterogeneous CatalysisMax-Planck-Institute für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
104
|
Tran PKL, Tran DT, Malhotra D, Prabhakaran S, Kim DH, Kim NH, Lee JH. Highly Effective Freshwater and Seawater Electrolysis Enabled by Atomic Rh-Modulated Co-CoO Lateral Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103826. [PMID: 34623752 DOI: 10.1002/smll.202103826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Atomic metal-modulated heterostructures have been evidenced as an exciting solution to develop high-performance multifunctional electrocatalyst toward water splitting. In this research, a catalyst of continuous cobalt-cobalt oxide (Co-CoO) lateral heterostructures implanted with well-dispersed rhodium (Rh) atoms and shelled over conductive porous 1D copper (Cu) nano-supports for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in both freshwater and seawater under alkaline condition is proposed. It is found that synergistic effects coming from uniform Rh atoms at doping level and Co-CoO heterostructures afford rich multi-integrated active sites and excellent charge transfer, thereby effectively promoting both HER and OER activities. The material requires overpotentials of 107.3 and 137.7 mV for HER and 277.7 and 260 mV for OER to reach an output of 10 mA cm-1 in freshwater and mimic seawater, respectively, surpassing earlier reported catalysts. Compared to a benchmark a Pt/C//RuO2 -based two-electrode electrolyzer, a device derived from the 1D-Cu@Co-CoO/Rh on copper foam delivers comparable cell voltages of 1.62, 1.60, and 1.70 V at 10 mA cm-2 in freshwater, mimic seawater, and natural seawater, respectively, together with robust stability. These results evidence that 1D-Cu@Co-CoO/Rh is a promising catalyst for green hydrogen generation via freshwater and seawater electrolysis applications.
Collapse
Affiliation(s)
- Phan Khanh Linh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Deepanshu Malhotra
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Graduate School of Department of Energy Storage/Conversion Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Carbon Composite Research Center, Department of Polymer-Nanoscience and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
105
|
Gajraj V, Azmi R, Indris S, Mariappan CR. Boosting the Multifunctional Properties of MnCo
2
O
4
‐MnCo
2
S
4
Heterostructure for Portable All‐Solid‐State Symmetric Supercapacitor, Methanol Oxidation and Hydrogen Evolution Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202103138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- V. Gajraj
- Department of Physics National Institute of Technology Kurukshetra Haryanay 136 119 India
- Research & Development cell Uttaranchal University Dehradun Uttarakhand 248001 India
| | - R. Azmi
- Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - S. Indris
- Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - C. R. Mariappan
- Department of Physics National Institute of Technology Kurukshetra Haryanay 136 119 India
- Department of Physics National Institute of Technology-Puducherry Karaikal 609609 India
| |
Collapse
|
106
|
Membrane-Based Electrolysis for Hydrogen Production: A Review. MEMBRANES 2021; 11:membranes11110810. [PMID: 34832039 PMCID: PMC8625528 DOI: 10.3390/membranes11110810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review, various types of water splitting technologies, and membrane selection for electrolyzers, are discussed. We highlight the basic principles, recent studies, and achievements in membrane-based electrolysis for hydrogen production. Previously, the Nafion™ membrane was the gold standard for PEM electrolyzers, but today, cheaper and more effective membranes are favored. In this paper, CuCl–HCl electrolysis and its operating parameters are summarized. Additionally, a summary is presented of hydrogen production by water splitting, including a discussion of the advantages, disadvantages, and efficiencies of the relevant technologies. Nonetheless, the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study, especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore, herein we address the challenges, prospects, and future trends in this field of research, and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.
Collapse
|
107
|
Plutnar J, Pumera M. Applications of Atomic Layer Deposition in Design of Systems for Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102088. [PMID: 34365720 DOI: 10.1002/smll.202102088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
There is a huge demand for clean energy conversion in all industries. The clean energy production processes include electrocatalytic and photocatalytic conversion of water to hydrogen, carbon dioxide reduction, nitrogen conversion to ammonia, and oxygen reduction reaction and require novel cheap and efficient photo- and electrocatalysts and their scalable methods of fabrication. Atomic layer deposition is a thin film deposition method that allows to deposit thin layers of catalysts on virtually any surface of any shape, size, and porosity in an even and easy to control manner. Here the state of the art in applications of atomic layer deposition in the clean energy production and the opportunities it represents for the whole field of the photo- and electrocatalysis for a sustainable future are reviewed.
