101
|
Sakon M, Kita Y, Yoshida T, Umeshita K, Gotoh M, Kanai T, Kawasaki T, Kambayashi J, Monden M. Plasma hepatocyte growth factor levels are increased in systemic inflammatory response syndrome. Surg Today 1996; 26:236-41. [PMID: 8727943 DOI: 10.1007/bf00311581] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interleukin-1 (IL-1), a cytokine released from macrophages by endotoxin stimulation, has been shown to upregulate the genetic expression of the hepatocyte growth factor (HGF). The present study was conducted to determine whether plasma HGF is increased in patients with systemic inflammatory response syndrome (SIRS). The plasma levels of HGF, endotoxin, and beta-glucan were measured in 41 surgical patients without hepatic diseases, 18 of whom had been diagnosed with sepsis, and 33, with nonseptic SIRS. The plasma HGF was found to be significantly increased in the 18 patients with sepsis, at 0.69 +/- 0.47 ng/ml (mean +/- SD), and in the 23 patients with nonseptic SIRS, at 0.49 +/- 0.37 ng/ml, compared to values in 40 normal controls, at 0.10 +/- 0.03 ng/ml (P < 0.001). No significant correlations were observed between the plasma levels of HGF and endotoxin (r = 0.02) or beta-glucan (r = -0.05) in any of the patients; however, plasma HGF was significantly correlated with the WBC count (r = 0.34, P < 0.05) and with total bilirubin (r = 0.45, P < 0.01). Plasma HGF was also strongly correlated with alanine transaminase (ALT) in 8 patients with ALT levels higher than 50 U/l (r = 0.70), but there was no such correlation in 33 patients with ALT levels of 50 U/l or less (r = 0.30). Thus, although the clinicopathologic significance of HGF is not well understood, the present findings indicate that plasma HGF increases in response to infection or inflammation.
Collapse
Affiliation(s)
- M Sakon
- Second Department of Surgery, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Isolation of Xenopus HGF gene promoter and its functional analysis in embryos and animal caps. Dev Genes Evol 1996; 205:300-310. [PMID: 28306033 DOI: 10.1007/bf00365808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1995] [Accepted: 08/22/1995] [Indexed: 10/26/2022]
Abstract
Previously, we isolated Xenopus HGF (hepatocyte growth factor) cDNA and showed in Xenopus embryos that expression of this gene starts at the late gastrula stage mainly in the ventral mesoderm, and furthermore that the expression is induced in animal cap by activin A and bFGF (basic fibroblast growth factor). Here we have cloned the Xenopus HGF gene, covering a 14 kb 5'-upstream region and a 0.2 kb 5'-coding region. Within about 0.5 kb of the 5'-flanking region, the Xenopus HGF gene contained a TATA-like element AATGAAA, one putative NF-1 binding site, two NF-IL-6 binding motif sequences, one putative TGF-β-dependent inhibitory element (TIE) and one AP-1 binding site. A recombinant circular plasmid consisting of a 1.7 kb HGF promoter region and the bacterial chloramphenicol acetyltransferase (CAT) gene was first expressed at the late gastrula stage in the ventral mesoderm, as was the endogenous HGF gene. The expression of the fusion gene was induced in animal cap cells by activin A and bFGF although induction by the latter was not so strong. Using a series of 5'-deletion constructs introduced into animal caps, silencer elements, which seem to be essential for the gene's regionally correct expression, and the element responsible for induction by activin were found. The results show that the HGF gene promoter isolated here contains elements which may endow the gene with the regulative function for its temporally and spatially regulated expression, although the element necessary for induction by bFGF seems to be missing.
