101
|
Zhao L, Jin L, Yang B. Diosmetin alleviates S. aureus-induced mastitis by inhibiting SIRT1/GPX4 mediated ferroptosis. Life Sci 2023; 331:122060. [PMID: 37652155 DOI: 10.1016/j.lfs.2023.122060] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
AIMS Microbial infection is the main factor that induces mastitis. Staphylococcus aureus (S. aureus) is a major pathogen associated with mastitis. The purpose of this study was to investigate the effects of diosmetin on S. aureus-induced mastitis. MATERIALS AND METHODS The mice were divided into six groups: control group, S. aureus group, diosmetin (12.5, 25, 50 mg/kg) + S. aureus groups, and diosmetin (50 mg/kg) + S. aureus + EX-527 (10 mg/kg) group. S. aureus was injected into the mammary gland to establish a mouse mastitis model. Diosmetin was administered 1 h before S. aureus treatment. KEY FINDINGS Our results showed that diosmetin significantly alleviated the pathological changes of mammary gland induced by S. aureus. Diosmetin alleviated myeloperoxidase (MPO) activity, and the release of TNF-α and IL-1β, and nuclear factor kappa-B (NF-κB) activation. Moreover, diosmetin inhibited malondialdehyde (MDA) and Fe2+ levels induced by S. aureus. Diosmetin upregulated ATP, glutathione (GSH) production and glutathione peroxidase 4 (GPX4) expression, which were decreased by S. aureus. Furthermore, the expression of Sirtuin 1 (SIRT1), nuclear factor erythroid2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) was upregulated by diosmetin. In addition, the inhibitory effects of diosmetin on S. aureus-induced inflammation and ferroptosis were prevented by the SIRT1 inhibitor EX-527. SIGNIFICANCE In conclusion, the data indicated that diosmetin suppressed S. aureus-induced mastitis by attenuating inflammation and ferroptosis.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Lei Jin
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
102
|
Arumugam MK, Gopal T, Kalari Kandy RR, Boopathy LK, Perumal SK, Ganesan M, Rasineni K, Donohue TM, Osna NA, Kharbanda KK. Mitochondrial Dysfunction-Associated Mechanisms in the Development of Chronic Liver Diseases. BIOLOGY 2023; 12:1311. [PMID: 37887021 PMCID: PMC10604291 DOI: 10.3390/biology12101311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The liver is a major metabolic organ that performs many essential biological functions such as detoxification and the synthesis of proteins and biochemicals necessary for digestion and growth. Any disruption in normal liver function can lead to the development of more severe liver disorders. Overall, about 3 million Americans have some type of liver disease and 5.5 million people have progressive liver disease or cirrhosis, in which scar tissue replaces the healthy liver tissue. An estimated 20% to 30% of adults have excess fat in their livers, a condition called steatosis. The most common etiologies for steatosis development are (1) high caloric intake that causes non-alcoholic fatty liver disease (NAFLD) and (2) excessive alcohol consumption, which results in alcohol-associated liver disease (ALD). NAFLD is now termed "metabolic-dysfunction-associated steatotic liver disease" (MASLD), which reflects its association with the metabolic syndrome and conditions including diabetes, high blood pressure, high cholesterol and obesity. ALD represents a spectrum of liver injury that ranges from hepatic steatosis to more advanced liver pathologies, including alcoholic hepatitis (AH), alcohol-associated cirrhosis (AC) and acute AH, presenting as acute-on-chronic liver failure. The predominant liver cells, hepatocytes, comprise more than 70% of the total liver mass in human adults and are the basic metabolic cells. Mitochondria are intracellular organelles that are the principal sources of energy in hepatocytes and play a major role in oxidative metabolism and sustaining liver cell energy needs. In addition to regulating cellular energy homeostasis, mitochondria perform other key physiologic and metabolic activities, including ion homeostasis, reactive oxygen species (ROS) generation, redox signaling and participation in cell injury/death. Here, we discuss the main mechanism of mitochondrial dysfunction in chronic liver disease and some treatment strategies available for targeting mitochondria.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | | | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
103
|
Zhang J, Zhang Y, Ren Z, Yan D, Li G. The role of TRIM family in metabolic associated fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1210330. [PMID: 37867509 PMCID: PMC10585262 DOI: 10.3389/fendo.2023.1210330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) ranks among the most prevalent chronic liver conditions globally. At present, the mechanism of MAFLD has not been fully elucidated. Tripartite motif (TRIM) protein is a kind of protein with E3 ubiquitin ligase activity, which participates in highly diversified cell activities and processes. It not only plays an important role in innate immunity, but also participates in liver steatosis, insulin resistance and other processes. In this review, we focused on the role of TRIM family in metabolic associated fatty liver disease. We also introduced the structure and functions of TRIM proteins. We summarized the TRIM family's regulation involved in the occurrence and development of metabolic associated fatty liver disease, as well as insulin resistance. We deeply discussed the potential of TRIM proteins as targets for the treatment of metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Jingyue Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yingming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
104
|
Zhao ZM, Mei S, Zheng QY, Wang J, Yin YR, Zhang JJ, Wang XZ. Melatonin or vitamin C attenuates lead acetate-induced testicular oxidative and inflammatory damage in mice by inhibiting oxidative stress mediated NF-κB signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115481. [PMID: 37716076 DOI: 10.1016/j.ecoenv.2023.115481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Lead (Pb) acts as an environmental endocrine disruptor and has negative effects in animals; excessive accumulation of lead causes reproductive dysfunction in male animals. Oxidative stress plays a vital role in Pb-induced injury. However, the mechanisms underlying chronic testicular toxicity of Pb remain unclear. In this study, we aimed to determine the effects of lead acetate on reproductive function in male mice, identify the underlying mechanisms, and test counter measures to alleviate the toxic effects. Male mice were dosed with lead acetate (500 mg/L) in free drinking water for 12 weeks, and administered melatonin (5 mg/kg) or vitamin C (500 mg/kg) by intraperitoneal injection. Blood from the eyeball, testicles, and sperm from the caudal epididymis were collected after 12 weeks and analyzed. Pb exposure reduced sperm count and motility, increased sperm malformation (P < 0.01), disrupted testicular morphology and structure, and decreased the expression of steroid hormone synthesis-related enzymes and serum testosterone concentration (P < 0.01). Pb also increased the number of inflammatory cells and the levels of the pro-inflammatory cytokines TNF-α and IL-6 (P < 0.01), and activated NF-κB signaling. Furthermore, the ROS yield and oxidation indicators LPO and MDA were significantly increased (P < 0.01), and the antioxidant indicators T-AOC, SOD, and GSH were significantly reduced (P < 0.01). Treatment with melatonin or vitamin C reversed the effects of lead acetate; vitamin C was more effective in restoring SOD activity (P < 0.01) and enhancing ZO-1 protein levels (P < 0.01). Thus, long-term exposure to lead acetate at low concentrations could adversely affect sperm quality and induce inflammatory damage by oxidative stress mediated NF-κB signaling. Vitamin C could act as a protective agent and improve reproductive dysfunction in male animals after lead accumulation.
Collapse
Affiliation(s)
- Ze-Min Zhao
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Su Mei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Qi-Yue Zheng
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Jiao Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Yi-Ru Yin
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
105
|
Fan X, Wang X, Hui Y, Zhao T, Mao L, Cui B, Zhong W, Sun C. Genipin protects against acute liver injury by abrogating ferroptosis via modification of GPX4 and ALOX15-launched lipid peroxidation in mice. Apoptosis 2023; 28:1469-1483. [PMID: 37354317 DOI: 10.1007/s10495-023-01867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
It is essential to further characterize liver injury aimed at developing novel therapeutic approaches. This study investigated the mechanistic basis of genipin against carbon tetrachloride (CCl4)-triggered acute liver injury concerning ferroptosis, a novel discovered modality of regulated cell death. All experiments were performed using hepatotoxic models upon CCl4 exposure in mice and human hepatocytes in vitro. Immunohistochemistry, immunoblotting, molecular docking, RNA-sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were conducted. CCl4 intoxication was manifested with lipid peroxidation-dictated ferroptotic cell death, together with changes in a cascade of ferroptosis-associated events and several regulatory pathways. Both the administration of genipin and ferrostatin-1 (Fer-1) significantly prevented this hepatotoxicity in response to CCl4 intoxication via upregulating GPX4 and xCT (i.e., critical regulators of ferroptosis). RNA-sequencing unraveled that arachidonic acid metabolism was considerably influenced upon genipin treatment. Accordingly, genipin treatment attenuated arachidonate 15-lipoxygenase (ALOX15)-launched lipid peroxidation in terms of UHPLC-MS/MS analysis and inflammation. In vitro, genipin supplementation rescued erastin-induced hepatocellular inviability and lipid ROS accumulation. The siRNA knockdown of GPX4 partially abrogated the protective effects of genipin on erastin-induced cytotoxicity, whereas the cytotoxicity was less severe in the presence of diminished ALOX15 expression in L-O2 cells. In conclusion, our findings uncovered that genipin treatment protects against CCl4-triggered acute liver injury by abrogating hepatocyte ferroptosis, wherein the pharmacological modification of dysregulated GPX4 and ALOX15-launched lipid peroxidation was responsible for underlying medicinal effects as molecular basis.
Collapse
Affiliation(s)
- Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Yangyang Hui
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Tianming Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Zhongshan Road 321,Gulou District, Nanjing, 210008, Jiangsu, China
| | - Lihong Mao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Binxin Cui
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin Airport Economic Area, East Street 6, Tianjin, 300308, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin Airport Economic Area, East Street 6, Tianjin, 300308, China.
| |
Collapse
|
106
|
Cao L, Zhao S, Han K, Fan L, Zhao C, Yin S, Hu H. Managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis. J Nutr Biochem 2023; 120:109427. [PMID: 37549833 DOI: 10.1016/j.jnutbio.2023.109427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death driven by excessive oxidation of polyunsaturated phospholipids on cellular membranes. Accumulating evidence suggests that ferroptosis has been implicated in the pathological process of various diseases, such as cardiovascular diseases, neurological diseases, liver diseases, kidney injury, lung injury, diabetes, and cancer. Targeting ferroptosis is therefore considered to be a reasonable strategy to fight against ferroptosis-associated diseases. Many dietary bioactive agents have been identified to be able to either suppress or promote ferroptosis, indicating that ferroptosis-based intervention by dietary approach may be an effective strategy for preventing and treating diseases associated with ferroptosis dysregulation. In this review, we summarize the present understanding of the functional role of ferroptosis in the pathogenesis of aforementioned diseases with an emphasis on the evidence of managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis and propose issues that need to be addressed to promote practical application of dietary approach targeting ferroptosis.
