101
|
Capri M, Olivieri F, Lanzarini C, Remondini D, Borelli V, Lazzarini R, Graciotti L, Albertini MC, Bellavista E, Santoro A, Biondi F, Tagliafico E, Tenedini E, Morsiani C, Pizza G, Vasuri F, D'Errico A, Dazzi A, Pellegrini S, Magenta A, D'Agostino M, Capogrossi MC, Cescon M, Rippo MR, Procopio AD, Franceschi C, Grazi GL. Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell 2017; 16:262-272. [PMID: 27995756 PMCID: PMC5334540 DOI: 10.1111/acel.12549] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
To understand why livers from aged donors are successfully used for transplants, we looked for markers of liver aging in 71 biopsies from donors aged 12–92 years before transplants and in 11 biopsies after transplants with high donor–recipient age‐mismatch. We also assessed liver function in 36 age‐mismatched recipients. The major findings were the following: (i) miR‐31‐5p, miR‐141‐3p, and miR‐200c‐3p increased with age, as assessed by microRNAs (miRs) and mRNA transcript profiling in 12 biopsies and results were validated by RT–qPCR in a total of 58 biopsies; (ii) telomere length measured by qPCR in 45 samples showed a significant age‐dependent shortage; (iii) a bioinformatic approach combining transcriptome and miRs data identified putative miRs targets, the most informative being GLT1, a glutamate transporter expressed in hepatocytes. GLT1 was demonstrated by luciferase assay to be a target of miR‐31‐5p and miR‐200c‐3p, and both its mRNA (RT–qPCR) and protein (immunohistochemistry) significantly decreased with age in liver biopsies and in hepatic centrilobular zone, respectively; (iv) miR‐31‐5p, miR‐141‐3p and miR‐200c‐3p expression was significantly affected by recipient age (older environment) as assessed in eleven cases of donor–recipient extreme age‐mismatch; (v) the analysis of recipients plasma by N‐glycans profiling, capable of assessing liver functions and biological age, showed that liver function recovered after transplants, independently of age‐mismatch, and recipients apparently ‘rejuvenated’ according to their glycomic age. In conclusion, we identified new markers of aging in human liver, their relevance in donor–recipient age‐mismatches in transplantation, and offered positive evidence for the use of organs from old donors.
Collapse
Affiliation(s)
- Miriam Capri
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
- Center of Clinical Pathology and Innovative Therapy; INRCA-IRCCS National Institute; Via S. Margherita 5; 60124 Ancona Italy
| | - Catia Lanzarini
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
| | - Daniel Remondini
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
- Department of Physics and Astronomy (DIFA) and INFN Sez. Bologna; Alma Mater Studiorum; Via Berti Pichat 9/2 Bologna Italy
| | - Vincenzo Borelli
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
| | | | - Elena Bellavista
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
| | - Aurelia Santoro
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
| | - Fiammetta Biondi
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
| | - Enrico Tagliafico
- Center for Genome Research; Life Sciences Department; University of Modena and Reggio Emilia; Via Campi 287 Modena Italy
| | - Elena Tenedini
- Center for Genome Research; Life Sciences Department; University of Modena and Reggio Emilia; Via Campi 287 Modena Italy
| | - Cristina Morsiani
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
| | - Grazia Pizza
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
| | - Francesco Vasuri
- ’F. Addarii’ Institute of Oncology and Transplant Pathology at DIMES; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Antonietta D'Errico
- ’F. Addarii’ Institute of Oncology and Transplant Pathology at DIMES; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Alessandro Dazzi
- DIMEC-Department of General Surgery and Medicine Sciences; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Sara Pellegrini
- DIMEC-Department of General Surgery and Medicine Sciences; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Alessandra Magenta
- Istituto Dermopatico dell'Immacolata-IRCCS; FLMM; Vascular Pathology Laboratory; Via dei Monti di Creta 104 Rome 00167 Italy
| | - Marco D'Agostino
- Department of Experimental Medicine; Sapienza; University of Rome; Viale Regina Elena 324 Rome 00161 Italy
| | - Maurizio C. Capogrossi
- Istituto Dermopatico dell'Immacolata-IRCCS; FLMM; Vascular Pathology Laboratory; Via dei Monti di Creta 104 Rome 00167 Italy
| | - Matteo Cescon
- DIMEC-Department of General Surgery and Medicine Sciences; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
- Center of Clinical Pathology and Innovative Therapy; INRCA-IRCCS National Institute; Via S. Margherita 5; 60124 Ancona Italy
| | - Claudio Franceschi
- IRCCS; Institute of Neurological Sciences of Bologna; Bologna 40139 Italy
| | - Gian Luca Grazi
- Istituto Nazionale Tumori ‘Regina Elena’; Via Elio Chianesi 53 Roma 00144 Italy
| |
Collapse
|
102
|
Harnett MM, Pineda MA, Latré de Laté P, Eason RJ, Besteiro S, Harnett W, Langsley G. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home. Biomed J 2017; 40:9-22. [PMID: 28411887 PMCID: PMC6138802 DOI: 10.1016/j.bj.2016.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022] Open
Abstract
Christian de Duve first coined the expression “autophagy” during his seminal work on the discovery of lysosomes, which led to him being awarded the Nobel Prize in Physiology or Medicine in 1974. The term was adopted to distinguish degradation of intracellular components from the uptake and degradation of extracellular substances that he called “heterophagy”. Studies until the 1990s were largely observational/morphological-based until in 1993 Yoshinori Oshumi described a genetic screen in yeast undergoing nitrogen deprivation that led to the isolation of autophagy-defective mutants now better known as ATG (AuTophaGy-related) genes. The screen identified mutants that fell into 15 complementation groups implying that at least 15 genes were involved in the regulation of autophagy in yeast undergoing nutrient deprivation, but today, 41 yeast ATG genes have been described and many (though not all) have orthologues in humans. Attempts to identify the genetic basis of autophagy led to an explosion in its research and it's not surprising that in 2016 Yoshinori Oshumi was awarded the Nobel Prize in Physiology or Medicine. Our aim here is not to exhaustively review the ever-expanding autophagy literature (>60 papers per week), but to celebrate Yoshinori Oshumi's Nobel Prize by highlighting just a few aspects that are not normally extensively covered. In an accompanying mini-review we address the role of autophagy in early-diverging eukaryote parasites that like yeast, lack lysosomes and so use a digestive vacuole to degrade autophagosome cargo and also discuss how parasitized host cells react to infection by subverting regulation of autophagy.
Collapse
Affiliation(s)
- Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Perle Latré de Laté
- Inserm U1016, CNRS UMR8104, Cochin Institute, Paris, France; The laboratory of Comparative Cell Biology of Apicomplexa, Medical Faculty of Paris-Descartes University, Sorbonne Paris City, France
| | - Russell J Eason
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Sébastien Besteiro
- DIMNP, UMR CNRS 5235, Montpellier University, Place Eugène Bataillon, Building 24, CC Montpellier, France
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gordon Langsley
- Inserm U1016, CNRS UMR8104, Cochin Institute, Paris, France; The laboratory of Comparative Cell Biology of Apicomplexa, Medical Faculty of Paris-Descartes University, Sorbonne Paris City, France.
| |
Collapse
|
103
|
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and 'Garb-aging'. Trends Endocrinol Metab 2017; 28:199-212. [PMID: 27789101 DOI: 10.1016/j.tem.2016.09.005] [Citation(s) in RCA: 625] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Abstract
'Inflammaging' refers to the chronic, low-grade inflammation that characterizes aging. Inflammaging is macrophage centered, involves several tissues and organs, including the gut microbiota, and is characterized by a complex balance between pro- and anti-inflammatory responses. Based on literature data, we argue that the major source of inflammatory stimuli is represented by endogenous/self, misplaced, or altered molecules resulting from damaged and/or dead cells and organelles (cell debris), recognized by receptors of the innate immune system. While their production is physiological and increases with age, their disposal by the proteasome via autophagy and/or mitophagy progressively declines. This 'autoreactive/autoimmune' process fuels the onset or progression of chronic diseases that can accelerate and propagate the aging process locally and systemically. Consequently, inflammaging can be considered a major target for antiaging strategies.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences of Bologna IRCCS, 40139 Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy; Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18 - 20095 Cusano Milanino (MI), Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, 40126 Bologna, Italy.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
104
|
Raffaghello L, Longo V. Metabolic Alterations at the Crossroad of Aging and Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:1-42. [PMID: 28526131 DOI: 10.1016/bs.ircmb.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aging represents the major risk factor for cancer. Cancer and aging are characterized by a similar dysregulated metabolism consisting in upregulation of glycolysis and downmodulation of oxidative phosphorylation. In this respect, metabolic interventions can be viewed as promising strategies to promote longevity and to prevent or delay age-related disorders including cancer. In this review, we discuss the most promising metabolic approaches including chronic calorie restriction, periodic fasting/fasting-mimicking diets, and pharmacological interventions mimicking calorie restriction. Metabolic interventions can also be viewed as adjuvant anticancer strategies to be combined to standard cancer therapy (chemotherapeutic agents, ionizing radiation, and drugs with specific molecular target), whose major limiting factors are represented by toxicity against healthy cells but also limited efficacy easily circumvented by tumor cells. In fact, conventional cancer therapy is unable to distinguish normal and cancerous cells and thus causes toxic side effects including secondary malignancies, cardiovascular and respiratory complications, endocrinopathies, and other chronic conditions, that resemble and, in some cases, accelerate the age-related disorders and profoundly affect the quality of life. In this scenario, geroscience contributes to the understanding of the mechanisms of protection of normal cells against a cytotoxic agent and finding strategies focused on the preserving healthy cells while enhancing the efficacy of the treatment against malignant cells.