Collapse
Affiliation(s)
- Jan Plutnar
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 61200, Czech Republic
- Department of Chemistry, Mendel University, Zemedelska 1, Brno, 61300, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Korea
| |
Collapse
|
108
|
Sharova AS, Caironi M. Sweet Electronics: Honey-Gated Complementary Organic Transistors and Circuits Operating in Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103183. [PMID: 34418204 PMCID: PMC11468742 DOI: 10.1002/adma.202103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Sustainable harnessing of natural resources is key moving toward a new-generation electronics, which features a unique combination of electronic functionality, low cost, and absence of environmental and health hazards. Within this framework, edible electronics, of which transistors and circuits are a fundamental component, is an emerging field, exploiting edible materials that can be safely ingested, and subsequently digested after performing their function. Dielectrics are a critical functional element of transistors, often constituting their major volume. Yet, to date, there are only scarce examples of electrolytic food-based materials able to provide low-voltage operation of transistors at ambient conditions. In this context, a cost-effective and edible substance, honey, is proposed to be used as an electrolytic gate viscous dielectric in electrolyte-gated organic field-effect transistors (OFETs). Both n- and p-type honey-gated OFETs (HGOFETs) are demonstrated, with distinctive features such as low voltage (<1 V) operation, long-term shelf life and operation stability in air, and compatibility with large-area fabrication processes, such as inkjet printing on edible tattoo-paper. Such complementary devices enable robust honey-based integrated logic circuits, here exemplified by inverting logic gates and ring oscillators. A marked device responsivity to humidity provides promising opportunities for sensing applications, specifically, for moisture control of dried or dehydrated food.
Collapse
Affiliation(s)
- Alina S. Sharova
- Center for Nano Science and Technology @PoliMiIstituto Italiano di TecnologiaVia G. Pascoli, 70/3Milano20133Italy
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci, 32Milano20133Italy
| | - Mario Caironi
- Center for Nano Science and Technology @PoliMiIstituto Italiano di TecnologiaVia G. Pascoli, 70/3Milano20133Italy
| |
Collapse
|
109
|
Chang HQ, Zhang GH, Chou KC. Synthesis of Mo2C/MoC and Mo2C/MoC/MoP heterostructures supported on N-doped carbon as electrocatalyst for high-efficient hydrogen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
110
|
Akbayrak M, Önal AM. Metal oxides supported cobalt nanoparticles: Active electrocatalysts for oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
111
|
Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. NANOSCALE 2021; 13:12788-12817. [PMID: 34477767 DOI: 10.1039/d1nr02592a] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a clean energy carrier, hydrogen has priority in decarbonization to build sustainable and carbon-neutral economies due to its high energy density and no pollutant emission upon combustion. Electrochemical water splitting driven by renewable electricity to produce green hydrogen with high-purity has been considered to be a promising technology. Unfortunately, the reaction of water electrolysis always requires a large excess potential, let alone the large-scale application (e.g., >500 mA cm-2 needs a cell voltage range of 1.8-2.4 V). Thus, developing cost-effective and robust transition metal electrocatalysts working at high current density is imperative and urgent for industrial electrocatalytic water splitting. In this review, the strategies and requirements for the design of self-supported electrocatalysts are summarized and discussed. Subsequently, the fundamental mechanisms of water electrolysis (OER or HER) are analyzed, and the required important evaluation parameters, relevant testing conditions and potential conversion in exploring electrocatalysts working at high current density are also introduced. Specifically, recent progress in the engineering of self-supported transition metal-based electrocatalysts for either HER or OER, as well as overall water splitting (OWS), including oxides, hydroxides, phosphides, sulfides, nitrides and alloys applied in the alkaline electrolyte at large current density condition is highlighted in detail, focusing on current advances in the nanostructure design, controllable fabrication and mechanistic understanding for enhancing the electrocatalytic performance. Finally, remaining challenges and outlooks for constructing self-supported transition metal electrocatalysts working at large current density are proposed. It is expected to give guidance and inspiration to rationally design and prepare these electrocatalysts for practical applications, and thus further promote the practical production of hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
112
|
Tuo Y, Liu W, Chen C, Lu Q, Zhou Y, Zhang J. Constructing RuCoO x /NC Nanosheets with Low Crystallinity within ZIF-9 as Bifunctional Catalysts for Highly Efficient Overall Water Splitting. Chem Asian J 2021; 16:2511-2519. [PMID: 34255429 DOI: 10.1002/asia.202100629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Electrocatalysts play a pivotal role in accelerating the sluggish electrochemical water splitting reaction. Herein, a Ru-Co oxides and carbon nitrides hybrid (RuCoOx /NC) electrocatalyst was constructed by employing ZIF-9 to disperse Ru precursor and deliberately regulating the calcination temperature. The moderate calcination temperature results in the RuCoOx nanocomposites with small particle size and low crystallinity as well as the co-existence of multi-valence metal compounds, thus boosting the amount and species of active sites. Moreover, the strong interactions between Co and Ru species induce the electron transfer from Co to Ru, thus enhancing the adsorption of anion intermediates on the electron-deficient Co species and the proton capturing capacity of electron-sufficient Ru species. As a result, the optimized RuCoOx /NC-350 catalyst behaved good electrocatalytic activities with 73 and 210 mV overpotential to achieve 10 mA cm-2 for HER and OER, respectively. Remarkably, it showed good durability by holding at 100 mA cm-2 for 100 h in HER and 50 mA cm-2 for 24 h in OER with small activity decline. This study may shed new light on the rational construction of highly efficient Ru-based catalysts for electrochemical water splitting.