Collapse
Affiliation(s)
- Lixing Cao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China.
| |
Collapse
|
107
|
Fu E, Kuo CY, Hsia YJ, Huang YM, Tseng HH, Fu MW, Shih KC. Role of ferroptosis in periodontitis: An animal study in rats. J Periodontal Res 2023; 58:1031-1040. [PMID: 37477155 DOI: 10.1111/jre.13165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE This study aimed to investigate (1) the temporal pattern of ferroptosis, an iron-dependent cell death, in ligation-induced rat periodontitis and (2) the effect of ferrostatin-1, a ferroptosis inhibitor, on the model. BACKGROUND Ferroptosis may contribute to various diseases. However, the role of ferroptosis in periodontitis is still fully understood. METHODS In the first experiment, 25 rats with ligation-induced periodontitis were sacrificed on days 0, 1, 2, 7, and 10. Gingivae were obtained to determine tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and ferroptotic biomarkers, including solute carrier family 3 member 2 (SLC3A2) and solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (Gpx4), via immunoblotting. Using microcomputed tomography (μCT) and histology, the periodontal soft and hard tissue lesions, including dental alveolar bone crest level, bony characteristics of the surrounding alveolus, periodontal tissue inflammation, and periodontal tissue losses, were evaluated. In study two, 16 rats with induced periodontitis were grouped according to ferrostatin-1 treatment. The rats were intraperitoneally injected with solvent or ferrostatin-1 (1.5 mg/kg/day) 1 day before ligation and sacrificed on days 7 and 10. Gingival protein changes and periodontal tissue damage were also examined. RESULTS In study one, SLC3A2/SLC7A11 and Gpx4 decreased since day 1; however, TNF-α/IL-1β increased on days 7 and 10. Moreover, the μCT/histology revealed resorptive bony characteristics, inflamed gingival tissue, and periodontal attachment loss. In study two, ferrostatin-1-injected rats exhibited significantly increased SLC3A2/SLC7A11 and Gpx4 but decreased TNF-α/IL-1β than vehicle rats. They also revealed lessened bone resorption, tissue inflammation, and attachment loss. CONCLUSION This study highlights the role of ferroptosis, via the system Xc/Gpx4 pathway, in experimental periodontitis and may serve as a regulatory strategy.
Collapse
Affiliation(s)
- Earl Fu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Jan Hsia
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yiao-Mien Huang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hui-Hwa Tseng
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Wen Fu
- Department of Endodontics, College of Dentistry, New York University, New York City, New York, USA
| | - Kuang-Chung Shih
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology & Metabolism, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
108
|
Sharma S, Le Guillou D, Chen JY. Cellular stress in the pathogenesis of nonalcoholic steatohepatitis and liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20:662-678. [PMID: 37679454 DOI: 10.1038/s41575-023-00832-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
The burden of chronic liver disease is rising substantially worldwide. Fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the common pathway leading to cirrhosis, and limited treatment options are available. There is increasing evidence suggesting the role of cellular stress responses contributing to fibrogenesis. This Review provides an overview of studies that analyse the role of cellular stress in different cell types involved in fibrogenesis, including hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and macrophages.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dounia Le Guillou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
109
|
Xu J, Tian H, Ji Y, Dong L, Liu Y, Wang Y, Gao X, Shi H, Li H, Yang L. Urolithin C reveals anti-NAFLD potential via AMPK-ferroptosis axis and modulating gut microbiota. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2687-2699. [PMID: 37126194 DOI: 10.1007/s00210-023-02492-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
The pharmacology of urolithin C (UroC) on non-alcoholic fatty liver disease (NAFLD) is largely undetermined. We sought to investigate the potential for NAFLD improvement by administration of UroC and the underlying mechanisms. We verified the therapeutic effect of UroC on choline-deficient amino acid-defined high fat diet (CDAHFD) induced NAFLD mice via evaluating NAFLD activity score (NAS), AST, ALT, hepatic phosphorylated AMPK, and 4-hydroxynonenal. Oleic acid-induced AML12 cell was appraised by oil red staining and western blotting to explore the effect and mechanism of UroC in vitro. Transcriptional regulation of UroC was explored by liver RNA sequencing, gut microbiota composition was explored by 16SrRNA sequencing, and colorectal tight junctional proteins were detected by western blotting and immunohistochemistry. The detrimental effects of CDAHFD included the increased liver index, AST, ALT, hepatic 4-hydroxynonenal, impaired intestinal mucosal barrier, and most importantly, pathological damage in liver. Oral administration of UroC largely protected against these harmful alterations. Remarkably, both RNA sequencing and western blotting results indicated an activation in hepatic AMPK signaling pathway which was thought to inhibit ferroptosis response to UroC in vivo, while no change were found in AMPK-ferroptosis axis response to UroC in oleic acid-induced AML12 cells, hinted an indispensable linkage between UroC and hepatic AMPK, presumably the gut-liver axis. Furthermore, UroC could neither alleviate lipid deposition nor inhibit ferroptosis in vitro. The 16SrRNA showed UroC partially counteracted the dysbiosis induced by CDAHFD. Specifically, UroC reversed the elevated proportion of Firmicutes/Bacteroidota and enhanced the level of Parabacteroides goldsteinii and Lactobacillus vaginalis, which played a beneficial role in metabolic disorders. Oral administration of Urolithin C protected against the detrimental impact of CDAHFD via regulating AMPK-ferroptosis axis, maintaining intestinal mucosal barrier and counteracting gut dysbiosis.
Collapse
Affiliation(s)
- Jingyuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Gastroenterology, Shanghai Pudong Hospital, Shanghai, 201399, China
| | - Hongyang Tian
- Department of Gastroenterology, Shanghai Pudong Hospital, Shanghai, 201399, China
- Minhang District Shenxin Community Health Service Center, Shanghai, 201108, China
| | - Yajun Ji
- Department of Gastroenterology, Shanghai Pudong Hospital, Shanghai, 201399, China
- Huamu Community Health Service Center, Shanghai, 201204, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yandong Liu
- Department of Gastroenterology, Shanghai Pudong Hospital, Shanghai, 201399, China
| | - Yatao Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xuefen Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Longbao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
110
|
Guo T, Yan W, Cui X, Liu N, Wei X, Sun Y, Fan K, Liu J, Zhu Y, Wang Z, Zhang Y, Chen L. Liraglutide attenuates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease by activating AMPK/ACC signaling and inhibiting ferroptosis. Mol Med 2023; 29:132. [PMID: 37770820 PMCID: PMC10540362 DOI: 10.1186/s10020-023-00721-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD involves multiple biological changes, including insulin resistance, oxidative stress, inflammation, as well as genetic and environmental factors. Liraglutide has been used to control blood sugar. But the impact of liraglutide on T2DM-associated NAFLD remains unclear. In this study, we investigated the impact and potential molecular mechanisms of inhibiting ferroptosis for liraglutide improves T2DM-associated NAFLD. METHODS Mice were fed on high-fat-diet and injected with streptozotocin to mimic T2DM-associated NAFLD and gene expression in liver was analysed by RNA-seq. The fast blood glucose was measured during the period of liraglutide and ferrostatin-1 administration. Hematoxylin and eosin staining was used to evaluate the pathological changes in the liver. The occurrence of hepatic ferroptosis was measured by lipid peroxidation in vivo. The mechanism of liraglutide inhibition ferroptosis was investigated by in vitro cell culture. RESULTS Liraglutide not only improved glucose metabolism, but also ameliorated tissue damage in the livers. Transcriptomic analysis indicated that liraglutide regulates lipid metabolism related signaling including AMPK and ACC. Furthermore, ferroptosis inhibitor rather than other cell death inhibitors rescued liver cell viability in the presence of high glucose. Mechanistically, liraglutide-induced activation of AMPK phosphorylated ACC, while AMPK inhibitor compound C blocked the liraglutide-mediated suppression of ferroptosis. Moreover, ferroptosis inhibitor restored liver function in T2DM mice in vivo. CONCLUSIONS These findings indicate that liraglutide ameliorates the T2DM-associated NAFLD, which possibly through the activation of AMPK/ACC pathway and inhibition of ferroptosis.
Collapse
Affiliation(s)
- Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - KeXin Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yuanyuan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Zhuanzhuan Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
111
|
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther 2023; 8:372. [PMID: 37735472 PMCID: PMC10514338 DOI: 10.1038/s41392-023-01606-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death with distinct characteristics, including altered iron homeostasis, reduced defense against oxidative stress, and abnormal lipid peroxidation. Recent studies have provided compelling evidence supporting the notion that ferroptosis plays a key pathogenic role in many diseases such as various cancer types, neurodegenerative disease, diseases involving tissue and/or organ injury, and inflammatory and infectious diseases. Although the precise regulatory networks that underlie ferroptosis are largely unknown, particularly with respect to the initiation and progression of various diseases, ferroptosis is recognized as a bona fide target for the further development of treatment and prevention strategies. Over the past decade, considerable progress has been made in developing pharmacological agonists and antagonists for the treatment of these ferroptosis-related conditions. Here, we provide a detailed overview of our current knowledge regarding ferroptosis, its pathological roles, and its regulation during disease progression. Focusing on the use of chemical tools that target ferroptosis in preclinical studies, we also summarize recent advances in targeting ferroptosis across the growing spectrum of ferroptosis-associated pathogenic conditions. Finally, we discuss new challenges and opportunities for targeting ferroptosis as a potential strategy for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
112
|
Qi J, Li L, Yan X, Hua W, Zhou Z. Sappanone A Alleviates the Severity of Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Antioxidants (Basel) 2023; 12:1718. [PMID: 37760020 PMCID: PMC10526100 DOI: 10.3390/antiox12091718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Liver fibrosis is a major challenge to global health because of its various complications, including cirrhosis and hepatocarcinoma, while no effective treatment is available for it. Sappanone A (SA) is a homoisoflavonoid extracted from the heartwood of Caesalpinia sappan Linn. with anti-inflammatory and antioxidant properties. However, the effects of SA on hepatic fibrosis remain unknown. This study aimed to investigate the protective effects of SA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. To establish a liver fibrosis model, mice were treated intraperitoneally (i.p.) with CCl4 for 4 weeks. SA (25, 50, and 100 mg/kg body weight) was i.p. injected every other day during the same period. Our data indicated that SA decreased liver injury, fibrotic responses, and inflammation due to CCl4 exposure. Consistently, SA reduced oxidative stress and its-mediated hepatocyte death in fibrotic livers. Of note, SA could not directly affect the activation of hepatic stellate cells. Mechanistically, SA treatment lessened oxidative stress-triggered cell death in hepatocytes after CCl4 exposure. SA down-regulated the expression of M1 macrophage polarization markers (CD86 and iNOS) and up-regulated the expression of M2 macrophage polarization markers (CD163, IL-10, and Arg1) in livers and macrophages. Meanwhile, SA induced the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, decreased inflammatory responses and the trend of M2 macrophage polarization provided by SA were substantially abolished by SR202 (a PPARγ inhibitor) treatment in macrophages. Additionally, SA treatment promoted fibrosis regression. Taken together, our findings revealed that treatment with SA alleviated CCl4-induced fibrotic liver in mice through suppression of oxidative stress-mediated hepatocyte death and promotion of M2 macrophage polarization via PPARγ. Thus, SA might pave the way for a new hepatoprotective agent to treat liver fibrosis.
