101
|
Abstract
PURPOSE OF REVIEW To describe the recent studies on the genetics of systemic lupus erythematosus (SLE) and Sjögren's syndrome. RECENT FINDINGS We overview the most recent findings on the genetic susceptibility of the diseases and provide information on their genetic similarities and differences. SUMMARY SLE and Sjögren's syndrome are two closely related systemic autoimmune diseases that share multiple clinical and molecular aspects, including a significant number of susceptibility genes. Several genome-wide association studies were recently published in different populations that provide a better picture of their molecular mechanisms. It is becoming clear that their genetic architecture is quite well established, but more information is required on expression quantitative trait loci, epigenetic genome-wide analyses, gene × gene interactions and the role of rare variants.
Collapse
|
102
|
Wang F, Li B, Schall N, Wilhelm M, Muller S. Assessing Autophagy in Mouse Models and Patients with Systemic Autoimmune Diseases. Cells 2017; 6:E16. [PMID: 28657591 PMCID: PMC5617962 DOI: 10.3390/cells6030016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a tightly regulated mechanism that allows cells to renew themselves through the lysosomal degradation of proteins, which are misfolded or produced in excess, and of damaged organelles. In the context of immunity, recent research has specially attempted to clarify its roles in infection, inflammation and autoimmunity. Autophagy has emerged as a spotlight in several molecular pathways and trafficking events that participate to innate and adaptive immunity. Deregulation of autophagy has been associated to several autoimmune diseases, in particular to systemic lupus erythematosus. Nowadays, however, experimental data on the implication of autophagy in animal models of autoimmunity or patients remain limited. In our investigations, we use Murphy Roths Large (MRL)/lymphoproliferation (lpr) lupus-prone mice as a mouse model for lupus and secondary Sjögren's syndrome, and, herein, we describe methods applied routinely to analyze different autophagic pathways in different lymphoid organs and tissues (spleen, lymph nodes, salivary glands). We also depict some techniques used to analyze autophagy in lupus patient's blood samples. These methods can be adapted to the analysis of autophagy in other mouse models of autoinflammatory diseases. The understanding of autophagy implication in autoimmune diseases could prove to be very useful for developing novel immunomodulatory strategies. Our attention should be focused on the fact that autophagy processes are interconnected and that distinct pathways can be independently hyper-activated or downregulated in distinct organs and tissues of the same individual.
Collapse
Affiliation(s)
- Fengjuan Wang
- Centre National de la Recherche Scientifique (CNRS), Immunopathology and Therapeutic Chemistry/Laboratory of Excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, Strasbourg 67000, France.
| | - Baihui Li
- Centre National de la Recherche Scientifique (CNRS), Immunopathology and Therapeutic Chemistry/Laboratory of Excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, Strasbourg 67000, France.
| | - Nicolas Schall
- Centre National de la Recherche Scientifique (CNRS), Immunopathology and Therapeutic Chemistry/Laboratory of Excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, Strasbourg 67000, France.
| | - Maud Wilhelm
- Centre National de la Recherche Scientifique (CNRS), Immunopathology and Therapeutic Chemistry/Laboratory of Excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, Strasbourg 67000, France.
| | - Sylviane Muller
- Centre National de la Recherche Scientifique (CNRS), Immunopathology and Therapeutic Chemistry/Laboratory of Excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, Strasbourg 67000, France.
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg 67000, France.
| |
Collapse
|
103
|
Qin N, Wang C, Lu Q, Huang T, Zhu M, Wang L, Yu F, Huang M, Jiang Y, Dai J, Ma H, Jin G, Wu C, Lin D, Shen H, Hu Z. A cis-eQTL genetic variant of the cancer-testis gene CCDC116 is associated with risk of multiple cancers. Hum Genet 2017; 136:987-997. [PMID: 28653172 DOI: 10.1007/s00439-017-1827-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022]
Abstract
Recent studies have found that cancer-testis (CT) genes, which are expressed predominantly in germ and cancer cells, may be candidate cancer drivers. Because of their crucial roles, genetic variants in these genes may contribute to the development of cancer. Here, we systematically evaluated associations of common variants in CT genes and their promoters for the risk of lung cancer in our initial GWAS (2331 cases and 3077 controls), followed by in silico replication using additional 10,512 lung cancer cases and 9562 controls. We found a significant association between rs3747093 located in the CCDC116 promoter and lung cancer risk (OR = 0.91, P meta = 7.81 × 10-6). Although CCDC116 was expressed at lower levels in somatic tissues compared to the testis, the protective allele A of rs3747093 was associated with decreased CCDC116 expression in many normal tissues, including the lung (P = 8.1 × 10-13). We subsequently genotyped this variant in another four commonly diagnosed cancers (gastric, esophageal, colorectal, and breast cancers), as we found expression quantitative trait locus (eQTL) signals for rs3747093 and CCDC116 in their corresponding normal tissues. Interestingly, we observed consistent associations between rs3747093 and multiple cancers (gastric cancer: OR = 0.85, P = 2.21 × 10-4; esophageal cancer: OR = 0.91, P = 2.57 × 10-2; colorectal cancer: OR = 0.80, P = 1.85 × 10-6; and breast cancer: OR = 0.87, P = 1.55 × 10-3). Taken together, the A allele of rs3747093 showed significant protective effects on cancer risk (OR = 0.88, P pool = 6.52 × 10-13) in an Asian population. Moreover, our findings suggest that low abundance expression of CT genes in normal tissues may also contribute to tumorigenesis, providing a new mechanism of CT genes in the development of cancer.
Collapse
Affiliation(s)
- Na Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qun Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tongtong Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Meng Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lihua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Fei Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingtao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China. .,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
104
|
Functional implications of Neandertal introgression in modern humans. Genome Biol 2017; 18:61. [PMID: 28366169 PMCID: PMC5376702 DOI: 10.1186/s13059-017-1181-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/23/2017] [Indexed: 01/05/2023] Open
Abstract
Background Admixture between early modern humans and Neandertals approximately 50,000–60,000 years ago has resulted in 1.5–4% Neandertal ancestry in the genomes of present-day non-Africans. Evidence is accumulating that some of these archaic alleles are advantageous for modern humans, while others are deleterious; however, the major mechanism by which these archaic alleles act has not been fully explored. Results Here we assess the contributions of introgressed non-synonymous and regulatory variants to modern human protein and gene expression variation. We show that gene expression changes are more often associated with Neandertal ancestry than expected, and that the introgressed non-synonymous variants tend to have less predicted functional effect on modern human proteins than mutations that arose on the human lineage. Conversely, introgressed alleles contribute proportionally more to expression variation than non-introgressed alleles. Conclusions Our results suggest that the major influence of Neandertal introgressed alleles is through their effects on gene regulation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1181-7) contains supplementary material, which is available to authorized users.
Collapse
|
105
|
Menni C, Zierer J, Valdes AM, Spector TD. Mixing omics: combining genetics and metabolomics to study rheumatic diseases. Nat Rev Rheumatol 2017; 13:174-181. [PMID: 28148918 DOI: 10.1038/nrrheum.2017.5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolomics is an exciting field in systems biology that provides a direct readout of the biochemical activities taking place within an individual at a particular point in time. Metabolite levels are influenced by many factors, including disease status, environment, medications, diet and, importantly, genetics. Thanks to their dynamic nature, metabolites are useful for diagnosis and prognosis, as well as for predicting and monitoring the efficacy of treatments. At the same time, the strong links between an individual's metabolic and genetic profiles enable the investigation of pathways that underlie changes in metabolite levels. Thus, for the field of metabolomics to yield its full potential, researchers need to take into account the genetic factors underlying the production of metabolites, and the potential role of these metabolites in disease processes. In this Review, the methodological aspects related to metabolomic profiling and any potential links between metabolomics and the genetics of some of the most common rheumatic diseases are described. Links between metabolomics, genetics and emerging fields such as the gut microbiome and proteomics are also discussed.
Collapse
Affiliation(s)
- Cristina Menni
- The Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
| | - Jonas Zierer
- The Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ana M Valdes
- The Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
- Academic Rheumatology, The University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Tim D Spector
- The Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
| |
Collapse
|
106
|
Yeung KS, Chung BHY, Choufani S, Mok MY, Wong WL, Mak CCY, Yang W, Lee PPW, Wong WHS, Chen YA, Grafodatskaya D, Wong RWS, Lau CS, Chan DTM, Weksberg R, Lau YL. Genome-Wide DNA Methylation Analysis of Chinese Patients with Systemic Lupus Erythematosus Identified Hypomethylation in Genes Related to the Type I Interferon Pathway. PLoS One 2017; 12:e0169553. [PMID: 28085900 PMCID: PMC5234836 DOI: 10.1371/journal.pone.0169553] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022] Open
Abstract
Background Epigenetic variants have been shown in recent studies to be important contributors to the pathogenesis of systemic lupus erythematosus (SLE). Here, we report a 2-step study of discovery followed by replication to identify DNA methylation alterations associated with SLE in a Chinese population. Using a genome-wide DNA methylation microarray, the Illumina Infinium HumanMethylation450 BeadChip, we compared the methylation levels of CpG sites in DNA extracted from white blood cells from 12 female Chinese SLE patients and 10 healthy female controls. Results We identified 36 CpG sites with differential loss of DNA methylation and 8 CpG sites with differential gain of DNA methylation, representing 25 genes and 7 genes, respectively. Surprisingly, 42% of the hypomethylated CpG sites were located in CpG shores, which indicated the functional importance of the loss of DNA methylation. Microarray results were replicated in another cohort of 100 SLE patients and 100 healthy controls by performing bisulfite pyrosequencing of four hypomethylated genes, MX1, IFI44L, NLRC5 and PLSCR1. In addition, loss of DNA methylation in these genes was associated with an increase in mRNA expression. Gene ontology analysis revealed that the hypomethylated genes identified in the microarray study were overrepresented in the type I interferon pathway, which has long been implicated in the pathogenesis of SLE. Conclusion Our epigenetic findings further support the importance of the type I interferon pathway in SLE pathogenesis. Moreover, we showed that the DNA methylation signatures of SLE can be defined in unfractionated white blood cells.
Collapse
Affiliation(s)
- Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| | - Sanaa Choufani
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Mo Yin Mok
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Wai Lap Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pamela Pui Wah Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wilfred Hing Sang Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi-an Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Daria Grafodatskaya
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Raymond Woon Sing Wong
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chak Sing Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Tak Mao Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science and Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
107
|
Liu X, Qin H, Xu J. The role of autophagy in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol 2016; 40:351-361. [DOI: 10.1016/j.intimp.2016.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/15/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
|
108
|
Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, Holland PJ, Birlea SA, Siebert J, Hartmann A, Lienert A, van Geel N, Lambert J, Luiten RM, Wolkerstorfer A, Wietze van der Veen JP, Bennett DC, Taïeb A, Ezzedine K, Kemp EH, Gawkrodger DJ, Weetman AP, Kõks S, Prans E, Kingo K, Karelson M, Wallace MR, McCormack WT, Overbeck A, Moretti S, Colucci R, Picardo M, Silverberg NB, Olsson M, Valle Y, Korobko I, Böhm M, Lim HW, Hamzavi I, Zhou L, Mi QS, Fain PR, Santorico SA, Spritz RA. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet 2016; 48:1418-1424. [PMID: 27723757 PMCID: PMC5120758 DOI: 10.1038/ng.3680] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Vitiligo is an autoimmune disease in which depigmented skin results from destruction of melanocytes1, with epidemiologic association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1, GWAS2), we identified 27 vitiligo susceptibility loci in patients of European (EUR) ancestry. We carried out a third GWAS (GWAS3) in EUR subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new loci and 7 suggestive loci, most encoding immune and apoptotic regulators, some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some corresponding to eQTL at these loci. Together, the identified genes provide a framework for vitiligo genetic architecture and pathobiology, highlight relationships to other autoimmune diseases and melanoma, and offer potential targets for treatment.
