101
|
Turner JP, Anderson CM, Williams SR, Crunelli V. Morphology and membrane properties of neurones in the cat ventrobasal thalamus in vitro. J Physiol 1997; 505 ( Pt 3):707-26. [PMID: 9457647 PMCID: PMC1160047 DOI: 10.1111/j.1469-7793.1997.707ba.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The morphological (n = 66) and electrophysiological (n = 41) properties of eighty-six thalamocortical (TC) neurones and those of one interneurone in the cat ventrobasal (VB) thalamus were examined using an in vitro slice preparation. The resting membrane potential for thirty-seven TC neurones was -61.9 +/- 0.7 mV, with thirteen neurones exhibiting delta oscillation with and without DC injection. 2. The voltage-current relationships of TC neurones were highly non-linear, with a mean peak input resistance of 254.4 M omega and a mean steady-state input resistance of 80.6 M omega between -60 and -75 mV. At potentials more positive than -60 mV, outward rectification led to a mean steady-state input resistance of 13.3 M omega. At potentials more negative than -75 mV, there was inward rectification, consisting of a fast component leading to a mean peak input resistance of 14.5 M omega, and a slow time-dependent component leading to a mean steady-state input resistance of 10.6 M omega. 3. Above -60 mV, three types of firing were exhibited by TC neurones. The first was an accelerating pattern associated with little spike broadening and a late component in the spike after-hyperpolarization. The second was an accommodating or intermittent pattern associated with spike broadening, while the third was a burst-suppressed pattern of firing also associated with spike broadening, but with broader spikes of a smaller amplitude. All TC neurones evoked high frequency (310-520 Hz) burst firing mediated by a low threshold Ca2+ potential. 4. Morphologically TC neurones were divided into two groups: Type I (n = 31 neurones) which had larger soma, dendritic arbors that occupied more space, thicker primary dendrites and daughter dendrites that followed a more direct course than Type II (n = 35). The only electrophysiological differences were that Type I neurones (n = 16) had smaller peak input and outward rectification resistance and spike after-hyperpolarization, but greater peak inward rectification resistance, and exhibited delta oscillation less often than Type II (n = 13). 5. The morphologically identified interneurone exhibited no outward rectification, only moderate inward rectification, and no high frequency firing associated with the offset of negative current steps below -55 mV. This interneurone had a regular accommodating firing pattern, but the spike after-hyperpolarization had a late component, unlike the accommodating firing in TC neurones. 6. Therefore, the differentiation of TC neuronal types in the cat VB thalamus based on their morphology was reflected by differences in peak input resistance, outward rectification and spike after-hyperpolarization, which could be accounted for by their difference in soma size. More importantly, the firing pattern of the majority of TC neurones in the cat VB thalamus were different from those of TC neurones in other sensory thalamic nuclei. 7. Thalamocortical neurones in the cat VB thalamus were also clearly distinguishable from the interneurone based on the presence of their prominent outward rectification, peak inward rectification and robust low threshold Ca2+ potentials.
Collapse
Affiliation(s)
- J P Turner
- Physiology Unit, School of Molecular and Medical Biosciences, University of Wales Cardiff, UK
| | | | | | | |
Collapse
|
102
|
Liu XB. Subcellular distribution of AMPA and NMDA receptor subunit immunoreactivity in ventral posterior and reticular nuclei of rat and cat thalamus. J Comp Neurol 1997; 388:587-602. [PMID: 9388018 DOI: 10.1002/(sici)1096-9861(19971201)388:4<587::aid-cne7>3.0.co;2-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) selective glutamate receptors mediate excitatory neurotransmission in the somatosensory thalamus, but morphological localization of the receptors at identified thalamic synapses has been lacking. The authors used electron microscopic immunocytochemistry to localize AMPA selective GluR 2/3 subunits (GluR2/3) and NMDA receptor subunit 1 (NMDAR1) in rat and cat ventral posterior lateral nucleus (VPL) and in the associated sector of the reticular nucleus (RTN). Light microscopy showed that GluR2/3 and NMDAR1 immunolabeled neurons are homogeneously distributed in both nuclei. The relationship between glutamate receptor labeled profiles and glutamate or gamma-aminobutyric acid (GABA) labeled synapses was revealed by combining preembedding and postembedding immunostaining at the electron microscopic level. GluR2/3 and NMDAR1 immunoreactivity was located in somata and in proximal and distal dendrites of VPL relay cells and of RTN cells. Immunoreactivity was concentrated in postsynaptic densities of glutamatergic synapses and absent from postsynaptic densities of GABAergic synapses. In the cat, GluR2/3 and NMDAR1 immunoreactivity was also localized in GABAergic interneurons, including their presynaptic dendrites (PSD). Of the GluR2/3 and NMDAR1 labeled thalamic synapses observed, 10-29% were lemniscal (RL) type synapses in VPL; 60-70% were corticothalamic (RS) type synapses in the VPL and RTN. In the cat, 7-19% were identified as PSD profiles, and more NMDAR1 labeled PSD were found in the VPL than in the RTN. The main findings were as follows: 1) AMPA selective GluR2/3 and NMDAR1 share similar distribution patterns in the rat and cat somatosensory thalamus, 2) both glutamate receptors are likely to be colocalized at postsynaptic densities of both RL and RS synapses, and 3) localization of the glutamate receptor proteins in GABAergic dendrites in the cat thalamus indicates that glutamatergic transmission to GABAergic neurons is also mediated by both NMDA and non-NMDA receptors.