Collapse
Affiliation(s)
- L Raffaghello
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - V Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States; IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
105
|
Bioactive Nutrients and Nutrigenomics in Age-Related Diseases. Molecules 2017; 22:molecules22010105. [PMID: 28075340 PMCID: PMC6155887 DOI: 10.3390/molecules22010105] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.
Collapse
|
106
|
Monti D, Ostan R, Borelli V, Castellani G, Franceschi C. Inflammaging and human longevity in the omics era. Mech Ageing Dev 2016; 165:129-138. [PMID: 28038993 DOI: 10.1016/j.mad.2016.12.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022]
Abstract
Inflammaging is a recent theory of aging originally proposed in 2000 where data and conceptualizations regarding the aging of the immune system (immunosenescence) and the evolution of immune responses from invertebrates to mammals converged. This theory has received an increasing number of citations and experimental confirmations. Here we present an updated version of inflammaging focused on omics data - particularly on glycomics - collected on centenarians, semi-supercentenarians and their offspring. Accordingly, we arrived to the following conclusions: i) inflammaging has a structure where specific combinations of pro- and anti-inflammatory mediators are involved; ii) inflammaging is systemic and more complex than we previously thought, as many organs, tissues and cell types participate in producing pro- and anti-inflammatory stimuli defined "molecular garbage"; iii) inflammaging is dynamic, can be propagated locally to neighboring cells and systemically from organ to organ by circulating products and microvesicles, and amplified by chronic age-related diseases constituting a "local fire", which in turn produces additional inflammatory stimuli and molecular garbage; iv) an integrated Systems Medicine approach is urgently needed to let emerge a robust and highly informative set/combination of omics markers able to better grasp the complex molecular core of inflammaging in elderly and centenarians.
Collapse
Affiliation(s)
- Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Rita Ostan
- Interdepartmental Centre "L. Galvani" (CIG) and Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Vincenzo Borelli
- Interdepartmental Centre "L. Galvani" (CIG) and Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy DIFA, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Via Altura 3, 40139 Bologna, Italy
| |
Collapse
|
107
|
Ito T, Igaki T. Dissecting cellular senescence and SASP in Drosophila. Inflamm Regen 2016; 36:25. [PMID: 29259698 PMCID: PMC5725765 DOI: 10.1186/s41232-016-0031-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence can act as both tumor suppressor and tumor promoter depending on the cellular contexts. On one hand, premature senescence has been considered as an innate host defense mechanism against carcinogenesis in mammals. In response to various stresses including oxidative stress, DNA damage, and oncogenic stress, suffered cells undergo irreversible cell cycle arrest, leading to tumor suppression. On the other hand, recent studies in mammalian systems have revealed that senescent cells can drive oncogenesis by secreting diverse proteins such as inflammatory cytokines, matrix remodeling factors, and growth factors, the phenomenon called senescence-associated secretory phenotype (SASP). However, the mechanisms by which these contradictory effects regulate tumor growth and metastasis in vivo have been elusive. Here, we review the recent discovery of cellular senescence in Drosophila and the mechanisms underlying senescence-mediated tumor regulation dissected by Drosophila genetics.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
108
|
Olivieri F, Spazzafumo L, Bonafè M, Recchioni R, Prattichizzo F, Marcheselli F, Micolucci L, Mensà E, Giuliani A, Santini G, Gobbi M, Lazzarini R, Boemi M, Testa R, Antonicelli R, Procopio AD, Bonfigli AR. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget 2016; 6:35372-82. [PMID: 26498351 PMCID: PMC4742111 DOI: 10.18632/oncotarget.6164] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023] Open
Abstract
Innovative biomarkers are required to manage type 2 diabetic patients (T2DM). We focused our study on miR-126-3p and miR-21-5p levels, as biomarkers of endothelial function and inflammation. MiRNAs levels were measured in plasma from 107 healthy subjects (CTR) and 193 diabetic patients (T2DM), 76 without (T2DM NC) and 117 with (T2DM C) complications. When diabetic complication were analysed as a whole, miR-126-3p and miR-21-5p levels declined significantly from CTR to T2DM NC and T2DM C patients. When miRNAs levels were related to specific complications, significantly higher miR-21-5p levels (0.46 ± 0.44 vs. 0.26±0.33, p < 0.001) and significant lower miR-126-3p levels (0.21±0.21 vs. 0.28±0.22, p = 0.032) were found in T2DM with previous major cardiovascular events (MACE) vs. all the others T2DM patients. To confirm these results we focused on circulating angiogenic cells (CACs) from a subgroup of 10 CTR, 15 T2DM NC and 15 T2DM patients with MACE. CACs from T2DM patients expressed higher miR-21-5p and lower miR-126-3p levels than CACs from CTR. Furthermore, CACs from T2DM + MACE showed the highest levels of miR-21-5p. Circulating miR-21-5p and miR-126-3p emerge as dynamic biomarkers of systemic inflammatory/angiogenic status. Their expression levels in CACs from T2DM with MACE suggest a shift from a proangiogenic to a proinflammatory profile.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - Liana Spazzafumo
- Center of Biostatistics, INRCA-IRCCS National Institute, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - Francesco Prattichizzo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorella Marcheselli
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - Luigina Micolucci
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Emanuela Mensà
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Gabriele Santini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Mirko Gobbi
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaella Lazzarini
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - Massimo Boemi
- Metabolic Diseases and Diabetology Unit, INRCA-IRCCS National Institute, Ancona, Italy
| | - Roberto Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | | |
Collapse
|
109
|
Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafè M. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 2016; 6:35509-21. [PMID: 26431329 PMCID: PMC4742121 DOI: 10.18632/oncotarget.5899] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
A major issue in aging research is how cellular phenomena affect aging at the systemic level. Emerging evidence suggests that DNA damage response (DDR) signaling is a key mechanism linking DNA damage accumulation, cell senescence, and organism aging. DDR activation in senescent cells promotes acquisition of a proinflammatory secretory phenotype (SASP), which in turn elicits DDR and SASP activation in neighboring cells, thereby creating a proinflammatory environment extending at the local and eventually the systemic level. DDR activation is triggered by genomic lesions as well as emerging bacterial and viral metagenomes. Therefore, the buildup of cells with an activated DDR probably fuels inflamm-aging and predisposes to the development of the major age-related diseases (ARDs). Micro (mi)-RNAs - non-coding RNAs involved in gene expression modulation - are released locally and systemically by a variety of shuttles (exosomes, lipoproteins, proteins) that likely affect the efficiency of their biological effects. Here we suggest that some miRNAs, previously found to be associated with inflammation and senescence - miR-146, miR-155, and miR-21 - play a central role in the interplay among DDR, cell senescence and inflamm-aging. The identification of the functions of shuttled senescence-associated miRNAs is expected to shed light on the aging process and on how to delay ARD development.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Artan Ceka
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Monica Cricca
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
110
|
Stratigi K, Chatzidoukaki O, Garinis GA. DNA damage-induced inflammation and nuclear architecture. Mech Ageing Dev 2016; 165:17-26. [PMID: 27702596 DOI: 10.1016/j.mad.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/20/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
Abstract
Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - Ourania Chatzidoukaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, GR71409, Heraklion, Crete, Greece.