Collapse
|
103
|
Roletto F, Galvani AP, Cristiani C, Valsasina B, Landonio A, Bertolero F. Basic fibroblast growth factor stimulates hepatocyte growth factor/scatter factor secretion by human mesenchymal cells. J Cell Physiol 1996; 166:105-11. [PMID: 8557758 DOI: 10.1002/(sici)1097-4652(199601)166:1<105::aid-jcp12>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Basic fibroblast growth factor (bFGF) together with other pleiotropic factors plays an important role in many complex physiological processes such as embryonic development, angiogenesis, and wound repair. Among these factors, hepatocyte growth factor/scatter factor (HGF/SF) which is secreted by cells of mesodermal origin exerts its mito- and motogenic activities on cells of epithelial and endothelial origin. Knowledge of the regulatory mechanisms of HGF/SF may contribute to the understanding of its role in physio-pathological processes. We observed that the secretion of HGF/SF by MRC-5 cells and by other fibroblast-derived cell cultures in conditioned media was enhanced by exposure to bFGF. HGF/SF was measured by the scatter assay, a bioassay for cell motility, and was further characterized by Western blot analysis with anti-HGF/SF antibodies. Exposure of MRC-5 cultures to 10 ng/ml of bFGF resulted already 6 h posttreatment in a threefold higher amount of scatter factor secreted into the medium as compared to untreated cultures. HGF/SF secretion was sustained after bFGF treatment for the following 72 h when increased amounts of HGF/SF were detected both in conditioned media as well as associated to the extracellular matrix. The secretion of HGF/SF in cell supernatants increased dose dependently upon treatment with bFGF starting from basal levels of 6 U/ml and reaching 27 U/ml at 30 ng/ml bFGF, plateauing thereafter. Upregulation of HGF/SF by IL-1, already described by others, was confirmed in this study. Based on our findings an articulated interaction can be speculated for bFGF, HGF/SF, and IL-1, e.g., in tissue regeneration during inflammatory processes or in wound healing.
Collapse
Affiliation(s)
- F Roletto
- Pharmacia Biopharmaceuticals-BioScience Center, Nerviano, Italy
| | | | | | | | | | | |
Collapse
|
104
|
Abstract
The corneal epithelium is known to have a rapid self-renewing capacity. The major advance in the field of corneal epithelial cell biology in the last decade is the establishment of the location of corneal epithelial stem cells at the limbus, i.e., the junctional zone between the cornea and the conjunctiva. This concept has helped explain several experimental and clinical paradoxes, produced a number of important clinical applications, and spawned many other research studies. This unique enrichment of epithelial stem cells at a site anatomically separated from their transient amplifying cells makes the ocular surface an ideal model to study the regulation of epithelial stem cells. The present review includes data from more recent studies and lays out other areas for future investigation, especially with respect to the role of apoptosis and cytokine dialogue between limbal epithelial stem cells and their stromal microenvironment.
Collapse
Affiliation(s)
- S C Tseng
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| |
Collapse
|
105
|
Shimaoka S, Tsuboi R, Jindo T, Imai R, Takamori K, Rubin JS, Ogawa H. Hepatocyte growth factor/scatter factor expressed in follicular papilla cells stimulates human hair growth in vitro. J Cell Physiol 1995; 165:333-8. [PMID: 7593211 DOI: 10.1002/jcp.1041650214] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional polypeptide which acts as mitogen, motogen, or morphogen. In this study, we examined the effect of HGF/SF on human hair growth using organ and cell culture systems. HGF/SF was found to stimulate hair length and DNA synthesis in hair follicles at increasing concentrations up to 10 ng/ml (P < 0.05 and P < 0.01, respectively). HGF/SF stimulated [3H]thymidine incorporation by hair bulb-derived keratinocytes with the strongest response at 30 ng/ml of HGF/SF (P < 0.05). Cultured follicular papilla cells secreted HGF/SF, measured by an enzyme-linked immunoassay, in response to interleukin 1-alpha (IL1-alpha, 10 ng/ml), tumor necrosis factor-alpha (TNF-alpha, 10 ng/ml), or tetradecanoylphorbolacetate (100 nM) at levels ranging from 0.2 to 0.3 ng/mg protein/48 h. HGF/SF mRNA expressions, measured by the reverse transcription-polymerase chain reaction, were detected in follicular papilla cells, and were also stimulated by the three reagents. Transforming growth factor-beta (10 ng/ml) suppressed both protein and mRNA levels. These results suggest that hair follicle elongation induced by HGF/SF in organ culture occurs partly due to the mitogenic activity of HGF/SF expressed in follicular papilla cells on hair bulb-derived keratinocytes.