Collapse
Affiliation(s)
- X B Liu
- Department of Anatomy and Neurobiology, University of California, Irvine 92682, USA.
| |
Collapse
|
103
|
Khateb A, Fort P, Williams S, Serafin M, Jones BE, Mühlethaler M. Modulation of cholinergic nucleus basalis neurons by acetylcholine and N-methyl-D-aspartate. Neuroscience 1997; 81:47-55. [PMID: 9300400 DOI: 10.1016/s0306-4522(97)00167-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Known to exert an important modulatory influence on the cerebral cortex, the cholinergic neurons of the basal forebrain are modulated in turn by neurotransmitters which may include acetylcholine released from processes of brainstem or forebrain neurons. In the present study, we examined the effect of carbachol, a non-specific cholinergic agonist, either alone or in the presence of N-methyl-D-aspartate upon electrophysiologically identified cholinergic basalis neurons in guinea-pig basal forebrain slices. Carbachol produced a direct postsynaptic hyperpolarization, accompanied by a decrease in membrane resistance. Muscarine could mimic this hyperpolarizing effect, whereas nicotine produced a direct postsynaptic membrane depolarization. The interaction of carbachol with N-methyl-D-aspartate was subsequently tested since, in a prior study, N-methyl-D-aspartate was shown to induce rhythmic bursting in cholinergic cells when they were hyperpolarized by continuous injection of outward current. Applied simultaneously with N-methyl-D-aspartate in the absence of current injection, carbachol was also found to promote rhythmic bursting in half of the cells tested. Since the bursts under these conditions were markedly longer in duration than those observed in the presence of N-methyl-D-aspartate alone, it was hypothesized that carbachol might have another action, in addition to the membrane hyperpolarization. Using dissociated cells, it was found that brief applications of carbachol could indeed diminish the slow afterhyperpolarizations that follow single spikes, short bursts or long trains of action potentials in cholinergic basalis neurons. These results indicate that, through its dual ability to hyperpolarize cholinergic neurons and to reduce their afterhyperpolarizations, acetylcholine can promote the occurrence of rhythmic bursting in the presence of N-methyl-D-aspartate. Accordingly, whether derived from brainstem or local sources, acetylcholine may facilitate rhythmic discharge in cholinergic basalis neurons which could in turn impose a rhythmic modulation upon cortical activity during particular states across the sleep-waking cycle.
