101
|
Makkar SR, Zhang SQ, Cranney J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 2010; 35:1625-52. [PMID: 20410874 PMCID: PMC3055480 DOI: 10.1038/npp.2010.53] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 11/09/2022]
Abstract
The current review systematically documents the role of gamma-amino-butyric acid (GABA) in different aspects of fear memory-acquisition and consolidation, reconsolidation, and extinction, and attempts to resolve apparent contradictions in the data in order to identify the function of GABA(A) receptors in fear memory. First, numerous studies have shown that pre- and post-training administration of drugs that facilitate GABAergic transmission disrupt the initial formation of fear memories, indicating a role for GABA(A) receptors, possibly within the amygdala and hippocampus, in the acquisition and consolidation of fear memories. Similarly, recent evidence indicates that these drugs are also detrimental to the restorage of fear memories after their reactivation. This suggests a role for GABA(A) receptors in the reconsolidation of fear memories, although the precise neural circuits are yet to be identified. Finally, research regarding the role of GABA in extinction has shown that GABAergic transmission is also disruptive to the formation of newly acquired extinction memories. We argue that contradictions to these patterns are the result of variations in (a) the location of drug infusion, (b) the dosage of the drug and/or (c) the time point of drug administration. The question of whether these GABA-induced memory deficits reflect deficits in retrieval is discussed. Overall, the evidence implies that the processes mediating memory stability consequent to initial fear learning, memory reactivation, and extinction training are dependent on a common mechanism of reduced GABAergic neurotransmission.
Collapse
Affiliation(s)
- Steve R Makkar
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Shirley Q Zhang
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Jacquelyn Cranney
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
102
|
Prigol M, Wilhelm EA, Nogueira CW, Zeni G. Diphenyl diselenide-induced seizures in rat pups: possible interaction with GABAergic system. Neurol Res 2010; 32:1002-8. [PMID: 20433775 DOI: 10.1179/016164110x12670144737738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The involvement of the GABAergic system in seizures induced by diphenyl diselenide (PhSe)₂ in rat pups was investigated. METHODS To this end, the effect of aminooxyacetic acid hemihydrochloride (AOAA, 20 mg/kg; by intraperitoneal route, i.p.), a GABA-T inhibitor; DL-2,4-diamino-n-butyric acid hydrochloride (DABA, 16 mg/kg; i.p.), an inhibitor of GABA uptake; and γ-aminobutyric acid (GABA, 10 and 40 mg/kg; i.p.), diazepam (3 mg/kg; i.p.) and phenobarbital (40 mg/kg; i.p.), GABAergic agonists as well as picrotoxin (1 mg/kg; i.p.), a GABAA receptor antagonist on (PhSe)₂ (50 and 500 mg/kg, by oral route, p.o.)-induced seizures, were studied. The [(3)H]GABA uptake levels by cortical and hippocampal slices in rat pups exposed to (PhSe)₂ were also carried out. RESULTS Pre-treatment with GABA (40 mg/kg), diazepam, phenobarbital, AOAA and DABA abolished the appearance of seizures induced by 50 mg/kg (PhSe)₂ in rat pups. Picrotoxin increased the percentage of convulsing rat pups from 42 to 100% and reduced significantly the onset for the first convulsive episode induced by (PhSe)₂ at the dose of 50 mg/kg. Diazepam and phenobarbital prolonged significantly the latency for the onset of the first convulsive episode caused by 500 mg/kg (PhSe)₂ in rat pups. [(3)H]GABA uptake levels were stimulated in cerebral cortical and hippocampal slices of convulsing rat pups administered with both doses of (PhSe)₂. DISCUSSION Our findings demonstrated that seizures induced by (PhSe)₂ are mediated, at least in part, by an interaction with GABAergic system.
Collapse
Affiliation(s)
- Marina Prigol
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Brazil
| | | | | | | |
Collapse
|
103
|
Araud T, Wonnacott S, Bertrand D. Associated proteins: The universal toolbox controlling ligand gated ion channel function. Biochem Pharmacol 2010; 80:160-9. [PMID: 20346921 DOI: 10.1016/j.bcp.2010.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/02/2010] [Accepted: 03/15/2010] [Indexed: 02/06/2023]
Abstract
Ligand gated ion channels are integral multimeric membrane proteins that can detect with high sensitivity the presence of a specific transmitter in the extracellular space and transduce this signal into an ion flux. While these receptors are widely expressed in the nervous system, their expression is not limited to neurons or their postsynaptic targets but extends to non-neuronal cells where they participate in many physiological responses. Cells have developed complex regulatory mechanisms allowing for the precise control and modulation of ligand gated ion channels. In this overview the roles of accessory subunits and associated proteins in these regulatory mechanisms are reviewed and their relevance illustrated by examples at different ligand gated ion channel types, with emphasis on nicotinic acetylcholine receptors. Dysfunction of ligand gated ion channels can result in neuromuscular, neurological or psychiatric disorders. A better understanding of the precise function of associated proteins and how they impact on ligand gated ion channels will provide new therapeutic opportunities for clinical intervention.
Collapse
|
104
|
Sughir A, Skiba M, Lameiras P, Coadou G, Lahiani-Skiba M, Oulyadi H. Study of interaction between tiagabine HCl and 2-HPβCD: investigation of inclusion process. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-009-9732-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
105
|
Abstract
GABA(A) receptors are sensitive to subtle changes in the environment in both early-life and adulthood. These neurochemical responses to stress in adulthood are sex-dependent. Acute stress induces rapid changes in GABA(A) receptors in experimental animals, with the direction of the changes varying according to the sex of the animals and the stress-paradigm studied. These rapid alterations are of particular interest as they provide an example of fast neurotransmitter system plasticity that may be mediated by stress-induced increases in neurosteroids, perhaps via effects on phosphorylation and/or receptor trafficking. Interestingly, some studies have also provided evidence for long-lasting changes in GABA(A) receptors as a result of exposure to stressors in early-life. The short- and long-term stress sensitivity of the GABAergic system implicates GABA(A) receptors in the non-genetic etiology of psychiatric illnesses such as depression and schizophrenia in which stress may be an important factor.
Collapse
Affiliation(s)
- Kelly J Skilbeck
- Department of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
106
|
Rockhill W, Kirkman JL, Bosma MM. Spontaneous activity in the developing mouse midbrain driven by an external pacemaker. Dev Neurobiol 2009; 69:689-704. [PMID: 19449313 DOI: 10.1002/dneu.20725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central nervous system (CNS) development depends upon spontaneous activity (SA) to establish networks. We have discovered that the mouse midbrain has SA expressed most robustly at embryonic day (E) 12.5. SA propagation in the midbrain originates in midline serotonergic cell bodies contained within the adjacent hindbrain and then passes through the isthmus along ventral midline serotonergic axons. Once within the midbrain, the wave bifurcates laterally along the isthmic border and then propagates rostrally. Along this trajectory, it is carried by a combination of GABAergic and cholinergic neurons. Removing the hindbrain eliminates SA in the midbrain. Thus, SA in the embryonic midbrain arises from a single identified pacemaker in a separate brain structure, which drives SA waves across both regions of the developing CNS. The midbrain can self-initiate activity upon removal of the hindbrain, but only with pharmacological manipulations that increase excitability. Under these conditions, new initiation foci within the midbrain become active. Anatomical analysis of the development of the serotonergic axons that carry SA from the hindbrain to the midbrain indicates that their increasing elongation during development may control the onset of SA in the midbrain.
Collapse
Affiliation(s)
- Wendy Rockhill
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
107
|
Abstract
BACKGROUND AND OBJECTIVE Commonly used anaesthetics can cause neurodegeneration in the developing brain. Sevoflurane, a widely used substance in paediatric anaesthesia, has not been analysed thus far. This study was carried out to investigate the effects of sevoflurane on neuronal cell viability. METHODS Primary cortical neuronal cultures were prepared from Wistar rat embryos (E18), kept in 100 microl Gibco-Neurobasal-A medium and exposed to 4 and 8 Vol.% sevoflurane for up to 48 h. Cell viability was assessed using the methyltetrazolium assay and was related to untreated controls. To evaluate the role of gamma-aminobutyric acid type A receptors, untreated cells were preincubated with the receptor antagonists gabazine or picrotoxin and were subsequently exposed to 8 Vol.% sevoflurane and the receptor antagonist. Cell viability was assessed and compared with that of sevoflurane-treated controls. RESULTS Up to 6 (8 Vol.%) and 12 h (4 Vol.%) of exposure to sevoflurane, cell viability was equal when compared with untreated controls. Only longer exposure times led to significantly lowered cell viability. After 12 h of exposure, no significant differences in cell viability were found between these two series. Cell viability of cultures treated with sevoflurane and the receptor antagonists showed no significant differences when compared with sevoflurane-exposed controls. CONCLUSION These results suggest that sevoflurane does not cause neurodegeneration in primary cortical neurons of the rat following clinically relevant exposure times and concentrations.