Collapse
Affiliation(s)
- Jing Qi
- Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou 350122, China;
| | - Lanqian Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.L.); (W.H.)
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou 350122, China;
| | - Wenxi Hua
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.L.); (W.H.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| | - Zixiong Zhou
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.L.); (W.H.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
113
|
Lv S, Li H, Zhang T, Su X, Sun W, Wang Q, Wang L, Feng N, Zhang S, Wang Y, Cui H. San-Huang-Yi-Shen capsule ameliorates diabetic nephropathy in mice through inhibiting ferroptosis. Biomed Pharmacother 2023; 165:115086. [PMID: 37418978 DOI: 10.1016/j.biopha.2023.115086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes. However, effective therapy to block or slow down the progression of DN is still lacking. San-Huang-Yi-Shen capsule (SHYS) has been shown to significantly improve renal function and delay the progression of DN. However, the mechanism of SHYS on DN is still unclear. In this study, we established a mouse model of DN. Then, we investigated the anti-ferroptotic effects of SHYS including the reduction of iron overload and the activation of cystine/GSH/GPX4 axis. Finally, we used a GPX4 inhibitor (RSL3) and ferroptosis inhibitor (ferrostatin-1) to determine whether SHYS ameliorates DN through inhibiting ferroptosis. The results showed that SHYS treatment was effective for mice with DN in terms of improving renal function, and reducing inflammation and oxidative stress. Besides, SHYS treatment reduced iron overload and upregulated the expression of cystine/GSH/GPX4 axis-related factors in kidney. Moreover, SHYS exhibited similar therapeutic effect on DN as ferrostatin-1, RSL3 could abolish the therapeutic and anti- ferroptotic effects of SHYS on DN. In conclusion, SHYS can be used to treat mice with DN. Furthermore, SHYS could inhibit ferroptosis in DN through reducing iron overload and upregulating the expression of cystine/GSH/GPX4 axis.
Collapse
Affiliation(s)
- Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China; Hebei University of Traditional Chinese Medicine, Hebei, China
| | - Huajun Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Tianyu Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Xiuhai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Wenjuan Sun
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Qinghai Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Lixin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Nana Feng
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Shufang Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China.
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China.
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Yunnan, China; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Shandong, China.
| |
Collapse
|
114
|
Xue Y, Lu F, Chang Z, Li J, Gao Y, Zhou J, Luo Y, Lai Y, Cao S, Li X, Zhou Y, Li Y, Tan Z, Cheng X, Li X, Chen J, Wang W. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat Commun 2023; 14:4758. [PMID: 37553341 PMCID: PMC10409767 DOI: 10.1038/s41467-023-40518-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Dietary methionine interventions are beneficial to apoptosis-inducing chemotherapy and radiotherapy for cancer, while their effects on ferroptosis-targeting therapy and immunotherapy are unknown. Here we show the length of time methionine deprivation affects tumoral ferroptosis differently. Prolonged methionine deprivation prevents glutathione (GSH) depletion from exceeding the death threshold by blocking cation transport regulator homolog 1 (CHAC1) protein synthesis. Whereas, short-term methionine starvation accelerates ferroptosis by stimulating CHAC1 transcription. In vivo, dietary methionine with intermittent but not sustained deprivation augments tumoral ferroptosis. Intermittent methionine deprivation also sensitizes tumor cells against CD8+ T cell-mediated cytotoxicity and synergize checkpoint blockade therapy by CHAC1 upregulation. Clinically, tumor CHAC1 correlates with clinical benefits and improved survival in cancer patients treated with checkpoint blockades. Lastly, the triple combination of methionine intermittent deprivation, system xc- inhibitor and PD-1 blockade shows superior antitumor efficacy. Thus, intermittent methionine deprivation is a promising regimen to target ferroptosis and augment cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fujia Lu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Chang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Lai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Cao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
115
|
Choi J, Choi H, Chung J. Icariin Supplementation Suppresses the Markers of Ferroptosis and Attenuates the Progression of Nonalcoholic Steatohepatitis in Mice Fed a Methionine Choline-Deficient Diet. Int J Mol Sci 2023; 24:12510. [PMID: 37569885 PMCID: PMC10419585 DOI: 10.3390/ijms241512510] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Icariin, a flavonoid abundant in the herb Epimedium, exhibits anti-ferroptotic activity. However, its impact on nonalcoholic steatohepatitis (NASH) development remains unclear. This study aimed to investigate the potential role of icariin in mitigating methionine choline-deficient (MCD) diet-induced NASH in C57BL/6J mice. The results showed that icariin treatment significantly reduced serum alanine aminotrasferase and aspartate aminotransferase activities while improving steatosis, inflammation, ballooning, and fibrosis in the liver tissues of mice fed the MCD diet. These improvements were accompanied by a substantial reduction in the hepatic iron contents and levels of malondialdehyde and 4-hydroxynonenal, as well as an increase in the activities of catalase and superoxide dismutase. Notably, icariin treatment suppressed the hepatic protein levels of ferroptosis markers such as acyl-CoA synthetase long-chain family member 4 and arachidonate 12-lipoxygenase, which were induced by the MCD diet. Furthermore, transmission electron microscopy confirmed the restoration of morphological changes in the mitochondria, a hallmark characteristic of ferroptosis, by icariin. Additionally, icariin treatment significantly increased the protein levels of Nrf2, a cystine/glutamate transporter (xCT), and glutathione peroxidase 4 (GPX4). In conclusion, our study suggests that icariin has the potential to attenuate NASH, possibly by suppressing ferroptosis via the Nrf2-xCT/GPX4 pathway.
Collapse
Affiliation(s)
| | | | - Jayong Chung
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; (J.C.); (H.C.)
| |
Collapse
|
116
|
Blas-García A, Apostolova N. Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants (Basel) 2023; 12:1567. [PMID: 37627562 PMCID: PMC10451738 DOI: 10.3390/antiox12081567] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic liver disease (CLD) constitutes a growing global health issue, with no effective treatments currently available. Oxidative stress closely interacts with other cellular and molecular processes to trigger stress pathways in different hepatic cells and fuel the development of liver fibrosis. Therefore, inhibition of reactive oxygen species (ROS)-mediated effects and modulation of major antioxidant responses to counteract oxidative stress-induced damage have emerged as interesting targets to prevent or ameliorate liver injury. Although many preclinical studies have shown that dietary supplements with antioxidant properties can significantly prevent CLD progression in animal models, this strategy has not proved effective to significantly reduce fibrosis when translated into clinical trials. Novel and more specific therapeutic approaches are thus required to alleviate oxidative stress and reduce liver fibrosis. We have reviewed the relevant literature concerning the crucial role of alterations in redox homeostasis in different hepatic cell types during the progression of CLD and discussed current pharmacological approaches to ameliorate fibrosis by reducing oxidative stress focusing on selective modulation of enzymatic oxidant sources, antioxidant systems and ROS-mediated pathogenic processes.
Collapse
Affiliation(s)
- Ana Blas-García
- Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Nadezda Apostolova
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Departamento de Farmacología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| |
Collapse
|
117
|
Wang F, Ma M, Yang J, Shi X, Wang J, Xu Z. Neuroprotective Effects of Activin A against Cerebral Ischemia/Reperfusion Injury in Mice by Enhancing Nrf2 Expression to Attenuate Neuronal Ferroptosis. ACS Chem Neurosci 2023; 14:2818-2826. [PMID: 37473431 DOI: 10.1021/acschemneuro.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Activin A (Act A) is a member of the transforming growth factor-β (TGF-β) superfamily and can protect against ischemic cerebral injury. Ferroptosis, a newly discovered type of programmed cell death, contributes to the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). However, little is known on whether Act A can modulate neuronal ferroptosis to protect against CIRI in a mouse model of middle cerebral artery occlusion (MCAO) and an HT22 cell model of oxygen-glucose deprivation/reoxygenation (OGD/R). The results indicated that Act A treatment relieved CIRI by improving neurological deficits and reducing the infarct volume in mice. MCAO stimulated iron accumulation and malondialdehyde formation and upregulated ACSL4 expression but downregulated GPX4 expression, a hallmark of ferroptosis in the brain of mice. Treatment with Act A significantly mitigated MCAO-triggered ferroptosis in the brain of mice. Furthermore, Act A treatment enhanced the MCAO-upregulated nuclear factor erythroid-2-related factor 2 (Nrf2) expression in the brains of mice. Similar results were observed in HT22 cells following OGD/R and pretreatment with Act A. The neuronal protective effect of Act A in HT22 cells was attenuated by treatment with ML385, an Nrf2 inhibitor. To conclude, Act A attenuated CIRI by enhancing Nrf2 expression and inhibiting neuronal ferroptosis.
