101
|
Mannion RJ, Doubell TP, Gill H, Woolf CJ. Deafferentation is insufficient to induce sprouting of A-fibre central terminals in the rat dorsal horn. J Comp Neurol 1998; 393:135-44. [PMID: 9548693 DOI: 10.1002/(sici)1096-9861(19980406)393:2<135::aid-cne1>3.0.co;2-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanism by which A-fibres sprout into lamina II of the dorsal horn of the adult rat after peripheral nerve injury, a region which normally receives input from noci- and thermoreceptive C-fibres alone, is not known. Recent findings indicating that selective C-fibre injury and subsequent degenerative changes in this region are sufficient to induce sprouting of uninjured A-fibres have raised the possibility that the structural reorganisation of A-fibre terminals is an example of collateral sprouting, in that deafferentation of C-fibre terminals alone in lamina II may be sufficient to cause A-fibre sprouting. Primary afferents of the sciatic nerve have their cell bodies located predominantly in the L4 and L5 dorsal root ganglia (DRGs), and the A-fibres of each DRG have central termination fields that show an extensive rostrocaudal overlap in lamina III in the L4 and L5 spinal segments. In this study, we have found that C-fibres from either DRG have central terminal fields that overlap much less in lamina II than A-fibres in lamina III. We have exploited this differential terminal organisation to produce deafferentation in lamina II of the L5 spinal segment, by an L5 rhizotomy, and then test whether A-fibres of the intact L4 dorsal root ganglion, which terminate within the L5 segment, sprout into the denervated lamina II in the L5 spinal segment. Neither intact nor peripherally injured A-fibres were seen to sprout into denervated lamina II after L5 rhizotomy. Sprouting was only ever seen into regions of lamina II containing the terminals of peripherally injured C-fibres. Therefore, it seems that the creation of synaptic space within lamina II is not the explanation for A-fibre sprouting after peripheral nerve section or crush, emphasising that injury-induced changes in C-fibres and subsequent chemotrophic effects in the superficial dorsal horn are the likely explanation.
Collapse
Affiliation(s)
- R J Mannion
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | | | |
Collapse
|
102
|
Roche AK, Kajander KC. Central projections of nerves innervating the rabbit maxillary sinus localized using wheat germ agglutinin-horseradish peroxidase or choleragenoid-horseradish peroxidase. J Comp Neurol 1998; 393:16-24. [PMID: 9520097 DOI: 10.1002/(sici)1096-9861(19980330)393:1<16::aid-cne2>3.0.co;2-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central projections of nerves innervating the rabbit maxillary sinus were localized by using wheat germ agglutinin-horseradish peroxidase (WGA-HRP) or choleragenoid-horseradish peroxidase (B-HRP). Tracer was placed into the left maxillary sinus; rabbits were killed 3 or 5 days later, and histochemical localization of transported WGA-HRP or B-HRP was performed. Labeled cell bodies (437-545/animal) were seen in the ipsilateral trigeminal ganglion. Very few labeled cell bodies (zero to three/animal) were observed in the contralateral ganglion. The area of cell bodies labeled by WGA-HRP appeared similar to the area of cell bodies labeled by B-HRP. Transganglionic projections from either tracer were localized to lamina II of the ipsilateral subnucleus caudalis. In addition, WGA-HRP labeling was occasionally observed in lamina I. No labeling was present in other areas of the brainstem. In contrast to the above results, other studies have demonstrated that B-HRP produces terminal-like labeling in deeper layers of the gray matter. We injected B-HRP into the infraorbital nerve and sciatic nerve, which are known to contain projections to deep layers of the gray matter. Labeling was observed in the deep layers of the medullary or spinal dorsal horn 5 days later, suggesting that nerves innervating the sinus only project to superficial laminae. These results suggest that neurons in superficial laminae of the subnucleus caudalis may be important for the reflex initiation of the increased glandular secretions in the maxillary sinus during sinusitis.
Collapse
Affiliation(s)
- A K Roche
- Department of Pharmacology, University of Minnesota, Minneapolis 55455-0329, USA
| | | |
Collapse
|
103
|
Miki K, Fukuoka T, Tokunaga A, Noguchi K. Calcitonin gene-related peptide increase in the rat spinal dorsal horn and dorsal column nucleus following peripheral nerve injury: up-regulation in a subpopulation of primary afferent sensory neurons. Neuroscience 1998; 82:1243-52. [PMID: 9466443 DOI: 10.1016/s0306-4522(97)00258-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcitonin gene-related peptide in sensory primary afferent neurons has an excitatory effect on postsynaptic neurons and potentiates the effect of substance P in the rat spinal dorsal horn. It has been established that calcitonin gene-related peptide expression in dorsal root ganglion neurons is depressed, and the effect of calcitonin gene-related peptide on dorsal horn neurons is attenuated, following peripheral nerve injury. We report here that a subpopulation of injured dorsal root ganglion neurons show increased expression of calcitonin gene-related peptide. Using in situ hybridization and the retrograde tracer, FluoroGold, we detected an increased number of medium- to large-sized rat dorsal root ganglion neurons projecting to the gracile nucleus that expressed alpha-calcitonin gene-related peptide messenger RNA following spinal nerve transection. Immunohistochemistry revealed a significant increase in calcitonin gene-related peptide immunoreactivity in the gracile nucleus and in laminae III-IV of the spinal dorsal horn. These results indicate that a subpopulation of dorsal root ganglion neurons express alpha-calcitonin gene-related peptide messenger RNA in response to peripheral nerve injury, and transport this peptide to the gracile nucleus and to laminae III-IV of the spinal dorsal horn. The increase of the excitatory neuropeptide, calcitonin gene-related peptide, in sites of primary afferent termination may affect the excitability of postsynaptic neurons, and have a role in neuronal plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- K Miki
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | |
Collapse
|
104
|
Chen S, Aston-Jones G. Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool. Neuroscience 1997; 82:1151-63. [PMID: 9466437 DOI: 10.1016/s0306-4522(97)00336-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is well established that some neuroanatomical tracers may be taken up by local axonal terminals and transported to distant axonal collaterals (e.g., transganglionic transport in dorsal root ganglion cells). However, such collateral-collateral transport of tracers has not been systematically examined in the central nervous system. We addressed this issue with four neuronal tracers--biocytin, biotinylated dextran amine, cholera toxin B subunit, and Phaseolus vulgaris-leucoagglutinin--in the cerebellar cortex. Labelling of distant axonal collaterals in the cerebellar cortex (indication of collateral-collateral transport) was seen after focal iontophoretic microinjections of each of the four tracers. However, collateral-collateral transport properties differed among these tracers. Injection of biocytin or Phaseolus vulgaris-leucoagglutinin in the cerebellar cortex yielded distant collateral labelling only in parallel fibres. In contrast, injection of biotinylated dextran amine or cholera toxin B subunit produced distant collateral labelling of climbing fibres and mossy fibres, as well as parallel fibres. The present study is the first systematic examination of collateral-collateral transport following injection of anterograde tracers in brain. Such collateral-collateral transport may produce false-positive conclusions regarding neural connections when using these tracers for anterograde transport. However, this property may also be used as a tool to determine areas that are innervated by common distant afferents. In addition, these results may indicate a novel mode of chemical communication in the nervous system.
Collapse
Affiliation(s)
- S Chen
- Department of Psychiatry and Neuroscience Program, MCP and Hahnemann Medical School, Allegheny University, Philadelphia, PA 19102-1192, USA
| | | |
Collapse
|
105
|
Liss AG, Wiberg M. Loss of nerve endings in the spinal dorsal horn after a peripheral nerve injury. An anatomical study in Macaca fascicularis monkeys. Eur J Neurosci 1997; 9:2187-92. [PMID: 9421178 DOI: 10.1111/j.1460-9568.1997.tb01385.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In patients, the long-term outcome of injuries to sensory nerves is poor. This is only partly due to mismatching of regenerating axons at the transection site. We found in the macaque monkey that 70% of the transganglionic labelling in the spinal dorsal horn was still significantly reduced 21 months after transection and suturing of the sensory radial nerve. The reduction was evenly distributed throughout the terminal field of nerve endings, which were labelled with a mixture of the intra-axonal nerve tracer wheat germ agglutinin-horseradish peroxidase conjugate and pure horseradish peroxidase.
Collapse
Affiliation(s)
- A G Liss
- Department of Anatomy, Uppsala University, Sweden
| | | |
Collapse
|
106
|
Sengelaub DR, Muja N, Mills AC, Myers WA, Churchill JD, Garraghty PE. Denervation-induced sprouting of intact peripheral afferents into the cuneate nucleus of adult rats. Brain Res 1997; 769:256-62. [PMID: 9374193 DOI: 10.1016/s0006-8993(97)00708-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In adult monkeys with dorsal rhizotomies extending from the second cervical (C2) to the fifth thoracic (T5) vertebrae, cortex deprived of its normal inputs regained responsiveness to inputs conveyed by intact peripheral afferents from the face [T.P. Pons, P.E. Garraghty, A.K. Ommaya, J.H. Kaas, E. Taub, M. Mishkin, Massive reorganization of the primary somatosensory cortex after peripheral sensory deafferentation, Science 252 (1991) 1857-1860]. It has been suggested that the extent of this massive topographic reorganization may be due to the establishment of novel connections between intact afferents and neurons denervated after dorsal rhizotomy [P.E. Garraghty, D.P. Hanes, S.L. Florence, J.H. Kaas, Pattern of peripheral deafferentation predicts reorganizational limits in adult primate somatosensory cortex, Somatosens. Motor Res. 11 (1994) 109-117]. Using adult rats with comparably extensive dorsal rhizotomies, we employed anatomical tracing techniques to address this possibility. Subcutaneous hindpaw injections of horseradish peroxidase conjugated to either wheat germ agglutinin or cholera toxin subunit B revealed aberrant expansions of gracile projections into the cuneate and, in one case, external cuneate nucleus within three months of the deafferentation. It seems plausible that such modest sprouting of ascending projections at the level of the brainstem may form functional connections which, through divergence, ultimately drive a larger population of neurons in cortex. This new growth may well account for both the substantial cortical reorganization observed in the 'Silver Spring monkeys' [T.P. Pons, P.E. Garraghty, A.K. Ommaya, J.H. Kaas, E. Taub, M. Mishkin, Massive reorganization of the primary somatosensory cortex after peripheral sensory deafferentation, Science 252 (1991) 1857-1860] and the 'referred sensation' phenomena (see J.P. Donoghue, Plasticity of adult sensorimotor representations, Curr. Opin. Neurobiol., 5 (1995) 749-754 for review) reported to follow proximal limb amputations in humans.