Collapse
|
108
|
Ma Y, Ma H, Eun JS, Nam SY, Kim YB, Hong JT, Lee MK, Oh KW. Methanol extract of Longanae Arillus augments pentobarbital-induced sleep behaviors through the modification of GABAergic systems. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:245-250. [PMID: 19330921 DOI: 10.1016/j.jep.2009.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This experiment was performed to investigate whether methanol extract of Longanae Arillus (MELA) has hypnotic effects and/or enhances pentobarbital-induced sleep behaviors through the GABAergic systems. MELA prolonged sleep time and reduced sleep latency induced by pentobarbital similar to muscimol, a GABAA receptors agonist. MELA also increased sleep rate and sleep time in the combined administration with pentobarbital at the sub-hypnotic dosage and showed synergic effects with muscimol in potentiating sleep onset and enhancing sleep time induced by pentobarbital. However, MELA itself did not induce sleep at higher dose which was used in this experiment. In addition, both of MELA and pentobarbital increased chloride influx in primary cultured cerebellar granule cells. MELA increased GABAA receptors gamma-subunit expression and had no effect on the expression of alpha- and beta-subunits, and glutamic acid decarboxylase (GAD) in primary cultured cerebellar granule cells, showing different expression of subunits from pentobarbital. In conclusion, MELA itself does not induce sleep, but it augments pentobarbital-induced sleep behaviors through the modification of GABAergic systems.
Collapse
Affiliation(s)
- Yuan Ma
- Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, functional, and subunit-selective sites on GPCRs and ion channels. Neuropsychopharmacology 2009; 34:106-25. [PMID: 18800070 DOI: 10.1038/npp.2008.149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics. This review will consider select examples of extracellular drugable targets and focus on the GPCRs and ion channels highlighting the corticotropin releasing factor (CRF) type 1 and gamma-aminobutyric acid receptors, and the Ca(V)2.2 voltage-gated ion channel. These examples will elaborate current technological advancements in drug discovery and provide a prospective framework for future drug development.
Collapse
|
110
|
Enders D, Wang C, Bats J. Organokatalytische asymmetrische Dominoreaktionen: eine Kaskade aus Michael-Addition und Aldehyd-α-Alkylierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802532] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
111
|
Enders D, Wang C, Bats J. Organocatalytic Asymmetric Domino Reactions: A Cascade Consisting of a Michael Addition and an Aldehyde α‐Alkylation. Angew Chem Int Ed Engl 2008; 47:7539-42. [DOI: 10.1002/anie.200802532] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dieter Enders
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany), Fax: (+49) 241–809–2127 http://www.oc.rwth‐aachen.de
| | - Chuan Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany), Fax: (+49) 241–809–2127 http://www.oc.rwth‐aachen.de
| | - Jan W. Bats
- Institute of Organic Chemistry and Chemical Biology, University of Frankfurt, Marie‐Curie‐Strasse 11, 60439 Frankfurt am Main (Germany)
| |
Collapse
|
112
|
Abstract
Steroid hormones are known to freely partition into lipid bilayers. As a case study, we investigated the behavior of the steroid hormone cortisone in a model lipid bilayer. First, we looked at energy barriers involved in the partitioning of a single molecule into a bilayer using umbrella sampling molecular dynamics simulations. A rather wide well of -4.5 kcal/mol was observed in the interfacial region between the lipid headgroup and tailgroup. Next, using two unconstrained molecular dynamics simulations with cortisone initially positioned at distinct locations within a bilayer, we studied the preferred location and orientation of the molecule. Finally, we observed how cortisone molecules could spontaneously insert and localize in a bilayer from bulk solution. The three independent approaches produced a converged picture of how cortisone behaves in a model lipid bilayer.
Collapse
|
113
|
Rijal SO, Gross GW. Dissociation constants for GABAA receptor antagonists determined with neuronal networks on microelectrode arrays. J Neurosci Methods 2008; 173:183-92. [DOI: 10.1016/j.jneumeth.2008.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/16/2022]
|
114
|
Berry RB, Werner DF, Wang X, Jablonski MM, Homanics GE, Mittleman G, Matthews DB. Mice with targeted genetic reduction of GABA(A) receptor alpha1 subunits display performance differences in Morris water maze tasks. Neurobiol Learn Mem 2008; 90:580-3. [PMID: 18625330 DOI: 10.1016/j.nlm.2008.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 11/30/2022]
Abstract
Recent research has begun to demonstrate that specific subunits of GABA(A) receptors may be involved in the normal expression of specific behaviors. The present research used mice with GABA(A) receptors whose alpha1 subunits contained mutations of serine 270 to histidine and leucine 277 to alanine in the TM2 region. The purpose was an attempt to examine the possible role that this particular subunit may have in learning the spatial and nonspatial version of the Morris water maze task. Mutant animals, compared to controls, displayed elevated levels of pool circling in both the spatial task and the nonspatial task. These results suggested that normal performance of the spatial and nonspatial water maze tasks may be dependent upon a natural alpha1 subunit array.
Collapse
Affiliation(s)
- Raymond B Berry
- Department of Psychology, The University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Araújo AC, Nicotra F, Costa B, Giagnoni G, Cipolla L. Fructose-fused γ-butyrolactones and lactams, synthesis and biological evaluation as GABA receptor ligands. Carbohydr Res 2008; 343:1840-8. [DOI: 10.1016/j.carres.2008.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/07/2008] [Accepted: 03/09/2008] [Indexed: 01/17/2023]
|
116
|
Antagonism of AMPA receptors produces anxiolytic-like behavior in rodents: effects of GYKI 52466 and its novel analogues. Psychopharmacology (Berl) 2008; 198:231-41. [PMID: 18363046 DOI: 10.1007/s00213-008-1121-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 02/19/2008] [Indexed: 12/16/2022]
Abstract
RATIONALE Although emerging number of data supports the role of glutamate receptors and the potential of their antagonists in anxiety disorders, the involvement of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors in anxiety is less well characterized. OBJECTIVE To evaluate the anxiolytic potential of 2,3-benzodiazepine (2,3BDZ) type AMPA receptor antagonists in various models of anxiety. MATERIALS AND METHODS Whole-cell currents, hippocampal field potentials, elevated plus maze (EPM), meta-chlorophenylpiperazine (mCPP)-induced anxiety model, Vogel test in rats and light-dark test (LD) in mice were used to determine AMPA/kainite receptor properties and anxiolytic-like activity of a series of 2,3BDZ-type compounds. RESULTS The reference compound GYKI 52466 was proved active in two anxiety models in non-sedative doses: minimal effective dose (MED) was especially low in EPM (0.01 mg/kg) GYKI 53405 and GYKI 53655 showed anxiolytic-like activity in two tests (EPM and mCPP). EGIS-8332 was active in EPM and LD while EGIS-9637 showed anxiolytic-like potency in EPM, mCPP and Vogel model. EGIS-10608 was the most effective compound among 2,3BDZs tested in EPM and Vogel models (MEDs are 0.01 and 2.5 mg/kg, respectively). 2,3BDZs were active in anxiety models at doses lower than those produced sedative effects. NBQX showed anxiolytic-like activity in EPM only (3 mg/kg). CONCLUSIONS The results show that non-competitive AMPA receptor antagonists can profoundly block anxiety-like behavior in rodents independently from their motor depressant activity. However, the sedative properties at higher doses might limit their therapeutic utility as new anxiolytic drugs.