Collapse
Affiliation(s)
- Fengzhi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Erdao District, Changchun 130033, China
- Department of Neurology, People's Hospital of China Medical University, People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang 110016, China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Erdao District, Changchun 130033, China
| | - Jiahui Yang
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Erdao District, Changchun 130033, China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Erdao District, Changchun 130033, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Erdao District, Changchun 130033, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Erdao District, Changchun 130033, China
| |
Collapse
|
118
|
Ye Q, Jiang Y, Wu D, Cai J, Jiang Z, Zhou Z, Liu L, Ling Q, Wang Q, Zhao G. Atractylodin alleviates nonalcoholic fatty liver disease by regulating Nrf2-mediated ferroptosis. Heliyon 2023; 9:e18321. [PMID: 37539262 PMCID: PMC10395531 DOI: 10.1016/j.heliyon.2023.e18321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Oxidative stress is one of the main inducers of NAFLD. Atractylodin (ART), a major active ingredient of Atractylodes lancea, possesses potential antioxidant and anti-inflammatory activity in many types of disease. In the current study, the underlying mechanism by which ART alleviates the progression of NAFLD was explored. The function of ART in facilitating NAFLD was investigated in vitro and in vivo. Functionally, ART attenuated high-fat diet (HFD)-induced NAFLD in mice and palmitic acid (PA)-induced oxidative stress in HepG2 cells. Furthermore, our data verified that ART attenuated HFD-induced NAFLD by inhibiting ferroptosis of hepatocyte cells, as evidenced by decreased Fe2+ concentration, reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and increased glutathione (GSH) content. The protective effect of ART on the cell viability of hepatocytes was blocked by a specific ferroptosis inhibitor (ferrostatin-1). Mechanistically, ART treatment promoted the translocation of nuclear factor erythroid 2-related Factor 2 (NFE2L2/NRF2) and thus increased glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11) expression. Taken together, ART alleviates NAFLD by regulating Nrf2-mediated ferroptosis.
Collapse
Affiliation(s)
- Qingyan Ye
- Department of Paediatrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Yun Jiang
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Di Wu
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Jingwen Cai
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Zhitian Jiang
- Department of Outpatient and Emergency Office, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Zhen Zhou
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Liyan Liu
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Qihua Ling
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Qian Wang
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Gang Zhao
- Department of Outpatient and Emergency Office, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
119
|
Xu X, Qiu J, Li X, Chen J, Li Y, Huang X, Zang S, Ma X, Liu J. Perilipin5 protects against non-alcoholic steatohepatitis by increasing 11-Dodecenoic acid and inhibiting the occurrence of ferroptosis. Nutr Metab (Lond) 2023; 20:29. [PMID: 37349836 DOI: 10.1186/s12986-023-00751-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a major contributor to liver cirrhosis and hepatocellular carcinoma. There remains no effective pharmacological therapy. The hepatic lipid metabolism and fatty acid β-oxidation are regulated by Perilipin5 (Plin5). However, it is yet unknown how Plin5 affects NASH and the molecular process. METHODS High-fat, high-cholesterol and high-fructose (HFHC) diets were used to mimic the progression of NASH in wild type (WT) mice and Plin5 knockout (Plin5 KO) mice. The degree of ferroptosis was measured by detecting the expression of key genes of ferroptosis and the level of lipid peroxide. The degree of NASH was judged by observing the morphology of the liver, detecting the expression of inflammation and fibrosis related genes of liver damage. Plin5 was overexpressed in the liver of mice by tail vein injection of adenovirus, and the process of NASH was simulated by methionine choline deficiency (MCD) diet. The occurrence of ferroptosis and NASH was detected by the same detection method. Targeted lipidomics sequencing was used to detect the difference in free fatty acid expression in the WT Plin5 KO group. Finally, it was verified in cell experiments to further study the effect of free fatty acids on ferroptosis of hepatocytes. RESULTS In various NASH models, hepatic Plin5 was dramatically reduced. Plin5 knockout (KO) worsened NASH-associated characteristics in mice given a high-fat/high-cholesterol (HFHC) diet, such as lipid accumulation, inflammation and hepatic fibrosis. It has been shown that ferroptosis is involved in NASH progression. We revealed that Plin5 KO in mice aggravated the degree of ferroptosis in NASH models. Conversely, overexpression of Plin5 significantly alleviated ferroptosis and further ameliorated progression of MCD-induced NASH. Analysis of livers obtained from HFHC diet-fed mice by targeted lipidomics revealed that 11-Dodecenoic acid was significantly decreased in Plin5 KO mice. Addition of 11-Dodecenoia acid to Plin5 knockdown hepatocytes effectively prevented ferroptosis. CONCLUSION Our study demonstrates that Plin5 protects against NASH progression by increasing 11-Dodecenoic acid level and further inhibiting ferroptosis, suggesting that Plin5 has therapeutic potential as a target for the management of NASH.
Collapse
Affiliation(s)
- Xinming Xu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biological, Institute of Biomedical Science, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xiaoya Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Juntong Chen
- Shanghai Key Laboratory of Regulatory Biological, Institute of Biomedical Science, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Xinmei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biological, Institute of Biomedical Science, School of Life Science, East China Normal University, Shanghai, 200241, China.
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China.
| |
Collapse
|
120
|
Anastasopoulos NA, Charchanti AV, Barbouti A, Mastoridou EM, Goussia AC, Karampa AD, Christodoulou D, Glantzounis GK. The Role of Oxidative Stress and Cellular Senescence in the Pathogenesis of Metabolic Associated Fatty Liver Disease and Related Hepatocellular Carcinoma. Antioxidants (Basel) 2023; 12:1269. [PMID: 37371999 DOI: 10.3390/antiox12061269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a worryingly increasing cause of malignancy-related mortality, while Metabolic Associated Fatty Liver Disease (MAFLD) is going to become its most common cause in the next decade. Understanding the complex underlying pathophysiology of MAFLD-related HCC can provide opportunities for successful targeted therapies. Of particular interest in this sequela of hepatopathology is cellular senescence, a complex process characterised by cellular cycle arrest initiated by a variety of endogenous and exogenous cell stressors. A key biological process in establishing and maintaining senescence is oxidative stress, which is present in multiple cellular compartments of steatotic hepatocytes. Oxidative stress-induced cellular senescence can change hepatocyte function and metabolism, and alter, in a paracrine manner, the hepatic microenvironment, enabling disease progression from simple steatosis to inflammation and fibrosis, as well as HCC. The duration of senescence and the cell types it affects can tilt the scale from a tumour-protective self-restricting phenotype to the creator of an oncogenic hepatic milieu. A deeper understanding of the mechanism of the disease can guide the selection of the most appropriate senotherapeutic agent, as well as the optimal timing and cell type targeting for effectively combating HCC.
Collapse
Affiliation(s)
- Nikolaos-Andreas Anastasopoulos
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of General Surgery, Croydon University Hospital, Croydon Health Services NHS Trust, London CR7 7YE, UK
| | - Antonia V Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria M Mastoridou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna C Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia D Karampa
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Christodoulou
- Department of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios K Glantzounis
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
121
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 212.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
122
|
Li W, Li W, Li X, Wang L, Wang Y. Effect of P53 nuclear localization mediated by G3BP1 on ferroptosis in acute liver failure. Apoptosis 2023:10.1007/s10495-023-01856-y. [PMID: 37243773 DOI: 10.1007/s10495-023-01856-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
This study investigated whether G3BP1 could regulate ferroptosis in hepatocytes during ALF by affecting the entry of P53 into the nucleus. Promoting G3BP1 expression could inhibit P53 entry by binding to the nuclear localization sequence of P53. The inhibition of SLC7A11 transcription was weakened after blocking of P53 binding to the promoter region of the SLC7A11 gene. The SLC7A11-GSH-GPX4 antiferroptotic pathway was subsequently activated, and the level of ferroptosis in ALF hepatocytes was inhibited.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
123
|
Liang Z, Wang Y, Wang J, Xu T, Ma S, Liu Q, Zhao L, Wei Y, Lian X, Huang D. Multifunctional Fe 3O 4-PEI@HA nanoparticles in the ferroptosis treatment of hepatocellular carcinoma through modulating reactive oxygen species. Colloids Surf B Biointerfaces 2023; 227:113358. [PMID: 37207386 DOI: 10.1016/j.colsurfb.2023.113358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Ferroptosis is a novel form of regulated cell death induced by iron-dependent lipid peroxidation imbalance. It has emerged as a promising antitumor therapeutic strategy in recent years. In this work, we successfully synthesized a complex magnetic nanocube Fe3O4 modified with PEI and HA by the thermal decomposition method. While loading a ferroptosis inducer RSL3 inhibited cancer cells through the ferroptosis signal transduction pathway. The drug delivery system could actively target tumor cells through an external magnetic field and HA-CD44 binding. Zeta potential analysis showed that Fe3O4-PEI@HA-RSL3 nanoparticles were more stable and uniformly dispersed in tumor acidic environment. Moreover, cellular experiments demonstrated that Fe3O4-PEI@HA-RSL3 nanoparticles could significantly inhibit the proliferation of hepatoma cells without a cytotoxic effect on normal hepatic cells. In addition, Fe3O4-PEI@HA-RSL3 played a vital role in ferroptosis by accelerating ROS production. The expression of ferroptosis-related genes Lactoferrin, FACL 4, GPX 4 and Ferritin was significantly suppressed with increasing treatment of Fe3O4-PEI@HA-RSL3 nanocubes. Therefore, this ferroptosis nanomaterial has great potential in Hepatocellular carcinoma (HCC) therapy.
Collapse
Affiliation(s)
- Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Tao Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shilong Ma
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Qi Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| |
Collapse
|
124
|
Xu GX, Wei S, Yu C, Zhao SQ, Yang WJ, Feng YH, Pan C, Yang KX, Ma Y. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. Front Cell Dev Biol 2023; 11:1199519. [PMID: 37261074 PMCID: PMC10228659 DOI: 10.3389/fcell.2023.1199519] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging as the leading causes of liver disease worldwide. These conditions can lead to cirrhosis, liver cancer, liver failure, and other related ailments. At present, liver transplantation remains the sole treatment option for end-stage NASH, leading to a rapidly growing socioeconomic burden. Kupffer cells (KCs) are a dominant population of macrophages that reside in the liver, playing a crucial role in innate immunity. Their primary function includes phagocytosing exogenous substances, presenting antigens, and triggering immune responses. Moreover, they interact with other liver cells during the pathogenesis of NAFLD, and this crosstalk may either delay or exacerbate disease progression. Stimulation by endogenous signals triggers the activation of KCs, resulting in the expression of various inflammatory factors and chemokines, such as NLRP3, TNF-α, IL-1B, and IL-6, and contributing to the inflammatory cascade. In the past 5 years, significant advances have been made in understanding the biological properties and immune functions of KCs in NAFLD, including their interactions with tissue molecules, underlying molecular mechanisms, signaling pathways, and relevant therapeutic interventions. Having a comprehensive understanding of these mechanisms and characteristics can have enormous potential in guiding future strategies for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Ma
- *Correspondence: Kun-Xing Yang, ; Yong Ma,
| |
Collapse
|
125
|
Lu Y, Hu J, Chen L, Li S, Yuan M, Tian X, Cao P, Qiu Z. Ferroptosis as an emerging therapeutic target in liver diseases. Front Pharmacol 2023; 14:1196287. [PMID: 37256232 PMCID: PMC10225528 DOI: 10.3389/fphar.2023.1196287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Ferroptosis is an iron-dependently nonapoptotic cell death characterized by excessive accumulation of lipid peroxides and cellular iron metabolism disturbances. Impaired iron homeostasis and dysregulation of metabolic pathways are contributors to ferroptosis. As a major metabolic hub, the liver synthesizes and transports plasma proteins and endogenous fatty acids. Also, it acts as the primary location of iron storage for hepcidin generation and secretion. To date, although the intricate correlation between ferroptosis and liver disorders needs to be better defined, there is no doubt that ferroptosis participates in the pathogenesis of liver diseases. Accordingly, pharmacological induction and inhibition of ferroptosis show significant potential for the treatment of hepatic disorders involved in lipid peroxidation. In this review, we outline the prominent features, molecular mechanisms, and modulatory networks of ferroptosis and its physiopathologic functions in the progression of liver diseases. Further, this review summarizes the underlying mechanisms by which ferroptosis inducers and inhibitors ameliorate liver diseases. It is noteworthy that natural active ingredients show efficacy in preclinical liver disease models by regulating ferroptosis. Finally, we analyze crucial concepts and urgent issues concerning ferroptosis as a novel therapeutic target in the diagnosis and therapy of liver diseases.