Collapse
Affiliation(s)
- D R Sengelaub
- Department of Psychology, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | |
Collapse
|
107
|
Doubell TP, Woolf CJ. Growth-associated protein 43 immunoreactivity in the superficial dorsal horn of the rat spinal cord is localized in atrophic C-fiber, and not in sprouted A-fiber, central terminals after peripheral nerve injury. J Comp Neurol 1997; 386:111-8. [PMID: 9303528 DOI: 10.1002/(sici)1096-9861(19970915)386:1<111::aid-cne10>3.0.co;2-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury induces the up-regulation in dorsal root ganglion cells of growth-associated protein 43 (GAP-43) and its transport to the superficial laminae of the dorsal horn of the spinal cord, where it is located primarily in unmyelinated axons and growth-cone like structures. Peripheral nerve injury also induces the central terminals of axotomized myelinated axons to sprout and form novel synaptic contacts in lamina II of the dorsal horn. To investigate whether the sprouting of A-fiber central terminals into lamina II is the consequence of GAP-43 incorporation into their terminal membranes, we have used an ultrastructural analysis with double labelling to identify the localization of GAP-43 immunoreactivity. Transganglionic transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was used to identify C-fiber terminals. Transganglionic transport of the B fragment of cholera toxin conjugated to horseradish peroxidase (B-HRP) was used to label A-fiber sciatic nerve central terminals in combination with GAP-43 immunocytochemistry. GAP-43 was found to colocalize only with WGA-HRP- and not with B-HRP-labelled synapses or axons. In addition, many single-labelled GAP-43 synapses were observed. Many of the WGA-HRP-labelled terminals that were characterized by degenerative changes were GAP-43 immunoreactive. Our results indicate that peripheral nerve injury induces novel synapse formation of A fibers in lamina II but that up-regulated levels of GAP-43 are present mainly in other axon projections to the superficial dorsal horn.
Collapse
Affiliation(s)
- T P Doubell
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | |
Collapse
|
108
|
Tao YX, Zhao ZQ. Ultrastructure of Fos-labeled neurons relating to nociceptive primary afferent and substance P terminals in rat spinal superficial laminae. Neuropeptides 1997; 31:327-32. [PMID: 9308019 DOI: 10.1016/s0143-4179(97)90067-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of Fos-labeled neurons at ultrastructural level was confirmed in the spinal superficial laminae following an injection of formalin into rat hindpaw in the present study. The Fos-like immunoreactive products were found exclusively in regions associated with the euchromatin in the nuclei of Fos-labeled neurons. By the methods used-of anterograde transport of horseradish peroxidase conjugated to wheat-germ agglutinin and immunocytochemistry-it was observed that some Fos-labeled neuronal bodies received synaptic contacts from, or were apposed directly to, small diameter primary afferent terminals in the spinal superficial laminae. By means of double-labeled immunocytochemistry, a direct apposition was often observed and a synaptic relationship was occasionally found between Fos-labeled neuronal bodies and substance P-like immunoreactive terminals.
Collapse
Affiliation(s)
- Y X Tao
- Shanghai Brain Research Institute, Chinese Academy of Sciences, People's Republic of China
| | | |
Collapse
|
109
|
Sugimoto T, Fujiyoshi Y, He YF, Xiao C, Ichikawa H. Trigeminal primary projection to the rat brain stem sensory trigeminal nuclear complex and surrounding structures revealed by anterograde transport of cholera toxin B subunit-conjugated and Bandeiraea simplicifolia isolectin B4-conjugated horseradish peroxidase. Neurosci Res 1997; 28:361-71. [PMID: 9274832 DOI: 10.1016/s0168-0102(97)00064-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Trigeminal primary afferent neurons were labeled by injecting the rat trigeminal ganglion with either wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), cholera toxin B subunit (B)-HRP or Bandeiraea simplicifolia isolectin B4 (IB4)-HRP. B-HRP stained medium to large cells (> 600 microm2), while IB4-HRP mostly small cells (< 400 microm2). WGA-HRP labeled trigeminal ganglion neurons of all sizes. Cell bodies in the mesencephalic trigeminal tract nucleus were labeled with WGA-HRP and B-HRP but not IB4-HRP. B-HRP revealed dense projection to the entire brain stem sensory trigeminal nuclear complex (BSTC) except for lamina II of the medullary dorsal horn (MDH). Some contralateral projection was also seen in the caudal part of MDH. Non-trigeminal nuclei receiving B-HRP-labeled terminals included the paratrigeminal nucleus (paraV), solitary tract nucleus, supratrigeminal nucleus, Probst's nucleus and median accessory nucleus. Following IB4-HRP application, terminal label was found in more restricted regions within the BSTC. Modest terminal label was seen in the dorsal part of principal sensory nucleus and at the medial edge of subnucleus interpolaris, while relatively dense terminal fields were seen in the dorsal half of subnucleus oralis. The MDH laminae I and II contained dense terminal label. Non-trigeminal nuclei were almost devoid of the IB4-HRP-labeled terminals excepting the paraV that contained dense terminal label. The terminal areas revealed with WGA-HRP coincided with B-HRP-labeled and IB4-HRP-labeled areas combined.
Collapse
Affiliation(s)
- T Sugimoto
- Department of Oral Anatomy II, Okayama University Dental School, Japan
| | | | | | | | | |
Collapse
|
110
|
Eriksson NP, Aldskogius H, Grant G, Lindsay RM, Rivero-Melian C. Effects of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 on the laminar distribution of transganglionically fransported choleragenoid in the spinal cord dorsal horn following transection of the sciatic nerve in the adult rat. Neuroscience 1997; 78:863-72. [PMID: 9153664 DOI: 10.1016/s0306-4522(96)00565-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Spinal cord projections from transected sciatic nerves treated with different neurotrophins were investigated in the adult rat following injections of choleragenoid into the proximal stump of the injured nerve. Transganglionically transported choleragenoid labelled primary afferent fibres in all spinal cord dorsal horn laminae except the outer part of lamina II (II(o)), which is almost devoid of labelling. Transection of the sciatic nerve, however, resulted in intense transganglionic choleragenoid labelling in lamina II(o) and in lamina I. In this study, the sciatic nerve was transected bilaterally and 4erve growth factor (6 or 24 microg), brain-derived neurotrophic factor (20 microg), neurotrophin-3 (27 microg) or cytochrome C (8 microg; control substance) was applied unilaterally during postoperative survival times of eight, 16 and 32 days. The animals received bilateral injections of choleragenoid into the injured nerve two days before they were killed. The effect of the axotomy and neurotrophin treatment was evaluated by analysing the extent of choleragenoid and substance P immunoreactivity in the somatotopically appropriate spinal cord dorsal horn regions. At eight days' postoperative survival, laminae I and II(o) on the transected, non-treated side showed much more intense choleragenoid-like immunoreactivity compared to the contralateral transected, nerve growth factor-treated (6 and 24 microg) side. A similar situation was also found in cases treated with the higher dose (24 microg) at 16 days but to a lesser degree when the lower (6 microg) dose was used. After 32 days' survival, there was no detectable side difference in the choleragenoid labelling pattern. At 16 days' survival, the mean area of choleragenoid-positive ganglion cell body profiles in the L5 dorsal root ganglion of the transected, non-treated side was significantly smaller than the mean area of the transected, nerve growth factor-treated (24 microg) neurons. An axotomy-induced depletion of substance P-like immunoreactivity was seen from eight days' survival and onwards, whereas on the nerve growth factor-treated side a clearcut substance P depletion was not observed until 32 days. Brain-derived neurotrophic factor, neurotrophin-3 and cytochrome C had no detectable effects on the distribution of choleragenoid labelling or substance P-like immunoreactivity in the dorsal horn following sciatic nerve transection. In conclusion, peripheral nerve injury-induced expansion of primary afferent choleragenoid labelling in the spinal cord dorsal horn is counteracted by treating the axotomized nerve with nerve growth factor.
Collapse
Affiliation(s)
- N P Eriksson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
111
|
Doubell TP, Mannion RJ, Woolf CJ. Intact sciatic myelinated primary afferent terminals collaterally sprout in the adult rat dorsal horn following section of a neighbouring peripheral nerve. J Comp Neurol 1997; 380:95-104. [PMID: 9073085 DOI: 10.1002/(sici)1096-9861(19970331)380:1<95::aid-cne7>3.0.co;2-o] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peripheral nerve section induces sprouting of the central terminals of axotomized myelinated primary afferents outside their normal dorsoventral termination zones in lamina I, III, and IV of the dorsal horn into lamina II, an area that normally only receives unmyelinated C-fiber input. This axotomy-induced regenerative sprouting is confined to the somatotopic boundaries of the injured nerve in the spinal cord. We examined whether intact myelinated sciatic afferents are able to sprout novel terminals into neighbouring areas of the dorsal horn in the adult rat following axotomy of two test nerves, either the posterior cutaneous nerve of the thigh or the saphenous nerve. These peripheral nerves have somatotopically organized terminal areas in the dorsal horn that overlap in some areas and are contiguous in others, with that of the sciatic central terminal field. Two weeks after cutting either the posterior cutaneous or the saphenous nerve, intact sciatic myelinated fibers labelled with the B fragment of cholera toxin conjugated to horseradish peroxidase (B-HRP) sprouted into an area of lamina II normally only innervated by the adjacent injured test nerve. This collateral sprouting was strictly limited, however, to those particular areas of the dorsal horn where the A-fiber terminal field of the control sciatic and the C-fiber terminal field of the injured test nerve overlapped in the dorsoventral plane. No mediolateral sprouting was seen into those areas of neuropil solely innervated by the test nerve. We conclude that intact myelinated primary afferents do have the capacity to collaterally sprout, but that any resultant somatotopic reorganization of central projections is limited to the dorsoventral plane. These changes may contribute to sensory hypersensitivity at the edges of denervated skin.
Collapse
Affiliation(s)
- T P Doubell
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | |
Collapse
|
112
|
Wang XM, Qin YQ, Terman JR, Martin GF. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 98:151-63. [PMID: 9051256 DOI: 10.1016/s0165-3806(96)00167-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The first objective of the present study was to ask when axons of the fasciculus gracilis reach the nucleus gracilis in the North American opossum (Didelphis virginiana). When Fast Blue (FB) was injected into the lumbar cord on postnatal day (PD) 1 and the pups were killed 2 days later, labeled axons were present within a distinct fasciculus gracilis at thoracic and cervical levels of the cord. When comparable injections were made at PD3 or 5 and the pups were allowed to survive for the same time period, a few labeled axons could be followed to the caudal medulla where they were located dorsal to the presumptive nucleus gracilis. In order to verify these observations and to determine if any of the axons which innervate the nucleus gracilis early in development originate within dorsal root ganglia, we also employed cholera toxin conjugated to horseradish peroxidase (CT-HRP) to label dorsal root axons transganglionically. When CT-HRP was injected into the hindlimb on PD1 and the pups were maintained for 1 day prior to death and HRP histochemistry, labeled axons were present within the fasciculus gracilis at thoracic and cervical levels, but they could not be traced into the medulla. When comparable injections were made on PD3, and the pups were maintained for 2 days, labeled axons were present within the caudal medulla. Our second objective was to determine whether axons of the fasciculus gracilis grow through a lesion of their spinal pathway during early development. In one group of animals, the thoracic cord was transected at PD5, 8, 12, 20 and 26 and bilateral injections of Fast Blue (FB) were made four segments caudal to the lesion 30-40 days later. After a 3-5 day survival, the pups were killed and perfused so that the spinal cord and brainstem could be removed and sectioned for fluorescence microscopy. In all of the cases lesioned at PD5, axons of the fasciculus gracilis were labeled rostral to the site of transection and they could be followed to the nucleus gracilis. Evidence for growth of fasciculus gracilis axons into the caudal medulla was also seen in cases lesioned at PD8. In contrast, labeled axons were not observed rostral to the lesion when it was made at PD12 or at later stages of development. In order to verify that some of the axons which crossed the lesion originated within dorsal root ganglia, the thoracic cord was transected at PD5 in another group of animals and 7 days later, injections of CT-HRP were made into one of the hindlimbs. After a 3 day survival, labeled axons could be traced through the lesion site and into the caudal medulla. We conclude that axons of the fasciculus gracilis reach the nucleus gracilis by at least PD5 in the opossum and that they grow through a lesion of their spinal pathway when it is made at the same age or shortly thereafter. The critical period for such growth appears to end between PD8 and PD12.