Collapse
|
117
|
Ma Y, Han H, Nam SY, Kim YB, Hong JT, Yun YP, Oh KW. Cyclopeptide alkaloid fraction from Zizyphi Spinosi Semen enhances pentobarbital-induced sleeping behaviors. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:318-324. [PMID: 18353574 DOI: 10.1016/j.jep.2008.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/24/2007] [Accepted: 02/02/2008] [Indexed: 05/26/2023]
Abstract
This study aimed to investigate effects of cyclopeptide alkaloid fraction of ZSS (CAFZ) on pentobarbital-induced sleeping behaviors and to determine whether these effects were mediated by gamma-aminobutyric acid (GABA) receptors Cl(-) channel activation, using a Western blot technique and Cl(-) sensitive fluorescence probe. GABA receptors subunits expression and Cl(-) influx were investigated in cultured cerebellar granule cells. CAFZ shortened sleeping onset and prolonged sleeping time induced by pentobarbital (42 mg/kg). It also significantly increased the falling asleep rate and duration of sleeping time at a sub-hypnotic dosage of pentobarbital (28 mg/kg). In addition, CAFZ in combination with GABA A receptors agonist, muscimol, synergistically prolonged pentobarbital-induced sleeping time. Both of CAFZ and pentobarbital treatment decreased GABA A receptors alpha-subunit expression, but did not change beta- and gamma-subunit expression. However, we found CAFZ and pentobarbital increased Cl(-) influx, CAFZ showed similar effects with muscimol in potentiating Cl(-) influx inducing effects of low-dose pentobarbital. In conclusion, it is suggested that the enhancement of Cl(-) influx by CAFZ may play an important role in the potentiation of pentobarbital-induced sleeping behaviors.
Collapse
Affiliation(s)
- Yuan Ma
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | | | | | | | |
Collapse
|
118
|
Chi Y, Guo L, Kopf NA, Gellman SH. Enantioselective organocatalytic Michael addition of aldehydes to nitroethylene: efficient access to gamma2-amino acids. J Am Chem Soc 2008; 130:5608-9. [PMID: 18386925 PMCID: PMC3429127 DOI: 10.1021/ja800345r] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantioselective organocatalytic Michael addition of aldehydes to nitroethylene catalyzed by (S)-diphenylprolinol silyl ether provides beta-substituted-delta-nitroalcohols in nearly optically pure form (96-99% ee). The Michael adducts bear a single substituent adjacent to the carbonyl and can be efficiently converted to protected gamma2-amino acids, which are essential for the systematic conformational studies of gamma-peptide foldamers.
Collapse
Affiliation(s)
- Yonggui Chi
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Li Guo
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathan A. Kopf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
119
|
Deniau G, Slawin AMZ, Lebl T, Chorki F, Issberner JP, van Mourik T, Heygate JM, Lambert JJ, Etherington LA, Sillar KT, O'Hagan D. Synthesis, Conformation and Biological Evaluation of the Enantiomers of 3-Fluoro-γ-Aminobutyric Acid ((R)- and (S)-3F-GABA): An Analogue of the Neurotransmitter GABA. Chembiochem 2007; 8:2265-74. [DOI: 10.1002/cbic.200700371] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
120
|
Nakamura K, Morrison SF. A thermosensory pathway that controls body temperature. Nat Neurosci 2007; 11:62-71. [PMID: 18084288 DOI: 10.1038/nn2027] [Citation(s) in RCA: 330] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 11/15/2007] [Indexed: 11/09/2022]
Abstract
Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Neurological Sciences Institute, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | | |
Collapse
|
121
|
Sallagundala N, Yakimova K, Tzschentke B. Effect of GABAergic substances on firing rate and thermal coefficient of hypothalamic neurons in the juvenile chicken. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:374-81. [PMID: 17584511 DOI: 10.1016/j.cbpa.2007.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/17/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
The goal of the study is to investigate the GABAergic action on firing rate (FR) and temperature coefficient (TC) on hypothalamic neurons in the juvenile chicken. Extracellular recordings were obtained from 37 warm-sensitive, 32 cold-sensitive and 56 temperature-insensitive neurons in brain slices to determine the effect of GABA(A)-receptor agonist muscimol, GABA(A)-receptor antagonist bicuculline, GABA(B)-receptor agonist baclofen and GABA(B)-receptor antagonist CGP 35348. Muscimol and baclofen in equimolar concentrations (1 microM) significantly inhibited FR of the neurons, regardless of their type of thermosensitivity. In contrast, bicuculline, as well as CGP 35348 (10 microM) increased FR of the majority of the neurons. The TC of most chick hypothalamic neurons could not be estimated during muscimol application because FR was completely inhibited. GABA(B)-receptor agonist specifically increased TC. This effect was restricted to cold-sensitive neurons, which were determined in a high number. The TC was significantly increased (p<0.05) by baclofen and significantly decreased (p<0.05) by CGP 35348. The effects of muscimol and baclofen on FR and TC were prevented by co-perfusion of the appropriate antagonists bicuculline and CGP 35348. The results suggest that the fundamental mechanisms of GABAergic influence on temperature sensitive and insensitive neurons in the chicken PO/AH are conserved during evolution of amniotes.
Collapse
Affiliation(s)
- Nagaraja Sallagundala
- Institut für Biologie, AG Perinatale Anpassung, Humboldt-Universität zu Berlin, Philippstrasse 13, D-10115 Berlin, Germany
| | | | | |
Collapse
|
122
|
Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol 2007; 75:266-322. [PMID: 17764663 DOI: 10.1016/j.bcp.2007.07.030] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 02/08/2023]
Abstract
Evidence that psychoactive substance use disorders, bulimia nervosa, pathological gambling, and sexual addiction share an underlying biopsychological process is summarized. Definitions are offered for addiction and addictive process, the latter being the proposed designation for the underlying biopsychological process that addictive disorders are hypothesized to share. The addictive process is introduced as an interaction of impairments in three functional systems: motivation-reward, affect regulation, and behavioral inhibition. An integrative review of the literature that addresses the neurobiology of addiction is then presented, organized according to the three functional systems that constitute the addictive process. The review is directed toward identifying candidate neurochemical substrates for the impairments in motivation-reward, affect regulation, and behavioral inhibition that could contribute to an addictive process.
Collapse
Affiliation(s)
- Aviel Goodman
- Minnesota Institute of Psychiatry, 1347 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|
123
|
Liu GX, Cai GQ, Cai YQ, Sheng ZJ, Jiang J, Mei Z, Wang ZG, Guo L, Fei J. Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacology 2007; 32:1531-9. [PMID: 17164814 DOI: 10.1038/sj.npp.1301281] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gamma-aminobutyric acid (GABA) transporter subtype 1 (GAT1), which transports extracellular GABA into presynaptic neurons, plays an important regulatory role in the function of GABAergic systems. However, the contributions of the GAT1 in regulating mental status are not fully understood. In this paper, we observed the behavioral alterations of GAT1 knockout (GAT1(-/-)) mice using several depression- and anxiety-related models (eg, the forced-swimming test and the tail-suspension test for testing depression-related behaviors; the open-field test, the dark-light exploration test, the emergence test, and the elevated plus maze (EPM) test for anxiety-related behaviors). Here we found that GAT1(-/-) mice showed a lower level of depression- and anxiety-like behaviors in comparison to wild-type mice. Furthermore, GAT1(-/-) mice exhibited measurable insensitivity to selected antidepressants and anxiolytics such as fluoxetine, amitriptyline, buspirone, diazepam, and tiagabine in the tail-suspension test and/or the EPM test. Moreover, the basal level of corticosterone was found to be significantly lower in GAT1(-/-) mice. These results showed that the absence of GAT1 affects mental status through enhancing the GABAergic system, as well as modifying the serotonergic system and the hypothalamic-pituitary-adrenal (HPA) activity in mice.
Collapse
Affiliation(s)
- Guo-Xiang Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Model Organism Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
PURPOSE OF REVIEW Anesthetics influence a wide variety of transmitter- and voltage-gated ion channels in the mammalian central nervous system. At the molecular level, the gamma-aminobutyric acid (GABA) subtype A receptor has emerged as a primary therapeutic target. This review highlights recent advances in our understanding of how anesthetics modify GABA(A) receptor function. RECENT FINDINGS Anesthetics bind to discrete selective binding sites on GABA(A) receptors--a discovery that challenges lipid-based theories of anesthesia. Not all GABA(A) receptors are equally sensitive to anesthetics because positive allosteric modulation is critically dependent on receptor subunit composition. Moreover, GABA(A) receptors located in extrasynaptic regions of hippocampal neurons display a greater sensitivity to propofol and benzodiazepines than do receptors located in subsynaptic regions. Enhancement in GABAergic inhibition may not account for all of the behavioral end-points associated with the anesthetic state. In particular, the immobilizing properties of anesthetics may not be solely mediated by GABA(A) receptors. Finally, synthetic neurosteroids are being developed as improved general anesthetics. SUMMARY Detailed insights into anesthetic-GABA(A) receptor interactions have resulted in intense efforts to develop safer drugs that selectively target subtypes of GABA(A) receptors.