Collapse
Affiliation(s)
- Ying Jin
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Genevieve Andersen
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniel Yorgov
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, Colorado, USA
| | - Tracey M Ferrara
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Songtao Ben
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kelly M Brownson
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Paulene J Holland
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stanca A Birlea
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Anke Hartmann
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Anne Lienert
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Rosalie M Luiten
- Netherlands Institute for Pigment Disorders, Department of Dermatology, Academic Medical Centre University of Amsterdam, Amsterdam, the Netherlands
| | - Albert Wolkerstorfer
- Netherlands Institute for Pigment Disorders, Department of Dermatology, Academic Medical Centre University of Amsterdam, Amsterdam, the Netherlands
| | - J P Wietze van der Veen
- Netherlands Institute for Pigment Disorders, Department of Dermatology, Academic Medical Centre University of Amsterdam, Amsterdam, the Netherlands.,Department of Dermatology, Medical Centre Haaglanden, The Hague, the Netherlands
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Alain Taïeb
- Centre de Référence des Maladies Rares de la Peau, Department of Dermatology, Hôpital St.-André, Bordeaux, France
| | - Khaled Ezzedine
- Centre de Référence des Maladies Rares de la Peau, Department of Dermatology, Hôpital St.-André, Bordeaux, France
| | - E Helen Kemp
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - David J Gawkrodger
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Anthony P Weetman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Sulev Kõks
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia
| | - Maire Karelson
- Department of Dermatology, University of Tartu, Tartu, Estonia
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Wayne T McCormack
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Silvia Moretti
- Section of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Roberta Colucci
- Section of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Mauro Picardo
- Laboratorio Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano, Rome, Italy
| | - Nanette B Silverberg
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York, USA.,Pediatric and Adolescent Dermatology, St. Luke's-Roosevelt Hospital Center, New York, New York, USA
| | - Mats Olsson
- International Vitiligo Center, Uppsala, Sweden
| | - Yan Valle
- Vitiligo Research Foundation, New York, New York, USA
| | - Igor Korobko
- Vitiligo Research Foundation, New York, New York, USA.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Iltefat Hamzavi
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Li Zhou
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Pamela R Fain
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stephanie A Santorico
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, Colorado, USA.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
109
|
Teruel M, Alarcón-Riquelme ME. The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. J Autoimmun 2016; 74:161-175. [PMID: 27522116 DOI: 10.1016/j.jaut.2016.08.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
The genome-wide association study is a free-hypothesis approach based on screening of thousands or even millions of genetic variants distributed throughout the whole human genome in relation to a phenotype. The relevant role of the genome-wide association studies in the last decade is undisputed because it has permitted to elucidate multiple risk genetic factors associated with the susceptibility to several human complex diseases. Regarding systemic lupus erythematosus (SLE) this approach has allowed to identify more than 60 risk loci for SLE susceptibility across populations to date, increasing our understanding on the pathogenesis of this disease. We present the latest findings in the genetic of SLE across populations using genome-wide approaches. These studies revealed that most of the genetic risk is shared across borders and ethnicities. Finally, we focus on describing the most important risk loci for SLE attempting to cover the genetic findings in relation to functional polymorphisms, such as missense single nucleotide polymorphisms (SNPs) or regulatory variants involved in the development of the disease. The functional studies try to identify the causality of some GWAS-associated variants, many of which fall in non-coding regions of the genome, suggesting a regulatory role. Many loci show an environmental interaction, another aspect revealed by the studies of epigenetic modifications and those associated with genetic variants. Finally, new-generation sequencing technologies can open other paths in the research on SLE genetics, the role of rare variants and the detailed identification of causal regulatory variation. The clinical relevance of the genetic factors will be shown when we are able to use them or in combination with other molecular measurements to re-classify a heterogeneous disease such as SLE.
Collapse
Affiliation(s)
- Maria Teruel
- Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18016, Spain.
| | - Marta E Alarcón-Riquelme
- Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18016, Spain; Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 67, Sweden.
| |
Collapse
|
110
|
Morris DL, Sheng Y, Zhang Y, Wang YF, Zhu Z, Tombleson P, Chen L, Cunninghame Graham DS, Bentham J, Roberts AL, Chen R, Zuo X, Wang T, Wen L, Yang C, Liu L, Yang L, Li F, Huang Y, Yin X, Yang S, Rönnblom L, Fürnrohr BG, Voll RE, Schett G, Costedoat-Chalumeau N, Gaffney PM, Lau YL, Zhang X, Yang W, Cui Y, Vyse TJ. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet 2016; 48:940-946. [PMID: 27399966 PMCID: PMC4966635 DOI: 10.1038/ng.3603] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/01/2016] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease. Genome-wide association studies (GWASs) have identified more than 50 loci as robustly associated with the disease in single ancestries, but genome-wide transancestral studies have not been conducted. We combined three GWAS data sets from Chinese (1,659 cases and 3,398 controls) and European (4,036 cases and 6,959 controls) populations. A meta-analysis of these studies showed that over half of the published SLE genetic associations are present in both populations. A replication study in Chinese (3,043 cases and 5,074 controls) and European (2,643 cases and 9,032 controls) subjects found ten previously unreported SLE loci. Our study provides further evidence that the majority of genetic risk polymorphisms for SLE are contained within the same regions across both populations. Furthermore, a comparison of risk allele frequencies and genetic risk scores suggested that the increased prevalence of SLE in non-Europeans (including Asians) has a genetic basis.
Collapse
Affiliation(s)
- David L Morris
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Yujun Sheng
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhengwei Zhu
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Philip Tombleson
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Lingyan Chen
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - James Bentham
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Amy L Roberts
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Ruoyan Chen
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xianbo Zuo
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Tingyou Wang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Leilei Wen
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Chao Yang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Lu Liu
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Lulu Yang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Feng Li
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Yuanbo Huang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Xianyong Yin
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Sen Yang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbara G Fürnrohr
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
- Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Division of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria
- Division of Biological Chemistry, Medical University Innsbruck, Innsbruck, Austria
| | - Reinhard E Voll
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
- Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology, University Hospital Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Hospital Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Georg Schett
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
- Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nathalie Costedoat-Chalumeau
- AP-HP, Hôpital Cochin, Centre de référence maladies auto-immunes et systémiques rares, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Xuejun Zhang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yong Cui
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Timothy J Vyse
- Division of Genetics and Molecular Medicine, King's College London, London, UK
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| |
Collapse
|
111
|
Abstract
PURPOSE OF REVIEW The field of systemic lupus erythematosus (SLE) genetics has been advancing rapidly in recent years. This review will summarize recent advances in SLE genetics. RECENT FINDINGS Genome-wide-association and follow-up studies have greatly expanded the list of associated polymorphisms, and much current work strives to integrate these polymorphisms into immune system biology and the pathogenic mediators involved in the disease. This review covers some current areas of interest, including genetic studies in non-European SLE patient populations, studies of pathogenic immune system subphenotypes such as type I interferon and autoantibodies, and a rapidly growing body of work investigating the functional consequences of the genetic polymorphisms associated with SLE. SUMMARY These studies provide a fascinating window into human SLE disease biology. As the work proceeds from genetic association signal to altered human biology, we move closer to tailoring interventions based upon an individual's genetic substrate.
Collapse
|
112
|
Common Marker Genes Identified from Various Sample Types for Systemic Lupus Erythematosus. PLoS One 2016; 11:e0156234. [PMID: 27257790 PMCID: PMC4892593 DOI: 10.1371/journal.pone.0156234] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/11/2016] [Indexed: 12/26/2022] Open
Abstract
Objective Systemic lupus erythematosus (SLE) is a complex auto-immune disease. Gene expression studies have been conducted to identify SLE-related genes in various types of samples. It is unknown whether there are common marker genes significant for SLE but independent of sample types, which may have potentials for follow-up translational research. The aim of this study is to identify common marker genes across various sample types for SLE. Methods Based on four public microarray gene expression datasets for SLE covering three representative types of blood-born samples (monocyte; peripheral blood mononuclear cell, PBMC; whole blood), we utilized three statistics (fold-change, FC; t-test p value; false discovery rate adjusted p value) to scrutinize genes simultaneously regulated with SLE across various sample types. For common marker genes, we conducted the Gene Ontology enrichment analysis and Protein-Protein Interaction analysis to gain insights into their functions. Results We identified 10 common marker genes associated with SLE (IFI6, IFI27, IFI44L, OAS1, OAS2, EIF2AK2, PLSCR1, STAT1, RNASE2, and GSTO1). Significant up-regulation of IFI6, IFI27, and IFI44L with SLE was observed in all the studied sample types, though the FC was most striking in monocyte, compared with PBMC and whole blood (8.82–251.66 vs. 3.73–74.05 vs. 1.19–1.87). Eight of the above 10 genes, except RNASE2 and GSTO1, interact with each other and with known SLE susceptibility genes, participate in immune response, RNA and protein catabolism, and cell death. Conclusion Our data suggest that there exist common marker genes across various sample types for SLE. The 10 common marker genes, identified herein, deserve follow-up studies to dissert their potentials as diagnostic or therapeutic markers to predict SLE or treatment response.
Collapse
|
113
|
Several Critical Cell Types, Tissues, and Pathways Are Implicated in Genome-Wide Association Studies for Systemic Lupus Erythematosus. G3-GENES GENOMES GENETICS 2016; 6:1503-11. [PMID: 27172182 PMCID: PMC4889647 DOI: 10.1534/g3.116.027326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We aimed to elucidate the cell types, tissues, and pathways influenced by common variants in systemic lupus erythematosus (SLE). We applied a nonparameter enrichment statistical approach, termed SNPsea, in 181 single nucleotide polymorphisms (SNPs) that have been identified to be associated with the risk of SLE through genome-wide association studies (GWAS) in Eastern Asian and Caucasian populations, to manipulate the critical cell types, tissues, and pathways. In the two most significant cells’ findings (B lymphocytes and CD14+ monocytes), we subjected the GWAS association evidence in the Han Chinese population to an enrichment test of expression quantitative trait locus (QTL) sites and DNase I hypersensitivity, respectively. In both Eastern Asian and Caucasian populations, we observed that the expression level of SLE GWAS implicated genes was significantly elevated in xeroderma pigentosum B cells (P ≤ 1.00 × 10−6), CD14+ monocytes (P ≤ 2.74 × 10−4) and CD19+ B cells (P ≤ 2.00 × 10−6), and plasmacytoid dendritic cells (pDCs) (P ≤ 9.00 × 10−6). We revealed that the SLE GWAS-associated variants were more likely to reside in expression QTL in B lymphocytes (q1/q0 = 2.15, P = 1.23 × 10−44) and DNase I hypersensitivity sites (DHSs) in CD14+ monocytes (q1/q0 = 1.41, P = 0.08). We observed the common variants affected the risk of SLE mostly through by regulating multiple immune system processes and immune response signaling. This study sheds light on several immune cells and responses, as well as the regulatory effect of common variants in the pathogenesis of SLE.
Collapse
|
114
|
Saeb ATM, Al-Naqeb D. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach. SCIENTIFICA 2016; 2016:2079704. [PMID: 27313952 PMCID: PMC4904122 DOI: 10.1155/2016/2079704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.