| |
Collapse
|
111
|
Al-Khalaf HH, Aboussekhra A. p16INK4Ainduces senescence and inhibits EMT through microRNA-141/microRNA-146b-5p-dependent repression of AUF1. Mol Carcinog 2016; 56:985-999. [DOI: 10.1002/mc.22564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/16/2016] [Accepted: 09/04/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Huda H. Al-Khalaf
- The National Center for Genomics Research; King Abdulaziz City for Science and Technology; Riyadh Saudi Arabia
- Department of Molecular Oncology; King Faisal Specialist Hospital Research Center; Riyadh Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology; King Faisal Specialist Hospital Research Center; Riyadh Saudi Arabia
| |
Collapse
|
112
|
Barragán R, Coltell O, Asensio EM, Francés F, Sorlí JV, Estruch R, Salas-Huetos A, Ordovas JM, Corella D. MicroRNAs and Drinking: Association between the Pre-miR-27a rs895819 Polymorphism and Alcohol Consumption in a Mediterranean Population. Int J Mol Sci 2016; 17:E1338. [PMID: 27537871 PMCID: PMC5000735 DOI: 10.3390/ijms17081338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
Recently, microRNAs (miRNA) have been proposed as regulators in the different processes involved in alcohol intake, and differences have been found in the miRNA expression profile in alcoholics. However, no study has focused on analyzing polymorphisms in genes encoding miRNAs and daily alcohol consumption at the population level. Our aim was to investigate the association between a functional polymorphism in the pre-miR-27a (rs895819 A>G) gene and alcohol consumption in an elderly population. We undertook a cross-sectional study of PREvención con DIeta MEDiterránea (PREDIMED)-Valencia participants (n = 1007, including men and women aged 67 ± 7 years) and measured their alcohol consumption (total and alcoholic beverages) through a validated questionnaire. We found a strong association between the pre-miR-27a polymorphism and total alcohol intake, this being higher in GG subjects (5.2 ± 0.4 in AA, 5.9 ± 0.5 in AG and 9.1 ± 1.8 g/day in GG; padjusted = 0.019). We also found a statistically-significant association of the pre-miR-27a polymorphism with the risk of having a high alcohol intake (>2 drinks/day in men and >1 in women): 5.9% in AA versus 17.5% in GG; padjusted < 0.001. In the sensitivity analysis, this association was homogeneous for sex, obesity and Mediterranean diet adherence. In conclusion, we report for the first time a significant association between a miRNA polymorphism (rs895819) and daily alcohol consumption.
Collapse
Affiliation(s)
- Rocío Barragán
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia 46010, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
- Department of Computer Languages and Systems, School of Technology and Experimental Sciences, Universitat Jaume I, Castellón 12071, Spain.
| | - Eva M Asensio
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia 46010, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Francesc Francés
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia 46010, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - José V Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia 46010, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
- Department of Internal Medicine, Hospital Clinic, IDIBAPS, Barcelona 08036, Spain.
| | - Albert Salas-Huetos
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
- Human Nutrition Unit, Biochemistry and Biotechnology Department, IISPV, University Rovira i Virgili, Reus 43003, Spain.
| | - Jose M Ordovas
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.
- IMDEA Alimentación, Madrid 28049, Spain.
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia 46010, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
113
|
Croci S, Zerbini A, Boiardi L, Muratore F, Bisagni A, Nicoli D, Farnetti E, Pazzola G, Cimino L, Moramarco A, Cavazza A, Casali B, Parmeggiani M, Salvarani C. MicroRNA markers of inflammation and remodelling in temporal arteries from patients with giant cell arteritis. Ann Rheum Dis 2016; 75:1527-33. [PMID: 26342092 DOI: 10.1136/annrheumdis-2015-207846] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/13/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVES There is increasing evidence that microRNAs (miRNAs) are deregulated in autoimmune and cardiovascular diseases. The present study aimed to identify if miRNAs are deregulated in giant cell arteritis (GCA), a vasculitis affecting large-sized and medium-sized arteries, and to determine if miRNA levels might allow to discriminate between patients with GCA and those without. METHODS 58 patients who had temporal artery biopsy (TAB) for suspected GCA were included in the study and divided into three groups: patients with TAB-positive GCA showing a transmural inflammation (n=27), patients with TAB-negative GCA (n=8) and TAB-negative non-GCA patients with a final diagnosis different from GCA (n=23). To identify candidate miRNAs deregulated in GCA, we profiled the expression of 1209 miRNAs in inflamed TABs and normal TABs. Selected miRNAs were then validated by real-time PCRs and in situ hybridisation (ISH). RESULTS MiR-146b-5p, -146a, -155, -150, -21 and -299-5p were significantly more expressed in inflamed TABs from patients with GCA. miRNAs were mainly deregulated at the tissue level because peripheral blood mononuclear cells and polymorphonuclear cells from the three groups of patients and age-matched healthy controls had similar levels of miRNAs. ISH showed that miR-21 was mainly expressed by cells in the medial and intimal layers of inflamed TABs. Patients with TAB-negative GCA had a miRNA profile similar to TAB-negative non-GCA patients. CONCLUSIONS MiR-146b-5p, -146a, -21, -150, -155, -299-5p are overexpressed in the presence of inflammation in TABs from patients with GCA.
Collapse
Affiliation(s)
- Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Alessandro Zerbini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Luigi Boiardi
- Rheumatology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Francesco Muratore
- Rheumatology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Davide Nicoli
- Laboratory of Molecular Biology, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Enrico Farnetti
- Laboratory of Molecular Biology, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Giulia Pazzola
- Rheumatology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Luca Cimino
- Ophthalmology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Antonio Moramarco
- Ophthalmology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Alberto Cavazza
- Pathology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Bruno Casali
- Laboratory of Molecular Biology, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Maria Parmeggiani
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| |
Collapse
|
114
|
Abstract
Aging is a universal phenomenon in metazoans, characterized by a general decline of the organism physiology associated with an increased risk of mortality and morbidity. Aging of an organism correlates with a decline in function of its cells, as shown for muscle, immune, and neuronal cells. As the DNA content of most cells within an organism remains largely identical throughout the life span, age-associated transcriptional changes must be achieved by epigenetic mechanisms. However, how aging may impact on the epigenetic state of cells is only beginning to be understood. In light of a growing number of studies demonstrating that noncoding RNAs can provide molecular signals that regulate expression of protein-coding genes and define epigenetic states of cells, we hypothesize that noncoding RNAs could play a direct role in inducing age-associated profiles of gene expression. In this context, the role of long noncoding RNAs (lncRNAs) as regulators of gene expression might be important for the overall transcriptional landscape observed in aged human cells. The possible functions of lncRNAs and other noncoding RNAs, and their roles in the regulation of aging-related cellular pathways will be analyzed.
Collapse
|
115
|
An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. J Immunol Res 2016; 2016:8426874. [PMID: 27493973 PMCID: PMC4963991 DOI: 10.1155/2016/8426874] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Inflamm-aging is a challenging and promising new branch of aging-related research fields that includes areas such as immunosenescence. Increasing evidence indicates that inflamm-aging is intensively associated with many aging diseases, such as Alzheimer's disease, atherosclerosis, heart disease, type II diabetes, and cancer. Mounting studies have focused on the role of inflamm-aging in disease progression and many advances have been made in the last decade. However, the underlying mechanisms by which inflamm-aging affects pathological changes and disease development are still unclear. Here, we review studies of inflamm-aging that explore the concept, pathological features, mechanisms, intervention, and the therapeutic strategies of inflamm-aging in disease progression.
Collapse
|
116
|
Hao Y, Zhou Q, Ma J, Zhao Y, Wang S. miR-146a is upregulated during retinal pigment epithelium (RPE)/choroid aging in mice and represses IL-6 and VEGF-A expression in RPE cells. ACTA ACUST UNITED AC 2016; 7. [PMID: 27917303 DOI: 10.4172/2155-9570.1000562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE MicroRNA-146a (miR-146a) has been proposed as a marker for age-associated inflammation, or "inflammaging", acting as a negative regulator of cellular senescence and pro-inflammatory signaling pathways. However, the regulation and function of miR-146 during ocular aging remains unclear. Here we propose that miR-146 is regulated during aging of the retina and choroid, and functions in retinal pigment epithelial (RPE) cells to regulate key genes involved in inflammation and angiogenesis. METHODS The expression of miR-146a and miR-146b was examined in the neuroretina and RPE/choroid in mice aged from 2 months to 24 months. Then, the effect of synthetic miR-146a mimetic on IL-6 and VEGF-A expression was analyzed in RPE cells treated with and without TNF-α. RESULTS miR-146a and miR-146b was upregulated during aging of RPE/choroid but not neuroretina, supporting tissue-specific regulation of aging-related miRNAs in retinal tissues. Overexpression of miR-146a by miRNA mimics inhibited VEGF-A and TNF-α-induced IL-6 expression. CONCLUSIONS Elevation of miR-146a and miR-146b in the aging RPE/choroid but not neuroretina suggests a role for miRNAs in inflammaging in the RPE/choroid. miR-146a overexpression inhibits the expression IL-6 and VEGF-A in the RPE cells, supporting a negative feedback regulation mechanism by which inflammatory pathways may be dysregulated in RPE during aging.