Collapse
Affiliation(s)
- Yongxiao Tuo
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Wanli Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Chen Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Qing Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China.,State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
113
|
Abstract
Molybdenum disulfide (MoS2) is a promising transition metal dichalcogenide (TMD) that has exceptional electronic, magnetic, optical, and mechanical properties. It can be semiconducting, superconducting, or an insulator according to its polymorph. Its bandgap structure changes from indirect to direct when moving towards its nanostructures, which opens a door to bandgap engineering for MoS2. Its supercapacitive and catalytic activity was recently noticed and studied, in order to include this material in a wide range of energy applications. In this work, we present MoS2 as a future material for energy storage and generation applications, especially solar cells, which are a cornerstone for a clean and abundant source of energy. Its role in water splitting reactions can be utilized for energy generation (hydrogen evolution) and water treatment at the same time. Although MoS2 seems to be a breakthrough in the energy field, it still faces some challenges regarding its structure stability, production scalability, and manufacturing costs.
Collapse
|
114
|
Tuo Y, Lu Q, Chen C, Liu T, Pan Y, Zhou Y, Zhang J. The facile synthesis of core-shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Adv 2021; 11:26326-26335. [PMID: 35479446 PMCID: PMC9037382 DOI: 10.1039/d1ra04001d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022] Open
Abstract
Pt is the most efficient electrocatalyst for the hydrogen evolution reaction (HER); however, it is a high cost material with scarce resources. In order to balance performance and cost in a Pt-based electrocatalyst, we prepared a series of PtCu bimetallic nanoparticles (NPs) with different Pt/Cu ratios through a facile synthetic strategy to optimize the utilization of Pt atoms. PtCu NPs demonstrate a uniform particle size distribution with exposed (111) facets that are highly active for the HER. A synergetic effect between Pt and Cu leads to electron transfer from Pt to Cu, which is favorable for the desorption of H intermediates. Therefore, the as-synthesized carbon black (CB) supported PtCu catalysts showed enhanced catalytic performance in the HER compared with a commercial Pt/C electrocatalyst. Typically, Pt1Cu3/CB showed excellent HER performance, with only 10 mV (acid) and 17 mV (alkaline) overpotentials required to achieve a current density of 10 mA cm-2. This is because the Pt1Cu3 NPs, with a small average particle size (7.70 ± 0.04 nm) and Pt-Cu core and Pt-rich shell structure, display the highest electrochemically active surface area (24.7 m2 gPt -1) out of the as-synthesized PtCu/CB samples. Furthermore, Pt1Cu3/CB showed good electrocatalytic stability, with current density drops of only 9.3% and 12.8% in acidic solution after 24 h and in alkaline solution after 9 h, respectively. This study may shed new light on the rational design of active and durable hydrogen evolution catalysts with low amounts of Pt.
Collapse
Affiliation(s)
- Yongxiao Tuo
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Qing Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Chen Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Tenglong Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China .,State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| |
Collapse
|
115
|
Electrocatalysis for the Oxygen Evolution Reaction in Acidic Media: Progress and Challenges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104320] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxygen evolution reaction (OER) is the efficiency-determining half-reaction process of high-demand, electricity-driven water splitting due to its sluggish four-electron transfer reaction. Tremendous effects on developing OER catalysts with high activity and strong acid-tolerance at high oxidation potentials have been made for proton-conducting polymer electrolyte membrane water electrolysis (PEMWE), which is one of the most promising future hydrogen-fuel-generating technologies. This review presents recent progress in understanding OER mechanisms in PEMWE, including the adsorbate evolution mechanism (AEM) and the lattice-oxygen-mediated mechanism (LOM). We further summarize the latest strategies to improve catalytic performance, such as surface/interface modification, catalytic site coordination construction, and electronic structure regulation of catalytic centers. Finally, challenges and prospective solutions for improving OER performance are proposed.