Collapse
Affiliation(s)
- Yuzhen Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Department of Biochemistry, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianxiang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
126
|
Wang X, Zhou Y, Min J, Wang F. Zooming in and out of ferroptosis in human disease. Front Med 2023; 17:173-206. [PMID: 37121959 DOI: 10.1007/s11684-023-0992-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 05/02/2023]
Abstract
Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.
Collapse
Affiliation(s)
- Xue Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, 315000, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
127
|
Tong J, Lan XT, Zhang Z, Liu Y, Sun DY, Wang XJ, Ou-Yang SX, Zhuang CL, Shen FM, Wang P, Li DJ. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis. Acta Pharmacol Sin 2023; 44:1014-1028. [PMID: 36323829 PMCID: PMC10104837 DOI: 10.1038/s41401-022-01010-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022]
Abstract
Ferroptosis is a new form of regulated cell death characterized by excessive iron accumulation and uncontrollable lipid peroxidation. The role of ferroptosis in metabolic dysfunction-associated fatty liver disease (MAFLD) is not fully elucidated. In this study we compared the therapeutic effects of ferroptosis inhibitor liproxstatin-1 (LPT1) and iron chelator deferiprone (DFP) in MAFLD mouse models. This model was established in mice by feeding a high-fat diet with 30% fructose in water (HFHF) for 16 weeks. The mice then received LPT1 (10 mg·kg-1·d-1, ip) or DFP (100 mg·kg-1·d-1, ig) for another 2 weeks. We showed that both LPT1 and DFP treatment blocked the ferroptosis markers ACSL4 and ALOX15 in MAFLD mice. Furthermore, LPT1 treatment significantly reduced the liver levels of triglycerides and cholesterol, lipid peroxidation markers 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), and ameliorated the expression of lipid synthesis/oxidation genes (Pparα, Scd1, Fasn, Hmgcr and Cpt1a), insulin resistance, mitochondrial ROS content and liver fibrosis. Importantly, LPT1 treatment potently inhibited hepatic apoptosis (Bax/Bcl-xL ratio and TUNEL+ cell number), pyroptosis (cleavages of Caspase-1 and GSDMD) and necroptosis (phosphorylation of MLKL). Moreover, LPT1 treatment markedly inhibited cleavages of PANoptosis-related caspase-8 and caspase-6 in MAFLD mouse liver. In an in vitro MAFLD model, treatment with LPT1 (100 nM) prevented cultured hepatocyte against cell death induced by pro-PANoptosis molecules (TNF-α, LPS and nigericin) upon lipid stress. On the contrary, DFP treatment only mildly attenuated hepatic inflammation but failed to alleviate lipid deposition, insulin resistance, apoptosis, pyroptosis and necroptosis in MAFLD mice. We conclude that ferroptosis inhibitor LPT1 protects against steatosis and steatohepatitis in MAFLD mice, which may involve regulation of PANoptosis, a coordinated cell death pathway that involves apoptosis, pyroptosis and necroptosis. These results suggest a potential link between ferroptosis and PANoptosis.
Collapse
Affiliation(s)
- Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiu-Ting Lan
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhen Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Liu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Di-Yang Sun
- School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Xu-Jie Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shen-Xi Ou-Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chun-Lin Zhuang
- School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Pei Wang
- School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
128
|
Xie L, Fang B, Zhang C. The role of ferroptosis in metabolic diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119480. [PMID: 37127193 DOI: 10.1016/j.bbamcr.2023.119480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The annual incidence of metabolic diseases such as diabetes, non-alcoholic fatty liver disease (NAFLD), osteoporosis, and atherosclerosis (AS) is increasing, resulting in a heavy burden on human health and the social economy. Ferroptosis is a novel form of programmed cell death driven by iron-dependent lipid peroxidation, which was discovered in recent years. Emerging evidence has suggested that ferroptosis contributes to the development of metabolic diseases. Here, we summarize the mechanisms and molecular signaling pathways involved in ferroptosis. Then we discuss the role of ferroptosis in metabolic diseases. Finally, we analyze the potential of targeting ferroptosis as a promising therapeutic approach for metabolic diseases.
Collapse
Affiliation(s)
- Ling Xie
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China
| | - Bin Fang
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China.
| |
Collapse
|
129
|
Wang Y, Zhang Y, Xue J, Gao L, Li X, Zhao M, Zhao D, Zhou X. Ferroptosis mediates decabromodiphenyl ether-induced liver damage and inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114771. [PMID: 36921498 DOI: 10.1016/j.ecoenv.2023.114771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Decabromodiphenyl ether (BDE-209) is an environmental toxin. Increasing evidence showed that BDE-209 exposure induced liver injury, but the mechanism still remains unknown. The present study explored the effect and mechanism of ferroptosis on hepatotoxicity triggered by BDE-209 in vivo and in vitro. In vivo experiment, ICR mice were exposed to BDE-209 for 50 days, and then recovered for 50 days; HepG2 and L02 cells were treated with BDE-209 or/and ferrostatin-1 (Fer-1) for establishing in vitro model. In vivo, the results showed that BDE-209 accumulated in liver and induced liver damage, increased Fe2+ and MDA contents, and blocked the activation of SLC7A11/GSH/GPX4 pathway in liver; BDE-209 also activated IKK/IκB/NF-κB pathway and elevated inflammatory cytokines levels in liver after exposure for 50 days. After BDE-209 stopping exposure 50 days, the severity of liver damage, ferroptosis and inflammatory response were still higher than the corresponding control group. In vitro, ferroptosis inhibitor Fer-1 rescued ferroptotic damage and attenuated cell death in BDE-209-treated HepG2 and L02 cells. In addition, Fer-1 reversed the activation of IKK/IκB/NF-κB pathway and the increase of pro-inflammatory cytokines levels in BDE-209-treated HepG2 and L02 cells. Together, the above results suggested that BDE-209 induced tissue damage and inflammatory response by activating ferroptosis through increasing iron-dependent lipid peroxidation and blocking the activation of SLC7A11/GSH/GPX4 pathway in liver, indicating that ferroptosis is a potential mechanism for BDE-209-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yan Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Moxuan Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
130
|
Guo G, Yang W, Sun C, Wang X. Dissecting the potential role of ferroptosis in liver diseases: an updated review. Free Radic Res 2023; 57:282-293. [PMID: 37401821 DOI: 10.1080/10715762.2023.2232941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Ferroptosis is a novel form of cell death, manifested by iron-dependent, non-apoptotic manner resulting from the intracellular accumulation of large clusters of reactive oxygen species (ROS) and lipid peroxides due to abnormal iron metabolism. Since the liver is the main organ of human body for storing iron, it is essential to perform in-depth investigation on the role and mechanistic basis of ferroptosis in the context of divergent liver diseases. We previously summarized the emerging role of ferroptosis among various liver diseases, however, the past few years have been a surge in research establishing ferroptosis as the molecular basis or treatment option. This review article concentrated on the accumulating research progress of ferroptosis in a range of liver diseases such as acute liver injury/failure (ALI/ALF), immune-mediated hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease and liver fibrosis. Ferroptosis may be a promising target for the prevention and treatment of various liver diseases, providing a strategy for exploring new therapeutic avenues for these entities.