Collapse
Affiliation(s)
- Yi Hao
- Fushun Ophthalmology Hospital, Fushun, Liaoning Province, 113006, China
| | - Qinbo Zhou
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Jing Ma
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yun Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA; Department of Ophthalmology, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
117
|
Castellani GC, Menichetti G, Garagnani P, Giulia Bacalini M, Pirazzini C, Franceschi C, Collino S, Sala C, Remondini D, Giampieri E, Mosca E, Bersanelli M, Vitali S, Valle IFD, Liò P, Milanesi L. Systems medicine of inflammaging. Brief Bioinform 2016; 17:527-40. [PMID: 26307062 PMCID: PMC4870395 DOI: 10.1093/bib/bbv062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/29/2015] [Indexed: 12/30/2022] Open
Abstract
Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored computational, statistical and modeling tools. The three SM pillars are highly interconnected, and their balancing is crucial. Despite the great technological progresses producing huge amount of data (Big Data) and impressive computational facilities, the Bio-Medical hypotheses are still of primary importance. A paradigmatic example of unifying Bio-Medical theory is the concept of Inflammaging. This complex phenotype is involved in a large number of pathologies and patho-physiological processes such as aging, age-related diseases and cancer, all sharing a common inflammatory pathogenesis. This Biomedical hypothesis can be mapped into an ecological perspective capable to describe by quantitative and predictive models some experimentally observed features, such as microenvironment, niche partitioning and phenotype propagation. In this article we show how this idea can be supported by computational methods useful to successfully integrate, analyze and model large data sets, combining cross-sectional and longitudinal information on clinical, environmental and omics data of healthy subjects and patients to provide new multidimensional biomarkers capable of distinguishing between different pathological conditions, e.g. healthy versus unhealthy state, physiological versus pathological aging.
Collapse
|
118
|
Chen S, Sun KX, Liu BL, Zong ZH, Zhao Y. MicroRNA-505 functions as a tumor suppressor in endometrial cancer by targeting TGF-α. Mol Cancer 2016; 15:11. [PMID: 26832151 PMCID: PMC4736705 DOI: 10.1186/s12943-016-0496-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
Background Endometrial carcinoma (EC) is one of the most lethal gynecologic cancers. Patients frequently have regional or distant metastasis at diagnosis. MicroRNAs are small non-coding RNAs that participate in numerous biological processes. Recent studies have demonstrated that miR-505 is associated with several types of cancer; however, the expression and function of miR-505 have not been investigated in EC. Methods miR-505 expression in normal endometrial tissue, endometrial carcinomas were quantified by Quantitative reverse transcription PCR. The endometrial carcinoma cell lines HEC-1B and Ishikawa were each transfected with miR-505 or scrambled mimics, after which cell phenotype and expression of relevant molecules were assayed. Dual-luciferase reporter assay and a xenograft mouse model were used to examine miR-505 and its target gene TGF-α. Results RT-PCR results demonstrated that miR-505 was significantly downregulated in human EC tissues compared to normal endometrial tissues. Besides, miR-505 expression was negatively associated with FIGO stage (stage I-II vs. III-IV), and lymph node metastasis (negative vs. positive). In vitro, overexpression of miR-505 significantly suppressed EC cell proliferation, increased apoptosis and reduced migratory and invasive activity. A miR-505 binding site was identified in the 3′ untranslated region of TGF-α mRNA (TGFA) using miRNA target-detecting software; a dual luciferase reporter assay confirmed that miR-505 directly targets and regulates TGFA. RT-PCR and Western-blotting results indicated that overexpressing miR-505 reduced the expression of TGF-α and the TGF-α-regulated proteins MMP2, MMP9, CDK2, while induced Bax and cleaved-PARP expression in EC cells. In vivo, overexpression of miR-505 reduced the tumorigenicity and inhibited the growth of xenograft tumors in a mouse model of EC. Conclusions Taken together, this study demonstrates that miR-505 acts as tumor suppressor in EC by regulating TGF-α. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0496-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 100013, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
119
|
CSGene: a literature-based database for cell senescence genes and its application to identify critical cell aging pathways and associated diseases. Cell Death Dis 2016; 7:e2053. [PMID: 26775705 PMCID: PMC4816187 DOI: 10.1038/cddis.2015.414] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
Abstract
Cell senescence is a cellular process in which normal diploid cells cease to replicate and is a major driving force for human cancers and aging-associated diseases. Recent studies on cell senescence have identified many new genetic components and pathways that control cell aging. However, there is no comprehensive resource for cell senescence that integrates various genetic studies and relationships with cell senescence, and the risk associated with complex diseases such as cancer is still unexplored. We have developed the first literature-based gene resource for exploring cell senescence genes, CSGene. We complied 504 experimentally verified genes from public data resources and published literature. Pathway analyses highlighted the prominent roles of cell senescence genes in the control of rRNA gene transcription and unusual rDNA repeat that constitute a center for the stability of the whole genome. We also found a strong association of cell senescence with HIV-1 infection and viral carcinogenesis that are mainly related to promoter/enhancer binding and chromatin modification processes. Moreover, pan-cancer mutation and network analysis also identified common cell aging mechanisms in cancers and uncovered a highly modular network structure. These results highlight the utility of CSGene for elucidating the complex cellular events of cell senescence.
Collapse
|
120
|
Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. Bioinformatic tools for microRNA dissection. Nucleic Acids Res 2016; 44:24-44. [PMID: 26578605 PMCID: PMC4705652 DOI: 10.1093/nar/gkv1221] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
Recently, microRNAs (miRNAs) have emerged as important elements of gene regulatory networks. MiRNAs are endogenous single-stranded non-coding RNAs (~22-nt long) that regulate gene expression at the post-transcriptional level. Through pairing with mRNA, miRNAs can down-regulate gene expression by inhibiting translation or stimulating mRNA degradation. In some cases they can also up-regulate the expression of a target gene. MiRNAs influence a variety of cellular pathways that range from development to carcinogenesis. The involvement of miRNAs in several human diseases, particularly cancer, makes them potential diagnostic and prognostic biomarkers. Recent technological advances, especially high-throughput sequencing, have led to an exponential growth in the generation of miRNA-related data. A number of bioinformatic tools and databases have been devised to manage this growing body of data. We analyze 129 miRNA tools that are being used in diverse areas of miRNA research, to assist investigators in choosing the most appropriate tools for their needs.
Collapse
Affiliation(s)
- Most Mauluda Akhtar
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60100, Italy Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60100, Italy
| | - Luigina Micolucci
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60100, Italy Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60100, Italy
| | - Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60100, Italy
| | - Fabiola Olivieri
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60100, Italy Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona 60121, Italy
| | - Antonio Domenico Procopio
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60100, Italy Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona 60121, Italy
| |
Collapse
|
121
|
Bitzer M, Wiggins J. Aging Biology in the Kidney. Adv Chronic Kidney Dis 2016; 23:12-8. [PMID: 26709058 DOI: 10.1053/j.ackd.2015.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
Abstract
The notion that kidney function declines with age in the general population is well known in the Nephrology community and the average loss of glomerular filtration rate (GFR) about 1ml per year in most longitudinal studies. There is much debate within the community about whether this represents "normal aging" or whether this constitutes a form of renal disease. However this debate turns out, the real question is whether this decline is preventable - can it be modified or slowed? Efforts to find drivers of this decline are still in the very earliest stages, but have shown some promise at elucidating some of the pathologies involved. This article will address both the wider issue of the biology of aging as well as the specific pathologies of the aging kidney.
Collapse
|
122
|
Chen Z, Gu D, Zhou M, Shi H, Yan S, Cai Y. Regulatory role of miR-125a/b in the suppression by selenium of cadmium-induced apoptosis via the mitochondrial pathway in LLC-PK1 cells. Chem Biol Interact 2016; 243:35-44. [DOI: 10.1016/j.cbi.2015.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023]
|
123
|
Cătană CS, Calin GA, Berindan-Neagoe I. Inflamma-miRs in Aging and Breast Cancer: Are They Reliable Players? Front Med (Lausanne) 2015; 2:85. [PMID: 26697428 PMCID: PMC4678211 DOI: 10.3389/fmed.2015.00085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022] Open
Abstract
Human aging is characterized by chronic low-grade inflammation known as “inflammaging.” Persistent low-level inflammation also plays a key role in all stages of breast cancer since “inflammaging” is the potential link between cancer and aging through NF-kB pathways highly influenced by specific miRs. Micro-RNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at a posttranscriptional level. Inflamma-miRs have been implicated in the regulation of immune and inflammatory responses. Their abnormal expression contributes to the chronic pro-inflammatory status documented in normal aging and major age-related diseases (ARDs), inflammaging being a significant mortality risk factor in both cases. Nevertheless, the correct diagnosis of inflammaging is difficult to make and its hidden contribution to negative health outcomes remains unknown. This methodological work flow was aimed at defining crucial unanswered questions about inflammaging that can be used to clarify aging-related miRNAs in serum and cell lines as well as their targets, thus confirming their role in aging and breast cancer tumorigenesis. Moreover, we aim to highlight the links between the pro-inflammatory mechanism underlying the cancer and aging processes and the precise function of certain miRNAs in cellular senescence (CS). In addition, miRNAs and cancer genes represent the basis for new therapeutic findings indicating that both cancer and ARDs genes are possible candidates involved in CS and vice versa. Our goal is to obtain a focused review that could facilitate future approaches in the investigation of the mechanisms by which miRNAs control the aging process by acting as efficient ARDs inflammatory biomarkers. An understanding of the sources and modulation of inflamma-miRs along with the identification of their specific target genes could enhance their therapeutic potential.