Collapse
Affiliation(s)
- X M Wang
- Department of Cell Biology, Neurobiology and Anatomy, Ohio State University, College of Medicine, Columbus 43210, USA
| | | | | | | |
Collapse
|
113
|
Collateral sprouting of uninjured primary afferent A-fibers into the superficial dorsal horn of the adult rat spinal cord after topical capsaicin treatment to the sciatic nerve. J Neurosci 1996. [PMID: 8756447 DOI: 10.1523/jneurosci.16-16-05189.1996] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
That terminals of uninjured primary sensory neurons terminating in the dorsal horn of the spinal cord can collaterally sprout was first suggested by Liu and Chambers (1958), but this has since been disputed. Recently, horseradish peroxidase conjugated to the B subunit of cholera toxin (B-HRP) and intracellular HRP injections have shown that sciatic nerve section or crush produces a long-lasting rearrangement in the organization of primary afferent central terminals, with A-fibers sprouting into lamina II, a region that normally receives only C-fiber input (Woolf et al., 1992). The mechanism of this A-fiber sprouting has been thought to involve injury-induced C-fiber transganglionic degeneration combined with myelinated A-fibers being conditioned into a regenerative growth state. In this study, we ask whether C-fiber degeneration and A-fiber conditioning are both necessary for the sprouting of A-fibers into lamina II. Local application of the C-fiber-specific neurotoxin capsaicin to the sciatic nerve has previously been shown to result in C-fiber damage and degenerative atrophy in lamina II. We have used B-HRP to transganglionically label A-fiber central terminals and have shown that 2 weeks after topical capsaicin treatment to the sciatic nerve, the pattern of B-HRP staining in the dorsal horn is indistinguishable from that seen after axotomy, with lamina II displaying novel staining in the identical region containing capsaicin-treated C-fiber central terminals. These results suggest that after C-fiber injury, uninjured A-fiber central terminals can collaterally sprout into lamina II of the dorsal horn. This phenomenon may help to explain the pain associated with C-fiber neuropathy.
Collapse
|
114
|
Abstract
The response to injury of ascending collaterals of dorsal root axons within the dorsal column (DC) was studied after neonatal spinal overhemisection (OH) made at different levels of the spinal cord. The transganglionic tracer, cholera toxin conjugated to horseradish peroxidase, and the anterograde tracer, biotinylated dextran amine, were used to label dorsal root ganglion cells with peripheral axons contributing to the sciatic nerve. There was no indication of a regenerative attempt by DC axons at acute survival times (3 days and later) after cervical injury, replicating previous work done at chronic survival periods (Lahr and Stelzner [1990] J. Comp. Neurol. 293:377-398). There was also no evidence of DC regeneration after lumbar OH injury even though immunohistochemical studies using the oligodendrocyte markers Rip and myelin basic protein showed few oligodendrocytes in the gracile fasciculus at lumbar levels at birth. Therefore, the lack of myelin in the dorsal funiculus at lumbar levels does not enhance the growth of neonatally axotomized DC axons. In addition, DC axons did not regenerate when presented with fetal spinal tissue implanted into thoracic OH lesions, even though positive control experiments showed that segmental dorsal root axons containing calcition gene-related peptide and corticospinal axons grew into these implants, replicating previous work of others. When a thoracic OH lesion, with or without a fetal spinal implant, was combined with sciatic nerve injury to attempt to stimulate an intracellular regenerative response of DRG neurons, again, no evidence of DC axonal regeneration was detected. Quantitative studies of the L4 and L5 dorsal root ganglia (DRG) showed that OH injury did not result in DRG neuronal loss. However, sciatic nerve injury did result in significant post-axotomy retrograde cell loss of DRG neurons, even in groups receiving thoracic embryonic spinal implants, and is one explanation for the minimal effect of sciatic nerve injury on DC regeneration. Although fetal tissue did not appear to rescue a significant number of DRG neurons, the quantitative analysis showed an enlargement of the largest class of DRG neuron, the class that contributes to the DC projection, in all groups receiving fetal tissue implants. This apparent trophic effect did not affect DC regeneration or neuronal survival after peripheral axotomy. Further studies are needed to determine why DC axons do not regenerate in a neonatal spinal environment or within fetal tissue implants, especially because previous work by others in both the developing and adult spinal cord shows that dorsal root axons will grow within the same type of fetal spinal implant.
Collapse
Affiliation(s)
- L J Dent
- Department of Anatomy and Cell Biology, State University of New York Health Science Center, Syracuse 13210, USA
| | | | | |
Collapse
|
115
|
Lekan HA, Carlton SM, Coggeshall RE. Sprouting of A beta fibers into lamina II of the rat dorsal horn in peripheral neuropathy. Neurosci Lett 1996; 208:147-50. [PMID: 8733291 DOI: 10.1016/0304-3940(96)12566-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholera toxin beta-subunit conjugated to horseradish peroxidase was used to label the large myelinated (A beta) fiber input to the dorsal horn in a model of peripheral neuropathy induced by tight ligation of the L5 and L6 spinal nerves. Following induction of neuropathy, A beta fibers were present in lamina II of the ipsilateral dorsal horn, a region normally devoid of A beta input. This reorganization of large fiber input to the superficial dorsal horn provides some anatomical basis for sensory changes found in this model of neuropathic pain.
Collapse
Affiliation(s)
- H A Lekan
- Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | | | |
Collapse
|
116
|
Abstract
Injections of cholera toxin B-chain conjugated to horseradish peroxidase into individual peripheral branches of the trigeminal nerve or into the trigeminal ganglion showed that an ascending trigeminal tract (TTA) terminated in distinct ventral and dorsal divisions of the principal sensory nucleus (PrVv and PrVd, respectively), and a descending tract (TTD) terminated within pars oralis, pars interpolaris, and pars caudalis divisions of the nucleus of TTD (nTTD) and within the dorsal horn of the first six cervical spinal segments. In PrVd, mandibular, ophthalmic, and maxillary projections were predominantly located dorsally, ventrally, and medially, respectively. In nTTD, mandibular projections lay dorsomedially, ophthalmic projections lay ventrolaterally, and maxillary projections lay in between. At caudal medullary and spinal levels, mandibular projections were situated medially, ophthalmic projections were situated laterally, and maxillary projections were situated centrally. The terminations within the dorsal horn were most dense in laminae III and IV and were least dense in lamina II, with laminae III-IV also receiving topographically organised contralateral projections. Extratrigeminal projections were mainly to the external cuneate nucleus by way of a lateral descending trigeminal tract (lTTD; Dubbeldam and Karten [1978] J. Comp. Neurol. 180:661-678) and to the region of the tract of Lissauer and lamina I of the dorsal horn. Other projections were to a region medial to the apex of pars interpolaris, to the nuclei ventrolateralis anterior (Vla) and presulcalis anterior (Pas) of the solitary complex, and sparsely to the lateral reticular formation (plexus of Horsley) ventral to TTD. No projections were seen to the trigeminal motor nuclei or to the cerebellum.
Collapse
Affiliation(s)
- J M Wild
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand.
| | | |
Collapse
|
117
|
Coggeshall RE, Jennings EA, Fitzgerald M. Evidence that large myelinated primary afferent fibers make synaptic contacts in lamina II of neonatal rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 92:81-90. [PMID: 8861726 DOI: 10.1016/0165-3806(95)00207-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Choleragenoid horseradish peroxidase (B-HRP) is a retrogradely transported marker that selectively labels large cutaneous myelinated primary afferent fibers. In adults, B-HRP labelled large afferent fibers are seen to enter laminae III-V, and to a lesser extent lamina I, whereas lamina II, which is the major termination site of unmyelinated primary afferents, remains unlabelled. In the neonate, however, there is extensive B-HRP label in lamina II. The present study shows that the B-HRP labelled fibers in the neonate make many synaptic contacts in lamina II. This supports the idea that large primary afferent fibers in neonatal animals make synaptic contact with post-synaptic targets that presumably process nociceptive information. Accordingly to ameliorate pain in neonates it may be more important to block low threshold sensory input whereas in adults it would be more important to block the high threshold inputs.
Collapse
Affiliation(s)
- R E Coggeshall
- Department of Anatomy and Neuroscience, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
118
|
Angelucci A, Clascá F, Sur M. Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods 1996; 65:101-12. [PMID: 8815303 DOI: 10.1016/0165-0270(95)00155-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report an improved immunohistochemical protocol for revealing anterograde axonal transport of the subunit B of cholera toxin (CTB) which stains axons and terminals in great detail, so that single axons can be followed over long distances and their arbors reconstructed in their entirety. Our modifications enhance the quality of staining mainly by increasing the penetration of the primary antibody in the tissue. The protocol can be modified to allow combination in alternate sections with tetramethylbenzidine (TMB) histochemical staining of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Using the protocol, we tested the performance of CTB as an anterograde tracer under two experimental paradigms which render other anterograde tracers less sensitive or unreliable: (1) labeling the entire retinofugal projection to the brain after injections into the vitreal chamber of the eye, and (2) labeling developing projections in the cortex and thalamus of early postnatal mammals. Qualitative comparisons were made with other tracers (Phaseolus vulgaris leucoagglutinin, dextran rhodamine, biotinylated dextran, free WGA, or WGA-HRP) that were used to label these same projections. From these observations it is clear that CTB, visualized with our protocol, provides more sensitive anterograde labeling of retinofugal projections as well as of axonal connections in the neonatal forebrain.
Collapse
Affiliation(s)
- A Angelucci
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
119
|
Abstract
The aim of the present study has been to investigate the projections of hindlimb muscle afferent fibers to the spinal cord with particular emphasis on the ventral horn and the column of Clarke. Following transections of the appropriate ventral roots, injections of the B-subunit of cholera toxin conjugated to horseradish peroxidase were made into the tibial, peroneal, hamstring, superior gluteal, femoral, and obturator nerves in one group of adult rats. In another group of rats, similar experiments were done with intact ventral roots in order to map the location in the ventral horn of the motoneuron cell columns supplying each investigated nerve. An extensive overlap was found for the different nerve projections to Rexed's laminae V-VII. A somatotopic organization of the nerve projections was seen in the lamina IX cell groups of the ventral horn as well as in the column of Clarke, even though an overlap existed. The densest primary afferent projection from each injected nerve was to its homonymous motoneurons. Only a small to moderate overlap between the projections of the tributary branches of the sciatic nerve was found in the ventral horn, whereas the obturator and femoral nerve projections showed more profound overlap. In the column of Clarke, hindlimb nerves innervating distal muscles projected medially, and nerves innervating proximal muscles projected laterally.