Collapse
Affiliation(s)
- Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
131
|
Liu H, Yan J, Guan F, Jin Z, Xie J, Wang C, Liu M, Liu J. Zeaxanthin prevents ferroptosis by promoting mitochondrial function and inhibiting the p53 pathway in free fatty acid-induced HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159287. [PMID: 36690321 DOI: 10.1016/j.bbalip.2023.159287] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder worldwide and a risk factor for obesity and diabetes. Emerging evidence has shown that ferroptosis is involved in the progression of NAFLD. Zeaxanthin (ZEA) is a carotenoid found in human serum. It has been reported that ZEA can ameliorate obesity, prevent age-related macular degeneration, and protect against non-alcoholic steatohepatitis. However, no study has focused on the protective effects of ZEA against NAFLD. In this study, free fatty acid (FFA) induced HepG2 cells were used as a cell model for NAFLD. Our results suggest that ZEA exerts antioxidative and anti-inflammatory effects in FFA-induced HepG2 cells. Moreover, ZEA acted as a ferroptosis inhibitor, significantly reducing reactive oxygen species (ROS) generation and iron overload and improving mitochondrial dysfunction in FFA-induced HepG2 cells. In addition, ZEA downregulated the expression of p53 and modulated downstream targets, such as GPX4, SLC7A11, SAT1, and ALOX15, which contributed to the reduction in cellular lipid peroxidation. Our findings suggest that ZEA has the potential for NAFLD intervention.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jie Yan
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Fengtao Guan
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chongrui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
132
|
Yang Z, Wang L. Current, emerging, and potential therapies for non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1152042. [PMID: 37063264 PMCID: PMC10097909 DOI: 10.3389/fphar.2023.1152042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been identified as the most common chronic liver disease worldwide, with a growing incidence. NAFLD is considered the hepatic manifestation of a metabolic syndrome that emerges from multiple factors (e.g., oxidative stress, metabolic disorders, endoplasmic reticulum stress, cell death, and inflammation). Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, has been reported to be a leading cause of cirrhosis and hepatic carcinoma, and it is progressing rapidly. Since there is no approved pharmacotherapy for NASH, a considerable number of therapeutic targets have emerged with the deepening of the research on NASH pathogenesis. In this study, the therapeutic potential and properties of regulating metabolism, the gut microbiome, antioxidant, microRNA, inhibiting apoptosis, targeting ferroptosis, and stem cell-based therapy in NASH are reviewed and evaluated. Since the single-drug treatment of NASH is affected by individual heterogeneous responses and side effects, it is imperative to precisely carry out targeted therapy with low toxicity. Lastly, targeted therapeutic agent delivery based on exosomes is proposed in this study, such that drugs with different mechanisms can be incorporated to generate high-efficiency and low-toxicity individualized medicine.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
133
|
Mass Spectrometry Imaging for Single-Cell or Subcellular Lipidomics: A Review of Recent Advancements and Future Development. Molecules 2023; 28:molecules28062712. [PMID: 36985684 PMCID: PMC10057629 DOI: 10.3390/molecules28062712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Mass Spectrometry Imaging (MSI) has emerged as a powerful imaging technique for the analysis of biological samples, providing valuable insights into the spatial distribution and structural characterization of lipids. The advancements in high-resolution MSI have made it an indispensable tool for single-cell or subcellular lipidomics. By preserving both intracellular and intercellular information, MSI enables a comprehensive analysis of lipidomics in individual cells and organelles. This enables researchers to delve deeper into the diversity of lipids within cells and to understand the role of lipids in shaping cell behavior. In this review, we aim to provide a comprehensive overview of recent advancements and future prospects of MSI for cellular/subcellular lipidomics. By keeping abreast of the cutting-edge studies in this field, we will continue to push the boundaries of the understanding of lipid metabolism and the impact of lipids on cellular behavior.
Collapse
|
134
|
Xiang X, Gao J, Su D, Shi D. The advancements in targets for ferroptosis in liver diseases. Front Med (Lausanne) 2023; 10:1084479. [PMID: 36999078 PMCID: PMC10043409 DOI: 10.3389/fmed.2023.1084479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis is a type of regulated cell death caused by iron overload and lipid peroxidation, and its core is an imbalance of redox reactions. Recent studies showed that ferroptosis played a dual role in liver diseases, that was, as a therapeutic target and a pathogenic factor. Therefore, herein, we summarized the role of ferroptosis in liver diseases, reviewed the part of available targets, such as drugs, small molecules, and nanomaterials, that acted on ferroptosis in liver diseases, and discussed the current challenges and prospects.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaohong Xiang
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- Department of Geriatrics, The Ninth Hospital of Xi'an, Xi'an, Shaanxi, China
| |
Collapse
|
135
|
Cheng Z, Chu H, Zhu Q, Yang L. Ferroptosis in non-alcoholic liver disease: Molecular mechanisms and therapeutic implications. Front Nutr 2023; 10:1090338. [PMID: 36992907 PMCID: PMC10040549 DOI: 10.3389/fnut.2023.1090338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis refers to a novel modality of regulated cell death characterized by excessive iron accumulation and overwhelming lipid peroxidation, which takes an important part in multiple pathological processes associated with cell death. Considering the crucial roles of the liver in iron and lipid metabolism and its predisposition to oxidative insults, more and more studies have been conducted to explore the relationship between ferroptosis and various liver disorders, including non-alcoholic fatty liver disease (NAFLD). With increased morbidity and high mortality rates, NAFLD has currently emerged as a global public health issue. However, the etiology of NAFLD is not fully understood. In recent years, an accumulating body of evidence have suggested that ferroptosis plays a pivotal role in the pathogenesis of NAFLD, but the precise mechanisms underlying how ferroptosis affects NAFLD still remain obscure. Here, we summarize the molecular mechanisms of ferroptosis and its complicated regulation systems, delineate the different effects that ferroptosis exerts in different stages of NAFLD, and discuss some potential effective therapies targeting ferroptosis for NAFLD treatment, which putatively points out a novel direction for NAFLD treatment.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingjing Zhu
- Jinyintan Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qingjing Zhu,
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ling Yang, ,
| |
Collapse
|
136
|
Yu Q, Li C, Niu Q, Wang J, Che Z, Lei K, Ren H, Ma B, Ren Y, Luo P, Fan Z, Zhang H, Liu Z, Tipoe GL, Xiao J. Hepatic COX1 loss leads to impaired autophagic flux and exacerbates nonalcoholic steatohepatitis. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
137
|
Wang L, Yang F, Hu M, Chen G, Wang Y, Xue H, Fu D, Bai H, Hu G, Cao H. GPX4 utilization by selenium is required to alleviate cadmium-induced ferroptosis and pyroptosis in sheep kidney. ENVIRONMENTAL TOXICOLOGY 2023; 38:962-974. [PMID: 36655595 DOI: 10.1002/tox.23740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a persistent and harmful heavy metal in the environment, can accumulate in the kidneys and cause nephrotoxicity. Selenium (Se) is a beneficial natural element that alleviates the toxicity of Cd. To ascertain the relationship between the protective mechanism of Se against Cd nephrotoxicity and ferroptosis and pyroptosis, we randomly divided 48 sheep into four groups and treated them with Cd chloride and/or sodium selenite for 50 days. The data confirmed that Cd apparently resulted in impaired kidney histology and function, depletion of GSH and nicotinamide adenine dinucleotide phosphate contents and CAT and SOD activities, elevation of MDA level, as well as the reduction in selenoprotein mRNA (GPX1, GPX4, TXNRD1, SELP) levels and GPX4 protein level and immunofluorescence intensity. Meanwhile, Cd induced ferroptosis by causing iron overload, up-regulating PTGS2, NCOA4, TFR1, and LC3B mRNA levels and PTGS2 and LC3B-II/LC3B-I protein levels, reducing SLC7A11 and FTH1 mRNA and protein levels, and enhancing the immunofluorescence co-localization of FTH1/LC3B. Moreover, it was also found that Cd triggered pyroptosis, which was evidenced by the increase of NLRP3 immunohistochemical positive signal, GSDMD-N immunofluorescence intensity, IL-1β and IL-18 release and the levels of pyroptosis-related mRNA (NLRP3, ASC, Caspase-1, GSDMD, IL-1β and IL-18) and proteins (NLRP3, Caspase-1p20, GSDMD-N, IL-1β and IL-18). Notably, Se increased the expression level of GPX4 and the transcription factors TFAP2c and SP1, and ameliorated Cd-induced changes in aforementioned factors. In conclusion, GPX4 utilization by Se might be required to alleviate Cd-induced ferroptosis and pyroptosis in sheep kidney.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guiping Chen
- Department of Agriculture and Rural Affairs of Jiangxi Province, Jiangxi Provincial Agricultural Ecology and Resource Protection Station, Nanchang, Jiangxi, China
| | - Yun Wang
- Jiangxi Biotech Vocational College, Department of Animal Science and Technology, Nanchang, Jiangxi, China
| | - Haotian Xue
- Jiangxi Biotech Vocational College, Department of Animal Science and Technology, Nanchang, Jiangxi, China
| | | | - He Bai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
138
|
Liu Y, Wan Y, Yi J, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188890. [PMID: 37001616 DOI: 10.1016/j.bbcan.2023.188890] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Glutathione peroxidase 4 (GPx4) moonlights as structural protein and antioxidase that powerfully inhibits lipid oxidation. In the past years, it is considered as a key regulator of ferroptosis, which takes role in the lipid and amine acid metabolism and influences the cell aging, oncogenesis, and cell death. More and more evidences show that targeting GPX4-induced ferroptosis is a promising strategy for disease therapy, especially cancer treatment. In view of these, we generalize the function of GPX4 and regulatory mechanism between GPX4 and ferroptosis, discuss its roles in the disease pathology, and focus on the recent advances of disease therapeutic potential.
Collapse
|
139
|
Ji J, Wu L, Wei J, Wu J, Guo C. The Gut Microbiome and Ferroptosis in MAFLD. J Clin Transl Hepatol 2023; 11:174-187. [PMID: 36406312 PMCID: PMC9647110 DOI: 10.14218/jcth.2022.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 06/12/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and is proposed to replace the previous name, nonalcoholic fatty liver disease (NAFLD). Globally, MAFLD/NAFLD is the most common liver disease, with an incidence rate ranging from 6% to 35% in adult populations. The pathogenesis of MAFLD/NAFLD is closely related to insulin resistance (IR), and the genetic susceptibility to acquired metabolic stress-associated liver injury. Similarly, the gut microbiota in MAFLD/NAFLD is being revaluated by scientists, as the gut and liver influence each other via the gut-liver axis. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis has a key role in the pathological progression of MAFLD/NAFLD, and inhibition of ferroptosis may become a novel therapeutic strategy for the treatment of NAFLD. This review focuses on the main mechanisms behind the promotion of MAFLD/NAFLD occurrence and development by the intestinal microbiota and ferroptosis. It outlines new strategies to target the intestinal microbiota and ferroptosis to facilitate future MAFLD/NAFLD therapies.