Collapse
Affiliation(s)
- S Shimaoka
- Department of Dermatology, Juntendo University, School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
106
|
Shimura H, Date K, Matsumoto K, Nakamura T, Tanaka M. Induction of invasive growth in a gallbladder cancer cell line by hepatocyte growth factor in vitro. Jpn J Cancer Res 1995; 86:662-9. [PMID: 7559084 PMCID: PMC5920894 DOI: 10.1111/j.1349-7006.1995.tb02450.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To study the mechanism of invasion and metastasis of gallbladder cancer cells, we established a cancer cell line, GB-d1, from a metastatic lymphnode of poorly differentiated adenocarcinoma of the gallbladder. GB-d1 cells proliferate well in a dish culture and form small cystic cell clusters in a collagen gel containing 10% fetal bovine serum. A conditioned medium of human embryonic lung fibroblasts (HEL) stimulated the proliferation of GB-d1 cells and induced cell scattering in the dish culture. In the gel culture, the conditioned medium induced a transformation of the spherical clusters to arborizating colonies with tubular projections that mimicked an invasion of cancer cells into the surrounding tissue. Similar results were obtained when 10 ng/ml of human recombinant hepatocyte growth factor (h-rHGF) was added to the culture medium. The proliferative and morphological changes induced by the conditioned medium were inhibited by antiserum against h-HGF. HEL and human gallbladder stromal fibroblast-like cells produced substantial levels of HGF in the culture media, while GB-d1 did not produce any detectable level of HGF. These results suggest that HGF promotes the invasive growth of gallbladder cancer cells in vitro, and it was also suggested that stromal fibroblasts may play an important role in the invasive progression of gallbladder cancer in a paracrine fashion.
Collapse
Affiliation(s)
- H Shimura
- Department of Surgery 1, Kyushu University Faculty of Medicine, Fukuoka
| | | | | | | | | |
Collapse
|
107
|
Sato C, Tsuboi R, Shi CM, Rubin JS, Ogawa H. Comparative study of hepatocyte growth factor/scatter factor and keratinocyte growth factor effects on human keratinocytes. J Invest Dermatol 1995; 104:958-63. [PMID: 7769266 DOI: 10.1111/1523-1747.ep12606221] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) and keratinocyte growth factor (KGF, also designated FGF-7) are paracrine growth factors secreted by mesenchymal cells and active on a variety of epithelial cell types. In this study, the biologic responses of keratinocytes to these paracrine growth factors were compared. Stimulation of mitogenesis, migration, plasminogen activator (PA) activity, and fibronectin production were examined using human foreskin keratinocytes cultured in serum-free MCDB 153 medium. Although the two factors stimulated a similar level of proliferation when cells were maintained for 5 d in 1.8 mM Ca++, the peak effect of KGF, observed at 10 ng/ml, was approximately threefold higher than that of HGF/SF when cells were in medium containing 0.15 mM Ca++. Both agents promoted the migration of cells in low-calcium medium (0.08 mM Ca++). However, the magnitude of the response was approximately twofold greater for HGF/SF at 10 ng/ml than KGF at the same concentration. None of the matrix proteins such as type I collagen, type IV collagen, laminin, or fibronectin either stimulated or suppressed HGF/SF- or KGF-stimulated keratinocyte migration. Both factors stimulated PA activity of the cell extracts, especially urokinase-type, with similar potencies. Promoted PA activity was maximal with the addition of 10 ng/ml of either factor. Neither factor increased the production of fibronectin under conditions in which transforming growth factor-beta 1 was active. These results indicate that HGF/SF and KGF, both recognized as paracrine growth factors, elicit distinctive patterns of response by keratinocytes, implying that they have different roles in epidermal physiology.
Collapse
Affiliation(s)
- C Sato
- Department of Dermatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
108
|
Takebayashi T, Iwamoto M, Jikko A, Matsumura T, Enomoto-Iwamoto M, Myoukai F, Koyama E, Yamaai T, Matsumoto K, Nakamura T. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes. J Biophys Biochem Cytol 1995; 129:1411-9. [PMID: 7775584 PMCID: PMC2120469 DOI: 10.1083/jcb.129.5.1411] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.