Collapse
Affiliation(s)
- C Rivero-Melián
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
120
|
Gentle MJ, Hunter LN, Sterling RJ. Projections of ankle joint afferents to the spinal cord and brainstem of the chicken (Gallus g. domesticus). J Comp Neurol 1995; 361:669-80. [PMID: 8576421 DOI: 10.1002/cne.903610409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The projections of the ankle joint capsule afferents were studied by transganglionic transport of horseradish peroxidase injected directly into the ankle joint. The number and size of the labelled dorsal root ganglion cells were measured from synsacral nerves 2-9. In the dorsal root ganglia, all sizes of sensory neurones were labelled, and the largest number of labelled cells was in ganglia 5-7. The extensive sympathetic innervation of the ankle joint was identified by the large number of cell bodies labelled in the sympathetic ganglia of the paravertebral chain. Labelled afferent fibres projected to the spinal cord from the 2nd to the 8th synsacral nerves, with the rostral projection mainly via Lissauer's tract and the dorsal funiculus. Terminal labelling in the dorsal horn was identified in laminae I-III and VI, with a slight projection to V. Two areas of dense labelling, which did not correspond with the largest number of labelled dorsal root ganglion cells, were identified. A rostral area with the highest density of label was observed at the level of synsacral nerves 3-4 and a second slightly less dense area between synsacral nerves 7-8. In the caudal medulla, diffuse terminal labelling was observed in the nucleus gracilis et cuneatus, nucleus of the tractus solitarius, and the nucleus cuneatus externus. These results are discussed in a comparative context to identify similarities and differences between different primary afferent projections in birds and mammals and to highlight the possible functional significance of the avian articular afferent projection.
Collapse
Affiliation(s)
- M J Gentle
- Roslin Institute (Edinburgh), Midlothian, Scotland, United Kingdom
| | | | | |
Collapse
|
121
|
Woolf CJ, Shortland P, Reynolds M, Ridings J, Doubell T, Coggeshall RE. Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J Comp Neurol 1995; 360:121-34. [PMID: 7499558 DOI: 10.1002/cne.903600109] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the time course and extent to which peripheral nerve lesions cause a morphological reorganization of the central terminals of choleragenoid-horseradish peroxidase (B-HRP)-labelled primary afferent fibers in the mammalian dorsal horn. Choleragenoid-horseradish peroxidase is retrogradely transported by myelinated (A) sensory axons to laminae I, III, IV and V of the normal dorsal horn of the spinal cord, leaving lamina II unlabelled. We previously showed that peripheral axotomy results in the sprouting of numerous B-HRP-labelled large myelinated sensory axons into lamina II. We show here that this spread of B-HRP-labelled axons into lamina II is detectable at 1 week, maximal by 2 weeks and persists for over 6 months postlesion. By 9 months, however, B-HRP fibers no longer appear in lamina II. The sprouting into lamina II occurs whether regeneration is allowed (crush) or prevented (section with ligation), and does not reverse at times when peripheral fibers reinnervate the periphery. We also show that 15 times more synaptic terminals in lamina II are labelled by B-HRP 2 weeks after axotomy than in the normal. We interpret this as indicating that the sprouting fibers are making synaptic contacts with postsynaptic targets. This implies that A-fiber terminal reorganization is a prominent and long-lasting but not permanent feature of peripheral axotomy. We also provide evidence that this sprouting is the consequence of a combination of an atrophic loss of central synaptic terminals and the conditioning of the sensory neurons by peripheral axotomy. The sprouting of large sensory fibers into the spinal territory where postsynaptic targets usually receive only small afferent fiber input may bear on the intractable touch-evoked pain that can follow nerve injury.
Collapse
Affiliation(s)
- C J Woolf
- Department of Anatomy and Developmental Biology, University College London, England
| | | | | | | | | | | |
Collapse
|
122
|
Liss AG, af Ekenstam FW, Wiberg M. Reorganisation of primary afferent nerve terminals in the brainstem after peripheral nerve injury. An anatomical study in cats. SCANDINAVIAN JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY AND HAND SURGERY 1995; 29:185-97. [PMID: 8539560 DOI: 10.3109/02844319509050126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A pure sensory nerve (the superficial branch of the radial nerve) in adult cats was cut to investigate the changes in the nerve endings (terminals) on the neurons of the nucleus cuneatus of the brainstem. In one group of cats (n = 22) the ends of the cut nerve were approximated immediately by epineural suturing to promote optimum regeneration. In another group (n = 11) the proximals tump of the nerve was enclosed in a capsule to prevent regeneration. Four to 17 months later the same nerve was re-exposed. The sutured nerves were cut and nerve-tracer was exhibited to the proximal end of the cut nerves and to the proximal stump of the nerves which had been encapsulated. The purpose was to investigate the labelling of nerve terminals in the cuneate nucleus, because it receives an input of primary afferents from the front leg. The nerve and the cuneate nucleus of the opposite side served as controls. Labelled terminals were distributed throughout the dorsal part of the entire rostrocaudal extent of the cuneate nucleus. The distribution was patchy and was superimposed on clusters of nerve cells. The quantity of labelled nerve terminals on the experimental and control sides was compared: 60% of the labelling observed on the control side was in the sutured nerves while the encapsulated nerves exhibited only 32%. This difference was apparent 4 months after transection of the nerve. Up to 17 months after the nerve was cut, however, there was some increase in the quantity of labelled nerve terminals and this was most apparent in cats in which the nerves had been sutured.
Collapse
Affiliation(s)
- A G Liss
- Department of Anatomy, Uppsala University, Sweden
| | | | | |
Collapse
|
123
|
Bankoul S, Goto T, Yates B, Wilson VJ. Cervical primary afferent input to vestibulospinal neurons projecting to the cervical dorsal horn: an anterograde and retrograde tracing study in the cat. J Comp Neurol 1995; 353:529-38. [PMID: 7539013 DOI: 10.1002/cne.903530405] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vestibulospinal neurons in the caudal half of the medial and descending vestibular nuclei terminate in the cervical spinal cord, not only in the ventral horn and intermediate zone but also in the dorsal horn. The purpose of the present study was to examine whether the areas containing these vestibulospinal neurons are reached by cervical primary afferents. In one group of experiments, wheat germ agglutinin-horseradish peroxidase conjugate and horseradish peroxidase were pressure injected into spinal ganglia C2-C8 and revealed anterogradely labeled fibers and boutons in the caudal part (caudal to the dorsal cochlear nucleus) of the ipsilateral medial and descending vestibular nuclei. This projection was verified in experiments in which wheat germ agglutinin-horseradish peroxidase conjugate was microiontophoretically injected into the caudal half of either the medial or the descending vestibular nuclei and revealed retrogradely labeled cells only in ipsilateral spinal ganglia C2-C7, with a maximum of cells in C3. In another group of experiments, after microiontophoretic injections of Phaseolus vulgaris leucoagglutinin or Biocytin into either the medial or the descending vestibular nuclei, anterogradely labeled fibers and boutons were present in the cervical spinal cord, mainly bilaterally in the dorsal horn (laminae I-VI) but also, to a lesser extent, in the ventral horn and intermediate zone. The existence of a loop that relays cervical primary afferent information to vestibulospinal neurons projecting to the cervical spinal cord, in particular the dorsal horn, may have implications for vestibular control over local information processing in the cervical dorsal horn.
Collapse
Affiliation(s)
- S Bankoul
- Laboratory of Neurophysiology, Rockefeller University, New York, New York 10021-6399, USA
| | | | | | | |
Collapse
|
124
|
Chen S, Aston-Jones G. Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. Brain Res 1995; 674:107-11. [PMID: 7773677 DOI: 10.1016/0006-8993(95)00020-q] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been reported that cholera toxin B subunit (CTb) is a sensitive neuronal tracer with unique features. However, the possible uptake of CTb by non-terminal fibers passing through the injection site has not been examined thoroughly. In the present study, small iontophoretic injections (current = +2 microA) of CTb were made in the olivocerebellar pathway in the rat ventrolateral medulla. A large number of retrogradely labeled neurons were seen in the contralateral inferior olive. In addition, prominent anterogradely labeled climbing fibers/terminals were found in the cerebellum ipsilateral to the injection site. This study, in contrast to previous report(s), indicates that CTb can be taken up avidly by fibers of passage and transported both anterogradely and retrogradely.
Collapse
Affiliation(s)
- S Chen
- Department of Psychiatry, Hahnemman University, Philadelphia, PA 19102-1192, USA
| | | |
Collapse
|
125
|
Luppi PH, Aston-Jones G, Akaoka H, Chouvet G, Jouvet M. Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience 1995; 65:119-60. [PMID: 7753394 DOI: 10.1016/0306-4522(94)00481-j] [Citation(s) in RCA: 262] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study was to examine the afferents to the rat locus coeruleus by means of retrograde and anterograde tracing experiments using cholera-toxin B subunit and phaseolus leucoagglutinin. To obtain reliable injections of cholera-toxin B in the locus coeruleus, electrophysiological recordings were made through glass micropipettes containing the tracer and the noradrenergic neurons of the locus coeruleus were identified by their characteristic discharge properties. After iontophoretic injections of cholera-toxin B into the nuclear core of the locus coeruleus, we observed a substantial number of retrogradely labeled cells in the lateral paragigantocellular nucleus and the dorsomedial rostral medulla (ventromedial prepositus hypoglossi and dorsal paragigantocellular nuclei) as previously described. We also saw a substantial number of retrogradely labeled neurons in (1) the preoptic area dorsal to the supraoptic nucleus, (2) areas of the posterior hypothalamus, (3) the Kölliker-Fuse nucleus, (4) mesencephalic reticular formation. Fewer labeled cells were also observed in other regions including the hypothalamic paraventricular nucleus, dorsal raphe nucleus, median raphe nucleus, dorsal part of the periaqueductal gray, the area of the noradrenergic A5 group, the lateral parabrachial nucleus and the caudoventrolateral reticular nucleus. No or only occasional cells were found in the cortex, the central nucleus of the amygdala, the lateral part of the bed nucleus of the stria terminalis, the vestibular nuclei, the nucleus of the solitary tract or the spinal cord, structures which were previously reported as inputs to the locus coeruleus. Control injections of cholera-toxin B were made in areas surrounding the locus coeruleus, including (1) Barrington's nucleus, (2) the mesencephalic trigeminal nucleus, (3) a previously undefined area immediately rostral to the locus coeruleus and medial to the mesencephalic trigeminal nucleus that we named the peri-mesencephalic trigeminal nucleus, and (4) the medial vestibular nucleus lateral to the caudal tip of the locus coeruleus. These injections yielded patterns of retrograde labeling that differed from one another and also from that obtained with cholera-toxin B injection sites in the locus coeruleus. These results indicate that the area surrounding the locus coeruleus is divided into individual nuclei with distinct afferents. These results were confirmed and extended with anterograde transport of cholera-toxin B or phaseolus leucoagglutinin. Injections of these tracers in the lateral paragigantocellular nucleus, preoptic area dorsal to the supraoptic nucleus, the ventrolateral part of the periaqueductal gray, the Kölliker-Fuse nucleus yielded a substantial to large number of labeled fibers in the nuclear core of the locus coeruleus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P H Luppi
- Départment de Médecine Expérimentale, U52 INSERM, URA 1195 CNRS, Université Claude Bernard, Lyon, France
| | | | | | | | | |
Collapse
|
126
|
Valtschanoff JG, Weinberg RJ, Rustioni A. Central release of tracer after noxious stimulation of the skin suggests non-synaptic signaling by unmyelinated fibers. Neuroscience 1995; 64:851-4. [PMID: 7753385 DOI: 10.1016/0306-4522(94)00543-e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Injury to a peripheral nerve causes central changes of various nature and complexity reflecting activation of multiple signaling mechanisms. In a previous study we reported that nerve lesion triggers central release of a tracer, wheatgerm-agglutinin conjugated to horse-radish peroxidase, by unmyelinated fibers in the spinal cord. The released tracer occupies the space between nerve terminals and dendrites without extending into the synaptic cleft. We interpreted this to suggest release of unidentified endogenous factor(s) at nonsynaptic sites, which may contribute to the signaling of peripheral injury to the central nervous system. For such signaling to occur, a message must first be communicated along the axon. This message may depend on axonal transport and/or altered electrical activity. In pilot experiments we observed that application of tetrodotoxin (to block impulse conduction) to the intact nerve did not result in tracer release. We hypothesized that the message might be the sustained discharge of C fibers that occurs after injury. We show here that selective activation of C fibers (by applying mustard oil to the hindlimb of anesthetized rats) causes central release of tracer previously transported from the sciatic nerve to superficial laminae of the dorsal horn.