Collapse
Affiliation(s)
- Amr T. M. Saeb
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 18397, Riyadh 11415, Saudi Arabia
| | - Dhekra Al-Naqeb
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 18397, Riyadh 11415, Saudi Arabia
| |
Collapse
|
115
|
Zhang Y, Yang J, Zhang J, Sun L, Hirankarn N, Pan HF, Lau CS, Chan TM, Lee TL, Leung AMH, Mok CC, Zhang L, Wang Y, Shen JJ, Wong SN, Lee KW, Ho MHK, Lee PPW, Chung BHY, Chong CY, Wong RWS, Mok MY, Wong WHS, Tong KL, Tse NKC, Li XP, Avihingsanon Y, Rianthavorn P, Deekajorndej T, Suphapeetiporn K, Shotelersuk V, Ying SKY, Fung SKS, Lai WM, Wong CM, Ng IOL, Garcia-Barcelo MM, Cherny SS, Cui Y, Sham PC, Yang S, Ye DQ, Zhang XJ, Lau YL, Yang W. Genome-wide search followed by replication reveals genetic interaction of CD80 and ALOX5AP associated with systemic lupus erythematosus in Asian populations. Ann Rheum Dis 2016; 75:891-8. [PMID: 25862617 DOI: 10.1136/annrheumdis-2014-206367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/22/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Genetic interaction has been considered as a hallmark of the genetic architecture of systemic lupus erythematosus (SLE). Based on two independent genome-wide association studies (GWAS) on Chinese populations, we performed a genome-wide search for genetic interactions contributing to SLE susceptibility. METHODS The study involved a total of 1 659 cases and 3 398 controls in the discovery stage and 2 612 cases and 3 441 controls in three cohorts for replication. Logistic regression and multifactor dimensionality reduction were used to search for genetic interaction. RESULTS Interaction of CD80 (rs2222631) and ALOX5AP (rs12876893) was found to be significantly associated with SLE (OR_int=1.16, P_int_all=7.7E-04 at false discovery rate<0.05). Single nuclear polymorphism rs2222631 was found associated with SLE with genome-wide significance (P_all=4.5E-08, OR=0.86) and is independent of rs6804441 in CD80, whose association was reported previously. Significant correlation was observed between expression of these two genes in healthy controls and SLE cases, together with differential expression of these genes between cases and controls, observed from individuals from the Hong Kong cohort. Genetic interactions between BLK (rs13277113) and DDX6 (rs4639966), and between TNFSF4 (rs844648) and PXK (rs6445975) were also observed in both GWAS data sets. CONCLUSIONS Our study represents the first genome-wide evaluation of epistasis interactions on SLE and the findings suggest interactions and independent variants may help partially explain missing heritability for complex diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Zhang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Liangdan Sun
- State Key Laboratory Incubation Base of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Nattiya Hirankarn
- Lupus Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Chak Sing Lau
- Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tsz Leung Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, New Territory, Hong Kong, Hong Kong
| | - Lu Zhang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yongfei Wang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jiangshan Jane Shen
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sik Nin Wong
- Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Hong Kong, Hong Kong
| | - Ka Wing Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong
| | - Marco Hok Kung Ho
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pamela Pui Wah Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chun Yin Chong
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Raymond Woon Sing Wong
- Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Mo Yin Mok
- Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wilfred Hing Sang Wong
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kwok Lung Tong
- Department of Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong
| | - Niko Kei Chiu Tse
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong
| | - Xiang-Pei Li
- Department of Rheumatology, Anhui Provincial Hospital, Hefei, China
| | - Yingyos Avihingsanon
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Rianthavorn
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Kanya Suphapeetiporn
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Wai Ming Lai
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong
| | - Chun-Ming Wong
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Irene Oi Lin Ng
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Stacey S Cherny
- Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yong Cui
- State Key Laboratory Incubation Base of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Pak Chung Sham
- Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong LKS Faculty of Medicine, Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sen Yang
- State Key Laboratory Incubation Base of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Dong-Qing Ye
- Lupus Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Xue-Jun Zhang
- State Key Laboratory Incubation Base of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong LKS Faculty of Medicine, Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
116
|
Lessard CJ, Sajuthi S, Zhao J, Kim K, Ice JA, Li H, Ainsworth H, Rasmussen A, Kelly JA, Marion M, Bang SY, Joo YB, Choi J, Lee HS, Kang YM, Suh CH, Chung WT, Lee SK, Choe JY, Shim SC, Oh JH, Kim YJ, Han BG, Shen N, Howe HS, Wakeland EK, Li QZ, Song YW, Gaffney PM, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Vyse TJ, Harley JB, Sivils KL, Bae SC, Langefeld CD, Tsao BP. Identification of a Systemic Lupus Erythematosus Risk Locus Spanning ATG16L2, FCHSD2, and P2RY2 in Koreans. Arthritis Rheumatol 2016; 68:1197-1209. [PMID: 26663301 PMCID: PMC4981330 DOI: 10.1002/art.39548] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder whose etiology is incompletely understood, but likely involves environmental triggers in genetically susceptible individuals. Using an unbiased genome-wide association (GWA) scan and replication analysis, we sought to identify the genetic loci associated with SLE in a Korean population. METHODS A total of 1,174 SLE cases and 4,246 population controls from Korea were genotyped and analyzed with a GWA scan to identify single-nucleotide polymorphisms (SNPs) significantly associated with SLE, after strict quality control measures were applied. For select variants, replication of SLE risk loci was tested in an independent data set of 1,416 SLE cases and 1,145 population controls from Korea and China. RESULTS Eleven regions outside the HLA exceeded the genome-wide significance level (P = 5 × 10(-8) ). A novel SNP-SLE association was identified between FCHSD2 and P2RY2, peaking at rs11235667 (P = 1.03 × 10(-8) , odds ratio [OR] 0.59) on a 33-kb haplotype upstream of ATG16L2. In the independent replication data set, the SNP rs11235667 continued to show a significant association with SLE (replication meta-analysis P = 0.001, overall meta-analysis P = 6.67 × 10(-11) ; OR 0.63). Within the HLA region, the SNP-SLE association peaked in the class II region at rs116727542, with multiple independent effects observed in this region. Classic HLA allele imputation analysis identified HLA-DRB1*1501 and HLA-DQB1*0602, each highly correlated with one another, as most strongly associated with SLE. Ten previously established SLE risk loci were replicated: STAT1-STAT4, TNFSF4, TNFAIP3, IKZF1, HIP1, IRF5, BLK, WDFY4, ETS1, and IRAK1-MECP2. Of these loci, previously unreported, independent second risk effects of SNPs in TNFAIP3 and TNFSF4, as well as differences in the association with a putative causal variant in the WDFY4 region, were identified. CONCLUSION Further studies are needed to identify true SLE risk effects in other loci suggestive of a significant association, and to identify the causal variants in the regions of ATG16L2, FCHSD2, and P2RY2.
Collapse
Affiliation(s)
- Christopher J. Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Satria Sajuthi
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC 27157-106, USA
| | - Jian Zhao
- Division of Rheumatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kwangwoo Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-792, Republic of Korea
| | - John A. Ice
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - He Li
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Hannah Ainsworth
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC 27157-106, USA
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Mindy Marion
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC 27157-106, USA
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-792, Republic of Korea
| | - Young Bin Joo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-792, Republic of Korea
| | - Jeongim Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-792, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-792, Republic of Korea
| | - Young Mo Kang
- Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Chang-Hee Suh
- Ajou University Hospital, Suwon 443-380, Republic of Korea
| | - Won Tae Chung
- Dong-A University Hospital, Busan 602-715, Republic of Korea
| | - Soo-Kon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-749, Republic of Korea
| | - Jung-Yoon Choe
- Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Seung Cheol Shim
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon 305-764, Republic of Korea
| | - Ji Hee Oh
- Korea National Institute of Health, Osong 361-709, Republic of Korea
| | - Young Jin Kim
- Korea National Institute of Health, Osong 361-709, Republic of Korea
| | - Bok-Ghee Han
- Korea National Institute of Health, Osong 361-709, Republic of Korea
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai, China 200001
- Shanghai JiaoTong University School of Medicine, Shanghai, China 200025
| | - Hwee Siew Howe
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| | | | - Quan-Zhen Li
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yeong Wook Song
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Patrick M. Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Marta E. Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Centro de Genómica e Investigaciones Oncológicas, Pfizer-Universidad de Granada-Junta de Andalućıa, Granada 18100, Spain
| | - Lindsey A. Criswell
- Rosalind Russell / Ephraim P. Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, CA, 94117, USA
| | - Chaim O. Jacob
- Department of Medicine, University of Southern California, Los Angeles, CA 90095
| | - Robert P. Kimberly
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Timothy J. Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, Infection and Inflammatory Disease, King's College London, London, UK WC2R 2LS
| | - John B. Harley
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-792, Republic of Korea
| | - Carl D. Langefeld
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC 27157-106, USA
| | - Betty P. Tsao
- Division of Rheumatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
117
|
Chakraborty C, George Priya Doss C, Zhu H, Agoramoorthy G. Rising Strengths Hong Kong SAR in Bioinformatics. Interdiscip Sci 2016; 9:224-236. [PMID: 26961385 PMCID: PMC7091071 DOI: 10.1007/s12539-016-0147-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/07/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
Hong Kong's bioinformatics sector is attaining new heights in combination with its economic boom and the predominance of the working-age group in its population. Factors such as a knowledge-based and free-market economy have contributed towards a prominent position on the world map of bioinformatics. In this review, we have considered the educational measures, landmark research activities and the achievements of bioinformatics companies and the role of the Hong Kong government in the establishment of bioinformatics as strength. However, several hurdles remain. New government policies will assist computational biologists to overcome these hurdles and further raise the profile of the field. There is a high expectation that bioinformatics in Hong Kong will be a promising area for the next generation.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, UP, 201306, India
- Department of Computer Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - C George Priya Doss
- Medical Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, TN, 632014, India
| | - Hailong Zhu
- Department of Computer Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | | |
Collapse
|
118
|
Vučković F, Krištić J, Gudelj I, Teruel M, Keser T, Pezer M, Pučić-Baković M, Štambuk J, Trbojević-Akmačić I, Barrios C, Pavić T, Menni C, Wang Y, Zhou Y, Cui L, Song H, Zeng Q, Guo X, Pons-Estel BA, McKeigue P, Leslie Patrick A, Gornik O, Spector TD, Harjaček M, Alarcon-Riquelme M, Molokhia M, Wang W, Lauc G. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol 2016. [PMID: 26200652 PMCID: PMC4626261 DOI: 10.1002/art.39273] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective Glycans attached to the Fc portion of IgG are important modulators of IgG effector functions. Interindividual differences in IgG glycome composition are large and they associate strongly with different inflammatory and autoimmune diseases. IKZF1, HLA–DQ2A/B, and BACH2 genetic loci that affect IgG glycome composition show pleiotropy with systemic lupus erythematosus (SLE), indicating a potentially causative role of aberrant IgG glycosylation in SLE. We undertook this large multicenter case–control study to determine whether SLE is associated with altered IgG glycosylation. Methods Using ultra‐performance liquid chromatography analysis of released glycans, we analyzed the composition of the IgG glycome in 261 SLE patients and 247 matched controls of Latin American Mestizo origin (the discovery cohort) and in 2 independent replication cohorts of different ethnicity (108 SLE patients and 193 controls from Trinidad, and 106 SLE patients and 105 controls from China). Results Multiple statistically significant differences in IgG glycome composition were observed between patients and controls. The most significant changes included decreased galactosylation and sialylation of IgG (which regulate proinflammatory and antiinflammatory actions of IgG) as well as decreased core fucose and increased bisecting N‐acetylglucosamine (which affect antibody‐dependent cell‐mediated cytotoxicity). Conclusion The IgG glycome in SLE patients is significantly altered in a way that decreases immunosuppressive action of circulating immunoglobulins. The magnitude of observed changes is associated with the intensity of the disease, indicating that aberrant IgG glycome composition or changes in IgG glycosylation may be an important molecular mechanism in SLE.