Collapse
Affiliation(s)
- A Khateb
- Département de Physiologie, CMU, Genève, Switzerland
| | | | | | | | | | | |
Collapse
|
104
|
Timofeev I, Steriade M. Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol 1997; 504 ( Pt 1):153-68. [PMID: 9350626 PMCID: PMC1159944 DOI: 10.1111/j.1469-7793.1997.153bf.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Intracellular recordings from 216 thalamocortical (TC) neurones in the ventrolateral (VL) nucleus of intact-cortex and decorticated cats under ketamine-xylazine anaesthesia revealed spontaneously occurring fast oscillations (mainly 30-100 Hz) in 86% of investigated cells. The fast depolarizing events consisted of excitatory postsynaptic potentials (EPSPs), giving rise to fast prepotentials (FPPs) in 22% of neurones, which eventually lead to full-blown action potentials. The frequency of fast events changed by factors of 2-5 in periods as short as 0.3-1.0 s. 2. The spontaneous oscillations were similar to responses evoked in VL relay neurones by stimuli to the afferent cerebellofugal axons in brachium conjunctivum (BC) and were strikingly reduced or abolished after electrolytic lesion of BC axons. 3. The amplitude and duration of fast depolarizing events were significantly reduced during the descending phase of the inhibitory postsynaptic potentials (IPSPs) in TC cells, related to spontaneous spindles or evoked by local thalamic stimulation. 4. Averaged field potentials recorded from motor cortex and triggered by EPSPs and/or action potentials of intracellularly recorded VL cells demonstrated that both spontaneous and BC-evoked fast depolarizations in VL relay neurones were coherent with fast rhythms in cortical area 4. 5. These results show that, in addition to the thalamic and cortical generation sites of the fast (so-called gamma) oscillations, prethalamic relay stations, such as deep cerebellar nuclei, are major contributors to the induction of fast rhythms which depend on the depolarization of thalamic and cortical neurones and which represent a hallmark of brain activation patterns.
Collapse
Affiliation(s)
- I Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | |
Collapse
|
105
|
Funke K, Wörgötter F. On the significance of temporally structured activity in the dorsal lateral geniculate nucleus (LGN). Prog Neurobiol 1997; 53:67-119. [PMID: 9330424 DOI: 10.1016/s0301-0082(97)00032-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Higher organisms perceive information about external or internal physical or chemical stimuli with specialized sensors that encode characteristics of that stimulus by a train of action potentials. Usually, the location and modality of the stimulus is represented by the location and specificity of the receptor and the intensity of the stimulus and its temporal modulation is thought to be encoded by the instantaneous firing rate. Recent studies have shown that, primarily in cortical structures, special features of a stimulus also are represented in the temporal pattern of spike activity. Typical attributes of this time structure are oscillatory patterns of activity and synchronous discharges in spatially distributed neurons that respond to inputs evoked by a coherent object. The origin and functional significance of this kind of activity is less clear. Cortical, subcortical and even very peripheral sources seem to be involved. Most of the relevant studies were devoted to the mammalian visual system and cortical findings on temporally structured activity were reviewed recently (Eckhorn, 1994, Progr. Brain Res., Vol. 102, pp. 405-426; Singer and Gray, 1995, Annu. Rev. Neurosci., Vol. 18, pp. 555-586). Therefore, this article is designed to give an overview, especially of those studies concerned with the temporal structure of visual activity in subcortical centers of the primary visual pathway, which are the retina and the dorsal lateral geniculate nucleus (LGN). We discuss the mechanisms that possibly contribute to the generation and modulation of the subcortical activity time structure and we try to relate to each other the subcortical and cortical patterns of sensory activity.
Collapse
Affiliation(s)
- K Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Germany.
| | | |
Collapse
|
106
|
Zhu JJ, Uhlrich DJ. Nicotinic receptor-mediated responses in relay cells and interneurons in the rat lateral geniculate nucleus. Neuroscience 1997; 80:191-202. [PMID: 9252231 DOI: 10.1016/s0306-4522(97)00095-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We used the in vitro whole-cell recording technique to study the nicotinic responses of relay cells and interneurons in the adult rat dorsal lateral geniculate nucleus, the thalamic nucleus that conveys visual signals from the retina to the cortex. These geniculate relay cells and interneurons were identified by their physiological and morphological properties. We found that, in the presence of a muscarinic antagonist, atropine, acetylcholine induced a depolarization in relay cells. A similar depolarization was induced by application of nicotine. These depolarizations were completely blocked by a nicotinic antagonist, hexamethonium, but were little affected by bath solution that contained tetrodotoxin and/or low calcium concentration to block synaptic transmission. This suggests that the depolarization is mediated directly by nicotinic receptors in relay cells. Application of nicotine also induced a depolarization in geniculate interneurons. The interneurons continued to exhibit a response to nicotine in the presence of synaptic blockade, although the time-course of the response was altered. The nicotinic responses in relay cells and interneurons shared many similar properties. Both exhibited desensitization, although this characteristic was much more pronounced in the interneurons. In both cell types, the nicotinic response activated a relatively linear conductance with a slight inward rectification. The reversal potential for the conductance was about - 33 mV, which is consistent with a permeability to sodium and potassium ions. The reversal potential shifted negatively by 5-6 mV when the bath solution contained low calcium, which further suggests a permeability to calcium ions. Our results indicate that nicotinic receptors are present in both geniculate relay cells and interneurons. The nicotinic depolarization in relay cells may serve to enhance transmission of visual signals through the lateral geniculate nucleus as well as to contribute to a voltage-dependent shift in the response mode of geniculate relay cells from burst to tonic (single-spike) firing. The nicotinic depolarization in interneurons may provide an explanation for reports that activation of the cholinergic system can enhance inhibitory tuning in the lateral geniculate nucleus.