Collapse
Affiliation(s)
- Cristina Sorina Cătană
- Department of Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas , Houston, TX , USA ; Non-Coding RNA Center, MD Anderson Cancer Center, University of Texas , Houston, TX , USA
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas , Houston, TX , USA ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania ; Department of Experimental Pathology, Ion Chiricuta Institute of Oncology , Cluj Napoca , Romania
| |
Collapse
|
124
|
Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M, Watari H, Mitamura T, Hosaka M, Hanley SJB, Kudo M, Sakuragi N. MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 2015; 5:6049-62. [PMID: 25153722 PMCID: PMC4171612 DOI: 10.18632/oncotarget.2157] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MicroRNA-101 has been implicated as a tumor suppressor miRNA in human tumors. However, its potential functional impact and the underlying mechanisms in endometrial cancer progression have not been determined. Here, we report that in aggressive endometrial cancer cells, re-expression of microRNA-101 leads to inhibition of cell proliferation and induction of apoptosis and senescence. Ectopic overexpression of microRNA-101 attenuates the epithelial-mesenchymal transition-associated cancer cell migration and invasion, abrogates the sphere-forming capacity and enhances chemosensitivity to paclitaxel. Algorithm and microarray-based strategies identifies potential microRNA-101 targets. Among these, we validated EZH2, MCL-1 and FOS as direct targets of miR-101 and silencing of these genes mimics the tumor suppressive effects observed on promoting microRNA-101 function. Importantly, further results suggest an inverse correlation between low miR-101 and high EZH2, MCL-1 and FOS expression in EC specimens. We conclude that, as a crucial tumor suppressor, microRNA-101 suppresses cell proliferation, invasiveness and self-renewal in aggressive endometrial cancer cells via modulating multiple critical oncogenes. The microRNA-101-EZH2/MCL-1/FOS axis is a potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Yosuke Konno
- Department of Gynecology, Hokkaido University, Sapporo, Japan; These authors contributed equally to this work
| | - Peixin Dong
- Department of Women's Health Educational System, Hokkaido University, Sapporo, Japan; These authors contributed equally to this work
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China; These authors contributed equally to this work
| | - Fumihiko Suzuki
- Department of Obstetrics and Gynecology, Tohoku University, Sendai, Japan; These authors contributed equally to this work
| | - Jiabin Lu
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Muyan Cai
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | | | | | | | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University, Sapporo, Japan
| | - Masataka Kudo
- Department of Gynecology, Hokkaido University, Sapporo, Japan
| | - Noriaki Sakuragi
- Department of Gynecology, Hokkaido University, Sapporo, Japan; Department of Women's Health Educational System, Hokkaido University, Sapporo, Japan
| |
Collapse
|
125
|
Inflammation as a Keystone of Bone Marrow Stroma Alterations in Primary Myelofibrosis. Mediators Inflamm 2015; 2015:415024. [PMID: 26640324 PMCID: PMC4660030 DOI: 10.1155/2015/415024] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023] Open
Abstract
Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm where severity as well as treatment complexity is mainly attributed to a long lasting disease and presence of bone marrow stroma alterations as evidenced by myelofibrosis, neoangiogenesis, and osteosclerosis. While recent understanding of mutations role in hematopoietic cells provides an explanation for pathological myeloproliferation, functional involvement of stromal cells in the disease pathogenesis remains poorly understood. The current dogma is that stromal changes are secondary to the cytokine “storm” produced by the hematopoietic clone cells. However, despite therapies targeting the myeloproliferation-sustaining clones, PMF is still regarded as an incurable disease except for patients, who are successful recipients of allogeneic stem cell transplantation. Although the clinical benefits of these inhibitors have been correlated with a marked reduction in serum proinflammatory cytokines produced by the hematopoietic clones, further demonstrating the importance of inflammation in the pathological process, these treatments do not address the role of the altered bone marrow stroma in the pathological process. In this review, we propose hypotheses suggesting that the stroma is inflammatory-imprinted by clonal hematopoietic cells up to a point where it becomes “independent” of hematopoietic cell stimulation, resulting in an inflammatory vicious circle requiring combined stroma targeted therapies.
Collapse
|
126
|
Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 2015; 23:1966-71. [PMID: 26521742 PMCID: PMC4630808 DOI: 10.1016/j.joca.2015.01.008] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 02/07/2023]
Abstract
It is well accepted that aging is an important contributing factor to the development of osteoarthritis (OA). The mechanisms responsible appear to be multifactorial and may include an age-related pro-inflammatory state that has been termed "inflamm-aging." Age-related inflammation can be both systemic and local. Systemic inflammation can be promoted by aging changes in adipose tissue that result in increased production of cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNFα). Numerous studies have shown an age-related increase in blood levels of IL-6 that has been associated with decreased physical function and frailty. Importantly, higher levels of IL-6 have been associated with an increased risk of knee OA progression. However, knockout of IL-6 in male mice resulted in worse age-related OA rather than less OA. Joint tissue cells, including chondrocytes and meniscal cells, as well as the neighboring infrapatellar fat in the knee joint, can be a local source of inflammatory mediators that increase with age and contribute to OA. An increased production of pro-inflammatory mediators that include cytokines and chemokines, as well as matrix-degrading enzymes important in joint tissue destruction, can be the result of cell senescence and the development of the senescence-associated secretory phenotype (SASP). Further studies are needed to better understand the basis for inflamm-aging and its role in OA with the hope that this work will lead to new interventions targeting inflammation to reduce not only joint tissue destruction but also pain and disability in older adults with OA.
Collapse
|
127
|
Posttranscriptional Regulation of the Inflammatory Marker C-Reactive Protein by the RNA-Binding Protein HuR and MicroRNA 637. Mol Cell Biol 2015; 35:4212-21. [PMID: 26438598 DOI: 10.1128/mcb.00645-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
C-reactive protein (CRP), an acute-phase plasma protein, is a major component of inflammatory reactions functioning as a mediator of innate immunity. It has been widely used as a validated clinical biomarker of the inflammatory state in trauma, infection, and age-associated chronic diseases, including cancer and cardiovascular disease (CVD). Despite this, the molecular mechanisms that regulate CRP expression are not well understood. Given that the CRP 3' untranslated region (UTR) is long and AU rich, we hypothesized that CRP may be regulated posttranscriptionally by RNA-binding proteins (RBPs) and by microRNAs. Here, we found that the RBP HuR bound directly to the CRP 3' UTR and affected CRP mRNA levels. Through this interaction, HuR selectively increased CRP mRNA stability and promoted CRP translation. Interestingly, treatment with the age-associated inflammatory cytokine interleukin-6 (IL-6) increased binding of HuR to CRP mRNA, and conversely, HuR was required for IL-6-mediated upregulation of CRP expression. In addition, we identified microRNA 637 (miR-637) as a microRNA that potently inhibited CRP expression in competition with HuR. Taken together, we have uncovered an important posttranscriptional mechanism that modulates the expression of the inflammatory marker CRP, which may be utilized in the development of treatments for inflammatory processes that cause CVD and age-related diseases.