Collapse
Affiliation(s)
- Frano Vučković
- Genos Ltd., Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Ivan Gudelj
- Genos Ltd., Glycoscience Research Laboratory, Zagreb, Croatia
| | - Maria Teruel
- Pfizer-University of Granada-Junta de Andalucia Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | | | - Marija Pezer
- Genos Ltd., Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Jerko Štambuk
- Genos Ltd., Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Clara Barrios
- King's College London, London, UK, and Hospital del Mar and Institut Mar d'Investigacions Mediques, Barcelona, Spain
| | | | | | | | - Yong Zhou
- Beijing Tiantan Hospital and Capital Medical University, Beijing, China
| | - Liufu Cui
- Affiliated Kailuan General Hospital of Hebei United University, Tangshan, China
| | - Haicheng Song
- Affiliated Kailuan General Hospital of Hebei United University, Tangshan, China
| | - Qiang Zeng
- International Medical Center and Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiuhua Guo
- Capital Medical University, Beijing, China
| | | | | | | | | | | | | | - Marta Alarcon-Riquelme
- Pfizer-University of Granada-Junta de Andalucia Centre for Genomics and Oncological Research (GENYO), Granada, Spain, and Oklahoma Medical Research Foundation, Oklahoma City
| | | | - Wei Wang
- Capital Medical University, Beijing, China, and Edith Cowan University, Perth, Western Australia, Australia
| | - Gordan Lauc
- Genos Ltd., Glycoscience Research Laboratory, and University of Zagreb, Zagreb, Croatia
| |
Collapse
|
119
|
TALEN-mediated enhancer knockout influences TNFAIP3 gene expression and mimics a molecular phenotype associated with systemic lupus erythematosus. Genes Immun 2016; 17:165-70. [PMID: 26821284 PMCID: PMC4840072 DOI: 10.1038/gene.2016.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Linkage disequilibrium poses a major challenge to the functional characterization of specific disease-associated susceptibility variants. Precision genome editing technologies have provided new opportunities to address this challenge. As proof-of-concept, we employed TALEN-mediated genome editing to specifically disrupt the TT>A enhancer region to mimic candidate causal variants identified in the systemic lupus erythematosus-associated susceptibility gene, TNFAIP3, in an isogenic HEK293T cell line devoid of other linkage disequilibrium-associated variants. Targeted disruption of the TT>A enhancer impaired its interaction with the TNFAIP3 promoter by long-range DNA looping, thereby reducing TNFAIP3 gene expression. Loss of TNFAIP3 mRNA and its encoded protein, A20, impaired TNFα-induced receptor-mediated downregulation of NF-κB signaling; a hallmark of autoimmunity. Results demonstrate that the TT>A enhancer variants contribute to causality and function independently of other variants to disrupt TNFAIP3 expression. Further, we believe this approach can be implemented to independently examine other candidate casual variants in the future.
Collapse
|
120
|
High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 2016; 48:323-30. [PMID: 26808113 PMCID: PMC4767573 DOI: 10.1038/ng.3496] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/23/2015] [Indexed: 01/04/2023]
Abstract
Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,478 SLE cases and 12,656 controls from six East Asian cohorts to identify new SLE susceptibility loci and better localize known loci. We identified ten new loci and confirmed 20 known loci with genome-wide significance. Among the new loci, the most significant locus was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta = 3.75 × 10(-117), odds ratio (OR) = 2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We identified the most likely functional variants at each locus by analyzing epigenetic marks and gene expression data. Ten candidate variants are known to alter gene expression in cis or in trans. Enrichment analysis highlights the importance of these loci in B cell and T cell biology. The new loci, together with previously known loci, increase the explained heritability of SLE to 24%. The new loci share functional and ontological characteristics with previously reported loci and are possible drug targets for SLE therapeutics.
Collapse
|
121
|
Demirci FY, Wang X, Kelly JA, Morris DL, Barmada MM, Feingold E, Kao AH, Sivils KL, Bernatsky S, Pineau C, Clarke A, Ramsey-Goldman R, Vyse TJ, Gaffney PM, Manzi S, Kamboh MI. Identification of a New Susceptibility Locus for Systemic Lupus Erythematosus on Chromosome 12 in Individuals of European Ancestry. Arthritis Rheumatol 2016; 68:174-83. [PMID: 26316170 PMCID: PMC4747422 DOI: 10.1002/art.39403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) in individuals of European ancestry identified a number of systemic lupus erythematosus (SLE) susceptibility loci using earlier versions of high-density genotyping platforms. Followup studies on suggestive GWAS regions using larger samples and more markers identified additional SLE loci in subjects of European descent. This multistage study was undertaken to identify novel SLE loci. METHODS In stage 1, we conducted a new GWAS of SLE in a North American case-control sample of subjects of European ancestry (n = 1,166) genotyped on Affymetrix Genome-Wide Human SNP Array 6.0. In stage 2, we further investigated top new suggestive GWAS hits by in silico evaluation and meta-analysis using an additional data set of subjects of European descent (>2,500 individuals), followed by replication of top meta-analysis findings in another data set of subjects of European descent (>10,000 individuals) in stage 3. RESULTS As expected, our GWAS revealed the most significant associations at the major histocompatibility complex locus (6p21), which easily surpassed the genome-wide significance threshold (P < 5 × 10(-8)). Several other SLE signals/loci previously implicated in Caucasians and/or Asians were also confirmed in the stage 1 discovery sample, and the strongest signals were observed at 2q32/STAT4 (P = 3.6 × 10(-7)) and at 8p23/BLK (P = 8.1 × 10(-6)). Stage 2 meta-analyses identified a new genome-wide significant SLE locus at 12q12 (meta P = 3.1 × 10(-8)), which was replicated in stage 3. CONCLUSION Our multistage study identified and replicated a new SLE locus that warrants further followup in additional studies. Publicly available databases suggest that this newly identified SLE signal falls within a functionally relevant genomic region and near biologically important genes.
Collapse
MESH Headings
- Adult
- Case-Control Studies
- Casein Kinase II/genetics
- Cell Cycle Proteins/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 6
- Chromosomes, Human, Pair 8
- Computer Simulation
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Genotype
- HLA-DQ alpha-Chains/genetics
- HLA-DQ beta-Chains/genetics
- Humans
- Lupus Erythematosus, Systemic/genetics
- Major Histocompatibility Complex/genetics
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Quantitative Trait Loci
- STAT4 Transcription Factor/genetics
- Tenascin/genetics
- Transcriptome
- White People/genetics
- src-Family Kinases/genetics
Collapse
Affiliation(s)
- F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jennifer A. Kelly
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David L. Morris
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - M. Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy H. Kao
- Lupus Center of Excellence, Department of Medicine, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - Kathy L. Sivils
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sasha Bernatsky
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Christian Pineau
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Ann Clarke
- Division of Rheumatology, Department of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timothy J. Vyse
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Patrick M. Gaffney
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Susan Manzi
- Lupus Center of Excellence, Department of Medicine, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
122
|
Network-assisted analysis of primary Sjögren's syndrome GWAS data in Han Chinese. Sci Rep 2015; 5:18855. [PMID: 26686423 PMCID: PMC4685393 DOI: 10.1038/srep18855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/05/2015] [Indexed: 12/23/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a complex autoimmune disorder. So far, genetic research in pSS has lagged far behind and the underlying biological mechanism is unclear. Further exploring existing genome-wide association study (GWAS) data is urgently expected to uncover disease-related gene combination patterns. Herein, we conducted a network-based analysis by integrating pSS GWAS in Han Chinese with a protein-protein interactions network to identify pSS candidate genes. After module detection and evaluation, 8 dense modules covering 40 genes were obtained for further functional annotation. Additional 31 MHC genes with significant gene-level P-values (sigMHC-gene) were also remained. The combined module genes and sigMHC-genes, a total of 71 genes, were denoted as pSS candidate genes. Of these pSS candidates, 14 genes had been reported to be associated with any of pSS, RA, and SLE, including STAT4, GTF2I, HLA-DPB1, HLA-DRB1, PTTG1, HLA-DQB1, MBL2, TAP2, CFLAR, NFKBIE, HLA-DRA, APOM, HLA-DQA2 and NOTCH4. This is the first report of the network-assisted analysis for pSS GWAS data to explore combined gene patterns associated with pSS. Our study suggests that network-assisted analysis is a useful approach to gaining further insights into the biology of associated genes and providing important clues for future research into pSS etiology.
Collapse
|
123
|
Seldin MF. The genetics of human autoimmune disease: A perspective on progress in the field and future directions. J Autoimmun 2015; 64:1-12. [PMID: 26343334 PMCID: PMC4628839 DOI: 10.1016/j.jaut.2015.08.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/23/2015] [Indexed: 12/18/2022]
Abstract
Progress in defining the genetics of autoimmune disease has been dramatically enhanced by large scale genetic studies. Genome-wide approaches, examining hundreds or for some diseases thousands of cases and controls, have been implemented using high throughput genotyping and appropriate algorithms to provide a wealth of data over the last decade. These studies have identified hundreds of non-HLA loci as well as further defining HLA variations that predispose to different autoimmune diseases. These studies to identify genetic risk loci are also complemented by progress in gene expression studies including definition of expression quantitative trait loci (eQTL), various alterations in chromatin structure including histone marks, DNase I sensitivity, repressed chromatin regions as well as transcript factor binding sites. Integration of this information can partially explain why particular variations can alter proclivity to autoimmune phenotypes. Despite our incomplete knowledge base with only partial definition of hereditary factors and possible functional connections, this progress has and will continue to facilitate a better understanding of critical pathways and critical changes in immunoregulation. Advances in defining and understanding functional variants potentially can lead to both novel therapeutics and personalized medicine in which therapeutic approaches are chosen based on particular molecular phenotypes and genomic alterations.
Collapse
Affiliation(s)
- Michael F Seldin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Tupper Hall Room 4453, Davis, CA 95616, USA; Division of Rheumatology and Allergy, Department of Medicine, University of California, Davis, Tupper Hall Room 4453, Davis, CA 95616, USA.
| |
Collapse
|
124
|
Zhang J, Zhang L, Zhang Y, Yang J, Guo M, Sun L, Pan HF, Hirankarn N, Ying D, Zeng S, Lee TL, Lau CS, Chan TM, Leung AMH, Mok CC, Wong SN, Lee KW, Ho MHK, Lee PPW, Chung BHY, Chong CY, Wong RWS, Mok MY, Wong WHS, Tong KL, Tse NKC, Li XP, Avihingsanon Y, Rianthavorn P, Deekajorndej T, Suphapeetiporn K, Shotelersuk V, Ying SKY, Fung SKS, Lai WM, Garcia-Barceló MM, Cherny SS, Sham PC, Cui Y, Yang S, Ye DQ, Zhang XJ, Lau YL, Yang W. Gene-Based Meta-Analysis of Genome-Wide Association Study Data Identifies Independent Single-Nucleotide Polymorphisms inANXA6as Being Associated With Systemic Lupus Erythematosus in Asian Populations. Arthritis Rheumatol 2015. [PMID: 26202167 DOI: 10.1002/art.39275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Zhang
- Queen Mary Hospital and The University of Hong Kong, Hong Kong, China, and Eye and ENT Hospital of Fudan University; Shanghai China
| | - Lu Zhang
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Yan Zhang
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Jing Yang
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Mengbiao Guo
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | | | | | - Dingge Ying
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Shuai Zeng
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Tsz Leung Lee
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Chak Sing Lau
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Tak Mao Chan
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | - Chi Chiu Mok
- Tuen Mun Hospital, Tuen Mun, New Territories; Hong Kong China
| | - Sik Nin Wong
- Tuen Mun Hospital, Tuen Mun, New Territories; Hong Kong China
| | - Ka Wing Lee
- Pamela Youde Nethersole Eastern Hospital; Hong Kong China
| | - Marco Hok Kung Ho
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | | | - Chun Yin Chong
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | - Mo Yin Mok
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Stacey S. Cherny
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Pak Chung Sham
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Yong Cui
- Anhui Medical University; China Hefei China
| | - Sen Yang
- Anhui Medical University; China Hefei China
| | | | | | - Yu Lung Lau
- Queen Mary Hospital and The University of Hong Kong, Hong Kong, China, and The University of Hong Kong-Shenzhen Hospital; Shenzhen China
| | - Wanling Yang
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| |
Collapse
|
125
|
Wang L, Law HKW. The Role of Autophagy in Lupus Nephritis. Int J Mol Sci 2015; 16:25154-67. [PMID: 26506346 PMCID: PMC4632796 DOI: 10.3390/ijms161025154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by the generation of immune responses to self-antigens. Lupus nephritis is one of the most common and severe complications in SLE patients. Though the pathogenesis of lupus nephritis has been studied extensively, unresolved questions are still left and new therapeutic methods are needed for disease control. Autophagy is a conserved catabolic process through which cytoplasmic constituents can be degraded in lysosome and reused. Autophagy plays vital roles in maintaining cell homeostasis and is involved in the pathogenesis of many diseases. In particular, autophagy can affect almost all parts of the immune system and is involved in autoimmune diseases. Based on genetic analysis, cell biology, and mechanism studies of the classic and innovative therapeutic drugs, there are growing lines of evidence suggesting the relationship between autophagy and lupus nephritis. In the present review, we summarize the recent publications investigating the relationship between autophagy and lupus nephritis and provide a new perspective towards the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| |
Collapse
|
126
|
Solving the genetic puzzle of systemic lupus erythematosus. Pediatr Nephrol 2015; 30:1735-48. [PMID: 25239301 DOI: 10.1007/s00467-014-2947-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/30/2014] [Accepted: 08/14/2014] [Indexed: 02/06/2023]
Abstract
In recent years, genome-wide association studies on systemic lupus erythematosus (SLE) have significantly improved our understanding of the genetic architecture of this prototypic autoimmune disease. However, there is still a long way to go before we can fully understand the genetic factors for this very heterogeneous disease and the interplays between environmental factors and genetic predisposition that lead to the pathogenesis of SLE. Here we summarize the recent advances in our understanding of the genetics of SLE and discuss the future directions towards fully elucidating the mechanisms of this disease.