Collapse
Affiliation(s)
- T Takebayashi
- Department of Oral Surgery, Okayama University Dental School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Shiota G, Okano J, Kawasaki H, Kawamoto T, Nakamura T. Serum hepatocyte growth factor levels in liver diseases: clinical implications. Hepatology 1995. [PMID: 7806142 DOI: 10.1002/hep.1840210119] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although recent studies have shown that hepatocyte growth factor (HGF) is a potent mitogen in vivo, the significance of serum HGF in liver diseases remains unclear. To clarify clinical significance of serum HGF in liver diseases, serum HGF was measured in 127 patients with liver diseases and in 200 healthy individuals, using a highly sensitive immunoradiometric assay (IRMA). This assay is specific for HGF and is sensitive enough to detect 0.1 ng/mL of HGF. Mean values for serum HGF in acute hepatitis (AH), chronic hepatitis (CH), liver cirrhosis (LC), hepatocellular carcinoma (HCC), primary biliary cirrhosis (PBC), fulminant hepatic failure (FHF), and normal controls were 0.45, 0.40, 1.05, 1.06, 0.44, 16.40, and 0.27 ng/mL, respectively. Serum HGF levels in these diseases were significantly increased compared with those in the controls (P < .001), and exhibited a positive correlation with total bilirubin, indocyanine green (ICG) test (R15), asparate aminotransferase (AST), and a negative correlation with albumin and prothrombin time (P < .001). Cirrhotic patients with modified Child class C had higher levels of serum HGF than those graded as modified Child class A or B (P < .001). In CH, serum HGF levels were significantly related to the histological activity index (HAI) score (P < .002). Seven patients with HCC who underwent transcatheter arterial embolization (TAE) exhibited a gradual increase in serum HGF levels up to day 4 after treatment; these higher levels were maintained until day 7, although AST reached a peak on day 2 and then decreased gradually.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Shiota
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Japan
| | | | | | | | | |
Collapse
|
110
|
Abstract
Hepatocyte growth factor and its receptor (the product of the c-met protooncogene) are believed to be necessary for the normal growth and development of many tissues and organs. This ligand/receptor system controls essential cellular responses such as cell proliferation and motility as well as morphogenesis and differentiation. HGF mRNA is expressed primarily in mesenchymal but not in epithelial cells while its receptor is predominately expressed in epithelial cells. This pattern of HGF and HGFR gene expression in combination with the unique biological effects of HGF on its target cells has led to the postulate that HGF is one of the long-sought mediators conveying cross-talk between the epithelial and stromal compartments of a given tissue. The expression of HGF and HGFR genes are unregulated in several types of human cancer; therefore, understanding the control mechanisms governing HGF and HGFR gene expression is of great clinical interest. Toward this goal, we have analyzed the effects of various physiological agents such as cytokines and hormones on the expression of HGF and the HGFR in a multitude of cell types in vitro. Moreover, we have cloned and analyzed the HGF promoter and its 5'-flanking region to uncover the basis for its inducible and cell-type specific expression at the transcriptional level. Our results indicate that HGF and HGFR gene expression is inducible and their expression is orchestrated in stromal and epithelial cells, respectively, by extracellular signals derived from steroid hormones as well as cytokines such as IL-1, IL-6, and TNF alpha.