Collapse
|
116
|
Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance. Sci Bull (Beijing) 2021; 66:708-719. [PMID: 36654446 DOI: 10.1016/j.scib.2020.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Zinc-air batteries (ZnABs) with high theoretical capacity and environmental benignity are the most promising candidates for next-generation electronics. However, their large-scale applications are greatly hindered due to the lack of high-efficient and cost-effective electrocatalysts. Transition metal phosphides (TMPs) have been reported as promising electrocatalysts. Notably, (Ni1-xCrx)2P (0 ≤ x ≤ 0.15) is an unstable electrocatalyst, which undergoes in-situ electrochemical oxidation during the initial oxygen evolution reaction (OER) and even in the activation cycles, and is eventually converted to Cr-NiOOH serving as the actual OER active sites with high efficiency. Density functional theory (DFT) simulations and experimental results elucidate that the OER performance could be significantly promoted by the synergistic effect of surface engineering and electronic modulations by Cr doping and in-situ phase transformation. The constructed rechargeable ZnABs could stably cycle for more than 208 h at 5 mA cm-2, while the voltage degradation is negligible. Furthermore, the developed catalytic materials could be assembled into flexible and all-solid-state ZnABs to power wearable electronics with high performance.
Collapse
|
117
|
Abstract
Of all the available resources given to mankind, the sunlight is perhaps the most abundant renewable energy resource, providing more than enough energy on earth to satisfy all the needs of humanity for several hundred years. Therefore, it is transient and sporadic that poses issues with how the energy can be harvested and processed when the sun does not shine. Scientists assume that electro/photoelectrochemical devices used for water splitting into hydrogen and oxygen may have one solution to solve this hindrance. Water electrolysis-generated hydrogen is an optimal energy carrier to store these forms of energy on scalable levels because the energy density is high, and no air pollution or toxic gas is released into the environment after combustion. However, in order to adopt these devices for readily use, they have to be low-cost for manufacturing and operation. It is thus crucial to develop electrocatalysts for water splitting based on low-cost and land-rich elements. In this review, I will summarize current advances in the synthesis of low-cost earth-abundant electrocatalysts for overall water splitting, with a particular focus on how to be linked with photoelectrocatalytic water splitting devices. The major obstacles that persist in designing these devices. The potential future developments in the production of efficient electrocatalysts for water electrolysis are also described.
Collapse
|
118
|
Jun SE, Choi S, Choi S, Lee TH, Kim C, Yang JW, Choe WO, Im IH, Kim CJ, Jang HW. Direct Synthesis of Molybdenum Phosphide Nanorods on Silicon Using Graphene at the Heterointerface for Efficient Photoelectrochemical Water Reduction. NANO-MICRO LETTERS 2021; 13:81. [PMID: 34138338 PMCID: PMC8006559 DOI: 10.1007/s40820-021-00605-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 05/14/2023]
Abstract
MoP nanorod-array catalysts were directly synthesized on graphene passivated silicon photocathodes without secondary phase. Mo-O-C covalent bondings and energy band bending at heterointerfaces facilitate the electron transfer to the reaction sites. Numerous catalytic sites and drastically enhanced anti-reflectance of MoP nanorods contribute to the high solar energy conversion efficiency. Transition metal phosphides (TMPs) and transition metal dichalcogenides (TMDs) have been widely investigated as photoelectrochemical (PEC) catalysts for hydrogen evolution reaction (HER). Using high-temperature processes to get crystallized compounds with large-area uniformity, it is still challenging to directly synthesize these catalysts on silicon photocathodes due to chemical incompatibility at the heterointerface. Here, a graphene interlayer is applied between p-Si and MoP nanorods to enable fully engineered interfaces without forming a metallic secondary compound that absorbs a parasitic light and provides an inefficient electron path for hydrogen evolution. Furthermore, the graphene facilitates the photogenerated electrons to rapidly transfer by creating Mo-O-C covalent bondings and energetically favorable band bending. With a bridging role of graphene, numerous active sites and anti-reflectance of MoP nanorods lead to significantly improved PEC-HER performance with a high photocurrent density of 21.8 mA cm-2 at 0 V versus RHE and high stability. Besides, low dependence on pH and temperature is observed with MoP nanorods incorporated photocathodes, which is desirable for practical use as a part of PEC cells. These results indicate that the direct synthesis of TMPs and TMDs enabled by graphene interlayer is a new promising way to fabricate Si-based photocathodes with high-quality interfaces and superior HER performance.