Collapse
Affiliation(s)
- Jie Ji
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jue Wei
- Department of Gastroenterology Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| |
Collapse
|
140
|
Harrison SA, Thang C, Bolze S, Dewitt S, Hallakou-Bozec S, Dubourg J, Bedossa P, Cusi K, Ratziu V, Grouin JM, Moller DE, Fouqueray P. Evaluation of PXL065 - deuterium-stabilized (R)-pioglitazone in patients with NASH: A phase II randomized placebo-controlled trial (DESTINY-1). J Hepatol 2023; 78:914-925. [PMID: 36804402 DOI: 10.1016/j.jhep.2023.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Pioglitazone (Pio) is efficacious in NASH, but its utility is limited by PPARγ-driven side effects. Pio is a mixture of two enantiomers (R, S). PXL065, deuterium-stabilized R-Pio, lacks PPARγ activity but retains non-genomic activity. We tested the hypothesis that PXL065 would have similar efficacy but a better safety profile than Pio in patients with NASH. METHODS Patients (≥8% liver fat, NAFLD activity score [NAS] ≥4, F1-F3) received daily doses of PXL065 (7.5, 15, 22.5 mg) or placebo 1:1:1:1 for 36 weeks. The primary endpoint was relative % change in liver fat content (LFC) on MRI-proton density fat fraction; liver histology, non-invasive tests, safety-tolerability, and pharmacokinetics were also assessed. RESULTS One hundred and seventeen patients were evaluated. All PXL065 groups met the primary endpoint (-21 to (-25% LFC, p = 0.008-0.02 vs. placebo); 40% (22.5 mg) achieved a ≥30% LFC reduction. Favorable trends in non-invasive tests including reductions in PIIINP (p = 0.02, 22.5 mg) and NAFLD fibrosis score (p = 0.04, 22.5 mg) were observed. On histology (n = 92), a ≥1 stage fibrosis improvement occurred in 40% (7.5 mg), 50% (15 mg, p = 0.06), and 35% (22.5 mg) vs. 17% for placebo; up to 50% of PXL065-treated patients achieved a ≥2 point NAS improvement without fibrosis worsening vs. 30% with placebo. Metabolic improvements included: HbA1c (-0.41% p = 0.003) and insulin sensitivity (HOMA-IR, p = 0.04; Adipo-IR, p = 0.002). Adiponectin increased (+114%, 22.5 mg, p <0.0001) vs. placebo. There was no dose-dependent effect on body weight or PXL065-related peripheral oedema signal. Overall, PXL065 was safe and well tolerated. Pharmacokinetics confirmed dose-proportional and higher steady state R- vs. S-Pio exposure. IMPACT AND IMPLICATIONS Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease. CONCLUSIONS PXL065 is a novel molecule which retains an efficacy profile in NASH similar to Pio with reduced potential for PPARγ-driven side effects. A pivotal clinical trial is warranted to confirm the histological benefits reported herein. IMPACT AND IMPLICATIONS Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Vlad Ratziu
- Sorbonne Université, ICAN, Hospital Pitié-Salpêtrière, INSERM UMRS 1138 CRC, Paris, France
| | | | | | | |
Collapse
|
141
|
Zhang Z, Pang T, Qi M, Sun G. The Biological Processes of Ferroptosis Involved in Pathogenesis of COVID-19 and Core Ferroptoic Genes Related With the Occurrence and Severity of This Disease. Evol Bioinform Online 2023; 19:11769343231153293. [PMID: 36820229 PMCID: PMC9929189 DOI: 10.1177/11769343231153293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Background A worldwide outbreak of coronavirus disease 2019 (COVID-19) has resulted in millions of deaths. Ferroptosis is a form of iron-dependent cell death which is characterized by accumulation of lipid peroxides on cellular membranes, and is related with many physiological and pathophysiological processes of diseases such as cancer, inflammation and infection. However, the role of ferroptosis in COVID-19 has few been studied. Material and Method Based on the RNA-seq data of 100 COVID-19 cases and 26 Non-COVID-19 cases from GSE157103, we identified ferroptosis related differentially expressed genes (FRDEGs, adj.P-value < .05) using the "Deseq2" R package. By using the "clusterProfiler" R package, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Next, a protein-protein interaction (PPI) network of FRDEGs was constructed and top 30 hub genes were selected by cytoHubba in Cytoscape. Subsequently, we established a prediction model for COVID-19 by utilizing univariate logistic regression and the least absolute shrinkage and selection operator (LASSO) regression. Based on core FRDEGs, COVID-19 patients were identified as two clusters using the "ConsenesusClusterPlus" R package. Finally, the miRNA-mRNA network was built by Targetscan online database and visualized by Cytoscape software. Results A total of 119 FRDEGs were identified and the GO and KEGG enrichment analyses showed the most important biologic processes are oxidative stress response, MAPK and PI3K-AKT signaling pathway. The top 30 hub genes were selected, and finally, 7 core FRDEGs (JUN, MAPK8, VEGFA, CAV1, XBP1, HMOX1, and HSPB1) were found to be associated with the occurrence of COVID-19. Next, the two patterns of COVID-19 patients had constructed and the cluster A patients were likely to be more severe. Conclusion Our study suggested that ferroptosis was involved in the pathogenesis of COVID-19 disease and the functions of core FRDEGs may become a new research aspect of this disease.
Collapse
Affiliation(s)
| | | | | | - Gengyun Sun
- Gengyun Sun. Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China.
| |
Collapse
|
142
|
Pan W, Jie W, Huang H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e200. [PMID: 36620697 PMCID: PMC9811665 DOI: 10.1002/mco2.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification (VC) is recognized as a pathological vascular disorder associated with various diseases, such as atherosclerosis, hypertension, aortic valve stenosis, coronary artery disease, diabetes mellitus, as well as chronic kidney disease. Therefore, it is a life-threatening state for human health. There were several studies targeting mechanisms of VC that revealed the importance of vascular smooth muscle cells transdifferentiating, phosphorous and calcium milieu, as well as matrix vesicles on the progress of VC. However, the underlying molecular mechanisms of VC need to be elucidated. Though there is no acknowledged effective therapeutic strategy to reverse or cure VC clinically, recent evidence has proved that VC is not a passive irreversible comorbidity but an active process regulated by many factors. Some available approaches targeting the underlying molecular mechanism provide promising prospects for the therapy of VC. This review aims to summarize the novel findings on molecular mechanisms and therapeutic interventions of VC, including the role of inflammatory responses, endoplasmic reticulum stress, mitochondrial dysfunction, iron homeostasis, metabolic imbalance, and some related signaling pathways on VC progression. We also conclude some recent studies on controversial interventions in the clinical practice of VC, such as calcium channel blockers, renin-angiotensin system inhibitions, statins, bisphosphonates, denosumab, vitamins, and ion conditioning agents.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wei Jie
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
143
|
Tan XH, Gu YY, Song WP, Nan TG, Song WD, Fang D, Yuan YM, Xin ZC, Li XS, Guan RL. Transcriptome analysis highlights the role of ferroptosis in palmitic acid-induced endothelial dysfunction. Sex Med 2023; 11:qfac008. [PMID: 37056514 PMCID: PMC10089063 DOI: 10.1093/sexmed/qfac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/23/2022] [Accepted: 10/30/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Palmitic acid (PA) has a lipotoxic effect on blood vessels, leading to endothelial dysfunction and cell death. The underlying mechanisms are not yet fully understood. AIM We sought to investigate the effects of PA on endothelial cells, with an emphasis on ferroptosis. METHODS Rat corpus cavernosum endothelial cells (RCCECs) and human umbilical vein endothelial cells (HUVECs) were treated with PA to induce a pattern of cell death, as evidenced by the evaluation of cell viability. The differentially expressed genes were measured via RNA sequencing to reveal potential mechanisms. The intracellular levels of glutathione (GSH), malondialdehyde (MDA), ferrous ion (Fe2+), and reactive oxygen species (ROS) were evaluated using commercial kits. Western blot was performed to determine the expressions of relative proteins. OUTCOMES At the end of the study period, the evaluated outcomes were cell viability, transcriptome profiles, the expressions of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), as well as levels of GSH, MDA, Fe2+, and ROS. RESULTS PA-induced cell death of RCCECs and HUVECs was demonstrated in a dose- and time-dependent manner. Based on the findings of RNA-sequencing (RNA-seq), enrichment of many biological processes associated with cell cycle and response to stimulus occurred. More importantly, ferroptosis was highlighted in the bioinformatic analysis of both endothelial cells. The levels of intracellular Fe2+, MDA, and ROS were significantly increased following PA exposure while GSH was decreased, suggesting excessive iron accumulation, development of lipid peroxidation, and imbalanced redox homeostasis. Mechanistically, PA decreased the protein expression levels of GPX4 and SLC7A11 in endothelial cells, both of which played crucial roles in ferroptotic cell death. CLINICAL TRANSLATION This study suggests that ferroptosis may be a useful target for novel therapeutic interventions for endothelial dysfunction and cell death in vascular diseases such as erectile dysfunction. STRENGTHS AND LIMITATIONS In this study, we found that ferroptosis could participate in PA-induced endothelial dysfunction and cell death. A limitation of the study is that it did not shed light on the overall mechanisms of this process. Therefore, further research on the intricate networks of regulating ferroptosis is needed. CONCLUSION Overall, the occurrence of ferroptosis was demonstrated in the PA-treated HUVECs and RCCECs in this study.
Collapse
Affiliation(s)
- Xiao-Hui Tan
- Department of Urology, Peking University First Hospital, Beijing 100034, PR China
- Institute of Urology, Peking University, Beijing 100034, PR China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, PR China
| | - Yang-Yang Gu
- Institute of Urology, Peking University, Beijing 100034, PR China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, PR China
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Wen-Peng Song
- Institute of Urology, Peking University, Beijing 100034, PR China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, PR China
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Tie-Gui Nan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Wei-Dong Song
- Department of Urology, Peking University First Hospital, Beijing 100034, PR China
- Institute of Urology, Peking University, Beijing 100034, PR China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, PR China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, PR China
- Institute of Urology, Peking University, Beijing 100034, PR China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, PR China
| | - Yi-Ming Yuan
- Department of Urology, Peking University First Hospital, Beijing 100034, PR China
- Institute of Urology, Peking University, Beijing 100034, PR China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, PR China
| | - Zhong-Cheng Xin
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
- Institute of Urology, Tianjin Medical University, Tianjin 300211, PR China
| | - Xue-Song Li
- Department of Urology, Peking University First Hospital, Beijing 100034, PR China
- Institute of Urology, Peking University, Beijing 100034, PR China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, PR China
| | - Rui-Li Guan
- Department of Urology, Peking University First Hospital, Beijing 100034, PR China
- Institute of Urology, Peking University, Beijing 100034, PR China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, PR China
| |
Collapse
|
144
|
Zhu L, Luo S, Zhu Y, Tang S, Li C, Jin X, Wu F, Jiang H, Wu L, Xu Y. The Emerging Role of Ferroptosis in Various Chronic Liver Diseases: Opportunity or Challenge. J Inflamm Res 2023; 16:381-389. [PMID: 36748023 PMCID: PMC9899014 DOI: 10.2147/jir.s385977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is a recently identified iron-dependent form of intracellular lipid peroxide accumulation-mediated cell death. Different from other types of cell death mechanisms, it exhibits distinct biological and morphological features characterized by the loss of lipid peroxidase repair activity caused by glutathione peroxidase 4, the presence of redox-active iron, and the oxidation of phospholipids-containing polyunsaturated fatty acids. In recent years, studies have shown that ferroptosis plays a key role in various liver diseases such as alcoholic liver injury, non-alcoholic steatohepatitis, liver cirrhosis, and liver cancer. However, the mechanism of ferroptosis and its regulation on chronic liver disease are controversial among different types of cells in the liver. Herein, we summarize the current studies on mechanism of ferroptosis in chronic liver disease, aiming to outline the blueprint of ferroptosis as an effective option for chronic liver disease therapy.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Shengnan Luo
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Shiyue Tang
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Chenge Li
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaozhi Jin
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Faling Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lina Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yejin Xu
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China,Correspondence: Yejin Xu, Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China, Email
| |
Collapse
|
145
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
146
|
Inaba Y, Hashiuchi E, Watanabe H, Kimura K, Oshima Y, Tsuchiya K, Murai S, Takahashi C, Matsumoto M, Kitajima S, Yamamoto Y, Honda M, Asahara SI, Ravnskjaer K, Horike SI, Kaneko S, Kasuga M, Nakano H, Harada K, Inoue H. The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice. Nat Commun 2023; 14:167. [PMID: 36690638 PMCID: PMC9871012 DOI: 10.1038/s41467-023-35804-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular death increases with hepatic steatosis aggravation, although its regulation remains unclear. Here we show that hepatic steatosis aggravation shifts the hepatocellular death mode from apoptosis to necroptosis, causing increased hepatocellular death. Our results reveal that the transcription factor ATF3 acts as a master regulator in this shift by inducing expression of RIPK3, a regulator of necroptosis. In severe hepatic steatosis, after partial hepatectomy, hepatic ATF3-deficient or -overexpressing mice display decreased or increased RIPK3 expression and necroptosis, respectively. In cultured hepatocytes, ATF3 changes TNFα-dependent cell death mode from apoptosis to necroptosis, as revealed by live-cell imaging. In non-alcoholic steatohepatitis (NASH) mice, hepatic ATF3 deficiency suppresses RIPK3 expression and hepatocellular death. In human NASH, hepatocellular damage is correlated with the frequency of hepatocytes expressing ATF3 or RIPK3, which overlap frequently. ATF3-dependent RIPK3 induction, causing a modal shift of hepatocellular death, can be a therapeutic target for steatosis-induced liver damage, including NASH.