Collapse
Affiliation(s)
- R Zarnegar
- Department of Pathology, University of Pittsburgh, PA 15261, USA
| |
Collapse
|
111
|
Rosen EM, Goldberg ID. Regulation of scatter factor (hepatocyte growth factor) production by tumor-stroma interaction. EXS 1995; 74:17-31. [PMID: 8527893 DOI: 10.1007/978-3-0348-9070-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- E M Rosen
- Long Island Jewish Medical Center, Long Island Campus for Albert Einstein College of Medicine, Department of Radiation, Oncology, New Hyde Park, New York 11042, USA
| | | |
Collapse
|
112
|
Rosen EM, Joseph A, Jin L, Rockwell S, Elias JA, Knesel J, Wines J, McClellan J, Kluger MJ, Goldberg ID. Regulation of scatter factor production via a soluble inducing factor. J Biophys Biochem Cytol 1994; 127:225-34. [PMID: 7929565 PMCID: PMC2120177 DOI: 10.1083/jcb.127.1.225] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Scatter factor (SF) (also known as hepatocyte growth factor [HGF]) is a fibroblast-derived cytokine that stimulates motility, proliferation, and morphogenesis of epithelia. SF may play major roles in development, repair, and carcinogenesis. However, the physiologic signals that regulate its production are not well delineated. We found that various human tumor cell lines that do not produce SF secrete factors that stimulate SF production by fibroblasts, suggesting a paracrine mechanism for regulation of SF production. Conditioned medium from these cell lines contained two distinct scatter factor-inducing factor SF-IF activities: a high molecular weight (> 30 kD), heat sensitive activity and a low molecular weight (< 30 kD) heat stable activity. Further studies revealed that SF-producing fibroblasts also secrete factors that stimulate their own SF production. We characterized the < 30-kD SF-IF activity from ras-3T3 (clone D4), a mouse cell line that overproduces both SF and SF-IF. The < 30-kD filtrate from ras-3T3 conditioned medium induced four- to sixfold increases in expression of SF biologic activity, immunoreactive protein, and mRNA by multiple SF-producing fibroblast lines. Ras-3T3 SF-IF activity was stable to boiling, extremes of pH, and reductive alkylation, but was destroyed by proteases. We purified ras-3T3 SF-IF about 10,000-fold from serum-free conditioned medium by a combination of ultrafiltration, cation exchange chromatography, and reverse phase chromatography. The purified protein exhibited electrophoretic mobility of about 12 kD (reduced) and 14 kD (nonreduced) by SDS-PAGE. The identity of the protein was verified by elution of biologic activity from gel slices. Purified SF-IF stimulated SF production in a physiologic concentration range (about 20-400 pM). Its properties and activities were distinct from those of IL-1 and TNF, two known inducers of SF production. We suggest that SF-IF is a physiologic regulator of SF production.
Collapse
Affiliation(s)
- E M Rosen
- Department of Radiation Oncology, Long Island Jewish Medical Center, New Hyde Park, New York 11042
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Rosen EM, Knesel J, Goldberg ID, Jin L, Bhargava M, Joseph A, Zitnik R, Wines J, Kelley M, Rockwell S. Scatter factor modulates the metastatic phenotype of the EMT6 mouse mammary tumor. Int J Cancer 1994; 57:706-14. [PMID: 8194880 DOI: 10.1002/ijc.2910570517] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
EMT6 is a transplantable mouse mammary tumor cell line that has been utilized widely as a model system to study the effects of various treatments on local tumor growth and pulmonary metastasis. In this study, we examined the cellular mechanisms by which scatter factor (SF), a fibroblast-derived cytokine that stimulates epithelial cell motility, may contribute to tumor-cell dissemination, using the EMT6 model system. In vitro, SF stimulated EMT6 cell motility, invasiveness and cell-surface expression of urokinase (an enzyme required for cell migration through tissue). SF differentially stimulated EMT6 cell adhesion to and migration onto surfaces coated with collagen I and laminin. EMT6 cells treated in vitro with SF and injected i.v. into isogeneic BALB/c-Rw mice showed a small but significant increase (1.7-fold) in lung colony formation as compared with control cells. For EMT6 cells in vitro, SF had no effect on DNA synthesis, cell proliferation, cell size distribution, or in vitro colony-forming ability. Thus, the increase in lung colonization may be due to enhanced ability of SF-treated cells to adhere to subendothelial basement membrane or to invade through tissue. Studies of the tissue distribution of SF in BALB/c-Rw mice demonstrated high levels of active factor in the lung. Thus, the presence of endogenous pulmonary SF may have reduced the degree to which SF treatment stimulated EMT6 lung colonization. Significant SF activity was also found in extracts of EMT6 tumors. Cultured EMT6 cells did not produce SF, but did produce high titers of a soluble low-molecular-weight protein activity that is capable of stimulating SF production in human fibroblasts 3- to 5-fold. EMT6 tumor extracts contained high titers of a similar SF-inducing activity. These observations suggest that SF may contribute to the invasive and metastatic phenotype of EMT6 cells via a paracrine mechanism in which tumor cells induce the production of SF in stromal fibroblasts.