Collapse
Affiliation(s)
- J G Valtschanoff
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
127
|
Arvidsson J, Fundin BT, Pfaller K. Innervation of the hard palate in the rat studied by anterograde transport of horseradish peroxidase conjugates. J Comp Neurol 1995; 351:489-98. [PMID: 7536754 DOI: 10.1002/cne.903510402] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The innervation of the rat hard palate and the bordering part of the soft palate was studied after anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and to choleragenoid (B-HRP) in separate experiments. WGA-HRP labeling showed leakage from several types of nerve endings, whereas B-HRP did not. Both conjugates gave rise to heavy labeling of a variety of nerve endings. Intragemmal and, especially, perigemmal fibers were labeled in chemosensory corpuscles, which were most common in the medial wall of the incisive canal and in the most anterior part of the soft palate. Ruffini endings of different sizes were labeled in the incisive papilla. Other subepithelial endings forming elongated expanded profiles with medium- to large-caliber source fibers were most common in protruding parts of the palate. Labeled intraepithelial endings included Merkel endings, which were most frequent in the incisive papilla and the rugae. Other labeled profiles were medium-caliber afferents giving rise to irregular, beaded, and sometimes branched endings often located far superficially in the epithelium. Such endings were present both within and between protruding parts of the palate. Fine-caliber intraepithelial endings were labeled almost exclusively in WGA-HRP experiments.
Collapse
Affiliation(s)
- J Arvidsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
128
|
LaMotte CC, Kapadia SE, Arsenault K, Wolfe M. Deafferentation-induced expression of GAP-43, NCAM, and NILE in the adult rat dorsal horn following pronase injection of the sciatic nerve. Somatosens Mot Res 1995; 12:71-9. [PMID: 7571944 DOI: 10.3109/08990229509063143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression of growth-associated protein 43 (GAP-43), neural cell adhesion molecule (NCAM), and nerve-growth-factor-inducible large external glycoprotein (NILE) in the adult rat dorsal horn was examined at several survival times after unilateral pronase injection of the sciatic nerve. Pronase injection produces a permanent major loss of sciatic primary afferents in the dorsal horn, and there is a later sprouting of saphenous afferents into the sciatic territory. Small-diameter myelinated and nonmyelinated saphenous afferents sprout within the superficial dorsal horn, and larger, myelinated afferents sprout within the deep dorsal horn. In the present study, GAP-43 and NCAM immunoreactivity increased in the superficial dorsal horn by 10 days after injection. By 20 days, the increase spread into the deep dorsal horn; NCAM returned to normal after 1-2 months, but GAP-43 persisted up to 4 months. NILE immunoreactivity appeared in laminae I and II by 10 days and increased up to 30 days; by 2 months no NILE remained. NILE never spread into the deeper dorsal horn, regardless of survival time. These data suggest a correlation in the expression of both NCAM and NILE with the sprouting of fine-diameter sprouting afferents in laminae I and II, and of NCAM expression with the sprouting of larger-diameter afferents in the deep dorsal horn.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C C LaMotte
- Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
129
|
Kitchener PD, Lapiz MD, Wilson P, Snow PJ. Transganglionic labelling of primary sensory afferents in the rat lumbar spinal cord: comparison between wheatgerm agglutinin and the I-B4 isolectin from Bandeiraea simplicifolia. JOURNAL OF NEUROCYTOLOGY 1994; 23:745-57. [PMID: 7534822 DOI: 10.1007/bf01268087] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We recently reported that the I-B4 isolectin from Bandeiraea simplicifolia could be used as a transganglionic neuronal tracer which appears to be selective for unmyelinated cutaneous afferents (C fibres) and their terminals in the superficial dorsal horn. As terminals in the superficial dorsal horn are also labelled by wheatgerm agglutinin, we sought to compare these two neuronal tracers. Three days after the injection of 1% wheatgerm agglutinin-HRP or 1% BSI-B4-HRP into the sciatic nerve of adult rats the lumbar spinal cord was processed for HRP reactivity. The majority of labelled structures was found in the superficial dorsal horn, with fewer labelled structures seen in the overlying white matter (including Lissauer's tract). In wheatgerm agglutinin-HRP experiments most labelled structures were synaptic terminals (63%) and unmyelinated axons (32%). About 3% of wheatgerm agglutinin-HRP-labelled structures were fine myelinated fibres (which were found only in lamina I and outer lamina II) and about 2% of label was located in neuronal somata. In contrast, label from BSI-B4-HRP experiments was found only in synaptic terminals (37%) and unmyelinated axons (63%). Previous studies have shown that small diameter dorsal root ganglion neurons and their terminals in the superficial dorsal horn express a range of structurally related carbohydrates that contain binding sites for BSI-B4 or wheatgerm agglutinin or both. Comparison of the labelling patterns produced by the two transganglionic tracers in the present study suggests that unmyelinated sciatic afferents express wheatgerm agglutinin and BSI-B4 binding sites, but some thin myelinated afferents, and a distinct form of synaptic terminal in lamina I/II outer, express the wheatgerm agglutinin binding site and not the BSI-B4 binding site.
Collapse
Affiliation(s)
- P D Kitchener
- Department of Anatomical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
130
|
Fitzgerald M, Butcher T, Shortland P. Developmental changes in the laminar termination of A fibre cutaneous sensory afferents in the rat spinal cord dorsal horn. J Comp Neurol 1994; 348:225-33. [PMID: 7814689 DOI: 10.1002/cne.903480205] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to establish the specificity of growth and termination of dorsal root afferents within the developing spinal cord, the central dorsal horn terminals of myelinated sensory afferents were labelled at various stages in the rat from embryonic day (E)18 through to postnatal day (P) 35 using horseradish peroxidase conjugated to choleragenoid (B-HRP). The preferential labelling of A fibre afferents with this tracer was found to be as clear in the neonate as has been reported for the adult. The results show that while the somatotopic arrangement of A fibre afferent terminals in the dorsal horn is established early in development, the laminar projections are not. Following peripheral nerve or local skin injections of B-HRP, A fibre terminals were found to project throughout laminae I to V, including lamina II (substantia gelatinosa). This widespread termination was observed consistently until the end of the third postnatal week. After P22 the terminal field becomes restricted to the normal laminae III to V.
Collapse
Affiliation(s)
- M Fitzgerald
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | |
Collapse
|
131
|
De Biasi S, Vitellaro-Zuccarello L, Bernardi P, Valtschanoff JG, Weinberg RJ. Ultrastructural and immunocytochemical characterization of primary afferent terminals in the rat cuneate nucleus. J Comp Neurol 1994; 347:275-87. [PMID: 7814668 DOI: 10.1002/cne.903470209] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cuneate nucleus is a relay center for somatosensory information by receiving tactile and proprioceptive inputs from primary afferent fibers that ascend in the dorsal funiculus. The morphology, synaptic contacts, and neurochemical content of primary afferent terminals in the cuneate nucleus of rats were investigated by combining anterograde transport of horseradish peroxidase conjugated to wheat-germ agglutinin or to cholera toxin (injected in cervical dorsal root ganglia) with postembedding immunogold labeling for glutamate and GABA. Both tracers gave similar results. Two types of terminals were labeled: type I terminals were irregularly shaped, had a mean area of 4.0 microns 2, synapsed on several dendrites, and were contacted by other terminals, some of which were GABA positive. Type II terminals were dome-shaped, had a mean area of 2.18 microns 2, and made synaptic contact on a single dendrite. All the anterogradely labeled terminals (interpreted as endings of primary afferents) were enriched in glutamate but not in GABA. The finding that identified primary afferent terminals are enriched in glutamate with respect to other tissue profiles strongly suggests a neurotransmitter role for glutamate in this afferent pathway to the rat cuneate nucleus.
Collapse
Affiliation(s)
- S De Biasi
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Italy
| | | | | | | | | |
Collapse
|
132
|
Wang H, Rivero-Melián C, Robertson B, Grant G. Transganglionic transport and binding of the isolectin B4 from Griffonia simplicifolia I in rat primary sensory neurons. Neuroscience 1994; 62:539-51. [PMID: 7530347 DOI: 10.1016/0306-4522(94)90387-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The isolectin B4 from Griffonia simplicifolia I binds to a subpopulation of rat small-diameter dorsal root ganglion neurons, and to fibres and presumed terminals in laminae I-II of the spinal cord dorsal horn. In the present study we investigated B4 and B4 conjugated to horseradish peroxidase as potential transganglionic tracers of somatic primary afferent neurons after injection into a peripheral nerve. We also tried to identify the specific subpopulation of dorsal root ganglion neurons that bind and ganglion neurons that bind and transport B4. Following injection of B4 or B4-horseradish peroxidase into the sciatic nerve, labelled presumed terminals that reached peak labelling at two days were found exclusively in regions of the spinal cord gray matter known to receive unmyelinated primary afferent fibres. Almost all dorsal root ganglion cells that transported B4-horseradish peroxidase also bound B4. Cell counts showed that 51% of the dorsal root ganglion neurons were B4-positive and cell area measurements that these were all in the small size range. An extensive overlap was found between B4 and fluoride-resistant acid phosphatase (85%), and between B4 and calcitonin gene-related peptide (59%). Seventeen per cent of the B4-positive cells were substance P-immunoreactive and 9% were immunoreactive to somatostatin. Minimal overlap was seen between B4-positive cells and cells positive for RT97 (3%), a selective marker of primary afferent neurons with myelinated axons. All somatostatin-immunoreactive cells and almost all (95%) of the fluoride-resistant acid phosphatase-positive cells were contained within the B4-positive population. This comprised also 58% of the cells immunoreactive to calcitonin gene-related peptide and 42% of those immunoreactive to substance P. The results obtained show that B4 binds to a subpopulation of unmyelinated primary afferent neurons, and that B4 and B4-horseradish peroxidase can be used as selective transganglionic tracers of this specific cell subpopulation.