Collapse
Affiliation(s)
- Beverley A Orser
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
125
|
Lolli LF, Sato CM, Romanini CV, Villas-Boas LDB, Santos CAM, de Oliveira RMW. Possible involvement of GABA A-benzodiazepine receptor in the anxiolytic-like effect induced by Passiflora actinia extracts in mice. JOURNAL OF ETHNOPHARMACOLOGY 2007; 111:308-14. [PMID: 17196350 DOI: 10.1016/j.jep.2006.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 10/18/2006] [Accepted: 11/21/2006] [Indexed: 05/13/2023]
Abstract
Hydroethanol (HE) and methanol (ME) extracts obtained from the leaves of Passiflora actinia Hooker were evaluated for behavioral effects in mice. Single-dose oral administration of HE (300 and 600 mg/kg) or ME (100 and 300 mg/kg) resulted in anxiolytic-like effects in the elevated plus-maze. The anxiolytic-like effects were also seen after the repeated administration of the HE (100 and 300 mg/kg). Flumazenil (10mg/kg, i.p.), a GABA(A)-benzodiazepine receptor antagonist, blocked the effects of ME (300 mg/kg, p.o.) and HE (600 mg/kg). At higher doses, a sedative effect produced by acute administration of HE (600 mg/kg) or ME (300 mg/kg) was indicated by the potentiation of pentobarbital-induced sleep. With regard to memory-disrupting effects of anxiolytics, mice were evaluated by measuring the retest step-down latency 24h after foot-shock in a passive avoidance task. In contrast to diazepam (0.5mg/kg) or piracetam (200mg/kg), ME (30, 100 and 300 mg/kg) or HE (100, 300 and 600 mg/kg) did not influence the step-through latency in the acquisition or retention memory tasks. The present results show an anxiolytic profile for HE and ME of Passiflora actinia. There are also indications of an involvement of GABA(A) system in this effect.
Collapse
Affiliation(s)
- Luiz F Lolli
- Laboratory of Psychopharmacology, Department of Pharmacy and Pharmacology, Universidade Estadual de Maringá, Av. Colombo, 5790, Jardim Universitário, Bloco K-80, 87020-900 Maringá, PR, Brazil
| | | | | | | | | | | |
Collapse
|
126
|
Yu HS, Lee SY, Jang CG. Involvement of 5-HT1A and GABAA receptors in the anxiolytic-like effects of Cinnamomum cassia in mice. Pharmacol Biochem Behav 2007; 87:164-70. [PMID: 17512974 DOI: 10.1016/j.pbb.2007.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 04/13/2007] [Accepted: 04/19/2007] [Indexed: 11/23/2022]
Abstract
An elevated plus maze (EPM) test was used to determine if the 5-HT1A, GABAA, and benzodiazepine receptors play a role in the anxiolytic-like effects of a 50% EtOH extract of Cinnamomum cassia (C. cassia) in mice. A single treatment with C. cassia (750 mg/kg, p.o.) significantly increased the number of entries into and the time spent in the open arms of the EPM compared with the controls. A repeated treatment with C. cassia (100 mg/kg, 5 days, p.o.) significantly increased the time spent in the open arms of the EPM. Moreover, WAY 100635, (+)-bicuculline, and flumazenil blocked the effect of C. cassia. However, there were no changes in the locomotor activity and horizontal wire test observed in any group compared with the controls. Taken together, these results show that C. cassia has no adverse effects, such as myorelaxant effects, and might be an effective anxiolytic agent by regulating the serotonergic and GABAergic system.
Collapse
Affiliation(s)
- Hyun-Sook Yu
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | | | | |
Collapse
|
127
|
Warnault V, Houchi H, Barbier E, Pierrefiche O, Vilpoux C, Ledent C, Daoust M, Naassila M. The lack of CB1 receptors prevents neuroadapatations of both NMDA and GABA(A) receptors after chronic ethanol exposure. J Neurochem 2007; 102:741-52. [PMID: 17442049 DOI: 10.1111/j.1471-4159.2007.04577.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As the contribution of cannabinoid (CB1) receptors in the neuroadaptations following chronic alcohol exposure is unknown, we investigated the neuroadaptations induced by chronic alcohol exposure on both NMDA and GABA(A) receptors in CB1-/- mice. Our results show that basal levels of hippocampal [(3)H]MK-801 ((1)-5-methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine) binding sites were decreased in CB1-/- mice and that these mice were also less sensitive to the locomotor effects of MK-801. Basal level of both hippocampal and cerebellar [(3)H]muscimol binding was lower and sensitivity to the hypothermic effects of diazepam and pentobarbital was increased in CB1-/- mice. GABA(A)alpha1, beta2, and gamma2 and NMDA receptor (NR) 1 and 2B subunit mRNA levels were altered in striatum of CB1-/- mice. Our results also showed that [(3)H]MK-801 binding sites were increased in cerebral cortex and hippocampus after chronic ethanol ingestion only in wild-type mice. Chronic ethanol ingestion did not modify the sensitivity to the locomotor effects of MK-801 in both genotypes. Similarly, chronic ethanol ingestion reduced the number of [(3)H]muscimol binding sites in cerebral cortex, but not in cerebellum, only in CB1+/+ mice. We conclude that lifelong deletion of CB1 receptors impairs neuroadaptations of both NMDA and GABA(A) receptors after chronic ethanol exposure and that the endocannabinoid/CB1 receptor system is involved in alcohol dependence.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Alcohol-Induced Disorders, Nervous System/genetics
- Alcohol-Induced Disorders, Nervous System/metabolism
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Alcoholism/genetics
- Alcoholism/metabolism
- Alcoholism/physiopathology
- Animals
- Binding Sites/drug effects
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Brain Chemistry/drug effects
- Brain Chemistry/genetics
- Chronic Disease
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Ethanol/adverse effects
- Excitatory Amino Acid Antagonists/pharmacology
- GABA Agonists/pharmacology
- Male
- Mice
- Mice, Knockout
- Muscimol/metabolism
- Protein Subunits/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
Affiliation(s)
- Vincent Warnault
- Equipe Région INSERM 24 (ERI24), Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Université de Picardie Jules Verne, Faculté de Pharmacie, Amiens, France, and IFR 114, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Sukhotinsky I, Zalkind V, Lu J, Hopkins DA, Saper CB, Devor M. Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABAA-active anesthetics. Eur J Neurosci 2007; 25:1417-36. [PMID: 17425568 DOI: 10.1111/j.1460-9568.2007.05399.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anesthesia, slow-wave sleep, syncope, concussion and reversible coma are behavioral states characterized by loss of consciousness, slow-wave cortical electroencephalogram, and motor and sensory suppression. We identified a focal area in the rat brainstem, the mesopontine tegmental anesthesia area (MPTA), at which microinjection of pentobarbital and other GABA(A) receptor (GABA(A)-R) agonists reversibly induced an anesthesia-like state. This effect was attenuated by local pre-treatment with the GABA(A)-R antagonist bicuculline. Using neuroanatomical tracing we identified four pathways ascending from the MPTA that are positioned to mediate electroencephalographic synchronization and loss of consciousness: (i) projections to the intralaminar thalamic nuclei that, in turn, project to the cortex; (ii) projections to several pontomesencephalic, diencephalic and basal forebrain nuclei that project cortically and are considered parts of an ascending "arousal system"; (iii) a projection to other parts of the subcortical forebrain, including the septal area, hypothalamus, zona incerta and striato-pallidal system, that may indirectly affect cortical arousal and hippocampal theta rhythm; and (iv) modest projections directly to the frontal cortex. Several of these areas have prominent reciprocal projections back to the MPTA, notably the zona incerta, lateral hypothalamus and frontal cortex. We hypothesize that barbiturate anesthetics and related agents microinjected into the MPTA enhance the inhibitory response of local GABA(A)-R-bearing neurons to endogenous GABA released at baseline during wakefulness. This modulates activity in one or more of the identified ascending neural pathways, ultimately leading to loss of consciousness.