Collapse
Affiliation(s)
- E M Rosen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Okazaki H, Matsumoto K, Nakamura T. Partial purification and characterization of 'injurin-like' factor which stimulates production of hepatocyte growth factor. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1220:291-8. [PMID: 8305502 DOI: 10.1016/0167-4889(94)90151-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously reported the evidence for presence of a humoral factor 'injurin', which induces expression of the hepatocyte growth factor (HGF) gene in MRC-5 human embryonic lung fibroblasts. We have now purified a factor from porcine liver which stimulates HGF production but differs from injurin. When injurin activity was measured as a stimulatory effect on HGF production by MRC-5 cells, this activity was found in various acid extracts from porcine tissues, including liver, kidney, brain, and lung, and acid extracts from the liver was used for purification. When the acid extract was applied to Q-Sepharose anion-exchange chromatography, 50-60% of the total injurin activity was absorbed to the column and the remaining activity was detected in the flow through fractions. Injurin activity was eluted from the Q-Sepharose column by NaCl concentration gradient with four peaks at 0.5-0.6 M, 0.7-0.8 M, 0.9-1.2 M. 1.5-2.0 M NaCl, thereby suggesting that the factor exists in heterogenous or various forms in tissues. The major active fractions were combined and applied to Mono-Q FPLC anion-exchange chromatography. Injurin activity eluted with a single peak at 0.9-1.5 M NaCl and this activity was 4286 fold purified from the starting extract. Addition of this fraction to MRC-5 cells increased the amount of HGF pulse-labeled with [35S]methionine to a 3-4-fold higher level than that seen in control cells, whereas it had no significant effect on HGF mRNA levels. Therefore, this factor seems to stimulate HGF synthesis affecting translational processes and is distinct from the previously characterized injurin which stimulates HGF gene expression. Chemical treatments and SDS-polyacrylamide gel electrophoresis of this injurin-like factor indicated that injurin-like factor is a acid- and heat-stable non-proteinous factor with an apparent M(r) of 8-15 kDa. Since the injurin activity of the factor was decreased by heparinase treatment, the factor may be a polysulfated glycosaminoglycan related to heparin or to heparan sulfate. These results suggest that HGF production may be regulated by this non-proteinous injurin-like factor and that this factor may also play an important role in the regeneration of organs, through translationally enhancing HGF production.
Collapse
Affiliation(s)
- H Okazaki
- Division of Biochemistry, Osaka University School of Medicine, Japan
| | | | | |
Collapse
|
115
|
Liu Y, Michalopoulos G, Zarnegar R. Structural and functional characterization of the mouse hepatocyte growth factor gene promoter. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41756-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
116
|
Kobayashi T, Honke K, Gasa S, Miyazaki T, Tajima H, Matsumoto K, Nakamura T, Makita A. Hepatocyte growth factor elevates the activity levels of glycolipid sulfotransferases in renal cell carcinoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:407-13. [PMID: 8307006 DOI: 10.1111/j.1432-1033.1994.tb19953.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Accumulation of sulfoglycolipids associated with markedly elevated activity levels of glycolipid sulfotransferases has previously been demonstrated in the human renal cell carcinoma cell line, SMKT-R3. To elucidate the regulatory mechanisms of sulfoglycolipid synthesis in SMKT-R3 cells, the effects of various growth factors on the metabolic enzymes of sulfoglycolipids were investigated. Hepatocyte growth factor (HGF) significantly increased the activity levels of the sulfotransferases in a dose-dependent manner, but did not change that of arylsulfatase A, which hydrolyzes sulfoglycolipids. Scatchard analysis of 125I-HGF binding to SMKT-R3 cells indicated that the cells expressed high-affinity receptors for HGF with a Kd of 36 pM and 750 sites/cell. Furthermore, metabolic labeling with [35S]sulfate revealed that the addition of HGF to the culture medium of the cells resulted in an increment of sulfoglycolipid synthesis. Therefore, these observations suggest that HGF can function as a regulatory factor in sulfoglycolipid synthesis through the modulation of the sulfotransferase activity levels in renal cell carcinoma cells. In addition, HGF stimulated the proliferation and motility of SMKT-R3 cells, suggesting that HGF has multiple biological activities in renal cell carcinoma cells.