Collapse
Affiliation(s)
- Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Kumi Kimura
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shin Murai
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigetaka Kitajima
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Shin-Ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Masato Kasuga
- The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Kenichi Harada
- Departments of Human Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
147
|
Zhang X, Ma Y, Lv G, Wang H. Ferroptosis as a therapeutic target for inflammation-related intestinal diseases. Front Pharmacol 2023; 14:1095366. [PMID: 36713828 PMCID: PMC9880170 DOI: 10.3389/fphar.2023.1095366] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death characterized by reactive oxygen species-induced lipid peroxidation and resultant membrane damage. Recent research has elucidated the mechanism of ferroptosis and investigated the relationship between ferroptosis and various diseases, including degenerative diseases, cancer, and inflammation. Ferroptosis is associated with inflammation-related intestinal diseases such as colitis and colitis-associated cancer. New insights into the role of ferroptosis in the pathogenesis of inflammation-related gut diseases have suggested novel therapeutic targets. In this review, we summarize current information on the molecular mechanisms of ferroptosis and describe its emerging role and therapeutic potential in inflammation-related intestinal diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China,Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China,*Correspondence: Hongying Wang, ; Guoqing Lv,
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Hongying Wang, ; Guoqing Lv,
| |
Collapse
|
148
|
Ding SB, Chu XL, Jin YX, Jiang JJ, Zhao X, Yu M. Epigallocatechin gallate alleviates high-fat diet-induced hepatic lipotoxicity by targeting mitochondrial ROS-mediated ferroptosis. Front Pharmacol 2023; 14:1148814. [PMID: 37025486 PMCID: PMC10070829 DOI: 10.3389/fphar.2023.1148814] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic advanced liver disease that is highly related to metabolic disorders and induced by a high-fat diet (HFD). Recently, epigallocatechin gallate (EGCG) has been regarded as a protective bioactive polyphenol in green tea that has the ability to protect against non-alcoholic fatty liver disease, but the molecular mechanism remains poorly deciphered. Ferroptosis plays a vital role in the progression of non-alcoholic fatty liver disease, but experimental evidence of ferroptosis inhibition by epigallocatechin gallate is limited. Hence, our study aimed to investigate the effect and mechanisms of epigallocatechin gallate on hepatic ferroptosis to mitigate hepatic injury in high-fat diet-fed mice. Methods: Fifty male C57BL/6 mice were fed either a standard chow diet (SCD), a high-fat diet, or a high-fat diet and administered epigallocatechin gallate or ferrostatin-1 (a ferroptosis-specific inhibitor) for 12 weeks. Liver injury, lipid accumulation, hepatic steatosis, oxidative stress, iron overload, and ferroptosis marker proteins were examined. In vitro, steatotic L-02 cells were used to explore the underlying mechanism. Results: In our research, we found that epigallocatechin gallate notably alleviated liver injury and lipid accumulation, oxidative stress, hepatic steatosis, decreased iron overload and inhibited ferroptosis in a high-fat diet-induced murine model of non-alcoholic fatty liver disease. In vitro experiments, using ferrostatin-1 and a mitochondrial reactive oxygen species (MtROS) scavenger (Mito-TEMPO), we found that epigallocatechin gallate remarkably alleviated oxidative stress and inhibited ferroptosis by reducing the level of mitochondrial reactive oxygen species in steatotic L-02 cells. Conclusion: Taken together, our results revealed that epigallocatechin gallate may exert protective effects on hepatic lipotoxicity by inhibiting mitochondrial reactive oxygen species-mediated hepatic ferroptosis. Findings from our study provide new insight into prevention and treatment strategies for non-alcoholic fatty liver disease pathological processes.
Collapse
|
149
|
Jansakun C, Chunglok W, Altamura S, Muckenthaler M, Staffer S, Tuma-Kellner S, Merle U, Chamulitrat W. Myeloid- and hepatocyte-specific deletion of group VIA calcium-independent phospholipase A2 leads to dichotomous opposing phenotypes during MCD diet-induced NASH. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166590. [PMID: 36334837 DOI: 10.1016/j.bbadis.2022.166590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Polymorphisms of phospholipase A2VIA (iPLA2β or PLA2G6) are associated with body weights and blood C-reactive protein. The role of iPLA2β/PLA2G6 in non-alcoholic steatohepatitis (NASH) is still elusive because female iPla2β-null mice showed attenuated hepatic steatosis but exacerbated hepatic fibrosis after feeding with methionine- and choline-deficient diet (MCDD). Herein, female mice with myeloid- (MPla2g6-/-) and hepatocyte- (LPla2g6-/-) specific PLA2G6 deletion were generated and phenotyped after MCDD feeding. Without any effects on hepatic steatosis, MCDD-fed MPla2g6-/- mice showed further exaggeration of liver inflammation and fibrosis as well as elevation of plasma TNFα, CCL2, and circulating monocytes. Bone-marrow-derived macrophages (BMDMs) from MPla2g6-/- mice displayed upregulation of PPARγ and CEBPα proteins, and elevated release of IL6 and CXCL1 under LPS stimulation. LPS-stimulated BMDMs from MCDD-fed MPla2g6-/- mice showed suppressed expression of M1 Tnfa and Il6, but marked upregulation of M2 Arg1, Chil3, IL10, and IL13 as well as chemokine receptors Ccr2 and Ccr5. This in vitro shift was associated with exaggeration of hepatic M1/M2 cytokines, chemokines/chemokine receptors, and fibrosis genes. Contrarily, MCDD-fed LPla2g6-/- mice showed a complete protection which was associated with upregulation of Ppara/PPARα and attenuated expression of Pparg/PPARγ, fatty-acid uptake, triglyceride synthesis, and de novo lipogenesis genes. Interestingly, LPla2g6-/- mice fed with chow or MCDD displayed an attenuation of blood monocytes and elevation of anti-inflammatory lipoxin A4 in plasma and liver. Thus, PLA2G6 inactivation specifically in myeloid cells and hepatocytes led to opposing phenotypes in female mice undergoing NASH. Hepatocyte-specific PLA2G6 inhibitors may be further developed for treatment of this disease.
Collapse
Affiliation(s)
- Chutima Jansakun
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Martina Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), German Centre for Cardiovascular Research, Partner Site, University of Heidelberg, Germany
| | - Simone Staffer
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Uta Merle
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
150
|
Zhang J, Xie H, Yao J, Jin W, Pan H, Pan Z, Xie D, Xie D. TRIM59 promotes steatosis and ferroptosis in non-alcoholic fatty liver disease via enhancing GPX4 ubiquitination. Hum Cell 2023; 36:209-222. [PMID: 36417114 DOI: 10.1007/s13577-022-00820-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease around the world. However, no specific medicine has been approved for NAFLD treatment. Our study was conducted to explore the role and mechanism of TRIM59 in NAFLD, aiming to provide a novel target for NAFLD treatment. Here, the expression of TRIM family members was detected in 10 mild and severe NAFLD tissues as well as 10 normal tissues. TRIM59 expression was verified in 10 normal tissues and 25 mild and severe NAFLD tissues. Palmitic acid and high-fatty diet were used for the construction of NAFLD models. Oil Red O staining was used to detect the level of steatosis. The content of TNF-α, IL-6, and IL-8 was measured to reflect the level of inflammation. Lipid reactive oxygen species was estimated by flow cytometry. We found that TRIM59 was highly expressed in NAFLD tissues compared with normal liver tissues. The inhibition of TRIM59 could inhibit the steatosis and inflammation in NAFLD, whereas its overexpression exhibited reversed effects. The application of ferroptosis inhibitor, deferoxamine, could markedly ameliorate steatosis and inflammation, which was mediated by overexpressed TRIM59. Besides, TRIM59 was demonstrated to interact with GPX4 and promoted its ubiquitination. The overexpression of GPX4 could significantly reverse the pathogenic effects of TRIM59 in NAFLD. Additionally, the inhibition of TRIM59 appeared to be a promising strategy to ameliorate NAFLD in mice model. In summary, our study revealed that TRIM59 could promote steatosis and ferroptosis in NAFLD via enhancing GPX4 ubiquitination. TRIM59 could be a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Jingxian Zhang
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Haina Xie
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Yao
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Wenye Jin
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Huijie Pan
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Zhiqiang Pan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Dongyu Xie
- Department of Spleen-Stomach, Zhenjiang Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, China. .,Department of Spleen-Stomach, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, China.
| | - Donghao Xie
- Department of Pharmacy, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China. .,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|