Collapse
Affiliation(s)
- J J Zhu
- Department of Anatomy and Neuroscience Training Program, University of Wisconsin Medical School, Madison 53706, U.S.A
| | | |
Collapse
|
107
|
Albrecht D, Broser M, Krüger H, Bader M. Effects of angiotensin II and IV on geniculate activity in nontransgenic and transgenic rats. Eur J Pharmacol 1997; 332:53-63. [PMID: 9298925 DOI: 10.1016/s0014-2999(97)01062-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microiontophoretic ejection of angiotensin II and angiotensin IV in the vicinity of geniculate neurons was used to study the effects of these peptides on the discharge rate and the discharge pattern of extracellularly recorded activity. The main aim of the experiments was to study the effects of angiotensins in different strains of rats anesthetized with urethane (normotensive Wistar, normotensive Sprague-Dawley and hypertensive, transgenic (TGR(mREN2)27) rats). Both angiotensins mostly increased the spontaneous activity of angiotensin-sensitive geniculate neurons in all strains. Angiotensin II reduced the number of bursts in most neurons, whereas angiotensin IV significantly enhanced it. Inhibitory effects of angiotensins on spontaneous as well as on light-evoked activity could be effectively blocked by GABA(A) or GABA(B) receptor antagonists. Therefore, it can be supposed that angiotensin-containing afferent fibers innervate both projection and local circuit neurons of the dorsal lateral geniculate nucleus. In addition, angiotensin II suppressed excitation induced by glutamate receptor agonists in most neurons tested. Angiotensin-induced effects could be blocked by specific receptor antagonists. There were no significant differences in the effects of angiotensins in the various strains of rats, except for the latencies of the neuronal responses to the iontophoretic ejection of angiotensins.
Collapse
Affiliation(s)
- D Albrecht
- Institute of Physiology, Faculty of Medicine (Charité), Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
108
|
Munsch T, Budde T, Pape HC. Voltage-activated intracellular calcium transients in thalamic relay cells and interneurons. Neuroreport 1997; 8:2411-8. [PMID: 9261800 DOI: 10.1097/00001756-199707280-00001] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dynamics of intracellular calcium concentration ([Ca2+]i) following activation of low voltage-activated (LVA) and high voltage-activated (HVA) Ca2+ currents were studied in identified relay neurons and interneurons of the rat dorsal lateral geniculate nucleus (LGNd) in situ using Ca2+ imaging and patch-clamp techniques. In relay neurons, [Ca2+]i transients associated with the LVA Ca2+ current showed a fairly homogeneous somatodendritic distribution, whereas HVA transients significantly decreased to 65% of the somatic value at 60 microns dendritic distance. In interneurons, LVA transients significantly increased to 239% of the somatic value at 60 microns dendritic distance, whereas HVA transients were not significantly different in the soma and dendrites. These results indicate differences in [Ca2+]i dynamics, which may reflect a heterogeneous distribution of Ca2+ channels contributing to subcellular compartmentation in the two types of thalamic neurons.