Collapse
Affiliation(s)
- I Sukhotinsky
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
129
|
|
130
|
Ma Y, Han H, Eun JS, Kim HC, Kim HC, Hong JT, Oh KW. Sanjoinine A Isolated from Zizyphi Spinosi Semen Augments Pentobarbital-Induced Sleeping Behaviors through the Modification of GABA-ergic Systems. Biol Pharm Bull 2007; 30:1748-53. [PMID: 17827733 DOI: 10.1248/bpb.30.1748] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zizyphi Spinosi Semen (ZSS) has been widely used for the treatment of insomnia in oriental countries. This experiment was performed to investigate whether sanjoinine A, one of major alkaloid compounds of ZSS, has hypnotic effects and/or enhances pentobarbital-induced sleeping behaviors through the gamma-aminobutyric acid (GABA)-ergic systems. Sanjoinine A itself did not induce sleeping at the higher dose used in this experiment. However, sanjoinine A prolonged sleeping time and reduced the sleeping latency induced by pentobarbital in a dose-dependent manner similar to muscimol, a GABA(A) receptor agonist. Sanjoinine A also increased sleeping rate and sleeping time when administered combined with pentobarbital at a sub-hypnotic dosage and showed synergistic effects with muscimol in potentiating sleeping onset and enhancing sleeping time induced by pentobarbital. In addition, both sanjoinine A and pentobarbital increased chloride influx in primary cultured cerebellar granule cells. Sanjoinine A also showed similar effects with muscimol in potentiating chloride influx inducing effects of low dose pentobarbital. Sanjoinine A decreased GABA(A) receptor alpha-subunit expression and increased gamma-subunit expression, and had no effects on the abundance of beta-subunits in primary cultured cerebellar granule cells, showing different subunit expression from pentobarbital. In addition, we found that sanjoinine A also enhanced expression of glutamic acid decarboxylase (GAD), but pentobarbital did not. In conclusion, sanjoinine A itself does not induce sleeping, but it augments pentobarbital-induced sleeping behaviors through the modification of GABA-ergic systems.
Collapse
Affiliation(s)
- Yuan Ma
- Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | | | | | | | |
Collapse
|
131
|
Yamada J, Furukawa T, Ueno S, Yamamoto S, Fukuda A. Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb Cortex 2006; 17:1782-7. [PMID: 16997904 DOI: 10.1093/cercor/bhl087] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fast inhibitory synaptic transmission is primarily mediated by synaptically released gamma-aminobutyric acid (GABA) acting on postsynaptic GABA(A) receptors. GABA acting on GABA(A) receptors produces not only phasic but also tonic inhibitions by persistent activation of extrasynaptic receptors. However, the mechanistic characteristics of tonic inhibition in the neocortex are not well-understood. To address this, we studied pharmacologically isolated GABA(A) receptor-mediated currents in neocortical pyramidal neurons in rat brain slices. Bath application of bicuculline blocked miniature inhibitory postsynaptic currents (mIPSCs) and produced an outward shift in baseline holding current (I(hold)). Low concentrations of SR95531, a competitive GABA(A) receptor antagonist, abolished mIPSCs but had no significant effect on I(hold). The benzodiazepine midazolam produced an inward shift in I(hold) by augmenting tonic GABA(A) receptor-mediated currents, which were significantly greater in layer V neurons than in layer II/III. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) revealed a relatively higher expressions of alpha1 and alpha5 subunit mRNA in layer V neurons. L-655708, an alpha5 subunit-specific inverse agonist, reduced tonic currents in layer V but not in layer II/III neurons, whereas zolpidem, an alpha1-subunit agonist, exerted equivalent effects in both layers. These data suggest that the alpha1 GABA(A) receptor subunit is generally involved in tonic inhibition in pyramidal neurons of the neocortex, whereas the alpha5 subunit is specifically involved in layer V neurons.
Collapse
Affiliation(s)
- Junko Yamada
- Department of Biological Information Processing, Graduate School of Electronic Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan
| | | | | | | | | |
Collapse
|
132
|
Nakamura K, Morrison SF. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2006; 292:R127-36. [PMID: 16931649 PMCID: PMC2441894 DOI: 10.1152/ajpregu.00427.2006] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Control of thermoregulatory effectors by the autonomic nervous system is a critical component of rapid cold-defense responses, which are triggered by thermal information from the skin. However, the central autonomic mechanism driving thermoregulatory effector responses to skin thermal signals remains to be determined. Here, we examined the involvement of several autonomic brain regions in sympathetic thermogenic responses in brown adipose tissue (BAT) to skin cooling in urethane-chloralose-anesthetized rats by monitoring thermogenic [BAT sympathetic nerve activity (SNA) and BAT temperature], metabolic (expired CO(2)), and cardiovascular (arterial pressure and heart rate) parameters. Acute skin cooling, which did not reduce either rectal (core) or brain temperature, evoked increases in BAT SNA, BAT temperature, expired CO(2), and heart rate. Skin cooling-evoked thermogenic, metabolic, and heart rate responses were inhibited by bilateral microinjections of bicuculline (GABA(A) receptor antagonist) into the preoptic area (POA), by bilateral microinjections of muscimol (GABA(A) receptor agonist) into the dorsomedial hypothalamic nucleus (DMH), or by microinjection of muscimol, glycine, 8-OH-DPAT (5-HT(1A) receptor agonist), or kynurenate (nonselective antagonist for ionotropic excitatory amino acid receptors) into the rostral raphe pallidus nucleus (rRPa) but not by bilateral muscimol injections into the lateral/dorsolateral part or ventrolateral part of the caudal periaqueductal gray. These results implicate the POA, DMH, and rRPa in the central efferent pathways for thermogenic, metabolic, and cardiac responses to skin cooling, and suggest that these pathways can be modulated by serotonergic inputs to the medullary raphe.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA.
| | | |
Collapse
|
133
|
Liu J, Li GL, Yang XL. An ionotropic GABA receptor with novel pharmacology at bullfrog cone photoreceptor terminals. Neurosignals 2006; 15:13-25. [PMID: 16825800 DOI: 10.1159/000094384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 11/19/2022] Open
Abstract
Characteristics of ionotropic gamma-aminobutyric acid (GABA) receptors at bullfrog cone terminals were studied by patch clamp techniques in isolated cell and retinal slice preparations. GABA-induced inward currents from isolated cones reversed in polarity at a potential, very close to the chloride equilibrium potential, and they were completely suppressed by picrotoxin. Unexpectedly, the GABA current was dose-dependently potentiated by the well-known GABA(A) receptor antagonist bicuculline (BIC), but was suppressed by gabazine, another GABA(A) antagonist, and imidazole-4-acetic acid (I4AA), a GABA(C) receptor antagonist. Similarly, currents induced by both GABA(A) agonist muscimol and GABA(C) agonist cis-4-aminocrotonic acid (CACA) were also potentiated by BIC. Furthermore, currents induced from cones by GABA and kainate-caused depolarization of horizontal cells in retinal slice preparations were both potentiated by BIC. All these results suggest that the ionotropic GABA receptor at the bullfrog cone terminal exhibits novel pharmacology, distinct from both traditional GABA(A) and GABA(C) receptors.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Neurobiology, Institute of Brain Science, Fudan University, Shanghai, PR China
| | | | | |
Collapse
|
134
|
Polsky-Fisher SL, Vickers S, Cui D, Subramanian R, Arison BH, Agrawal NGB, Goel TV, Vessey LK, Murphy MG, Lasseter KC, Simpson RC, Vega JM, Rodrigues AD. Metabolism and disposition of a potent and selective GABA-Aalpha2/3 receptor agonist in healthy male volunteers. Drug Metab Dispos 2006; 34:1004-11. [PMID: 16510541 DOI: 10.1124/dmd.105.008193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
[14C]7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine ([14C]-TPA023; 99 microCi/dose) was administered to five young, healthy, fasted male subjects as a single oral dose (3.0 mg) in solution (propylene glycol/water, 10:90 v/v). The parent compound was rapidly absorbed (plasma Tmax approximately 2 h), exhibited an apparent terminal half-life of 6.7 h, and accounted for approximately 53% of the total radioactivity in plasma. After 7 days of collection, the mean total recovery of radioactivity in the excreta was 82.6%, with 53.2% and 29.4% in urine and feces, respectively. Radiochromatographic analysis of the excreta revealed that TPA023 was metabolized extensively, and only trace amounts of unchanged parent were recovered. Radiochromatograms of urine and feces showed that TPA023 underwent metabolism via three pathways (t-butyl hydroxylation, N-deethylation, and direct N-glucuronidation). The products of t-butyl hydroxylation and N-deethylation, together with their corresponding secondary metabolites, accounted for the majority of the radioactivity in the excreta. In addition, approximately 10.3% of the dose was recovered in urine as the triazolo-pyridazine N1-glucuronide of TPA023. The t-butyl hydroxy and N-desethyl metabolites of TPA023, the TPA023 N1-glucuronide, and the triazolo-pyridazine N1-glucuronide of N-desethyl TPA023 were present in plasma. In healthy male subjects, therefore, TPA023 is well absorbed and is metabolized extensively (t-butyl hydroxylation and N-deethylation > glucuronidation), and the metabolites are excreted in urine and feces.