Collapse
|
128
|
Frasca D, Diaz A, Romero M, Ferracci F, Blomberg BB. MicroRNAs miR-155 and miR-16 Decrease AID and E47 in B Cells from Elderly Individuals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195. [PMID: 26223652 PMCID: PMC4546853 DOI: 10.4049/jimmunol.1500520] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our research in the past few years has identified B cell-specific biomarkers able to predict optimal Ab responses in both young and elderly individuals. These biomarkers are activation-induced cytidine deaminase (AID), the enzyme of class switch recombination and somatic hypermutation; the transcription factor E47, crucial for AID expression; and the ability to generate optimal memory B cells. Moreover, we have found that the increased proinflammatory status of the elderly, both in sera and intrinsic to B cells, negatively impacts B cell function. We have now investigated whether particular inflammatory microRNAs (miRs) contribute to decreased E47 and AID in aged B cells. Our data indicate that E47 and AID mRNA stability is lower in stimulated B cells from elderly individuals. We measured the expression of two miRs crucial for class switch recombination, miR-155 and miR-16, in human unstimulated B cells from young and elderly individuals with the rationale that increases in these before stimulation would decrease E47/AID upon cell activation. We found these miRs and B cell-intrinsic inflammation upregulated in aged unstimulated B cells and negatively associated with AID in the same B cells after stimulation with CpG. We propose that the downregulation of AID in aged human B cells may occur through binding of miR-155 to the 3'-untranslated regions of AID mRNA and/or binding of miR-16 to the 3'-untranslated regions of E47 mRNA, as well as at the transcriptional level of less E47 for AID. Our results indicate novel molecular pathways leading to reduced B cell function with aging.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Franco Ferracci
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101
| |
Collapse
|
129
|
Longo VD, Antebi A, Bartke A, Barzilai N, Brown‐Borg HM, Caruso C, Curiel TJ, Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, Kenyon C, Klein S, Kopchick JJ, Lepperdinger G, Madeo F, Mirisola MG, Mitchell JR, Passarino G, Rudolph KL, Sedivy JM, Shadel GS, Sinclair DA, Spindler SR, Suh Y, Vijg J, Vinciguerra M, Fontana L. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell 2015; 14:497-510. [PMID: 25902704 PMCID: PMC4531065 DOI: 10.1111/acel.12338] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 12/17/2022] Open
Abstract
The workshop entitled ‘Interventions to Slow Aging in Humans: Are We Ready?’ was held in Erice, Italy, on October 8–13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged. Although many gene targets and drugs were discussed and there was not complete consensus about all interventions, the participants selected a subset of the most promising strategies that could be tested in humans for their effects on healthspan. These were: (i) dietary interventions mimicking chronic dietary restriction (periodic fasting mimicking diets, protein restriction, etc.); (ii) drugs that inhibit the growth hormone/IGF-I axis; (iii) drugs that inhibit the mTOR–S6K pathway; or (iv) drugs that activate AMPK or specific sirtuins. These choices were based in part on consistent evidence for the pro-longevity effects and ability of these interventions to prevent or delay multiple age-related diseases and improve healthspan in simple model organisms and rodents and their potential to be safe and effective in extending human healthspan. The authors of this manuscript were speakers and discussants invited to the workshop. The following summary highlights the major points addressed and the conclusions of the meeting.
Collapse
|
130
|
Giampieri E, Remondini D, Bacalini MG, Garagnani P, Pirazzini C, Yani SL, Giuliani C, Menichetti G, Zironi I, Sala C, Capri M, Franceschi C, Bürkle A, Castellani G. Statistical strategies and stochastic predictive models for the MARK-AGE data. Mech Ageing Dev 2015. [PMID: 26209580 DOI: 10.1016/j.mad.2015.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MARK-AGE aims at the identification of biomarkers of human aging capable of discriminating between the chronological age and the effective functional status of the organism. To achieve this, given the structure of the collected data, a proper statistical analysis has to be performed, as the structure of the data are non trivial and the number of features under study is near to the number of subjects used, requiring special care to avoid overfitting. Here we described some of the possible strategies suitable for this analysis. We also include a description of the main techniques used, to explain and justify the selected strategies. Among other possibilities, we suggest to model and analyze the data with a three step strategy.
Collapse
Affiliation(s)
- Enrico Giampieri
- Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy; Physics and Astronomy Department, Viale Berti Pichat 6/2, University of Bologna, Bologna, Italy.
| | - Daniel Remondini
- Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy; Physics and Astronomy Department, Viale Berti Pichat 6/2, University of Bologna, Bologna, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12 University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12 University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12 University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy
| | - Stella Lukas Yani
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12 University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy; Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Cristina Giuliani
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12 University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy
| | - Giulia Menichetti
- Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy; Physics and Astronomy Department, Viale Berti Pichat 6/2, University of Bologna, Bologna, Italy
| | - Isabella Zironi
- Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy; Physics and Astronomy Department, Viale Berti Pichat 6/2, University of Bologna, Bologna, Italy
| | - Claudia Sala
- Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy; Physics and Astronomy Department, Viale Berti Pichat 6/2, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12 University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12 University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Gastone Castellani
- Interdepartmental Center Galvani "CIG", Via Selmi, 3 University of Bologna, Bologna, Italy; Physics and Astronomy Department, Viale Berti Pichat 6/2, University of Bologna, Bologna, Italy
| |
Collapse
|
131
|
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 2015; 29:3595-611. [PMID: 26065857 DOI: 10.1096/fj.14-260323] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is involved in the onset and development of many diseases, including obesity, atherosclerosis, type 2 diabetes, osteoarthritis, autoimmune and degenerative diseases, asthma, periodontitis, and cirrhosis. The inflammation process is mediated by chemokines, cytokines, and different inflammatory cells. Although the molecules and mechanisms that regulate this primary defense mechanism are not fully understood, recent findings offer a putative role of noncoding RNAs, especially microRNAs (miRNAs), in the progression and management of the inflammatory response. These noncoding RNAs are crucial for the stability and maintenance of gene expression patterns that characterize some cell types, tissues, and biologic responses. Several miRNAs, such as miR-126, miR-132, miR-146, miR-155, and miR-221, have emerged as important transcriptional regulators of some inflammation-related mediators. Additionally, little is known about the involvement of long noncoding RNAs, long intergenic noncoding RNAs, and circular RNAs in inflammation-mediated processes and the homeostatic imbalance associated with metabolic disorders. These noncoding RNAs are emerging as biomarkers with diagnosis value, in prognosis protocols, or in the personalized treatment of inflammation-related alterations. In this context, this review summarizes findings in the field, highlighting those noncoding RNAs that regulate inflammation, with emphasis on recognized mediators such as TNF-α, IL-1, IL-6, IL-18, intercellular adhesion molecule 1, VCAM-1, and plasminogen activator inhibitor 1. The down-regulation or antagonism of the noncoding RNAs and the administration of exogenous miRNAs could be, in the near future, a promising therapeutic strategy in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- José Luiz Marques-Rocha
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Mirian Samblas
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Fermin I Milagro
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Josefina Bressan
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Amelia Marti
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
132
|
Ostan R, Lanzarini C, Pini E, Scurti M, Vianello D, Bertarelli C, Fabbri C, Izzi M, Palmas G, Biondi F, Martucci M, Bellavista E, Salvioli S, Capri M, Franceschi C, Santoro A. Inflammaging and cancer: a challenge for the Mediterranean diet. Nutrients 2015; 7:2589-621. [PMID: 25859884 PMCID: PMC4425163 DOI: 10.3390/nu7042589] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022] Open
Abstract
Aging is considered the major risk factor for cancer, one of the most important mortality causes in the western world. Inflammaging, a state of chronic, low-level systemic inflammation, is a pervasive feature of human aging. Chronic inflammation increases cancer risk and affects all cancer stages, triggering the initial genetic mutation or epigenetic mechanism, promoting cancer initiation, progression and metastatic diffusion. Thus, inflammaging is a strong candidate to connect age and cancer. A corollary of this hypothesis is that interventions aiming to decrease inflammaging should protect against cancer, as well as most/all age-related diseases. Epidemiological data are concordant in suggesting that the Mediterranean Diet (MD) decreases the risk of a variety of cancers but the underpinning mechanism(s) is (are) still unclear. Here we review data indicating that the MD (as a whole diet or single bioactive nutrients typical of the MD) modulates multiple interconnected processes involved in carcinogenesis and inflammatory response such as free radical production, NF-κB activation and expression of inflammatory mediators, and the eicosanoids pathway. Particular attention is devoted to the capability of MD to affect the balance between pro- and anti-inflammaging as well as to emerging topics such as maintenance of gut microbiota (GM) homeostasis and epigenetic modulation of oncogenesis through specific microRNAs.
Collapse
Affiliation(s)
- Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Catia Lanzarini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Elisa Pini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Maria Scurti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Claudia Bertarelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Massimo Izzi
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Giustina Palmas
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Fiammetta Biondi
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Elena Bellavista
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
- IRCCS, Institute of Neurological Sciences, Via Altura 3, 40139 Bologna, Italy.