Collapse
Affiliation(s)
- T Munsch
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke Universität, Magdeburg, Germany
| | | | | |
Collapse
|
109
|
Postnatal development of membrane properties and delta oscillations in thalamocortical neurons of the cat dorsal lateral geniculate nucleus. J Neurosci 1997. [PMID: 9204926 DOI: 10.1523/jneurosci.17-14-05428.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of membrane properties, firing patterns, and delta oscillations in neurons of the cat dorsal lateral geniculate nucleus (dLGN) was investigated in vitro during the first 7 postnatal weeks. Compared with adult neurons, the resting membrane potential was more depolarized at postnatal days 1-9 (P1-P9), the input resistance was higher at P1-P7, and action potentials had a higher threshold and a smaller amplitude at P1-P3 and a longer duration at P1-P9. At P1-P3 trains longer than 200 msec were rarely observed, and trains with more than three action potentials were only present in 41% of the neurons, whereas at P1-P7 the normalized slope of the instantaneous frequencies at the first five interspike intervals was smaller than in the adult. A long-lasting (up to 6 sec) afterhyperpolarization followed a short train of action potentials in 88 and 30% of neurons at P1-P3 and P30-P32, respectively, but it was rarely observed in the adult. The low-threshold Ca2+ potential could evoke a burst of action potentials since P1. However, at P1-P7 the number of action potentials per burst was smaller (range, one to five), and at P1-P9 their maximum instantaneous frequency was lower (<190 Hz) than in the adult (range, six to eight, and 344 Hz, respectively). No delta oscillations were observed until P17, and their frequency (0.36 Hz) was lower than that in the adult (1.8 Hz). The percentage of neurons displaying delta oscillations and their frequency reached adult values by the end of the seventh postnatal week, i.e., well after the maturation of the membrane properties and firing patterns (second postnatal week). In conclusion, the maturation of the electrophysiological properties of thalamocortical neurons in the cat dLGN is completed later than the retinogeniculate axon segregation (Shatz CJ, 1983), and the immaturity of the oscillatory, and not of the burst-firing, activity is a limiting factor in the development of delta waves.
Collapse
|
110
|
Abstract
The intrathalamic mechanisms of frequency-dependent augmenting responses were investigated in decorticated cats by means of intracellular recordings from thalamocortical (TC) neurons in ventrolateral (VL) nucleus, including simultaneous impalements from two TC neurons. Pulse trains (10 Hz) applied to VL nucleus elicited two types of augmenting responses: (1) in 68% of cells, the incremental responses occurred on a progressive depolarization associated with the decrease in IPSPs produced by preceding stimuli in the train; (2) in the remaining cells, progressively growing low-threshold (LT) responses resulted from the enhancement of Cl--dependent IPSPs, giving rise to postinhibitory rebound bursts, followed by a self-sustained sequence of spindle waves. Although in some TC cells the augmenting responses developed from LT responses once the latter reached a given level of depolarization, other neurons displayed augmenting responses immediately after the early antidromic spike that depolarized the neuron to the required level, without an intermediate step of LT rebound. Repeated pulse trains led to a progressive and persistent increase in slow depolarizing responses of TC cells, as well as to a persistent and prolonged decrease in the amplitudes of the IPSPs. On the basis of parallel experiments, we propose that the two types of augmentation in TC cells are a result of contrasting responses of thalamic reticular neurons evoked by repetitive thalamic stimuli: decremental responses, which may account for disinhibition leading to depolarizing responses in TC cells, and incremental responses, explaining the progressive hyperpolarization of TC cells. These data demonstrate that frequency-dependent changes in neuronal excitability are present in the thalamus of a decorticated hemisphere and suggest that short-term plasticity processes in the gateway to the cerebral cortex may decisively influence cortical excitability during repetitive responses.
Collapse
|
111
|
Abstract
The goal was to investigate possible monosynaptic GABAergic projections from the inferior colliculus (IC) to thalamocortical neurons of the medial geniculate body (MGB) in the rat. Although there is little evidence for such a projection in other sensory thalamic nuclei, a GABAergic, ascending auditory projection was reported recently in the cat. In the present study, immunohistochemical and tract-tracing methods were used to identify neurons in the IC that contain GABA and project to the MGB. GABA-positive projection neurons were most numerous in the central nucleus and less so in the dorsal and lateral cortex. They were rare in the lateral tegmental system and brachium of the IC. The dorsal nucleus of the lateral lemniscus also contained GABA-positive projection neurons. In brain slices, stimulation of the brachium produced monosynaptic inhibitory postsynaptic potentials in morphologically identified thalamocortical relay neurons. The inhibitory potentials cannot originate locally, because they persisted when ionotropic glutamatergic transmission was blocked. Typically, brachium stimulation elicited a GABAA-mediated inhibitory potential followed by an excitatory potential and a longer latency GABAB-mediated inhibitory potential. We conclude that the GABA-containing neurons of the IC make short-latency, monosynaptic inputs to the thalamocortical projection neurons in the MGB. Such inputs may distinguish the main auditory pathway from indirect or tegmental auditory pathways as well as from other sensory systems. Monosynaptic inhibitory inputs to the medial geniculate may be important for the regulation of firing patterns in thalamocortical neurons.