Collapse
Affiliation(s)
- Stacey L Polsky-Fisher
- Department of Drug Metabolism, WP75B-200, Merck Research Laboratories, West Point PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Page AJ, O'Donnell TA, Blackshaw LA. Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels. Neuroscience 2006; 137:627-36. [PMID: 16289839 DOI: 10.1016/j.neuroscience.2005.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/25/2005] [Accepted: 09/09/2005] [Indexed: 11/16/2022]
Abstract
GABA(B) receptors inhibit mechanosensitivity of visceral afferents. This is associated with reduced triggering of events that lead to gastro-esophageal reflux, with important therapeutic consequences. In other neuronal systems, GABA(B) receptor activation may be linked via G-proteins to reduced N-type Ca(2+) channel opening, increased inward rectifier K(+) channel opening, plus effects on a number of intracellular messengers. Here we aimed to determine the role of Ca(2+) and K(+) channels in the inhibition of vagal afferent mechanoreceptor function by the GABA(B) receptor agonist baclofen. The responses of three types of ferret gastro-esophageal vagal afferents (mucosal, tension and tension mucosal receptors) to graded mechanical stimuli were investigated in vitro. The effects of baclofen (200 microM) alone on these responses were quantified, and the effects of baclofen in the presence of the G-protein-coupled inward rectifier potassium channel blocker Rb(+) (4.7 mM) and/or the N-type calcium channel blocker omega-conotoxin GVIA (0.1 microM). Baclofen inhibition of mucosal receptor mechanosensitivity was abolished by both blockers. Its inhibitory effect on tension mucosal receptors was partly reduced by both. The inhibitory effect of baclofen on tension receptors was unaffected. The data indicate that the inhibitory action of GABA(B) receptors is mediated via different pathways in mucosal, tension and tension mucosal receptors via mechanisms involving both N-type Ca(2+) channels and inwardly rectifying K(+) channels and others.
Collapse
Affiliation(s)
- A J Page
- Nerve-Gut Research Laboratory, Hanson Institute, Department of Gastroenterology, Hepatology and General Medicine, Royal Adelaide Hospital, Frome Road, Adelaide SA5000, Australia
| | | | | |
Collapse
|
136
|
Johnston GAR, Hanrahan JR, Chebib M, Duke RK, Mewett KN. Modulation of Ionotropic GABA Receptors by Natural Products of Plant Origin. GABA 2006; 54:285-316. [PMID: 17175819 DOI: 10.1016/s1054-3589(06)54012-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
137
|
Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GAR. Mixed antagonistic effects of bilobalide at ρ1 GABAC receptor. Neuroscience 2006; 137:607-17. [PMID: 16300902 DOI: 10.1016/j.neuroscience.2005.08.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/16/2005] [Accepted: 08/26/2005] [Indexed: 11/28/2022]
Abstract
Bilobalide was found to be a moderately potent antagonist with a weak use-dependent effect at recombinant human rho(1) GABA(C) receptors expressed in Xenopus oocytes using two-electrode voltage clamp methodology. Antagonism of bilobalide at homomeric rho(1) GABA(C) receptors appeared to be mixed. At low concentration, bilobalide (3 microM) caused a parallel right shift and surmountable GABA maximal response of the GABA dose-response curve characteristic of a competitive antagonist. At high concentrations, bilobalide (10-100 microM) caused nonparallel right shifts and reduced maximal GABA responses of GABA dose-response curves characteristic of a noncompetitive antagonist. The potency of bilobalide appears to be dependent on the concentrations of GABA and was more potent at lower GABA concentrations. The mechanism of action of bilobalide at rho(1) GABA(C) receptors appears to be similar to that of the chloride channel blocker picrotoxinin.
Collapse
Affiliation(s)
- S H Huang
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology D06, Faculty of Medicine, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
138
|
Krogsgaard-Larsen P, Frølund B, Liljefors T. GABAA Agonists and Partial Agonists: THIP (Gaboxadol) as a Non‐Opioid Analgesic and a Novel Type of Hypnotic1. GABA 2006; 54:53-71. [PMID: 17175810 DOI: 10.1016/s1054-3589(06)54003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Povl Krogsgaard-Larsen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
139
|
Xu JY, Sastry BR. Benzodiazepine involvement in LTP of the GABA-ergic IPSC in rat hippocampal CA1 neurons. Brain Res 2005; 1062:134-43. [PMID: 16266690 DOI: 10.1016/j.brainres.2005.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/01/2005] [Accepted: 09/25/2005] [Indexed: 11/16/2022]
Abstract
Benzodiazepine binding sites are present on gamma-aminobutyric acid (GABA) receptors in hippocampal neurons. Diazepam is known to potentiate the amplitude and prolong the decay of GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs). In this study, benzodiazepine involvement in long-term potentiation (LTP) of the IPSC was examined. Whole-cell recordings of IPSCs were made from rat hippocampal CA1 neurons in a slice preparation. LTP was induced by a tetanic stimulation in the stratum radiatum (2 trains of 100 Hz for 1 s, 20 s inter-train interval) while pharmacologically blocking ionotropic glutamate receptors. During LTP, the amplitude of the IPSCs was potentiated in the majority of neurons with the IPSC decay and shape unaffected. Diazepam (5 microM) potentiated the IPSC amplitude and prolonged the decay when applied before, but not during, LTP. In neurons in which LTP could not be induced by a tetanic stimulation, diazepam did not increase the amplitude of the pre-tetanic IPSC. Flumazenil, at a concentration (10 microM) that blocked the enhancement of the IPSC by applied diazepam, had no effect on the IPSC amplitude when applied before LTP induction but significantly decreased the IPSC when applied during LTP maintenance. The antagonist, when applied during the tetanic stimulation, did not block LTP, suggesting that benzodiazepine receptors do not participate in LTP induction. These results indicate that the maintenance of LTP of the IPSC involves (a) the release of endogenous benzodiazepine agonist(s) and/or (b) the participation of benzodiazepine binding sites on subsynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- J-Y Xu
- Neuroscience Research Laboratory, Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
140
|
Abuhamdah S, Fürstner A, Lees G, Chazot PL. Radioligand binding studies of caloporoside and novel congeners with contrasting effects upon [35S] TBPS binding to the mammalian GABAA receptor. Biochem Pharmacol 2005; 70:1382-8. [PMID: 16168965 DOI: 10.1016/j.bcp.2005.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/25/2005] [Accepted: 07/26/2005] [Indexed: 11/21/2022]
Abstract
Caloporoside is a natural active fungal metabolite, which was isolated from Caloporous dichrous and was described to exhibit antibacterial, antifungal and phospholipase C inhibitory activity. We have previously reported evidence that related beta-linked compounds, lactose and octyl-beta-d-mannoside, bind and functionally modulate rodent GABA(A) receptors, respectively. We have characterized the binding pharmacology of synthetic caloporoside and two further congeners, 2-hydroxy-6-([(16R)-(beta-d-mannopyranosyloxy)heptadecyl]) benzoic acid and octyl-beta-d-glucoside on GABA(A) receptors using a [35S]-t-butylbicyclophosphoorothionate (TBPS) radioligand binding assay. Caloporoside and 2-hydroxy-6-([(16R)-(beta-d-mannopyranosyloxy)heptadecyl]) benzoic acid produced concentration-dependent complete inhibition of specific [35S] TBPS binding with overall apparent IC50 values of 14.7+/-0.1 and 14.2+/-0.1 microM, respectively. In contrast, octyl-beta-d-glucoside elicited a concentration-dependent stimulation of specific [35S] TBPS binding (E(max)=144+/-4%; EC50=39.2+/-22.7 nM). The level of stimulation was similar to that elicited by diazepam (E(max)=147+/-6%; EC50=0.8+/-0.1 nM), and was occluded by GABA (0.3 microM). However, the three test compounds failed to elicit any significant effect (positive or negative) upon [3H] flunitrazepam or [3H] muscimol binding, indicating that they did not bind directly, or allosterically couple, to the benzodiazepine or agonist binding site of the GABA(A) receptor, respectively. The constituent monosaccharide, glucose, and both the closely related congeners octyl-beta-d-glucoside or hexyl-beta-d-glucoside have no significant effect upon [35S] TBPS binding. These data, together, provide strong evidence that a beta-glycosidic linkage and chain length are crucial for the positive modulation of [35S] TBPS binding to the GABA(A) receptor by this novel chemical class.