Collapse
Affiliation(s)
- H Wang
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
133
|
Valtschanoff JG, Phend KD, Bernardi PS, Weinberg RJ, Rustioni A. Amino acid immunocytochemistry of primary afferent terminals in the rat dorsal horn. J Comp Neurol 1994; 346:237-52. [PMID: 7525664 DOI: 10.1002/cne.903460205] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We combined transganglionic tracing methods with postembedding electron microscopic immunocytochemistry to determine whether identified primary afferent fibers terminating in spinal laminae I-IV may use glutamate and aspartate as neurotransmitters. Sciatic injections of wheat-germ agglutinin conjugated to horseradish peroxidase labeled fine afferent fibers with terminals in laminae I-II of the lumbar spinal cord, whereas injections of the B subunit of cholera toxin conjugated to horseradish peroxidase labeled primary afferent terminals in deeper laminae. Many labeled primary afferent terminals in superficial laminae were involved in glomerular synaptic arrangements; others established nonglomerular contacts. Most glomerular arrangements were clearly immunopositive for glutamate, compared with dendrites, astrocytes, or terminals immunopositive for gamma-aminobutyric acid (GABA). The degree of enrichment varied in labeled terminals of different morphological types. Aspartate was enriched, though to a lesser degree than glutamate, in labeled central terminals of glomeruli in superficial laminae. Labeled primary afferent terminals in laminae III-IV were immunopositive for glutamate, though at lower levels than glomerular terminals in superficial laminae. Aspartate was not enriched in these terminals compared with dendrites, glia, and GABA-positive terminals. These results support a neurotransmitter role for glutamate in primary afferents to the dorsal horn. Quantitative differences in the content of glutamate in identified primary afferent terminals may be related to functional differences. Enrichment of aspartate in terminals in superficial but not deep laminae is compatible with a role for this amino acid in sustained, NMDA-mediated phenomena characteristic of activity in fine caliber afferents.
Collapse
Affiliation(s)
- J G Valtschanoff
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599
| | | | | | | | | |
Collapse
|
134
|
Abstract
This study examined the synaptic terminal coverage of primate triceps surae (TS) motoneurons at the electron microscopic level. In three male pigtail macaques, motoneurons were labeled by retrograde transport of cholera toxin-horseradish peroxidase that was injected into TS muscles bilaterally and visualized with tetramethylbenzidine stabilized with diaminobenzidine. Somatic, proximal dendritic, and distal dendritic synaptic terminals were classified by standard criteria and measured. Overall and type-specific synaptic terminal coverages and frequencies were determined. Labeled cells were located in caudal L5 to rostral S1 ventral horn and ranged from 40 to 74 microns in diameter (average, 54 microns). The range and unimodal distribution of diameters, the label used, and the presence of C terminals on almost all cells indicated that the 15 cell bodies and associated proximal dendrites analyzed here probably belonged to alpha-motoneurons. Synaptic terminals covered 39% of the cell body membrane, 60% of the proximal dendritic membrane, and 40% of the distal dendritic membrane. At each of these three sites, F terminals (flattened or pleomorphic vesicles, usually symmetric active zones, average contact length 1.6 microns) were most common, averaging 52%, 56%, and 58% of total coverage and 56%, 57%, and 58% of total number of cell bodies, proximal dendrites, and distal dendrites respectively. S terminals (round vesicles, usually asymmetric active zones, average contact length 1.3 microns) averaged 24%, 29%, and 33% of coverage and 33%, 35%, and 36% of number at these three sites, respectively. Thus, S terminals were slightly more prominent relative to F terminals on distal dendrites than on cell bodies. C terminals (spherical vesicles, subsynaptic cisterns associated with rough endoplasmic reticulum, average contact length 3.5 microns) constituted 24% and 11% of total terminal coverage on cell bodies and proximal dendrites, respectively, and averaged 11% and 6% of terminal number at these two locations. M terminals (spherical vesicles, postsynaptic Taxi bodies, some with presynaptic terminals, average contact length 2.7 microns) were absent on cell bodies and averaged 3% and 7% of total coverage and 2% and 5% of terminals on proximal and distal dendrites, respectively. Except for M terminals, which tended to be smaller distally, terminal contact length was not correlated with location. Total and type-specific coverages and frequencies were not correlated with cell body diameter. Primate TS motoneurons are similar to cat TS motoneurons in synaptic terminal morphology, frequency, and distribution. However, primate terminals appear to be smaller, so that the fraction of membrane covered by them is lower.
Collapse
Affiliation(s)
- K A Starr
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201
| | | |
Collapse
|
135
|
Richmond FJ, Gladdy R, Creasy JL, Kitamura S, Smits E, Thomson DB. Efficacy of seven retrograde tracers, compared in multiple-labelling studies of feline motoneurones. J Neurosci Methods 1994; 53:35-46. [PMID: 7527476 DOI: 10.1016/0165-0270(94)90142-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The labelling efficacies of 7 retrograde tracers were evaluated following cut nerve exposure or intramuscular injection into the serially compartmentalized neck muscle, biventer cervicis. Tested tracers included Fast Blue (FB), Fluorogold (FG), dextran conjugated to fluorescein (FD), dextran conjugated to rhodamine (Fluororuby (FR), 3000 and 10,000 MW), fluorescent latex microspheres, horseradish peroxidase coupled to colloidal gold, and 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI). In 2 animals, horseradish peroxidase was also employed and spinal cords were processed for peroxidase activity to evaluate its effect on the appearance of cells labelled with fluorescent tracers. Four tracers, FB, FG, FD and FR, could be observed in motoneurones under the conditions of our study. FB and FG labelled comparable numbers of motoneurones following cut nerve exposure, but dissimilar numbers following intramuscular injection. FG diffused extensively following injection and was found in motoneurones not only in the appropriate ipsilateral segment but also adjacent ipsilateral and contralateral segments. Intramuscular injections of FB usually labelled fewer cells than cut nerve exposure, but evidence for spurious labelling following intramuscular injection could also be found. FD or FR labelled motoneurones following cut nerve exposure but not following intramuscular injection. The conjugated dextrans labelled more variable numbers of cells than FB or FG, but the labelled cells had similar patterns of distribution. The remaining tracers were ineffective as retrograde markers in our study, and the possible reasons for these failures are discussed.
Collapse
Affiliation(s)
- F J Richmond
- MRC Group, Queen's University at Kingston, Ont., Canada
| | | | | | | | | | | |
Collapse
|
136
|
Nagy I, Woolf CJ, Dray A, Urbán L. Cobalt accumulation in neurons expressing ionotropic excitatory amino acid receptors in young rat spinal cord: morphology and distribution. J Comp Neurol 1994; 344:321-35. [PMID: 8063957 DOI: 10.1002/cne.903440302] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Excitatory amino acids (EAA) acting on N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate receptors play an important role in synaptic transmission in the spinal cord. Quantitative autoradiography and physiological experiments suggest that NMDA receptors are localized mainly in lamina II while kainate and AMPA receptors are found on both dorsal and ventral horn neurons. However the cell types expressing EAA receptors and their laminar distribution is not known. We have used a cobalt uptake method to study the morphology and distribution of spinal cord neurons expressing AMPA, kainate, or NMDA excitatory amino acid receptors in the lumbar enlargement of the rat spinal cord. The technique involved superfusion of hemisected spinal cords of 14 day-old rat pups in vitro with excitatory amino acid receptor ligands in the presence of CoCl2. Cobalt has been shown to enter cells through ligand-gated ion channels in place of Ca2+. Cells which accumulated cobalt ions following activation by ionotropic excitatory amino acid receptors were visualized histochemically. The cobalt uptake generated receptor-specific labeling of cells, as the NMDA receptor antagonist D-(-)-2-amino-(5)-phosphonovaleric acid (D-AP-5) (20 microM) blocked the NMDA, but not kainate-induced cobalt uptake. The kainate-induced cobalt labeling was reduced by the non-selective excitatory amino acid receptor antagonist kynurenic acid (4 mM). Passive opening of the voltage-gated Ca(2+)-channels by KCl (50 mM) did not result in cobalt uptake, indicating that cobalt enters the cells through ligand-gated Ca(2+)-channels. AMPA (500 microM), kainate (500 microM), or NMDA (500 microM) each induced cobalt uptake with characteristic patterns and distributions of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal perikarya while NMDA-induced uptake was the lowest. AMPA and kainate, but not NMDA superfusion, resulted in cobalt labeling of glial cells. Our results show that the cobalt uptake technique is a useful way to study the morphology and distribution of cells expressing receptors with ligand-gated Ca2+ channels.
Collapse
Affiliation(s)
- I Nagy
- Department of Anatomy and Developmental Biology, University College London England
| | | | | | | |
Collapse
|
137
|
Ueyama T, Houtani T, Ikeda M, Sato K, Sugimoto T, Mizuno N. Distribution of primary afferent fibers projecting from hindlimb cutaneous nerves to the medulla oblongata in the cat and rat. J Comp Neurol 1994; 341:145-58. [PMID: 7512998 DOI: 10.1002/cne.903410202] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dorsal column nuclear complex, one of the most important relays for tactile perception, has well been known to be somatotopically organized. Topographical arrangements of terminal sites of individual cutaneous nerves within the dorsal column nuclei, however, have not been examined systematically, although many studies have been done upon primary afferents to the medulla oblongata, including the dorsal column nuclear complex. Thus, in the present study, distribution of primary afferent fibers projecting from the hindlimb cutaneous nerves to the medulla oblongata was examined in the cat and rat by means of the transganglionic transport method with horseradish peroxidase. Cutaneous primary afferent fibers projecting from the hindlimb to the medulla oblongata were distributed mainly in the ipsilateral gracile nucleus. Terminal labeling in the gracile nucleus was seen at all rostrocaudal levels of the nucleus, occasionally including the nuclear part straddling the midline (the median or accessory nucleus). The labeled axon terminals in the gracile nucleus were more densely distributed in the middle and caudal parts of the nucleus than in the rostral part. Although the fields of termination of the hindlimb cutaneous nerves overlapped in the gracile nucleus, the foci of the terminal labeling of the nerves innervating the distal parts of the hindlimb were located more medially or dorsomedially than those of the nerves innervating the proximal parts. Terminal labeling was further found in a small zone immediately medial to the rostromedial border of the external cuneate nucleus. This hitherto undescribed zone (U zone) contained a small cluster of medium-sized neurons in the cat. Although no particular cell cluster was found in the U zone of the rat, convergence of the primary afferent fibers of the cutaneous nerve from the hindlimb appeared to occur as in the U zone of the cat.
Collapse
Affiliation(s)
- T Ueyama
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
138
|
Broman J. Neurotransmitters in subcortical somatosensory pathways. ANATOMY AND EMBRYOLOGY 1994; 189:181-214. [PMID: 7913798 DOI: 10.1007/bf00239008] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Investigations during recent years indicate that many different neuroactive substances are involved in the transmission and modulation of somesthetic information in the central nervous system. This review surveys recent developments within the field of somatosensory neurotransmission, emphasizing immunocytochemical findings. Increasing evidence indicates a widespread role for glutamate as a fast-acting excitatory neurotransmitter at different levels in somatosensory pathways. Several studies have substantiated a role for glutamate as a neurotransmitter in primary afferent neurons and in corticofugal projections, and also indicate a neurotransmitter role for glutamate in ascending somatosensory pathways. Other substances likely to be involved in somatosensory neurotransmission include the neuropeptides. Many different peptides have been detected in primary afferent neurons with unmyelinated or thinly myelinated axons, and are thus likely to be directly involved in primary afferent neurotransmission. Some neurons giving rise to ascending somatosensory pathways, primarily those with cell bodies in the dorsal horn, are also immunoreactive for peptides. Recent investigations have shown that the expression of neuropeptides, both in primary afferent and ascending tract neurons, may change as a result of various kinds of peripheral manipulation. The occurrence of neurotransmitters in intrinsic neurons and neurons providing modulating inputs to somatosensory relay nuclei (the dorsal horn, the lateral cervical nucleus, the dorsal column nuclei and the ventrobasal thalamus) is also reviewed. Neurotransmitters and modulators in such neurons include acetylcholine, monoamines, GABA, glycine, glutamate, and various neuropeptides.