Collapse
|
112
|
MacLeod N, Turner C, Edgar J. Properties of developing lateral geniculate neurones in the mouse. Int J Dev Neurosci 1997; 15:205-24. [PMID: 9178039 DOI: 10.1016/s0736-5748(96)00088-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study describes the properties of neurones recorded in vitro from the dorsal lateral geniculate nucleus (dLGN) of the mouse between developmental stages E16 and P36 and represents the first systematic study of the development of rodent thalamic neurones. The results demonstrate that thalamo-cortical neurones in the mouse dLGN undergo a series of important changes as they mature. Prenatally recorded cells had low resting potentials and could not generate action potentials but as they mature, mouse dLGN neurones become more polarised and show an increase in membrane time constant and spike threshold, while action potentials increase in amplitude and decrease in width. The low-threshold spike (LTS) complex appears at the time of birth, but does not show properties typical of adult cells until at least the third postnatal week. Immature action potentials are primarily sodium-dependent but gain a significant calcium component in the second postnatal week, which is associated with a supra-threshold oscillation of the membrane potential. The electrical activity during this critical period is strongly influenced by the interaction of powerful inward and outward rectification with calcium conductances which determines the appearance of voltage responses to intracellular current injection. The membrane potential in recordings from neurones during the first postnatal week was dominated by intense TTX-sensitive depolarising synaptic-like events which attained amplitudes of 60 mV in several neurones at stages P5-P8. These changes are discussed in relationship to the formation of appropriate connections in the developing visual system.
Collapse
Affiliation(s)
- N MacLeod
- Department of Physiology, University Medical School, Edinburgh, U.K
| | | | | |
Collapse
|
113
|
Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus. J Neurosci 1997. [PMID: 8987843 DOI: 10.1523/jneurosci.16-24-08181.1996] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate has an important neuromodulatory role in synaptic transmission through metabotropic glutamate receptors (mGluRs) linked to a variety of G-protein-coupled second messenger pathways. Activation of these receptors on relay cells in the lateral geniculate nucleus (LGN) with the agonist trans-(1S,3R)-1-amino-1, 3-cyclopentanedicarboxylic acid produces a membrane depolarization that inactivates the low-threshold Ca2+ spike, causing a transition from burst to tonic response mode. The excitatory effects of metabotropic receptor activation in the LGN appear to be produced through the receptors linked to phosphoinositide hydrolysis and apparently only through activation of the corticogeniculate pathway. Two mGluRs, mGluR1alpha (a splice variant of mGluR1) and mGluR5, are linked to the phosphoinositide system. We examined the localization of these receptors with affinity-purified, anti-peptide, polyclonal antibodies raised to the C-terminal region of each receptor protein. Under examination with the light microscope, we found that both types of receptors are present in the geniculate neuropil and in that of the overlying thalamic reticular nucleus, including the perigeniculate nucleus. We also examined the ultrastructural localization of immunolabel with the electron microscope, using a postembedding immunogold marker to identify terminals, dendrites, and somata that contain GABA. Label for the antibody directed against mGluR1alpha was primarily localized in the dendrites of relay cells, postsynaptic to various terminal types. Of these, terminal profiles normally associated with corticogeniculate inputs predominated, whereas retinal terminal profiles were scarce. Label for the antibody directed against mGluR5 label was prominent in inhibitory F2-terminal profiles associated with the retinal input to relay cells. In the perigeniculate nucleus, both mGluRs were localized to dendrites. The distribution of the two phosphoinositide-linked mGluRs in the LGN suggests very different functional roles for the two receptor types. We conclude from these data that mGluR1 appears to have a dominant role in corticogeniculate control of response mode through the feedback glutamatergic pathway from layer VI, whereas mGluR5 is positioned to affect retinogeniculate activation of relay cells through feed forward glomerular interactions.
Collapse
|
114
|
Abstract
Thalamocortical activity exhibits two distinct states: (a) synchronized rhythmic activity in the form of delta, spindle, and other slow waves during EEG-synchronized sleep and (b) tonic activity during waking and rapid-eye-movement sleep. Spindle waves are generated largely through a cyclical interaction between thalamocortical and thalamic reticular neurons involving both the intrinsic membrane properties of these cells and their anatomical interconnections. Specific alterations in the interactions between these cells can result in the generation of paroxysmal events resembling absence seizures in children. The release of several different neurotransmitters from the brain stem, hypothalamus, basal forebrain, and cerebral cortex results in a depolarization of thalamocortical and thalamic reticular neurons and an enhanced excitability in many cortical pyramidal cells, thereby suppressing the generation of sleep rhythms and promoting a state that is conducive to sensory processing and cognition.