- National Research Council of Italy, CNR, Institute for Organic Synthesis and Photoreactivity (ISOF), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| |
Collapse
|
133
|
Sianou A, Galyfos G, Moragianni D, Andromidas P, Kaparos G, Baka S, Kouskouni E. The role of microRNAs in the pathogenesis of endometrial cancer: a systematic review. Arch Gynecol Obstet 2015; 292:271-82. [PMID: 25697925 DOI: 10.1007/s00404-015-3660-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epigenetics seem to play a primary role in the current research on the pathogenesis of different types of endometrial cancer. Data so far indicate that microRNAs regulate different pathways that could lead to carcinogenesis when not functioning properly. The aim of this review is to summarize current knowledge on microRNAs that have been associated with endometrial cancer development. MATERIAL AND METHODS From July 2014 to August 2014, we conducted a comprehensive research utilizing major online search engines (Pubmed, Crossref, Google Scholar). The main keywords used in our search were endometrial cancer/carcinoma; microRNA; epigenetics; novel biomarkers; pathogenesis. RESULTS Overall, we identified 155 studies, although only 77 were eligible for this review. Different miRNAs were identified to contribute either promoting the carcinogenesis in the endometrium or inhibiting different steps of endometrial cancer development. Tumour growth, cell proliferation, apoptosis and invasion metastasis have been identified as the main processes where miRNAs seem to be implicated. CONCLUSIONS microRNAs are effective regulators of gene expression that has a significant role in the pathogenesis of endometrial cancer. Research concerning possible therapeutic implications has been promising, although there is still a significant distance to be covered between research observations and clinical results. Extensive preclinical and translational research is still required to improve the efficacy and minimize unwanted effects of miRNAs-based therapy.
Collapse
Affiliation(s)
- Argiri Sianou
- Department of Microbiology, Areteion Hospital, University of Athens Medical School, Athens, Greece,
| | | | | | | | | | | | | |
Collapse
|
134
|
Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region. BMC Cancer 2015; 15:68. [PMID: 25886144 PMCID: PMC4336751 DOI: 10.1186/s12885-015-1078-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/10/2015] [Indexed: 01/15/2023] Open
Abstract
Background Alterations and senescence in bone marrow mesenchymal stromal cells of multiple myeloma patients (MM-BMMSCs) have become an important research focus. However the role of senescence in the pathophysiology of MM is not clear. Methods Correlation between senescence, cell cycle and microRNA expression of MM-BMMSCs (n = 89) was analyzed. Gene expression analysis, copy number analysis and methylation specific PCR were performed by Real-Time PCR. Furthermore, cyclin E1, cyclin D1, p16 and p21 genes were analyzed at the protein level using ELISA. Cell cycle and senescence were analyzed by FACS. MiRNA transfection was performed with miR-485-5p inhibitor and mimic followed by downstream analysis of senescence and cell cycle characteristics of MM-BMMSCs. Results were analyzed by Mann–Whitney U test, Wilcoxon signed-rank test and paired t-test depending on the experimental set up. Results MM-BMMSCs displayed increased senescence associated β-galactosidase activity (SA-βGalA), cell cycle arrest in S phase and overexpression of microRNAs. The overexpressed microRNAs miR-485-5p and miR-519d are located on DLK1-DIO3 and C19MC, respectively. Analyses revealed copy number accumulation and hypomethylation of both clusters. KMS12-PE myeloma cells decreased SA-βGalA and influenced cell cycle characteristics of MM-BMMSCs. MiR-485-5p was significantly decreased in co-cultured MM-BMMSCs in connection with an increased methylation of DLK1-DIO3. Modification of miR-485-5p levels using microRNA mimic or inhibitor altered senescence and cell cycle characteristics of MM-BMMSCs. Conclusions Here, we show for the first time that MM-BMMSCs have aberrant methylation and copy number of the DLK1-DIO3 and C19MC genomic region. Furthermore, this is the first study pointing that multiple myeloma cells in vitro reduce both the senescence phenotype of MM-BMMSCs and the expression of miR-223 and miR-485-5p. Thus, it is questionable whether senescence of MM-BMMSCs plays a pathological role in active multiple myeloma or is more important when cell interaction with myeloma cells is inhibited. Furthermore, we found that MiR-485-5p, which is located on the DLK1-DIO3 cluster, seems to participate in the regulation of senescence status and cell cycle characteristics of MM-BMMSCs. Thus, further exploration of the microRNAs of DLK1-DIO3 could provide further insights into the origin of the senescence state and its reversal in MM-BMMSCs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1078-3) contains supplementary material, which is available to authorized users.
Collapse
|
135
|
Chen L, Wang GD, Liu JP, Wang HS, Liu XM, Wang Q, Cai XH. miR-135a modulates tendon stem/progenitor cell senescence via suppressing ROCK1. Bone 2015; 71:210-6. [PMID: 25460182 DOI: 10.1016/j.bone.2014.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/29/2014] [Accepted: 11/02/2014] [Indexed: 12/23/2022]
Abstract
Tendon stem/progenitor cell (TSPC) senescence may lead to age-related tendon disorders and impair tendon regeneration and replacement capacity in humans. However, the mechanisms governing TSPC aging and degeneration remain obscure. Recently, it has been reported that Rho-associated coiled-coil protein kinase 1 (ROCK1) might be a key player in TSPC aging process. miRNAs are also involved in cellular senescence. In this study, whether miRNAs modulate senescence of TSPCs through targeting ROCK1 was evaluated. We found that miR-135a, which directly binds to the 3'-untranslated region of ROCK1, is significantly downregulated in aged compared with young TSPCs. Overexpression of miR-135a in young TSPCs suppresses senescence, promotes proliferation, and induces migration and tenogenic differentiation, whereas suppression of miR-135a in aged TSPCs has the opposite effects. By gain-of-function and loss-of-function studies, we confirmed that ROCK1 mediates the effects of miR-135a in TSPCs. Taken together, our data suggest that miR-135a plays an important role in TSPC senescence via targeting ROCK1.
Collapse
Affiliation(s)
- Lei Chen
- Department of Orthopaedics Surgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430000, PR China
| | - Guo-Dong Wang
- Department of Orthopaedics Surgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430000, PR China
| | - Jun-Peng Liu
- Department of Orthopaedics Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Hua-Song Wang
- Department of Orthopaedics Surgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430000, PR China
| | - Xi-Ming Liu
- Department of Orthopaedics Surgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430000, PR China
| | - Qing Wang
- Department of Orthopaedics Surgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430000, PR China.
| | - Xian-Hua Cai
- Department of Orthopaedics Surgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430000, PR China.
| |
Collapse
|
136
|
Abstract
Aging is a biological process characterized by the progressive deterioration of physiological functions that occurs through the accumulation of macromolecular and cellular damage. This phenomenon impairs tissue function and is a risk factor for many disorders including cardiovascular disease, neurodegenerative disorders, and cancer. A recent study has enumerated nine cellular and molecular hallmarks that represent common denominators of aging and together determine the aging phenotype, highlighting the concept of aging plasticity. Among the multiple molecular mechanisms which may contribute to aging modulation, microRNAs (miRNAs) are raising enormous interest due to their ability to affect all the "Hallmarks of Aging." In this chapter, we will focus on the description of the diverse functional roles of geromiRs, the large and growing subgroup of miRNAs implicated in aging. We will also address the molecular mechanisms underlying miRNA function in aging and discuss potential strategies for managing aging and extending longevity based on geromiR modulation.
Collapse
|
137
|
Circulating MicroRNAs as easy-to-measure aging biomarkers in older breast cancer patients: correlation with chronological age but not with fitness/frailty status. PLoS One 2014; 9:e110644. [PMID: 25333486 PMCID: PMC4204997 DOI: 10.1371/journal.pone.0110644] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022] Open
Abstract
Circulating microRNAs (miRNAs) hold great promise as easily accessible biomarkers for diverse (patho)physiological processes, including aging. We have compared miRNA expression profiles in cell-free blood from older versus young breast cancer patients, in order to identify “aging miRNAs” that can be used in the future to monitor the impact of chemotherapy on the patient’s biological age. First, we assessed 175 miRNAs that may possibly be present in serum/plasma in an exploratory screening in 10 young and 10 older patients. The top-15 ranking miRNAs showing differential expression between young and older subjects were further investigated in an independent cohort consisting of another 10 young and 20 older subjects. Plasma levels of miR-20a-3p, miR-30b-5p, miR106b, miR191 and miR-301a were confirmed to show significant age-related decreases (all p≤0.004). The remaining miRNAs included in the validation study (miR-21, miR-210, miR-320b, miR-378, miR-423-5p, let-7d, miR-140-5p, miR-200c, miR-374a, miR376a) all showed similar trends as observed in the exploratory screening but these differences did not reach statistical significance. Interestingly, the age-associated miRNAs did not show differential expression between fit/healthy and non-fit/frail subjects within the older breast cancer cohort of the validation study and thus merit further investigation as true aging markers that not merely reflect frailty.