Collapse
|
127
|
Salvadori M, Rosso G. Update on immunoglobulin A nephropathy, Part I: Pathophysiology. World J Nephrol 2015; 4:455-467. [PMID: 26380197 PMCID: PMC4561843 DOI: 10.5527/wjn.v4.i4.455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/24/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is one of the most common glomerulonephritis and its frequency is probably underestimated because in most patients the disease has an indolent course and the kidney biopsy is essential for the diagnosis. In the last years its pathogenesis has been better identified even if still now several questions remain to be answered. The genetic wide association studies have allowed to identifying the relevance of genetics and several putative genes have been identified. The genetics has also allowed explaining why some ancestral groups are affected with higher frequency. To date is clear that IgA nephropathy is related to auto antibodies against immunoglobulin A1 (IgA1) with poor O-glycosylation. The role of mucosal infections is confirmed, but which are the pathogens involved and which is the role of Toll-like receptor polymorphism is less clear. Similarly to date whether the disease is due to the circulating immunocomplexes deposition on the mesangium or whether the antigen is already present on the mesangial cell as a "lanthanic" deposition remains to be clarified. Finally also the link between the mesangial and the podocyte injury and the tubulointerstitial scarring, as well as the mechanisms involved need to be better clarified.
Collapse
|
128
|
de Andres MC, Perez-Pampin E, Calaza M, Santaclara FJ, Ortea I, Gomez-Reino JJ, Gonzalez A. Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Res Ther 2015; 17:233. [PMID: 26330155 PMCID: PMC4556005 DOI: 10.1186/s13075-015-0748-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 08/10/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION DNA methylation is an epigenetic mechanism regulating gene expression that has been insufficiently studied in the blood of rheumatoid arthritis (RA) patients, as only T cells and total peripheral blood mononuclear cells (PBMCs) from patients with established RA have been studied and with conflicting results. METHOD Five major blood cell subpopulations: T, B and NK cells, monocytes, and polymorphonuclear leukocytes, were isolated from 19 early RA patients and 17 healthy controls. Patient samples were taken before and 1 month after the start of treatment with methotrexate (MTX). Analysis included DNA methylation with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring (HPLC-ESI-MS/MS-SRM) and expression levels of seven methylation-specific enzymes by quantitative polymerase chain reaction (qPCR). RESULTS Disease-modifying anti-rheumatic drug (DMARD)-naïve early RA patients showed global DNA hypomethylation in T cells and monocytes, together with a lower expression of DNA methyltrasnferase 1 (DNMT1), the maintenance DNA methyltransferase, which was also decreased in B cells. Furthermore, significantly increased expression of ten-eleven translocation1 (TET1), TET2 and TET3, enzymes involved in demethylation, was found in monocytes and of TET2 in T cells. There was also modest decreased expression of DNMT3A in B cells and of growth arrest and DNA-damage-inducible protein 45A (GADD45A) in T and B cells. Treatment with MTX reverted hypomethylation in T cells and monocytes, which were no longer different from controls, and increased global methylation in B cells. In addition, DNMT1 and DNMT3A showed a trend to reversion of their decreased expression. CONCLUSIONS Our results confirm global DNA hypomethylation in patients with RA with specificity for some blood cell subpopulations and their reversal with methotrexate treatment. These changes are accompanied by parallel changes in the levels of enzymes involved in methylation, suggesting the possibility of regulation at this level.
Collapse
Affiliation(s)
- María C de Andres
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Eva Perez-Pampin
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Manuel Calaza
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Francisco J Santaclara
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Ignacio Ortea
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Juan J Gomez-Reino
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
- Department of Medicine, University of Santiago de Compostela, Rúa de San Francisco, s/n, 15782, Santiago de Compostela, Spain.
| | - Antonio Gonzalez
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
129
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
130
|
Tam RCY, Lee ALH, Yang W, Lau CS, Chan VSF. Systemic Lupus Erythematosus Patients Exhibit Reduced Expression of CLEC16A Isoforms in Peripheral Leukocytes. Int J Mol Sci 2015; 16:14428-40. [PMID: 26121298 PMCID: PMC4519850 DOI: 10.3390/ijms160714428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease with multiple etiological factors. The SLE susceptibility locus on chromosome 16p13 encodes a novel gene CLEC16A and its functional relationship with SLE is unclear. This study aimed to investigate the expression correlation of the two major CLEC16A spliced transcripts with SLE development. Expressions of the long (V1) and short (V2) CLEC16A isoforms in the peripheral blood mononuclear cells (PBMCs) were assayed by quantitative real time PCR and compared between healthy individuals and SLE patients. Correlation of CLEC16A isoform expression levels with SLE susceptibility, disease severity and twelve clinical parameters were also evaluated. Full length transcripts of CLEC16A V1 and V2 isoforms were readily amplified from PBMCs of healthy controls and patients at varying abundance. Compared with healthy controls (n = 86), expression levels of V1 and V2 were significantly reduced by ~two- and four-fold respectively in SLE patients (n = 181). The relative V2/V1 ratio was also significantly reduced by approximately two-fold. With regard to SLE disease parameters, only a weak positive correlation was found between CLEC16A V1 expression levels and SLE disease activity index (SLEDAI) score. Taken together, CLEC16A was found to be a susceptibility factor for SLE, with possible contribution to the development of the disease.
Collapse
Affiliation(s)
- Rachel C Y Tam
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Alfred L H Lee
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Chak Sing Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Vera S F Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
131
|
The Contribution of Meta-Analysis of Genome-Wide Association Studies in Investigating the Genetic Susceptibility to Lupus. J Investig Dermatol Symp Proc 2015; 17:51-2. [PMID: 26067324 DOI: 10.1038/jidsymp.2015.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
132
|
Zhang YM, Cheng FJ, Zhou XJ, Qi YY, Zhao MH, Zhang H. Rare Variants of ATG5 Are Likely to Be Associated With Chinese Patients With Systemic Lupus Erythematosus. Medicine (Baltimore) 2015; 94:e939. [PMID: 26039132 PMCID: PMC4616363 DOI: 10.1097/md.0000000000000939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Recently, common variants within or near ATG5, which is a key autophagy gene required for the formation of autophagosomes, have been identified as a candidate gene of systemic lupus erythematosus (SLE) by several genome-wide association studies. Moreover, elevated ATG5 expression was observed in SLE as well as other autoimmune diseases. However, no significant associations between variants within ATG5 and SLE were identified in several Chinese populations. The present study was conducted to further check the genetic role of ATG5 by associating both common and rare variants of ATG5 in Chinese patients with lupus nephritis (LN), a major phenotype with poor prognosis in SLE.To detect the association of common variants of ATG5 with LN, 7 tagging single nucleotide polymorphisms (SNPs) designed in immunochip and 4 SNPs reported to be associated with SLE were genotyped in 500 LN patients and 500 healthy controls. Furthermore, direct sequencing of exons and their flanking regions in 90 LN patients, 30 SLE patients, and 60 healthy controls were performed. Functional genomic annotation was performed by using public databases.None of the 11 tagging SNPs was observed to be associated with LN. By sequencing, 13 variants were identified, including 5 common SNPs, 7 not previously described, and 1 reported as rare variants (<1%) in the Single Nucleotide Polymorphism Database or the 1000 Genome project. None of the 5 common SNPs showed significant association between patients and controls, whereas increased frequencies of rare or novel variants were observed in patients compared with healthy controls, with 6/90 in LN patients, 2/30 in SLE patients, and 1/163 in healthy controls. Although these rare variants were observed to be located in the flanking regions of exons instead of missense mutations, patients carrying them tended to have severe clinical phenotype, and in silicon analysis suggested their regulatory effects.Increased frequencies of rare variants of ATG5 were identified in patients with LN and SLE compared with healthy controls, highlighting a likely important role of rare ATG5 variants in Chinese SLE patients.
Collapse
Affiliation(s)
- Yue-Miao Zhang
- From the Renal Division (Y-mZ, F-jC, X-jZ, Y-yQ, M-hZ, HZ), Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing; and Shandong Provincial Hospital Affiliated to Shandong University (F-jC), Jinan, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
133
|
Wang F, Muller S. Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol 2015; 6:252. [PMID: 26042127 PMCID: PMC4437184 DOI: 10.3389/fimmu.2015.00252] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a constitutive intracellular degradation pathway, displays essential role in the homeostasis of immune cells, antigen processing and presentation, and many other immune processes. Perturbation of autophagy has been shown to be related to several autoimmune syndromes, including systemic lupus erythematosus. Therefore, modulating autophagy processes appears most promising for therapy of such autoimmune diseases. Autophagy can be said non-selective or selective; it is classified into three main forms, namely macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA), the former process being by far the most intensively investigated. The role of CMA remains largely underappreciated in autoimmune diseases, even though CMA has been claimed to play pivotal functions into major histocompatibility complex class II-mediated antigen processing and presentation. Therefore, hereby, we give a special focus on CMA as a therapeutic target in autoimmune diseases, based in particular on our most recent experimental results where a phosphopeptide modulates lupus disease by interacting with CMA regulators. We propose that specifically targeting lysosomes and lysosomal pathways, which are central in autophagy processes and seem to be altered in certain autoimmune diseases such as lupus, could be an innovative approach of efficient and personalized treatment.
Collapse
Affiliation(s)
- Fengjuan Wang
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France
| | - Sylviane Muller
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France ; University of Strasbourg Institute for Advanced Study , Strasbourg , France
| |
Collapse
|
134
|
Abstract
PURPOSE OF REVIEW Genome-wide association studies have identified more than 50 robust loci associated with systemic lupus erythematosus (SLE) susceptibility, and follow-up studies help reveal candidate causative genetic variants and their biological relevance contributing to the development of SLE. Epigenetic modulation is emerging as an important mechanism for understanding how the implicated genes interact with environmental factors. We review recent progress toward identifying causative variants of SLE-associated loci and epigenetic impact on lupus, especially genetic-epigenetic interactions that modulate expression levels of SLE susceptibility genes. RECENT FINDINGS A few SLE-risk loci have been refined to localize likely causative variants responsible for the observed genome-wide association study signals. Few of such variants disrupt coding sequences resulting in gain or loss of function for the encoded protein, whereas most fall in noncoding regions with potential to regulate gene expression through alterations in transcriptional activity, splicing, mRNA stability and epigenetic modifications. Multiple key pathways related to the SLE pathogenesis have been indicated by the identified genetic risk factors, including type I interferon signaling pathway that can also be regulated by epigenetic changes occurred in SLE. SUMMARY These findings provide novel insights into the disease pathogenesis and promise better diagnostic accuracy and new therapeutic targets for patient management.