Collapse
Affiliation(s)
- J Broman
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| |
Collapse
|
139
|
Sykes RM, Spyer KM, Izzo PN. Central distribution of substance P, calcitonin gene-related peptide and 5-hydroxytryptamine in vagal sensory afferents in the rat dorsal medulla. Neuroscience 1994; 59:195-210. [PMID: 7514769 DOI: 10.1016/0306-4522(94)90110-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The central distribution of vagal afferents in the medulla containing either substance P, calcitonin gene-related peptide or 5-hydroxytryptamine was examined using a double-labelling technique and laser scanning confocal microscopy. Areas of the nucleus tractus solitarii, dorsal motonucleus of the vagus nerve and area postrema were scanned for double-labelled axon profiles. Analysis of this material revealed that all three neurochemicals were contained within the central terminals of vagal nerve sensory neurons. However, the distribution of vagal nerve afferents containing each of these putative transmitters differed. Afferents containing 5-hydroxytryptamine were detected mainly in the areas postrema and the adjacent nucleus tractus solitarii, with a smaller number in the ventral subnuclei of the solitary tract. In contrast afferents containing calcitonin gene-related peptide were found primarily in the medial and commissural regions of the nucleus tractus solitarii. Afferents containing substance P-immunoreactivity were surprisingly few in number and did not appear to be associated with any particular region. These results establish the presence of 5-hydroxytryptamine, substance P and calcitonin gene-related peptide in the central axons of vagal sensory afferents. Furthermore, the differential distribution of afferents immunoreactive for these neurochemicals seen in this study, together with previous demonstrations of the viscerotopic organization of vagal sensory afferents suggests a possible "chemical coding" for individual end organs.
Collapse
Affiliation(s)
- R M Sykes
- Department of Physiology, Royal Free Hospital School of Medicine, London, U.K
| | | | | |
Collapse
|
140
|
Wild JM, Karten HJ, Frost BJ. Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 1993; 337:32-62. [PMID: 8276991 DOI: 10.1002/cne.903370103] [Citation(s) in RCA: 239] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ascending auditory efferents in birds terminate mainly within Field L2, a cytoarchitectonically distinct region of the caudomedial telencephalon. The organization of Field L2, and that of its flanking regions, L1 and L3, was investigated with 14C-2-deoxyglucose (14C-2-DG), cytochrome oxidase, and both retrograde and anterograde tracing techniques. Field L2 was found to contain a high concentration of cytochrome oxidase. Following auditory stimulation, 14C-2-DG autoradiography revealed that Field L2 consists of two adjacent but seemingly discontinuous zones, designated Field L2a, which lies ventromedially, and Field L2b, which lies dorsolaterally. Termination of thalamic efferents: The thalamic auditory nuclei ovoidalis (Ov) and semilunaris parovoidalis (SPO) project predominantly upon Field L2, and possibly sparsely upon L1, L3 and the overlying hyperstriatum ventrale (HV). Ov subnuclei project upon L2a and SPO projects predominantly upon L2b. The topography of the projections is inverted along the ventromedial-to-dorsolateral axis of L2, and is in accord with an inverted tonotopic representation of frequencies; high frequencies (< 3.5 kHz) being found in the more ventromedial parts of L2a, and low frequencies and broad band responses in L2b. Intra- and extratelencephalic connections: Field L2a also receives a substantial projection from HV, but the efferent projections of L2a appear confined to adjacent "neostriatal" regions. The subsequent projections of L2b were not identified in this study. L1 and L3 project predominantly to the dorsal neostriatum (Nd) caudolateral to Field L, and have fewer projections to the caudomedial paleostriatum and anterior hyperstriatum accessorium. Nd projects massively upon the ventromedial nucleus of the intermediate archistriatum (Aivm), which has bilateral projections upon the caudomedial telencephalon and is the origin of a major descending pathway having dense terminations surrounding the ovoidalis complex (Ov and SPO), MLd, the lateral lemniscal nuclei, and sparse terminations within SPO itself. It is suggested that within the telencephalon the major components of the auditory pathway consist of cell groups which collectively correspond to the populations of neurons found within the auditory cortex of mammals.
Collapse
Affiliation(s)
- J M Wild
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand
| | | | | |
Collapse
|
141
|
Qin YQ, Wang XM, Martin GF. The early development of major projections from caudal levels of the spinal cord to the brainstem and cerebellum in the gray short-tailed Brazilian opossum, Monodelphis domestica. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 75:75-90. [PMID: 7693371 DOI: 10.1016/0165-3806(93)90067-k] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Brazilian short-tailed opossum, Monodelphis domestica, is born 14-15 days after copulation and is available for experimentation at stages of development corresponding to those which occur in utero in placental mammals. In the present study, we took advantage of the opossum's embryology to study the development of projections from caudal levels of the spinal cord to the brainstem and cerebellum using axonal tracing methods. In all cases, a 2-3 day survival time was used for axonal transport. When injections of Fast blue (FB) were made into caudal levels of the thoracic cord at postnatal day (PD) 1 or 2, axonal labeling could not be identified at supraspinal levels. When injections were made at PD3, however, labeled axons were found in the fasciculus gracilis at caudal medullary levels, within the ventrolateral medulla and pons, within an incipient inferior cerebellar peduncle, and within the cerebellar anlage. The dorsal root origin of at least some of the axons within the fasciculus gracilis was evidenced by the transganglionic transport of cholera toxin conjugated to horseradish peroxidase from the hindlimbs. After FB injections at PD7, a few labeled axons could be traced from the fasciculus gracilis into the nucleus gracilis and from the ventrolateral pathway to the inferior olive. Generally comparable results were obtained using wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). In cases injected with FB at PD9, the pattern of brainstem labeling was adult-like. Although labeled axons were present within the cerebellum of animals injected with FB on PD3, they were limited to the marginal zone. Axonal labeling was present within an identifiable internal granular layer in cases injected with either FB or WGA-HRP at PD16, and it appeared to be limited to specific bands which foreshadowed those seen at later stages of development and in the adult animal. In some cases, labeled axons were present within the molecular layer where they were not seen in the adult animal. Our results provide a timetable for the normal development of projections from caudal levels of the spinal cord to the brainstem and cerebellum in Monodelphis and show that such development occurs postnatally rather than prenatally, as in placental mammals.
Collapse
Affiliation(s)
- Y Q Qin
- Department of Cell Biology, Neurobiology and Anatomy, Ohio State University College of Medicine, Columbus 43210
| | | | | |
Collapse
|
142
|
Broman J, Anderson S, Ottersen OP. Enrichment of glutamate-like immunoreactivity in primary afferent terminals throughout the spinal cord dorsal horn. Eur J Neurosci 1993; 5:1050-61. [PMID: 7904222 DOI: 10.1111/j.1460-9568.1993.tb00958.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although several lines of evidence indicate that glutamate is a neurotransmitter in primary afferent terminals, controversies exist on the proportion and types of such terminals that release glutamate. In the present study quantitative analysis of immunogold labelling was used to assess the presence of glutamate-like immunoreactivity in primary afferent terminals in laminae I-V of the rat spinal cord dorsal horn. Anterograde transport of choleragenoid-horseradish peroxidase from a spinal ganglion and tetramethyl benzidine histochemistry were used to identify primary afferent terminals in laminae I and III-V. Presumed C-fibre terminals in lamina II were identified on morphological criteria (dense sinusoid axon terminals). Primary afferent terminals in all dorsal horn laminae displayed significantly higher levels of glutamate-like immunoreactivity than pleomorphic vesicle-containing profiles in laminae III-IV and large neuronal cell bodies in laminae III-V. The density of gold particles over primary afferent terminals also significantly exceeded the average density of gold particles over laminae II and III-IV. The highest densities of gold particles were present over dense sinusoid axon terminals in lamina II. These findings suggest that glutamate, alone or in combination with other neuroactive compounds, is involved in the transfer of all sensory modalities from primary afferent fibres to dorsal horn neurons.
Collapse
Affiliation(s)
- J Broman
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| | | | | |
Collapse
|
143
|
Watts AE, Whittington MA, Jefferys JG. Epileptic focus induced in rat by intrahippocampal cholera toxin: neuronal properties in vitro. Neuroscience 1993; 55:45-56. [PMID: 8102480 DOI: 10.1016/0306-4522(93)90453-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Injecting 0.5-1.0 microgram of cholera toxin into rat hippocampus induces a chronic epileptic focus which generates interictal discharges and brief epileptic seizures intermittently over the following seven to 10 days. Here we examined the electrophysiological properties of hippocampal slices prepared from these rats three to four days after injection, at the height of the epileptic syndrome. These slices generated epileptic discharges in response to electrical stimulation of afferent pathways. In many cases epileptic discharges occurred spontaneously in the CA3 subregion; these usually lasted < 200 ms, but they could last < 0.6 s. Intracellular recordings from pyramidal layer cells revealed depolarization shifts synchronous with the epileptic field potentials. These depolarization shifts had slow onsets compared with those induced by blocking inhibition with bicuculline (depolarizations started a mean of 57 ms before, and reached 5.2 mV by, the onset of the cholera toxin epileptic field potential, compared with 12 ms and 3.6 mV respectively for 70 microM bicuculline methiodide). Extracellular unit recordings showed that the slow predepolarization seen in the cholera toxin focus was associated with an acceleration of the firing of other pyramidal layer neurons. The epileptic activity in this model cannot be attributed to the loss of synaptic inhibition, because inhibitory postsynaptic potentials could be evoked when the synchronous bursts were blocked by increasing [Ca2+]o from 2 to 8 mM. Observations of monosynaptic inhibitory postsynaptic currents isolated by application of 20 microM 6-cyano-7-nitroquinoxaline-2,3-dione, 50 microM DL-2-amino-5-phosphonovaleric acid and 100-200 microM 3-amino-2-(4-chlorophenyl)-2-hydroxy-propylsulphonic acid showed a small effect of the toxin only on the time course of the inhibitory postsynaptic current. On the other hand, there were significant changes in the intrinsic properties of individual neurons. The membrane potentials of cells in the cholera toxin focus did not differ from those in slices from rats injected with vehicle solution, but their input resistances were significantly increased. Unlike the other cellular changes in this model, the increase in input resistance was not seen in slices exposed acutely to 1 micrograms/ml cholera toxin for 30 min, suggesting there may be morphological changes in the chronic focus. Action potential accommodation and the slow afterhyperpolarization were depressed in both acute and chronic epileptic tissue, indicating impairments of Ca(2+)- and/or voltage-dependent K+ currents, and we conclude that these provide the most likely basis for cholera toxin epileptogenesis.