Collapse
Affiliation(s)
- S Abuhamdah
- School of Biological and Biomedical Sciences, Science Park, South Road, Durham University, Durham DH1 3LE, UK
| | | | | | | |
Collapse
|
141
|
Contó MB, de Carvalho JGB, Benedito MAC. Behavioral differences between subgroups of rats with high and low threshold to clonic convulsions induced by DMCM, a benzodiazepine inverse agonist. Pharmacol Biochem Behav 2005; 82:417-26. [PMID: 16297441 DOI: 10.1016/j.pbb.2005.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 09/15/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
In epileptic patients, there is a high incidence of psychiatric comorbidities, such as anxiety. Gamma-aminobutyric acid (GABA) ionotropic receptor GABA(A)/benzodiazepine allosteric site is involved in both epilepsy and anxiety. This involvement is based on the fact that benzodiazepine allosteric site agonists are anticonvulsant and anxiolytic drugs; on the other hand, benzodiazepine inverse agonists are potent convulsant and anxiogenic drugs. The aim of this work was to determine if subgroups of rats selected according to their susceptibility to clonic convulsions induced by a convulsant dose 50% (CD50) of DMCM, a benzodiazepine inverse agonist, would differ in behavioral tests commonly used to measure anxiety (elevated plus-maze, open field) and depression (forced swimming test). In the first experiment, subgroups of adult male Wistar rats were selected after a single dose of DMCM and in the second experiment they were selected after two injections of DMCM given after an interval of 1 week. Those rats presenting full clonic convulsions were termed Low Threshold rats to DMCM-induced clonic convulsions (LTR) and those not having clonic convulsions High Threshold rats to DMCM-induced clonic convulsions (HTR). In both experiments, only those rats presenting full clonic convulsions induced by DMCM and those not showing any signs of motor disturbances were used in the behavioral tests. The results showed that the LTR subgroup selected after two injections of a CD50 of DMCM spent a significantly lower time in the open arms of the elevated plus-maze and in the off the walls area of the open field; moreover, this group also presented a higher number of rearings in the open field. There were no significant differences between HTR and LTR subgroups in the forced swimming test. LTR and HTR subgroups selected after only one injection of DMCM did not differ in the three behavioral tests. To verify if the behavioral differences between HTR and LTR subgroups of rats selected after two injections of DMCM were due to the clonic convulsion, another experiment was carried out in which subgroups of rats susceptible and nonsusceptible to clonic convulsions induced by a CD50 of picrotoxin, a GABA(A) receptor channel blocker, were selected and submitted to the elevated plus-maze and open field tests. The results obtained did not show any significant differences between these two subgroups in the elevated plus-maze and open field tests. In another approach to determine the relation between fear/anxiety and susceptibility to clonic convulsions, subgroups of rats were selected in the elevated plus-maze as more or less fearful/anxious. The CD50 for clonic convulsions induced by DMCM was determined for each of these two subgroups. The results showed a significantly lower CD50 for the more fearful/anxious subgroup, which means a higher susceptibility to clonic convulsions induced by DMCM. The present findings show a relation between susceptibility to clonic convulsions and fear/anxiety and vice versa which may be due to differences in the assembly of GABA(A)/allosteric benzodiazepine site receptors in regions of the brain.
Collapse
Affiliation(s)
- Marcos Brandão Contó
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP 04023-900, Brazil
| | | | | |
Collapse
|
142
|
Pericić D, Lazić J, Strac DS. Chronic treatment with flumazenil enhances binding sites for convulsants at recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors. Biomed Pharmacother 2005; 59:408-14. [PMID: 16084060 DOI: 10.1016/j.biopha.2005.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 02/24/2005] [Indexed: 11/26/2022] Open
Abstract
GABA(A) receptors mediate most of the fast inhibitory neurotransmission in the brain. Prolonged occupancy of these receptors by ligands leads to regulatory changes often resulting in reduction of receptor function. The mechanism of these changes is still unknown. In this study, stably transfected human embryonic kidney (HEK) 293 cells were used as a model to study the effects of prolonged flumazenil (antagonist of benzodiazepine binding sites at GABA(A) receptors) exposure on the recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors, the most common type of GABA(A) receptors found in the brain. Exposure (48 h) of HEK 293 cells stably expressing recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM), enhanced the maximum number (B(max)) without affecting the affinity (K(d)) of [(3)H]TBOB labeled binding sites for convulsants. Diazepam (1 nM-1 mM) in the presence of GABA (1 microM) modulated [(3)H]TBOB binding to control and flumazenil pretreated cells according to a two-site model. No significant differences between the groups were observed in either the potency or efficacy of diazepam to modulate [(3)H]TBOB binding, as evidenced by a lack of significant changes between their IC(50) and I(max) values. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors to flumazenil up-regulates the binding sites for convulsants, but it does not appear to affect the functional coupling between these sites and benzodiazepine binding sites. Along with our recent data, these results suggest that chronic treatment with flumazenil enhances the number of GABA(A) receptors.
Collapse
Affiliation(s)
- Danka Pericić
- Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, P.O.B. 180, 10002 Zagreb, Croatia.
| | | | | |
Collapse
|
143
|
Zheng J, Wen R, Luo X, Lin G, Zhang J, Xu L, Guo L, Jiang H. Design, synthesis, and biological evaluation of the N-diarylalkenyl-piperidinecarboxylic acid derivatives as GABA uptake inhibitors (I). Bioorg Med Chem Lett 2005; 16:225-7. [PMID: 16246548 DOI: 10.1016/j.bmcl.2005.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/30/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Twenty novel N-diarylalkenyl-piperidinecarboxylic acid derivatives were synthesized and evaluated as gamma-aminobutyric acid uptake inhibitors. The biological assay showed that (R)-1-[4,4-bis(3-phenoxymethyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic hydrochloride possessed almost as strong GAT1 inhibitory activity as tiagabine. The synthesis and structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Jianbin Zheng
- Department of Medicinal Chemistry, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Marrs TC. The role of diazepam in the treatment of nerve agent poisoning in a civilian population. ACTA ACUST UNITED AC 2005; 23:145-57. [PMID: 15862082 DOI: 10.2165/00139709-200423030-00002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The main site of action of diazepam, as with other benzodiazepines, is at the GABA(A) receptor, although it has been suggested that some of the potentially beneficial actions of diazepam in nerve agent poisoning are mediated through other means. It is likely that convulsions may have long-term sequelae in the central nervous system, because of damage by anoxia and/or excitotoxicity. Numerous pharmacodynamic studies of the action of diazepam in animals experimentally poisoned with nerve agents have been undertaken. In nearly all of these, diazepam has been studied in combination with other antidotes, such as atropine and/or pyridinium oximes, sometimes in combination with pyridostigmine pretreatment. These studies show that diazepam is an efficacious anticonvulsant in nerve agent poisoning. There is considerable experimental evidence to support the hypothesis that diazepam (and other anticonvulsants) may prevent structural damage to the central nervous system as evidenced by neuropathological changes such as neuronal necrosis at autopsy. In instances of nerve agent poisoning during terrorist use in Japan, diazepam seems to have been an effective anticonvulsant. Consequently, the use of diazepam is an important part of the treatment regimen of nerve agent poisoning, the aim being to prevent convulsions or reduce their duration. Diazepam should be given to patients poisoned with nerve agents whenever convulsions or muscle fasciculation are present. In severe poisoning, diazepam administration should be considered even before these complications occur. Diazepam is also useful as an anxiolytic in those exposed to nerve agents.
Collapse
Affiliation(s)
- Timothy C Marrs
- Food Standards Agency, London and National Poisons Information Service, (Birmingham Centre), City Hospital, Birmingham, UK
| |
Collapse
|
145
|
Cunha AOS, Mortari MR, Oliveira L, Carolino ROG, Coutinho-Netto J, dos Santos WF. Anticonvulsant effects of the wasp Polybia ignobilis venom on chemically induced seizures and action on GABA and glutamate receptors. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:50-7. [PMID: 15953769 DOI: 10.1016/j.cca.2005.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 11/17/2022]
Abstract
Venoms of spiders and wasps are well recognized to present high affinity to the central nervous tissue of many mammalian species. Here we describe the effects of direct exposure of rat (Rattus norvegicus) brains to the crude and denatured venom of the Brazilian social wasp Polybia ignobilis. Lower doses of crude venom injected via intracerebroventricular (i.c.v.) inhibited the exploratory activity of animals, while higher doses provoked severe generalized tonic-clonic seizures, with hind limb extension. The status epilepticus lasted for few minutes leading the animals to respiratory depression and death. In contrast, the denatured venom was anticonvulsant against acute seizures induced by the i.c.v. injection of bicuculline, picrotoxin and kainic acid, but it was ineffective against seizures caused by systemic pentylenetetrazole. Moreover, the [3H]-glutamate binding in membranes from rat brain cortex was inhibited by the denatured venom in lower concentrations than the [3H]-GABA binding. The denatured venom contains free GABA and glutamate (34 and 802 pg/microg of venom, respectively), but they are not the major binding inhibitors. These interactions of venom components with GABA and glutamate receptors could be responsible for the anticonvulsant effects introducing the venom from P. ignobilis as a potential pharmacological source of anticonvulsant drugs.