Collapse
Affiliation(s)
- Yun Deng
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | |
Collapse
|
135
|
Kirino Y, Remmers EF. Genetic architectures of seropositive and seronegative rheumatic diseases. Nat Rev Rheumatol 2015; 11:401-14. [PMID: 25907699 DOI: 10.1038/nrrheum.2015.41] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and some other rheumatic diseases are genetically complex, with evidence of familial clustering, but not of Mendelian inheritance. These diseases are thought to result from contributions and interactions of multiple genetic and nongenetic risk factors, which have small effects individually. Genome-wide association studies (GWAS) of large collections of data from cases and controls have revealed many genetic factors that contribute to non-Mendelian rheumatic diseases, thus providing insights into associated molecular mechanisms. This Review summarizes methods for the identification of gene variants that influence genetically complex diseases and focuses on what we have learned about the rheumatic diseases for which GWAS have been reported. Our review of the disease-associated loci identified to date reveals greater sharing of risk loci among the groups of seropositive (diseases in which specific autoantibodies are often present) or seronegative diseases than between these two groups. The nature of the shared and discordant loci suggests important similarities and differences among these diseases.
Collapse
Affiliation(s)
- Yohei Kirino
- Yokohama City University Graduate School of Medicine, Department of Internal Medicine and Clinical Immunology, 3-9 Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan
| | - Elaine F Remmers
- National Institutes of Health, National Human Genome Research Institute, Inflammatory Disease Section, 10 Center Drive, MSC 1849, Bethesda, MD 20892, USA
| |
Collapse
|
136
|
Affiliation(s)
- Alberta Hoi
- Lupus Clinic, Monash Medical Centre, Autoimmune Clinic Austin Hospital, and Monash University; Melbourne Vic. Australia
| |
Collapse
|
137
|
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder that has a broad spectrum of effects on the majority of organs, including the kidneys. Approximately 40-70% of patients with SLE will develop lupus nephritis. Renal assault during SLE is initiated by genes that breach immune tolerance and promote autoantibody production. These genes might act in concert with other genetic factors that augment innate immune signalling and IFN-I production, which in turn can generate an influx of effector leucocytes, inflammatory mediators and autoantibodies into end organs, such as the kidneys. The presence of cognate antigens in the glomerular matrix, together with intrinsic molecular abnormalities in resident renal cells, might further accentuate disease progression. This Review discusses the genetic insights and molecular mechanisms for key pathogenic contributors in SLE and lupus nephritis. We have categorized the genes identified in human studies of SLE into one of four pathogenic events that lead to lupus nephritis. We selected these categories on the basis of the cell types in which these genes are expressed, and the emerging paradigms of SLE pathogenesis arising from murine models. Deciphering the molecular basis of SLE and/or lupus nephritis in each patient will help physicians to tailor specific therapies.
Collapse
|
138
|
Jiang L, Wu J, Li W, Du J, Wang W, Zhu Z, Gao J, Sheng Y, Yin X, Zheng X, Li H, Li Y, Meng L, Fan X, Liu S, Zeng M, Wang Z, Cui Y, Tang H, Sun L, Yang S, Zhang X. Rs4948496 withinARID5Bgene is associated with clinical features of systemic lupus erythematosus in the Chinese Han population. J Dermatol 2015; 42:608-12. [PMID: 25808444 DOI: 10.1111/1346-8138.12841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/03/2015] [Indexed: 01/20/2023]
|
139
|
Meta-analysis of two Chinese populations identifies an autoimmune disease risk allele in 22q11.21 as associated with systemic lupus erythematosus. Arthritis Res Ther 2015; 17:67. [PMID: 25880549 PMCID: PMC4404227 DOI: 10.1186/s13075-015-0577-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a heterogeneous disease with a diverse spectrum of clinical symptoms, ranging from skin rash to end-organ damage. 22q11.21 has been identified as a susceptibility region for several autoimmune diseases, including SLE. However, detailed information for SLE association and the underlying functional mechanism(s) is still lacking. METHODS Through meta-analysis of two genome-wide association studies (GWAS) on Han Chinese populations, comprising a total of 1,659 cases and 3,398 controls matched geographically, we closely examined the 22q11.21 region, especially on the reported single-nucleotide polymorphisms (SNPs) associated with different autoimmune diseases and their relationships. We further replicated the most significant associations of SNPs with SLE using 2,612 cases and 2,323 controls of Asian ancestry. RESULTS All reported SNPs in the 22q11.21 region with different autoimmune diseases were examined using the two GWAS data and meta-analysis results, and supportive evidence of association with SLE was found (meta-analysis: P_meta ≤ 7.27E-05), which might require further investigation. SNP rs2298428 was identified as the most significant SNP associated with SLE in this region (P_meta =2.70E-09). It showed independent effects through both stepwise and conditional logistic regression, and there is no evidence of other independent association signals for SLE in this region. The association of rs2298428 was further replicated in three cohorts from Hong Kong, Anhui and Thailand comprising a total of 2,612 cases and 2,323 controls (joint analysis of GWAS and replication result: P_all =1.31E-11, odds ratio =1.23). SNP rs2298428 was shown to be an expression quantitative locus for UBE2L3 gene in different cell types, with the risk allele (T) being correlated with higher expression of UBE2L3. This is consistent with earlier reports on higher expression of UBE2L3 in patients with SLE. CONCLUSIONS Association with distinct autoimmune diseases highlights the significance of this region in autoreactive responses and potentially shared functional mechanisms in these diseases.
Collapse
|
140
|
Sui W, Tan Q, Yang M, Yan Q, Lin H, Ou M, Xue W, Chen J, Zou T, Jing H, Guo L, Cao C, Sun Y, Cui Z, Dai Y. Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip. Int J Mol Med 2015; 35:1467-79. [PMID: 25813249 DOI: 10.3892/ijmm.2015.2149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/27/2015] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, potentially fatal systemic autoimmune disease characterized by the production of autoantibodies against a wide range of self-antigens. To investigate the role of the 5-hmC DNA modification with regard to the onset of SLE, we compared the levels 5-hmC between SLE patients and normal controls. Whole blood was obtained from patients, and genomic DNA was extracted. Using the hMeDIP-chip analysis and validation by quantitative RT-PCR (RT-qPCR), we identified the differentially hydroxymethylated regions that are associated with SLE. There were 1,701 genes with significantly different 5-hmC levels at the promoter region in the SLE patients compared with the normal controls. The CpG islands of 3,826 genes showed significantly different 5-hmC levels in the SLE patients compared with the normal controls. Out of the differentially hydroxymethylated genes, three were selected for validation, including TREX1, CDKN1A and CDKN1B. The hydroxymethylation levels of the three genes were confirmed by RT-qPCR. The results suggested that there were significant alterations of 5-hmC in SLE patients. Thus, these differentially hydroxymethylated genes may contribute to the pathogenesis of SLE. These findings show the significance of 5-hmC as a potential biomarker or promising target for epigenetic-based SLE therapies.
Collapse
Affiliation(s)
- Weiguo Sui
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Qiupei Tan
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Ming Yang
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Hua Lin
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Minglin Ou
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Wen Xue
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Jiejing Chen
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Tongxiang Zou
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Huanyun Jing
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Li Guo
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Cuihui Cao
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Yufeng Sun
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Zhenzhen Cui
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
141
|
Kim K, Bang SY, Lee HS, Cho SK, Choi CB, Sung YK, Kim TH, Jun JB, Yoo DH, Kang YM, Kim SK, Suh CH, Shim SC, Lee SS, Lee J, Chung WT, Choe JY, Shin HD, Lee JY, Han BG, Nath SK, Eyre S, Bowes J, Pappas DA, Kremer JM, Gonzalez-Gay MA, Rodriguez-Rodriguez L, Ärlestig L, Okada Y, Diogo D, Liao KP, Karlson EW, Raychaudhuri S, Rantapää-Dahlqvist S, Martin J, Klareskog L, Padyukov L, Gregersen PK, Worthington J, Greenberg JD, Plenge RM, Bae SC. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann Rheum Dis 2015; 74:e13. [PMID: 24532676 PMCID: PMC4467986 DOI: 10.1136/annrheumdis-2013-204749] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. METHODS We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. RESULTS We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. CONCLUSIONS This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases.
Collapse
Affiliation(s)
- Kwangwoo Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Soo-Kyung Cho
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Chan-Bum Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Dae Hyun Yoo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Young Mo Kang
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Arthritis & Autoimmunity Research Center, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung-Cheol Shim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jisoo Lee
- Division of Rheumatology, Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Won Tae Chung
- Division of Rheumatology, Department of internal medicine, Dong-A University, Busan, Republic of Korea
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Arthritis & Autoimmunity Research Center, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Jong-Young Lee
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology, Chungcheongbuk-do, Republic of Korea
| | - Bok-Ghee Han
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology, Chungcheongbuk-do, Republic of Korea
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Steve Eyre
- Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - John Bowes
- Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Dimitrios A Pappas
- Department of Medicine, Division of Rheumatology, Columbia University, New York, New York, USA
| | | | - Miguel A Gonzalez-Gay
- Department of Rheumatology, Hospital Marques de Valdecilla, IFIMAV, Santander, Spain
| | | | - Lisbeth Ärlestig
- Department of Clinical Medicine/Rheumatoloy, Umeå University, Umeå, Sweden
| | - Yukinori Okada
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Dorothée Diogo
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Katherine P Liao
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth W Karlson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | | | - Javier Martin
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, CSIC, Granada, Spain
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Peter K Gregersen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, USA
| | - Jane Worthington
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jeffrey D Greenberg
- Division of Rheumatology, New York University School of Medicine, New York, New York, USA
| | - Robert M Plenge
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| |
Collapse
|
142
|
Oparina NY, Delgado-Vega AM, Martinez-Bueno M, Magro-Checa C, Fernández C, Castro RO, Pons-Estel BA, D'Alfonso S, Sebastiani GD, Witte T, Lauwerys BR, Endreffy E, Kovács L, Escudero A, López-Pedrera C, Vasconcelos C, da Silva BM, Frostegård J, Truedsson L, Martin J, Raya E, Ortego-Centeno N, de Los Angeles Aguirre M, de Ramón Garrido E, Palma MJC, Alarcon-Riquelme ME, Kozyrev SV. PXK locus in systemic lupus erythematosus: fine mapping and functional analysis reveals novel susceptibility gene ABHD6. Ann Rheum Dis 2015; 74:e14. [PMID: 24534757 DOI: 10.1136/annrheumdis-2013-204909] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To perform fine mapping of the PXK locus associated with systemic lupus erythematosus (SLE) and study functional effects that lead to susceptibility to the disease. METHODS Linkage disequilibrium (LD) mapping was conducted by using 1251 SNPs (single nucleotide polymorphism) covering a 862 kb genomic region on 3p14.3 comprising the PXK locus in 1467 SLE patients and 2377 controls of European origin. Tag SNPs and genotypes imputed with IMPUTE2 were tested for association by using SNPTEST and PLINK. The expression QTLs data included three independent datasets for lymphoblastoid cells of European donors: HapMap3, MuTHER and the cross-platform eQTL catalogue. Correlation analysis of eQTLs was performed using Vassarstats. Alternative splicing for the PXK gene was analysed on mRNA from PBMCs. RESULTS Fine mapping revealed long-range LD (>200 kb) extended over the ABHD6, RPP14, PXK, and PDHB genes on 3p14.3. The highly correlated variants tagged an SLE-associated haplotype that was less frequent in the patients compared with the controls (OR=0.89, p=0.00684). A robust correlation between the association with SLE and enhanced expression of ABHD6 gene was revealed, while neither expression, nor splicing alterations associated with SLE susceptibility were detected for PXK. The SNP allele frequencies as well as eQTL pattern analysed in the CEU and CHB HapMap3 populations indicate that the SLE association and the effect on ABHD6 expression are specific to Europeans. CONCLUSIONS These results confirm the genetic association of the locus 3p14.3 with SLE in Europeans and point to the ABHD6 and not PXK, as the major susceptibility gene in the region. We suggest a pathogenic mechanism mediated by the upregulation of ABHD6 in individuals carrying the SLE-risk variants.