Collapse
Affiliation(s)
- T Kobayashi
- Biochemistry Laboratory, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Liu Y, Michalopoulos GK, Zarnegar R. Molecular cloning and characterization of cDNA encoding mouse hepatocyte growth factor. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:299-303. [PMID: 8241272 DOI: 10.1016/0167-4781(93)90159-b] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A cDNA encoding mouse hepatocyte growth factor (HGF) has been cloned and completely sequenced by use of reverse transcriptase-polymerase chain reaction (RT-PCR) and subsequent cloning. Sequence analysis reveals that mouse HGF, similar to its human and rat counterparts, consists of 728 amino acids, and both the alpha- and beta-chains are encoded in a single open reading frame. Strong homology exists in the primary structure of HGF among the three species of mouse, rat and human (more than 90%), especially in Kringle 1 of the alpha chain which is assumed to be an essential domain for binding of HGF to its receptor, c-MET, a proto-oncogene product. Our results suggest the existence of evolutionary pressure to conserve the distinct structure, and presumably the biological functions, of HGF.
Collapse
Affiliation(s)
- Y Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, PA 15261
| | | | | |
Collapse
|
118
|
Jiang WG, Hallett MB, Puntis MC. Hepatocyte growth factor/scatter factor, liver regeneration and cancer metastasis. Br J Surg 1993; 80:1368-73. [PMID: 8252338 DOI: 10.1002/bjs.1800801104] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatocyte growth factor (HGF) is the most potent stimulator of hepatocyte growth and DNA synthesis identified; it is now known to be the same molecule as scatter factor, which increases the motility of a variety of cell types. HGF is becoming recognized as one of the most important factors in the regulation of liver regeneration after surgical resection or chemical damage. HGF is produced by several tissues, including neoplasms; it can therefore provide a stimulus for increased motility of malignant cells by both a paracrine and autocrine mechanism. The receptor for HGF has been identified as the product of the oncogene c-met, raising the possibility that this gene plays a key role in facilitating cellular invasion. HGF may therefore be important not only for liver cell growth but also in metastasis. This article summarizes the current position of research on HGF, and presents both clinical and scientific evidence that strongly implicates this factor in liver regeneration and cancer invasion and metastasis.
Collapse
Affiliation(s)
- W G Jiang
- Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | |
Collapse
|
119
|
Mizuno K, Takehara T, Nakamura T. Proteolytic activation of a single-chain precursor of hepatocyte growth factor by extracellular serine-protease. Biochem Biophys Res Commun 1992; 189:1631-8. [PMID: 1482369 DOI: 10.1016/0006-291x(92)90264-l] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatocyte growth factor (HGF) is biosynthesized as a single-chain precursor (pro-HGF) and is proteolytically processed to a two-chain mature form. When MRC-5 fibroblasts were pulse-radiolabeled under serum-free conditions, pro-HGF was the predominant molecular form of HGF in the culture medium. CHO cells transfected with an expression plasmid containing a full-size human HGF cDNA produced pro-HGF when these cells were cultured in serum-free medium. These findings suggest that HGF is secreted as a pro-form, which is then converted to a two-chain form by extracellular protease. Single-chain HGF exhibited mitogenic activity on cultured hepatocytes, with a potency similar to that of mature HGF, but this activity was remarkably inhibited by leupeptin. We postulate that inactive pro-HGF is converted to an active two-chain form by a leupeptin-sensitive serine-protease expressed by hepatocytes. Neither plasminogen activators nor plasmin showed any processing activity of pro-HGF in vitro.
Collapse
Affiliation(s)
- K Mizuno
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|