Collapse
Affiliation(s)
- Alexandra Olimpio Siqueira Cunha
- Neurobiology and Venoms Laboratory, Avenida Bandeirantes, 3900, FFCLRP/USP-Biology, Department of the Faculty of Phylosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, 14040-090 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
146
|
Granger RE, Campbell EL, Johnston GAR. (+)- And (-)-borneol: efficacious positive modulators of GABA action at human recombinant alpha1beta2gamma2L GABA(A) receptors. Biochem Pharmacol 2005; 69:1101-11. [PMID: 15763546 DOI: 10.1016/j.bcp.2005.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 01/04/2005] [Indexed: 11/23/2022]
Abstract
(+)-Borneol is a bicyclic monoterpene used for analgesia and anaesthesia in traditional Chinese and Japanese medicine and is found in the essential oils of medicinal herbs, such as valerian. (+)-Borneol was found to have a highly efficacious positive modulating action at GABA(A) receptors, as did its enantiomer (-)-borneol. The effects of these bicyclic monoterpenes alone and with GABA were evaluated at recombinant human alpha(1)beta(2)gamma(2L) GABA(A) receptors expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. (+)-Borneol (EC(50) 248microM) and (-)-borneol (EC(50) 237microM) enhanced the action of low concentrations of GABA by more than 1000%. These enhancing effects were highly dependent on the relative concentrations of the borneol enantiomer and GABA, and were insensitive to flumazenil indicating that (+)- and (-)-borneol were not acting at classical benzodiazepine sites. The maximal responses to GABA were enhanced 19% by (+)-borneol and reduced 21% by (-)-borneol. The borneol analogues isoborneol, (-)-bornyl acetate and camphor, produced less marked effects. At high concentrations (>1.5mM) (+)- and (-)-borneol directly activated GABA(A) receptors producing 89% and 84%, respectively, of the maximal GABA response indicative of a weak partial agonist action. Although of lower potency, the highly efficacious positive modulatory actions of (+)- and (-)-borneol on GABA responses were at least equivalent to that of the anaesthetic etomidate and much greater than that of diazepam or 5alpha-pregnan-3alpha-ol-20-one. The relatively rigid cage structure of these bicyclic monoterpenes and their high efficacy may aid in a greater understanding of molecular aspects of positive modulation of the activation of GABA(A) receptors.
Collapse
Affiliation(s)
- Renee E Granger
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
147
|
Goel R, Kumar V, Mahajan M. Quinazolines revisited: search for novel anxiolytic and GABAergic agents. Bioorg Med Chem Lett 2005; 15:2145-8. [DOI: 10.1016/j.bmcl.2005.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/04/2005] [Accepted: 02/05/2005] [Indexed: 10/25/2022]
|
148
|
Krogsgaard-Larsen P, Frølund B, Liljefors T, Ebert B. GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol 2005; 68:1573-80. [PMID: 15451401 DOI: 10.1016/j.bcp.2004.06.040] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 06/30/2004] [Indexed: 01/07/2023]
Abstract
The GABA(A) receptor system is implicated in a number of central nervous system (CNS) disorders, making GABA(A) receptor ligands interesting as potential therapeutic agents. Only a few different classes of structures are currently known as ligands for the GABA recognition site on the hetero-pentameric GABA(A) receptor complex, reflecting the very strict structural requirements for GABA(A) receptor recognition and activation. A large number of the compounds showing agonist activity at the GABA(A) receptor site are structurally derived from the GABA(A) agonists muscimol, THIP (Gaboxadol), or isoguvacine, which we developed at the initial stage of the project. Using recombinant GABA(A) receptors, functional selectivity has been shown for a number of compounds, including THIP, showing subunit-dependent potency and maximal response. The pharmacological and clinical activities of THIP probably reflect its potent effects at extrasynaptic GABA(A) receptors insensitive to benzodiazepines and containing alpha(4)beta(3)delta subunits. The results of ongoing clinical studies on the effect of the partial GABA(A) agonist THIP on human sleep pattern show that the functional consequences of a directly acting agonist are distinctly different from those seen after administration of GABA(A) receptor modulators, such as benzodiazepines. In the light of the interest in partial GABA(A) receptor agonists as potential therapeutics, structure-activity studies of a number of analogues of 4-PIOL, a low-efficacy partial GABA(A) agonist derived from THIP, have been performed. In this connection, a series of GABA(A) ligands has been developed showing pharmacological profiles ranging from low-efficacy partial GABA(A) agonist activity to selective antagonist effect.
Collapse
Affiliation(s)
- Povl Krogsgaard-Larsen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
149
|
Gibbs ME, Johnston GAR. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience 2005; 131:567-76. [PMID: 15730863 DOI: 10.1016/j.neuroscience.2004.11.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Avoidance Learning/drug effects
- Behavior, Animal/drug effects
- Bicuculline/pharmacology
- Chickens/physiology
- Dose-Response Relationship, Drug
- Drug Interactions
- GABA Antagonists/pharmacology
- GABA-A Receptor Antagonists
- Inhibition, Psychological
- Male
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Organophosphates/pharmacology
- Phosphinic Acids/pharmacology
- Pyridines/pharmacology
- Receptors, GABA/physiology
- Receptors, GABA-A/physiology
- Reinforcement, Psychology
- Retention, Psychology/drug effects
- Time Factors
- gamma-Aminobutyric Acid/pharmacology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- M E Gibbs
- Department of Pharmacology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
150
|
Lao L, Marvizón JCG. GABAA receptor facilitation of neurokinin release from primary afferent terminals in the rat spinal cord. Neuroscience 2005; 130:1013-27. [PMID: 15652997 DOI: 10.1016/j.neuroscience.2004.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2004] [Indexed: 11/29/2022]
Abstract
Our goal was to test the following hypotheses: 1) GABA(A) receptors facilitate neurokinin release from primary afferent terminals; 2) they do this by suppressing an inhibitory effect of GABA(B) receptors; 3) the activation of these two receptors is controlled by the firing frequency of primary afferents. We evoked neurokinin release by stimulating the dorsal root attached to spinal cord slices, and measured it using neurokinin 1 receptor (NK1R) internalization. Internalization evoked by root stimulation at 1 Hz (but not at 100 Hz) was increased by the GABA(A) receptor agonists muscimol (effective concentration of drug for 50% of the increase [EC50] 3 microM) and isoguvacine (EC50 4.5 microM). Internalization evoked by root stimulation at 100 Hz was inhibited by the GABA(A) receptor antagonists bicuculline (effective concentration of drug for 50% of the inhibition [IC50] 2 microM) and picrotoxin (IC50 243 nM). Internalization evoked by incubating the root with capsaicin (to selectively recruit nociceptive fibers) was increased by isoguvacine and abolished by picrotoxin. Therefore, GABA(A) receptors facilitate neurokinin release. Isoguvacine-facilitated neurokinin release was inhibited by picrotoxin, low Cl-, low Ca2+, Ca2+ channel blockers and N-methyl-D-aspartate receptor antagonists. Bumetanide, an inhibitor of the Na(+)-K(+)-2Cl- cotransporter, inhibited isoguvacine-facilitated neurokinin release, but this could be attributed to a direct inhibition of GABA(A) receptors. The GABA(B) agonist baclofen inhibited NK1R internalization evoked by 100 Hz root stimulation (IC50 1.5 microM), whereas the GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl) phosphinic acid (CGP-55845) increased NK1R internalization evoked by 1 Hz root stimulation (EC50 21 nM). Importantly, baclofen inhibited isoguvacine-facilitated neurokinin release, and CGP-55845 reversed the inhibition of neurokinin release by bicuculline. In conclusion, 1) GABA(B) receptors located presynaptically in primary afferent terminals inhibit neurokinin release; 2) GABA(A) receptors located in GABAergic interneurons facilitate neurokinin release by suppressing GABA release onto these GABA(B) receptors; 3) high frequency firing of C-fibers stimulates neurokinin release by activating GABA(A) receptors and inhibiting GABA(B) receptors, whereas low frequency firing inhibits neurokinin release by the converse mechanisms.
Collapse
Affiliation(s)
- L Lao
- Center for Neurovisceral Sciences and Women's Health, CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|