Collapse
Affiliation(s)
- Nina Y Oparina
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Manuel Martinez-Bueno
- Centro de Genómica e Investigación Oncológica (GENYO). Pfizer-Universidad de Granada-Junta de Andalucía, PTS, Granada, Spain
| | - César Magro-Checa
- Department of Rheumatology, Hospital Universitario San Cecilio, Granada, Spain
| | - Concepción Fernández
- Unidad de Enfermedades Autoimmunes Sistémicas, UGC Medicina Interna, Hospital Universitario San Cecilio, Granada, Spain
| | - Rafaela Ortega Castro
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | | | - Sandra D'Alfonso
- Department of Health Sciences and IRCAD, University of Eastern Piedmont, Novara, Italy
| | | | | | - Bernard R Lauwerys
- Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Bruxells, Belgium
| | - Emoke Endreffy
- Department of Pediatrics and Health Center, University of Szeged, Szeged, Hungary
| | - László Kovács
- Department of Rheumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Alejandro Escudero
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | - Chary López-Pedrera
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | - Carlos Vasconcelos
- Centro Hospitalar do Porto/Hospital Santo Antonio and UMIB/ICBAS, Porto, Portugal
| | | | - Johan Frostegård
- IMM, Unit of Immunology and Chronic disease, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Truedsson
- Department of Laboratory Medicine, Section of M.I.G., Lund University, Lund, Sweden
| | - Javier Martin
- Instituto de Biomedicina y Parasitología López Neyra, CSIC, Armilla, Spain
| | - Enrique Raya
- Department of Rheumatology, Hospital Universitario San Cecilio, Granada, Spain
| | - Norberto Ortego-Centeno
- Unidad de Enfermedades Autoimmunes Sistémicas, UGC Medicina Interna, Hospital Universitario San Cecilio, Granada, Spain
| | - Maria de Los Angeles Aguirre
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | | | | | - Marta E Alarcon-Riquelme
- Centro de Genómica e Investigación Oncológica (GENYO). Pfizer-Universidad de Granada-Junta de Andalucía, PTS, Granada, Spain Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
143
|
Xu Z, Morel L. Contribution of B-1a cells to systemic lupus erythematosus in the NZM2410 mouse model. Ann N Y Acad Sci 2015; 1362:215-23. [PMID: 25728381 DOI: 10.1111/nyas.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of complex etiology in which B cells play a central role. An expanded number of B-1a cells have been consistently associated with murine lupus, and more recently with human SLE. We have identified Cdkn2c, a gene that controls cell cycle progression, as a key regulator of B-1a cell numbers and have associated Cdkn2c deficiency with autoimmune pathology, including the production of autoantibodies and the skewing of CD4(+) T cells toward inflammatory effector functions. We review the genetic studies that have led to these findings, as well as the possible mechanisms by which B-1a cell expansion and Cdkn2c deficiency are related to SLE pathogenesis.
Collapse
Affiliation(s)
- Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
144
|
Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJM, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518:317-30. [PMID: 25693563 PMCID: PMC4530010 DOI: 10.1038/nature14248] [Citation(s) in RCA: 4399] [Impact Index Per Article: 439.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023]
Abstract
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.
Collapse
Affiliation(s)
- Anshul Kundaje
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Department of Computer Science, 300 Pasteur Dr., Lane Building, L301, Stanford, California 94305-5120, USA
| | - Wouter Meuleman
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Jason Ernst
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E Young Dr South, Los Angeles, California 90095, USA
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Angela Yen
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Pouya Kheradpour
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Zhizhuo Zhang
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Jianrong Wang
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Michael J Ziller
- 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA
| | - Viren Amin
- Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - John W Whitaker
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Matthew D Schultz
- Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Lucas D Ward
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Abhishek Sarkar
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Gerald Quon
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Richard S Sandstrom
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA
| | - Matthew L Eaton
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Yi-Chieh Wu
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Andreas R Pfenning
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Xinchen Wang
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA
| | - Melina Claussnitzer
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Yaping Liu
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Cristian Coarfa
- Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - R Alan Harris
- Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Noam Shoresh
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Charles B Epstein
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Elizabeta Gjoneska
- 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, Massachusetts 02139, USA
| | - Danny Leung
- 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Wei Xie
- 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - R David Hawkins
- 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Ryan Lister
- Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chibo Hong
- Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, USA
| | - Philippe Gascard
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Angela Tam
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Theresa K Canfield
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA
| | - R Scott Hansen
- Department of Medicine, Division of Medical Genetics, University of Washington, 2211 Elliot Avenue, Seattle, Washington 98121, USA
| | - Rajinder Kaul
- Department of Medicine, Division of Medical Genetics, University of Washington, 2211 Elliot Avenue, Seattle, Washington 98121, USA
| | - Peter J Sabo
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA
| | - Mukul S Bansal
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Computer Science &Engineering, University of Connecticut, 371 Fairfield Way, Storrs, Connecticut 06269, USA
| | - Annaick Carles
- Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jesse R Dixon
- 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Kai-How Farh
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Soheil Feizi
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Rosa Karlic
- Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ah-Ram Kim
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Ashwinikumar Kulkarni
- Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA
| | - Rebecca Lowdon
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA
| | - GiNell Elliott
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA
| | - Tim R Mercer
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Shane J Neph
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA
| | - Vitor Onuchic
- Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Paz Polak
- 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Nisha Rajagopal
- 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Pradipta Ray
- Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA
| | - Richard C Sallari
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Kyle T Siebenthall
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA
| | - Nicholas A Sinnott-Armstrong
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Michael Stevens
- 1] Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. [2] Department of Computer Science and Engineeering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Robert E Thurman
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA
| | - Jie Wu
- 1] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA. [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Bo Zhang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA
| | - Xin Zhou
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA
| | - Arthur E Beaudet
- Molecular and Human Genetics Department, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Laurie A Boyer
- Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA
| | - Philip L De Jager
- 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [3] Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA
| | - Peggy J Farnham
- Department of Biochemistry, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, California 90089-9601, USA
| | - Susan J Fisher
- ObGyn, Reproductive Sciences, University of California San Francisco, 35 Medical Center Way, San Francisco, California 94143, USA
| | - David Haussler
- Center for Biomolecular Sciences and Engineering, University of Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| | - Steven J M Jones
- 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. [3] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Wei Li
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Marco A Marra
- 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Michael T McManus
- Department of Microbiology and Immunology, Diabetes Center, University of California, San Francisco, 513 Parnassus Ave, San Francisco, California 94143-0534, USA
| | - Shamil Sunyaev
- 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [3] Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA
| | - James A Thomson
- 1] University of Wisconsin, Madison, Wisconsin 53715, USA. [2] Morgridge Institute for Research, 330 N. Orchard Street, Madison, Wisconsin 53707, USA
| | - Thea D Tlsty
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA
| | - Li-Huei Tsai
- 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, Massachusetts 02139, USA
| | - Wei Wang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Robert A Waterland
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA
| | - Michael Q Zhang
- 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. [2] Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Lisa H Chadwick
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA
| | - Bradley E Bernstein
- 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts 02114, USA. [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA
| | - Joseph F Costello
- Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Martin Hirst
- 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alexander Meissner
- 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA
| | | | - Bing Ren
- 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - John A Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA
| | - Manolis Kellis
- 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
145
|
Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M. Immunologic manifestations of autophagy. J Clin Invest 2015; 125:75-84. [PMID: 25654553 DOI: 10.1172/jci73945] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The broad immunologic roles of autophagy span innate and adaptive immunity and are often manifested in inflammatory diseases. The immune effects of autophagy partially overlap with its roles in metabolism and cytoplasmic quality control but typically expand further afield to encompass unique immunologic adaptations. One of the best-appreciated manifestations of autophagy is protection against microbial invasion, but this is by no means limited to direct elimination of intracellular pathogens and includes a stratified array of nearly all principal immunologic processes. This Review summarizes the broad immunologic roles of autophagy. Furthermore, it uses the autophagic control of Mycobacterium tuberculosis as a paradigm to illustrate the breadth and complexity of the immune effects of autophagy.
Collapse
|
146
|
Lee HS, Bae SC. Recent advances in systemic lupus erythematosus genetics in an Asian population. Int J Rheum Dis 2014; 18:192-9. [DOI: 10.1111/1756-185x.12498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hye-Soon Lee
- Hanyang University Hospital for Rheumatic Diseases; Seoul Korea
| | - Sang Cheol Bae
- Hanyang University Hospital for Rheumatic Diseases; Seoul Korea
| |
Collapse
|
147
|
Zhang Z, Xiang LF. Genetic susceptibility to vitiligo: Recent progress from genome-wide association studies. DERMATOL SIN 2014. [DOI: 10.1016/j.dsi.2014.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
148
|
Zhou XJ, Nath SK, Qi YY, Cheng FJ, Yang HZ, Zhang Y, Yang W, Ma JY, Zhao MH, Shen N, Zhang H. Brief Report: identification of MTMR3 as a novel susceptibility gene for lupus nephritis in northern Han Chinese by shared-gene analysis with IgA nephropathy. Arthritis Rheumatol 2014; 66:2842-8. [PMID: 24943867 DOI: 10.1002/art.38749] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 06/12/2014] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Several novel susceptibility genes for systemic lupus erythematosus (SLE) and IgA nephropathy have been identified in recent genome-wide association studies. Since both lupus nephritis and IgA nephropathy are autoimmune diseases of the kidney, they may share common disease mechanisms that overlap with genetic susceptibility. To test this hypothesis, we sought to identify genetic variants associated with IgA nephropathy in lupus nephritis. METHODS In the first stage, 500 patients with lupus nephritis, 240 SLE patients without nephritis, and 500 healthy controls were enrolled. Fifteen single-nucleotide polymorphisms (SNPs) that had the topmost association signals with IgA nephropathy were selected for further testing in patients with lupus nephritis. Three independent cohorts from Beijing, Shanghai, and Hong Kong were included as replicates. We also analyzed the functional significance of identified noncoding variants on regulatory motifs and gene expression. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS In addition to associations with HLA gene polymorphisms, genetic variants of MTMR3 in 22q12 showed associations with lupus nephritis (for rs9983A, OR 1.61 [95% CI 1.19-2.19], P = 2.07 × 10(-3) ) compared to healthy controls in the first stage. Associations were replicated and reinforced among northern Han Chinese (for lupus nephritis patients versus SLE patients without nephritis, P = 0.01) but not southern Han Chinese, although significant genetic heterogeneity was observed. Conservative and regulatory features of rs9983 were predicted in in silico analyses. In expression analysis, we observed lower MTMR3 transcription levels in samples of blood with rs9983A and in renal biopsy samples from lupus nephritis and IgA nephropathy patients. CONCLUSION Our results suggest that the MTMR3 gene is shared between IgA nephropathy and lupus nephritis in the northern Chinese population, further highlighting the role of autophagy in SLE. However, widespread replication of these experiments, fine mapping, and functional assays are required to establish this connection.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment at Peking University, Ministry of Education of China, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Schaefer AS, Jochens A, Dommisch H, Graetz C, Jockel-Schneider Y, Harks I, Staufenbiel I, Meyle J, Eickholz P, Folwaczny M, Laine M, Noack B, Wijmenga C, Lieb W, Bruckmann C, Schreiber S, Jepsen S, Loos BG. A large candidate-gene association study suggests genetic variants at IRF5 and PRDM1 to be associated with aggressive periodontitis. J Clin Periodontol 2014; 41:1122-31. [PMID: 25263394 DOI: 10.1111/jcpe.12314] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2014] [Indexed: 12/17/2022]
Abstract
AIM Epidemiological and clinical studies indicated a relationship of periodontitis with rheumatoid arthritis (RA). We aimed to identify shared genetic susceptibility loci of RA and periodontitis. MATERIALS AND METHODS Forty-seven risk genes of genome-wide significance of RA and SLE were genotyped in a German case-control sample of aggressive periodontitis (AgP), using Immunochip genotyping arrays (Illumina, 600 cases, 1440 controls) and Affymetrix 500 K Genotyping Arrays (280 cases and 983 controls). Significant associations were replicated in 168 Dutch AgP cases and 679 controls and adjusted for the confounders smoking and sex. RESULTS Variants at IRF5 and PRDM1 showed association with AgP. Upon covariate adjustment for smoking and sex, the most strongly associated variant at IRF5 was the rare variant rs62481981 (ppooled = 0.0012, odds ratio [OR] = 3.1, 95% confidence interval [95% CI] = 1.6-6.1; 801 cases, 1476 controls).Within PRDM1 it was rs6923419 (ppooled = 0.004, OR = 0.7, 95% CI = 0.6-0.9; 833 cases, 1440 controls). The associations lost significance after correction for multiple testing in the replication. Both genes are implicated in beta-interferon signalling and are also genome-wide associated with SLE and inflammatory bowel disease. CONCLUSION The study gives no definite evidence for a pathogenic genetic link of periodontitis and RA but suggests IRF5 and PRDM1 as shared susceptibility factors.