Collapse
Affiliation(s)
- D A McCormick
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
115
|
Are the interlaminar zones of the ferret dorsal lateral geniculate nucleus actually part of the perigeniculate nucleus? J Neurosci 1996. [PMID: 8815875 DOI: 10.1523/jneurosci.16-19-05923.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ferret dorsal lateral geniculate nucleus (LGNd) contains interneurons within the interlaminar zones situated between the laminae corresponding to the ipsi- and contralateral eyes. We found that a subset of these neurons exhibits electrophysiological properties similar to those previously reported for perigeniculate (PGN) neurons, including the generation of rhythmic sequences of rebound low-threshold Ca2+ spikes at a frequency of 1-4 Hz after the intracellular injection of a hyperpolarizing current pulse. These "PGN-like" interlaminar interneurons innervated restricted regions of the A-laminae, inhibited thalamocortical cells through GABAA, and perhaps GABAB, receptors, and were excited by axon collaterals from thalamocortical cells. This reciprocal relationship is identical to that formed by PGN cells and allowed the PGN-like interlaminar neurons to participate in the generation of spindle waves and other network oscillations. Pharmacologically, PGN-like interlaminar interneurons were also similar to PGN neurons: both generated a prolonged depolarization in response to the local application of serotonin, 1S,3R-ACPD, and CCK8S, and a rapid depolarization followed by a more prolonged hyperpolarization in response to acetylcholine. Examination of parvalbumin and calbindin staining in the ferret LGNd revealed that both PGN and a subset of interlaminar neurons were parvalbumin-positive. In contrast, calbindin-positive cells were relatively absent in the PGN and sparsely present in the interlaminar zones, but were numerous in the A and C laminae. Our results indicate that the interlaminar zone in between laminae A and A1 and A1 and C in the ferret LGNd possesses a cell type that is electrophysiologically, pharmacologically, anatomically, immunocytochemically, and functionally similar to neurons in the PGN.
Collapse
|
116
|
Canonaco M, Tavolaro R, Facciolo RM, Carelli A, Cagnin M, Cristaldi M. Sexual dimorphism of GABAA receptor levels in subcortical brain regions of a woodland rodent (Apodemus sylvaticus). Brain Res Bull 1996; 40:187-94. [PMID: 8736580 DOI: 10.1016/0361-9230(96)00034-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This is the first report of quantitative autoradiography results showing sex differences of GABAA receptor levels in brain regions of a wild rodent (wood mouse, Apodemus sylvaticus) living in its natural habitat. The labeling of this GABAergic site with its specific high affinity radioligand [3H] muscimol provided a heterogeneous and dimorphic binding pattern in some of the neural centers. In the female, higher (> or = 50 < or = 65%) to moderately higher (< 50%) binding levels than in the male, even after correction of the specific binding values using the calculated quenching coefficients, were observed in the substantia nigra pars reticulata and ventral lateral thalamic nucleus, brain centers that are relays of motor circuits. In the male, on the other hand, a higher level was only obtained in the caudateputamen. Relays of the stria terminalis-hypothalamic-central gray pathway such as the bed nucleus of the stria terminalis, the pontine central gray and the ventromedial hypothalamic nucleus, were among the other female brain areas with an extremely higher (> 65%) to higher and moderately higher binding activity than in the male. From the saturation analyses, it appeared that the binding differences were mainly due to Bmax variations, although closer examinations revealed that changes in the KD might have also accounted for [3H] muscimol binding differences, as shown by the high KD and Bmax values in the bed nucleus of the stria terminalis, the substantia nigra pars reticulata and the pontine central gray of the female wood mouse. These findings suggest that the dimorphic binding activity of GABAA receptors in the above brain regions might be involved in neuronal circuitry mechanisms related to sex-specific social behaviors in rodents living in their natural environmental conditions.
Collapse
Affiliation(s)
- M Canonaco
- Department of Ecology, University of Calabria, Rende (CS), Italy
| | | | | | | | | | | |
Collapse
|