Collapse
Affiliation(s)
- Sang Eon Jun
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhoon Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shinyoung Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyeon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woon-Oh Choe
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Hyuk Im
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheol-Joo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
119
|
Ariyarathna IR, Miliordos E. Radical abstraction vs. oxidative addition mechanisms for the activation of the S -H, O -H, and C -H bonds using early transition metal oxides. Phys Chem Chem Phys 2021; 23:1437-1442. [PMID: 33393944 DOI: 10.1039/d0cp05513a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical calculations are performed to study the S-H, O-H, and C-H bond activation of H2S, H2O, and CH4 by bare and ligated ZrO+ and NbO+ units. These representative oxides bear low energy oxo and higher energy oxyl units. S-H and C-H bonds are readily activated by metal oxyl states (radical mechanism), but the O-H bond is harder to activate with either the oxyl or oxo states. Our results suggest that known practices for the C-H bond activation can be applied to S-H, but not to O-H bonds. The identified trends are rationalized in terms of the HS-H, HO-H, and H3C-H dissociation energies to the homolytic or heterolytic fragments. We also found that these dissociation energies drop to about half after coordination of H2S or H2O to the metal oxide unit. In addition, chlorine ligands are shown to stabilize the higher energy oxyl states of the transition metal oxygen unit enhancing the reactivity of the formed complexes.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
120
|
Liu X, Liang C, Yang W, Yang C, Lin J, Li X. A monodispersed CuPt alloy: synthesis and its superior catalytic performance in the hydrogen evolution reaction over a full pH range. RSC Adv 2021; 11:12470-12475. [PMID: 35423827 PMCID: PMC8696985 DOI: 10.1039/d0ra09386f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/11/2021] [Indexed: 11/21/2022] Open
Abstract
The high cost and low stability of electrocatalysts are the major challenges for the commercialization of hydrogen generation in water. In this study, we demonstrated a one-pot synthesis of a monodispersed CuPt alloy with the diameter range of 20–30 nm by a hydrothermal method. Benefiting from the more available active sites and preferable d-band structure, the CuPt alloy exhibited a superior catalytic performance than pure Pt nanoparticles (Pt NPs) in the hydrogen evolution reaction (HER). In acidic media, the CuPt alloy achieved a low overpotential of 39 mV at a current density of 10 mA cm−2 for HER, which was by 22 mV lower than that for pure Pt NPs. In a neutral solution, the stability of the CuPt alloy is ca. 100-fold as compared to pure Pt NPs. Accounting by the dissolution of Cu in the alloy phase, the performance of the CuPt alloy was elevated after yielding hydrogen for 1.2 × 105 s in alkaline media. The superior catalytic activity can also be applied in other applications. In the reduction of 4-nitro-phenol (4-NP), the CuPt alloy showed 12.84-fold catalytic activity higher than pure Pt NPs. This study designed a low-cost electrocatalyst with an efficient and durable catalytic performance for HER over the full pH range, which provides an environmentally friendly strategy to cope with the challenges of hydrogen generation. An effective approach to achieve the low cost and high stability of electro-catalysts for HER.![]()
Collapse
Affiliation(s)
- Xinmei Liu
- Foshan (Southern China) Institute for New Materials
- Foshan 528200
- People's Republic of China
- Harbin University of Science and Technology
- People's Republic of China
| | - Chen Liang
- Harbin University of Science and Technology
- People's Republic of China
| | - Wenlong Yang
- Harbin University of Science and Technology
- People's Republic of China
| | - Chunyang Yang
- Harbin University of Science and Technology
- People's Republic of China
| | - Jiaqi Lin
- Harbin University of Science and Technology
- People's Republic of China
| | - Xue Li
- Harbin University of Science and Technology
- People's Republic of China
| |
Collapse
|
121
|
Wang J, Chen K, Peng R, Wang Y, Xie T, Zhu Q, Peng Y, Yang Q, Liu S. Synergistically enhanced alkaline hydrogen evolution reaction by coupling CoFe layered double hydroxide with NiMoO 4 prepared by two-step electrodeposition. NEW J CHEM 2021. [DOI: 10.1039/d1nj02984c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimized CoFe LDH/NiMoO4/Cu NW/Cu foam as HER electrocatalyst presents promising application prospect in water splitting with ultralow overpotential of 45 mV at -10 mA/cm2 and long-term durability.
Collapse
Affiliation(s)
- Jiankang Wang
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Kui Chen
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Rong Peng
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yajing Wang
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Taiping Xie
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Quanxi Zhu
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yuan Peng
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Qunying Yang
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Songli Liu
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|