Collapse
Affiliation(s)
- A E Watts
- Department of Physiology and Biophysics, St. Mary's Hospital Medical School, Imperial College, University of London, U.K
| | | | | |
Collapse
|
144
|
Kitchener PD, Wilson P, Snow PJ. Selective labelling of primary sensory afferent terminals in lamina II of the dorsal horn by injection of Bandeiraea simplicifolia isolectin B4 into peripheral nerves. Neuroscience 1993; 54:545-51. [PMID: 7687755 DOI: 10.1016/0306-4522(93)90274-j] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The I-B4 isolectin from Bandeiraea simplicifolia exhibits specific binding to a subpopulation of rat dorsal root ganglion neurons of small diameter which terminate in the substantia gelatinosa of the dorsal horn. Recent double-labelling experiments in the rat have demonstrated that only primary afferents which innervate the skin are recognized by the I-B4 lectin [Plenderleith and Snow (1993) Neurosci. Lett. (in press)]. As the I-B4 lectin appears to bind selectively to a subset of small-diameter primary afferents with cutaneous peripheral projections, we sought to determine whether it could be used as a transganglionic tracer which selectively labels the spinal terminations of cutaneous afferents in superficial dorsal horn. We now report that the I-B4-horseradish peroxidase conjugate labels synaptic terminals in lamina II of the dorsal horn following the injection of the conjugate into the sciatic and saphenous nerves in the rat. Electron-microscopic examination of the dorsal horn revealed many examples of labelled synaptic terminals and unmyelinated axons, but in no cases was label observed in myelinated axons. No label was observed outside of the substantia gelatinosa; thus the I-B4 isolectin is unique among lectins used for transganglionic tracing in that it does not retrogradely label motoneurons. These results, together with previous studies of lectin binding properties of primary sensory afferents, suggest that injection of I-B4 conjugates into peripheral nerves enables the visualization of the central terminations of cutaneous C-fibres. Transganglionic labelling with the I-B4 isolectin from Bandeiraea simplicifolia should facilitate further examination of synaptic relationships of nociceptive cutaneous afferents in the superficial dorsal horn.
Collapse
Affiliation(s)
- P D Kitchener
- Department of Anatomical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | | | | |
Collapse
|
145
|
Shortland P, Woolf CJ. Chronic peripheral nerve section results in a rearrangement of the central axonal arborizations of axotomized A beta primary afferent neurons in the rat spinal cord. J Comp Neurol 1993; 330:65-82. [PMID: 8468404 DOI: 10.1002/cne.903300106] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to investigate the reorganization of the neuropil of the dorsal horn following peripheral nerve injury, the central terminal arborizations of 35 A beta primary afferent neurons, chronically injured by a cut and ligation of the sural nerve 6-12 weeks previously, were studied by the intra-axonal injection of horseradish peroxidase. Their morphology was compared to 13 intact sural nerve hair follicle afferents. Following axotomy, three kinds of morphological abnormalities were observed in the collateral arbors of the 26 afferents that were hair follicle-like. Atrophy with thin stem axons and reduced terminal branch patterns with few boutons was seen in 5 afferents. Sprouting of bouton-containing terminals into lamina I and IIo was found in 8 afferents. Finally, abnormal arborization patterns in the deeper laminae were observed in 29% of the collateral arbors. Changes included the loss in some arbors of a flame-shaped appearance, which is characteristic of hair follicle afferents, atypical branching patterns and ventrally directed axons producing wider and deeper arbors, compared to normal. Axotomy also caused a disruption of the normal somatotopic organization of sural nerve A beta afferents. This disruption manifested as a variability in the normally mediolaterally restricted terminal sheet, with a consequent loss of the strict somatotopic register in the rostrocaudal direction. Damage to the peripheral axon of A beta primary afferents induces a structural reorganization of their central terminals in the dorsal horn of the spinal cord, which may modify sensory input to the central nervous system.
Collapse
Affiliation(s)
- P Shortland
- Department of Anatomy and Developmental Biology, University College, London, United Kingdom
| | | |
Collapse
|
146
|
LaMotte CC, Kapadia SE. Deafferentation-induced terminal field expansion of myelinated saphenous afferents in the adult rat dorsal horn and the nucleus gracilis following pronase injection of the sciatic nerve. J Comp Neurol 1993; 330:83-94. [PMID: 8468405 DOI: 10.1002/cne.903300107] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have previously demonstrated sprouting of small diameter saphenous afferents, labelled with wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) and (HRP), into the sciatic territory of the adult rat superficial dorsal horn following destruction of sciatic afferents by injection of the sciatic nerve with pronase (a combination of proteolytic enzymes). In the present experiments, we examined the response of myelinated saphenous axons, which terminate in lamina I and the deep dorsal horn (laminae III-V) under the same conditions, with the tracer B subunit of cholera toxin conjugated to HRP (B-HRP) which specifically labels myelinated primary afferents when injected into a peripheral somatic nerve. We also examined changes in the nucleus gracilis, another site of sciatic degeneration and a target of saphenous afferents. Four months after injection of the pronase, the area of label determined by measurement of the width of the saphenous territory in lamina III was expanded by 24% on the pronase side. Since there was also expansion throughout the deep dorsal horn, the area measured by tracing the labelled region in transverse sections was actually twice that of the control side, and the intensity of labelling within the traced area increased by 18%. There was no change in grey matter area due to the lesion. The traced area of labelling in the nucleus gracilis increased by 40%, and increased in intensity by 17%. The substantia gelatinosa is not normally supplied by B-HRP-labelled afferents, and there was no expansion of these sprouted saphenous afferents into the gelatinosa. These results indicate that myelinated afferents can sprout as vigorously in lamina I and the deep dorsal horn as the small diameter afferents do in the substantia gelatinosa; that there is no invasion of the substantia gelatinosa by the myelinated afferents at least as long as the small diameter afferents also have the opportunity to sprout; and that primary afferents have the potential to sprout at more than one site of termination, i.e., both the dorsal horn and the dorsal column nuclei.
Collapse
Affiliation(s)
- C C LaMotte
- Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
147
|
Shortland P, Woolf CJ. Morphology and somatotopy of the central arborizations of rapidly adapting glabrous skin afferents in the rat lumbar spinal cord. J Comp Neurol 1993; 329:491-511. [PMID: 8454737 DOI: 10.1002/cne.903290406] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The central arborizations in the dorsal horn of the spinal cord of 23 rapidly adapting (RA) A-beta primary afferent neurons innervating different regions of the glabrous skin of the hindpaw were studied by the intra-axonal injection of horseradish peroxidase in adult rats. A total of 284 arbors of the complex, simple, and blind-ending variety were recovered. The arbors of RA afferents innervating the toes, paw pads, and non-pad hindpaw differed from each other in branch pattern and dimensions. The simple and complex arbors, which are both bouton-containing, were distributed mainly in laminae III-V, although some complex arbors projected dorsally into lamina IIi. The hindpaw glabrous skin afferent terminals were located in the lumbar enlargement from caudal L3 to rostral L6. A crude somatotopic organization was observed such that toes 1-5 were represented successively in more caudal positions from mid-L4 to caudal L5. The paw pads were organized in a rostrocaudal sequence moving from the paw pads proximal to toe 1 across the foot to the paw pads proximal to toe 5, from caudal L3 to mid-L5. Non-pad hindpaw afferents were located in caudal L5. Overlap between toe, paw pad and non-pad afferent central fields was present, however, and the central terminals of afferents with non-adjacent peripheral receptive fields were shown to occupy the same region of the dorsal horn.
Collapse
Affiliation(s)
- P Shortland
- Department of Anatomy and Developmental Biology, University College London, England
| | | |
Collapse
|
148
|
Raappana P, Arvidsson J. Location, morphology, and central projections of mesencephalic trigeminal neurons innervating rat masticatory muscles studied by axonal transport of choleragenoid-horseradish peroxidase. J Comp Neurol 1993; 328:103-14. [PMID: 8429123 DOI: 10.1002/cne.903280108] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Retrograde and transganglionic transport of horseradish peroxidase conjugated to the B-fragment of cholera toxin (B-HRP) was used to study the location, morphology, and central projections of mesencephalic trigeminal (Me5) neurons innervating rat masticatory muscles. Labeled Me5 cell bodies were found throughout the Me5 nucleus from a level slightly caudal to the trigeminal motor nucleus to the level of the superior colliculus 5 mm further rostrally. Occasionally, labeled Me5 cells were observed in the anterior medullary velum, in the cerebellum, and in the brainstem contralateral to the B-HRP injection. The vast majority of the labeled Me5 cells were pseudounipolar, but multipolar cells were also found. Extensive central projections from labeled Me5 cells could be seen extending from the nucleus of Darkschewitsch rostrally to the C2 segment caudally. Small but consistent projections from Me5 neurons were observed in nuclear islands among the incoming Me5 root fibers. Trigeminal and hypoglossal motor nuclei received direct projections from Me5 cells, but not the facial motor nucleus. The most prominent Me5 projections appeared in the brainstem reticular formation, including the supratrigeminal nucleus. Smaller projections also extended into the main sensory trigeminal nucleus, trigeminal subnucleus oralis, and the nucleus of the solitary tract.
Collapse
Affiliation(s)
- P Raappana
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
149
|
Grant G. Projection patterns of primary sensory neurons studied by transganglionic methods: somatotopy and target-related organization. Brain Res Bull 1993; 30:199-208. [PMID: 8457868 DOI: 10.1016/0361-9230(93)90245-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anatomical organization of the centrally projecting branches of different peripheral sensory nerves was not possible to investigate efficiently until the development of the axonal tracing methods. Horseradish peroxidase applied peripherally could be visualized in central projection areas provided a sensitive histochemical method was used; this created the basis for transganglionic tracing from the periphery. This has permitted the investigation of large-scale projections from peripheral sensory nerves. The use of conjugates of horseradish peroxidase and lectins with affinities for different populations of primary sensory neurons, as well as the use of different postoperative survival times, has offered the possibility for selective visualization of projections from subsets of primary sensory neurons. For detailed studies of single afferent fiber projections, a combined physiological-anatomical approach using single-unit recording followed by intraaxonal application of horseradish peroxidase, has become the method of choice. This chapter will focus on results which have been achieved by transganglionic tracing methods, in regard to the organization of the central projections of peripheral sensory nerves.
Collapse
Affiliation(s)
- G Grant
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
150
|
Ugolini G. Transneuronal transfer of herpes simplex virus type 1 (HSV 1) from mixed limb nerves to the CNS. I. Sequence of transfer from sensory, motor, and sympathetic nerve fibres to the spinal cord. J Comp Neurol 1992; 326:527-48. [PMID: 1336502 DOI: 10.1002/cne.903260404] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The time course of transneuronal transfer of Herpes simplex virus type 1 (HSV 1) from sensory, motor, and sympathetic nerve fibres to connected spinal neurones was examined. After injection of a constant number of infectious units into distal forelimb or hindlimb nerves of inbred rats of the same age, the extent of viral transfer was strictly dependent on the survival time postinoculation (p.i.). Retrograde transport to somatic motoneurones occurred at 28-29 hours p.i. (stage 1), in synchrony with anterograde transneuronal transfer via small cutaneous afferents (to laminae I-II). At 36-43 hours p.i. (stage 2), retrograde transneuronal transfer from sympathetic nerve fibres first labelled sympathetic preganglionic neurones. At 48-51 hours p.i. (stage 3), transfer via sensory and sympathetic axons became more extensive, labelling laminae III-IV and other preganglionic neurones. Transneuronal transfer from large muscle afferents and motoneurones (to Clarke's columns and the spinal intermediate zone) occurred only at 66-78 hours p.i. (stage 4). Further increases in distribution (stages 5-6) obtained between 78 and 97 hours p.i. may reflect both specific labelling of second and third order neurones and a gradual local loss of specificity. These results indicate that transfer of HSV 1 occurs through all main classes of peripheral axons, but that both anterograde and retrograde transneuronal transfer from small (unmyelinated and fine myelinated) cutaneous and sympathetic axons precedes transfer from large (myelinated) cutaneous and muscle afferents and motor axons. Analysis of viral transfer at sequential intervals is required to distinguish serially connected neurones, determine the route of labelling, and ensure its specificity.
Collapse
Affiliation(s)
- G Ugolini
- Department of Anatomy, University of Cambridge, United Kingdom
| |
Collapse
|