Collapse
Affiliation(s)
- Arne S Schaefer
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, Fasel D, Lata S, Prakash S, Shapiro S, Fischman C, Snyder HJ, Appel G, Izzi C, Viola BF, Dallera N, Vecchio LD, Barlassina C, Salvi E, Bertinetto FE, Amoroso A, Savoldi S, Rocchietti M, Amore A, Peruzzi L, Coppo R, Salvadori M, Ravani P, Magistroni R, Ghiggeri GM, Caridi G, Bodria M, Lugani F, Allegri L, Delsante M, Maiorana M, Magnano A, Frasca G, Boer E, Boscutti G, Ponticelli C, Mignani R, Marcantoni C, Di Landro D, Santoro D, Pani A, Polci R, Feriozzi S, Chicca S, Galliani M, Gigante M, Gesualdo L, Zamboli P, Maixnerová D, Tesar V, Eitner F, Rauen T, Floege J, Kovacs T, Nagy J, Mucha K, Pączek L, Zaniew M, Mizerska-Wasiak M, Roszkowska-Blaim M, Pawlaczyk K, Gale D, Barratt J, Thibaudin L, Berthoux F, Canaud G, Boland A, Metzger M, Panzer U, Suzuki H, Goto S, Narita I, Caliskan Y, Xie J, Hou P, Chen N, Zhang H, Wyatt RJ, Novak J, Julian BA, Feehally J, Stengel B, Cusi D, Lifton RP, Gharavi AG. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 2014; 46:1187-1196. [PMID: 25305756 PMCID: PMC4213311 DOI: 10.1038/ng.3118] [Citation(s) in RCA: 463] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Abstract
We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six new genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geospatial distribution of risk alleles is highly suggestive of multi-locus adaptation, and genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host-intestinal pathogen interactions in shaping the genetic landscape of IgAN.
Collapse
Affiliation(s)
- Krzysztof Kiryluk
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yifu Li
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Francesco Scolari
- Div. of Nephrology, Azienda Ospedaliera Spedali Civili of Brescia, Montichiari Hospital, Univ of Brescia, Brescia, Italy
- Dept. of Medical and Surgical Specialties, Radiological Sciences, University of Brescia, Brescia, Italy
| | - Simone Sanna-Cherchi
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Murim Choi
- Dept. of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Dept. of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Miguel Verbitsky
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - David Fasel
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sneh Lata
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sindhuri Prakash
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Samantha Shapiro
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Clara Fischman
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Holly J. Snyder
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Gerald Appel
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Claudia Izzi
- Div. of Nephrology, Azienda Ospedaliera Spedali Civili of Brescia, Montichiari Hospital, Univ of Brescia, Brescia, Italy
- Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Battista Fabio Viola
- Div. of Nephrology, Azienda Ospedaliera Spedali Civili of Brescia, Spedali Civili Hospital, Univ of Brescia, Brescia, Italy
| | - Nadia Dallera
- Div. of Nephrology, Azienda Ospedaliera Spedali Civili of Brescia, Montichiari Hospital, Univ of Brescia, Brescia, Italy
- Dept. of Medical and Surgical Specialties, Radiological Sciences, University of Brescia, Brescia, Italy
| | - Lucia Del Vecchio
- Renal Div., DMCO, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Cristina Barlassina
- Renal Div., DMCO, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Erika Salvi
- Renal Div., DMCO, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Francesca Eleonora Bertinetto
- Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza, University Hospital of Turin, Italy
- Medical Genetics, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - Antonio Amoroso
- Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza, University Hospital of Turin, Italy
- Medical Genetics, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - Silvana Savoldi
- Nephrology and Dialysis Unit, Ospedali di Cirié e Chivasso, Cirié, Torino, Italy
| | - Marcella Rocchietti
- Nephrology and Dialysis Unit, Ospedali di Cirié e Chivasso, Cirié, Torino, Italy
| | - Alessandro Amore
- Nephrology, Dialysis, and Transplantation Unit, Regina Margheritra Hospital, Torino, Italy
| | - Licia Peruzzi
- Nephrology, Dialysis, and Transplantation Unit, Regina Margheritra Hospital, Torino, Italy
| | - Rosanna Coppo
- Nephrology, Dialysis, and Transplantation Unit, Regina Margheritra Hospital, Torino, Italy
| | - Maurizio Salvadori
- Div. of Nephrology and Renal Transplantation, Carreggi Hospital, Florence, Italy
| | - Pietro Ravani
- Dept. of Medicine, University of Calgary, Calgary, Canada
- Dept. of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Riccardo Magistroni
- Div. of Nephrology Dialysis and Transplantation, Azienda Ospedaliero Universitaria Policlinico di Modena, Università di Modena e Reggio Emilia, Italy
| | - Gian Marco Ghiggeri
- Div. of Nephrology, Dialysis and Transplantation, Giannina Gaslini Institute, Genova, Italy
| | - Gianluca Caridi
- Div. of Nephrology, Dialysis and Transplantation, Giannina Gaslini Institute, Genova, Italy
| | - Monica Bodria
- Div. of Nephrology, Dialysis and Transplantation, Giannina Gaslini Institute, Genova, Italy
| | - Francesca Lugani
- Div. of Nephrology, Dialysis and Transplantation, Giannina Gaslini Institute, Genova, Italy
| | - Landino Allegri
- Div. of Nephrology, Azienda Ospedaliero-Universitaria and Chair of Nephrology, University of Parma, Parma, Italy
| | - Marco Delsante
- Div. of Nephrology, Azienda Ospedaliero-Universitaria and Chair of Nephrology, University of Parma, Parma, Italy
| | - Mariarosa Maiorana
- Div. of Nephrology, Azienda Ospedaliero-Universitaria and Chair of Nephrology, University of Parma, Parma, Italy
| | - Andrea Magnano
- Div. of Nephrology, Azienda Ospedaliero-Universitaria and Chair of Nephrology, University of Parma, Parma, Italy
| | - Giovanni Frasca
- Div. of Nephrology, Dialysis and Renal Transpantation, Riuniti Hospital, Ancona, Italy
| | - Emanuela Boer
- Div. of Nephrology and Dialysis, Gorizia Hospital, Gorizia, Italy
| | - Giuliano Boscutti
- Div. of Nephrology, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Trieste, Trieste, Italy
| | | | - Renzo Mignani
- Div. of Nephrology and Dialysis, Infermi Hospital, Rimini, Italy
| | | | | | - Domenico Santoro
- Div. of Nephology and Dialysis, Chair of Nephrology, University of Messina, Azienda Ospedaliero-Universitaria Policlinico, Messina, Italy
| | - Antonello Pani
- Dept. of Nephrology and Dialysis, G. Brotzu Hospital, Cagliari, Italy
| | - Rosaria Polci
- Nephrology and Dialysis, Hospital of Viterbo, Viterbo, Italy
| | - Sandro Feriozzi
- Nephrology and Dialysis, Hospital of Viterbo, Viterbo, Italy
| | - Silvana Chicca
- Div. of Nephrology and Dialysis, Sandro Pertini Hospital, Rome, Italy
| | - Marco Galliani
- Div. of Nephrology and Dialysis, Sandro Pertini Hospital, Rome, Italy
| | - Maddalena Gigante
- Dept. of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | | | - Dita Maixnerová
- Dept. of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Vladimir Tesar
- Dept. of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Frank Eitner
- Dept. of Nephrology, RWTH University of Aachen, Aachen, Germany
- Kidney Diseases Research, Bayer Pharma AG, Wuppertal, Germany
| | - Thomas Rauen
- Dept. of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Jürgen Floege
- Dept. of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Tibor Kovacs
- Nephrology Center, Medical Faculty, University of Pécs, Pécs, Hungary
- Second Dept. of Internal Medicine, Medical Faculty, University of Pécs, Pécs, Hungary
| | - Judit Nagy
- Nephrology Center, Medical Faculty, University of Pécs, Pécs, Hungary
- Second Dept. of Internal Medicine, Medical Faculty, University of Pécs, Pécs, Hungary
| | - Krzysztof Mucha
- Dept. of Immunology, Transplantology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Dept. of Immunology, Transplantology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Zaniew
- Children’s Hospital, Krysiewicza 7/8, Poznań, Poland
| | | | | | - Krzysztof Pawlaczyk
- Dept. of Nephrology, Transplantology, and Internal Medicine, Poznan Medical University, Poznan, Poland
| | - Daniel Gale
- University College London-Centre for Nephrology, Royal Free Hospital Pond Street, London
| | - Jonathan Barratt
- The John Walls Renal Unit, University Hospitals of Leicester, Leicester, United Kingdom
- Dept. of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Lise Thibaudin
- Nephrology, Dialysis, and Renal Transplantation Dept., University North Hospital, Saint Etienne, France
| | - Francois Berthoux
- Nephrology, Dialysis, and Renal Transplantation Dept., University North Hospital, Saint Etienne, France
| | - Guillaume Canaud
- Service de Néphrologie Transplantation Adultes, Hôpital Necker - Enfants Malades, Paris, France
- INSERM, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Boland
- Centre National de Génotypage, CEA, Institut de Génomique, Evry, France
| | - Marie Metzger
- INSERM, Centre for Research in Epidemiology and Population Health, Villejuif, France and University Paris-Sud, Villejuif, France
| | - Ulf Panzer
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hitoshi Suzuki
- Division of Nephrology, Dept. of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Japan
| | - Yasar Caliskan
- Division of Nephrology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Jingyuan Xie
- Dept. of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Hou
- Renal Div., Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Nan Chen
- Dept. of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Renal Div., Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Robert J. Wyatt
- Div. of Pediatric Nephrology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Children’s Foundation Research Center, Le Bonheur Children’s Hospital, Memphis, Tennessee, USA
| | - Jan Novak
- Dept. of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bruce A. Julian
- Dept. of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John Feehally
- The John Walls Renal Unit, University Hospitals of Leicester, Leicester, United Kingdom
- Dept. of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Benedicte Stengel
- INSERM, Centre for Research in Epidemiology and Population Health, Villejuif, France and University Paris-Sud, Villejuif, France
| | - Daniele Cusi
- Renal Div., DMCO, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Richard P. Lifton
- Dept. of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ali G. Gharavi
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|