Collapse
|
138
|
Wen KC, Sung PL, Yen MS, Chuang CM, Liou WS, Wang PH. MicroRNAs regulate several functions of normal tissues and malignancies. Taiwan J Obstet Gynecol 2014; 52:465-9. [PMID: 24411027 DOI: 10.1016/j.tjog.2013.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are a cluster of naturally occurring small non-coding RNA molecules of 19-24 nucleotides in length. miRs control gene expression post-transcriptionally by binding to a specific site at the 3'-UTR of target mRNA, which results in mRNA cleavage and translation repression. Nearly 1000 miRs in the human genome have been identified, and it is believed that these miRs contribute to at least 60% of the human transcriptome. Recent research has shown that miRs are emerging as important regulators of cellular differentiation and dedifferentiation. In addition, dysregulation of miR expression may play a fundamental role in the onset, progression and dissemination of cancers. In this review, we focus on some paradigms of miR involvement in tumorigenesis, such as ovarian cancer, and also discuss the relationship between miRs and cancer stem cells.
Collapse
Affiliation(s)
- Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pi-Ling Sung
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Shyen Yen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chi-Mu Chuang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Wen-Shiung Liou
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan; Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
139
|
Ye Y, Li D, Ouyang D, Deng L, Zhang Y, Ma Y, Li Y. MicroRNA expression in the aging mouse thymus. Gene 2014; 547:218-25. [DOI: 10.1016/j.gene.2014.06.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/05/2014] [Accepted: 06/19/2014] [Indexed: 01/03/2023]
|
140
|
Cheng RYS, Basudhar D, Ridnour LA, Heinecke JL, Kesarwala AH, Glynn S, Switzer CH, Ambs S, Miranda KM, Wink DA. Gene expression profiles of NO- and HNO-donor treated breast cancer cells: insights into tumor response and resistance pathways. Nitric Oxide 2014; 43:17-28. [PMID: 25153034 DOI: 10.1016/j.niox.2014.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) synthase 2 (NOS2), a major inflammatory protein, modulates disease progression via NO in a number of pathologies, including cancer. The role of NOS2-derived NO is not only flux-dependent, which is higher in mouse vs human cells, but also varies based on spatial and temporal distribution both within tumor cells and in the tumor microenvironment. NO donors have been utilized to mimic NO flux conditions and to investigate the effects of varied NO concentrations. As a wide range of effects mediated by NO and other nitrogen oxides such as nitroxyl (HNO) have been elucidated, multiple NO- and HNO-releasing compounds have been developed as potential therapeutics, including as tumor modulators. One of the challenges is to determine differences in biomarker expression from extracellular vs intracellular generation of NO or HNO. Taking advantage of new NO and HNO releasing agents, we have characterized the gene expression profile of estrogen receptor-negative human breast cancer (MDA-MB-231) cells following exposure to aspirin, the NO donor DEA/NO, the HNO donor IPA/NO andtheir intracellularly-activated prodrug conjugates DEA/NO-aspirin and IPA/NO-aspirin. Comparison of the gene expression profiles demonstrated that several genes were uniquely expressed with respect to NO or HNO, such as miR-21, HSP70, cystathionine γ-lyase and IL24. These findings provide insight into targets and pathways that could be therapeutically exploited by the redox related species NO and HNO.
Collapse
Affiliation(s)
- Robert Y S Cheng
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Debashree Basudhar
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Julie L Heinecke
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Aparna H Kesarwala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Christopher H Switzer
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Katrina M Miranda
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - David A Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
141
|
Francis H, McDaniel K, Han Y, Liu X, Kennedy L, Yang F, McCarra J, Zhou T, Glaser S, Venter J, Huang L, Levine P, Lai JM, Liu CG, Alpini G, Meng F. Regulation of the extrinsic apoptotic pathway by microRNA-21 in alcoholic liver injury. J Biol Chem 2014; 289:27526-39. [PMID: 25118289 DOI: 10.1074/jbc.m114.602383] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IL-6/Stat3 is associated with the regulation of transcription of key cellular regulatory genes (microRNAs) during different types of liver injury. This study evaluated the role of IL-6/Stat3 in regulating miRNA and miR-21 in alcoholic liver disease. By microarray, we identified that ethanol feeding significantly up-regulated 0.8% of known microRNAs in mouse liver compared with controls, including miR-21. Similarly, the treatment of normal human hepatocytes (N-Heps) and hepatic stellate cells (HSCs) with ethanol and IL-6 significantly increased miR-21 expression. Overexpression of miR-21 decreased ethanol-induced apoptosis in both N-Heps and HSCs. The expression level of miR-21 was significantly increased after Stat3 activation in N-Heps and HSCs, in support of the concept that the 5'-promoter region of miR-21 is regulated by Stat3. Using real time PCR, we confirmed that miR-21 activation is associated with ethanol-linked Stat3 binding of the miR-21 promoter. A combination of bioinformatics, PCR array, dual-luciferase reporter assay, and Western blot analysis revealed that Fas ligand (TNF superfamily, member 6) (FASLG) and death receptor 5 (DR5) are the direct targets of miR-21. Furthermore, inhibition of miR-21 by specific Vivo-Morpholino and knock-out of IL-6 in ethanol-treated mice also increased the expression of DR5 and FASLG in vivo during alcoholic liver injury. The identification of miR-21 as an important regulator of hepatic cell survival, transformation, and remodeling in vitro, as well as its upstream modulators and downstream targets, will provide insight into the involvement of altered miRNA expression in contributing to alcoholic liver disease progression and testing novel therapeutic approaches for human alcoholic liver diseases.
Collapse
Affiliation(s)
- Heather Francis
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Kelly McDaniel
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Yuyan Han
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Xiuping Liu
- the Department of Experimental Therapeutics, Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Lindsey Kennedy
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Fuquan Yang
- the Department of Hepatobiliary Surgery, Shengjing Hospital, China Medical University, Shenyang 100004, China, and
| | - Jennifer McCarra
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Tianhao Zhou
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Shannon Glaser
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Julie Venter
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Li Huang
- the Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Phillip Levine
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Jia-Ming Lai
- the Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chang-Gong Liu
- the Department of Experimental Therapeutics, Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Gianfranco Alpini
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504,
| | - Fanyin Meng
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504,
| |
Collapse
|
142
|
Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: A hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol 2014; 56:154-63. [DOI: 10.1016/j.exger.2014.03.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 12/30/2022]
|
143
|
The role of oxidative stress and inflammation in cardiovascular aging. BIOMED RESEARCH INTERNATIONAL 2014; 2014:615312. [PMID: 25143940 PMCID: PMC4131065 DOI: 10.1155/2014/615312] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023]
Abstract
Age is an independent risk factor of cardiovascular disease, even in the absence of other traditional factors.
Emerging evidence in experimental animal and human models has emphasized a central role for two main mechanisms
of age-related cardiovascular disease: oxidative stress and inflammation.
Excess reactive oxygen species (ROS) and superoxide generated by oxidative stress
and low-grade inflammation accompanying aging recapitulate age-related cardiovascular dysfunction,
that is, left ventricular hypertrophy, fibrosis, and diastolic dysfunction in the heart as well as endothelial dysfunction,
reduced vascular elasticity, and increased vascular stiffness. We describe the signaling involved in these two
main mechanisms that include the factors NF-κB, JunD, p66Shc, and Nrf2.
Potential therapeutic strategies to improve the cardiovascular function with aging are discussed, with a focus on calorie restriction, SIRT1, and resveratrol.
Collapse
|
144
|
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69 Suppl 1:S4-9. [PMID: 24833586 DOI: 10.1093/gerona/glu057] [Citation(s) in RCA: 2473] [Impact Index Per Article: 224.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human aging is characterized by a chronic, low-grade inflammation, and this phenomenon has been termed as "inflammaging." Inflammaging is a highly significant risk factor for both morbidity and mortality in the elderly people, as most if not all age-related diseases share an inflammatory pathogenesis. Nevertheless, the precise etiology of inflammaging and its potential causal role in contributing to adverse health outcomes remain largely unknown. The identification of pathways that control age-related inflammation across multiple systems is therefore important in order to understand whether treatments that modulate inflammaging may be beneficial in old people. The session on inflammation of the Advances in Gerosciences meeting held at the National Institutes of Health/National Institute on Aging in Bethesda on October 30 and 31, 2013 was aimed at defining these important unanswered questions about inflammaging. This article reports the main outcomes of this session.
Collapse
Affiliation(s)
- Claudio Franceschi
- DIMES, Department of Experimental, Diagnostic and Specialty Medicine and CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Italy. IRCCS Institute of Neurological Sciences, and CNR-ISOF, Bologna, Italy.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California. Life Sciences Division, Lawrence Berkeley National Laboratory, California
| |
Collapse
|
145
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
146
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|
147
|
Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 2014; 136-137:101-15. [DOI: 10.1016/j.mad.2013.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
|
148
|
Long YC, Tan TMC, Takao I, Tang BL. The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling. Am J Physiol Endocrinol Metab 2014; 306:E581-91. [PMID: 24452454 DOI: 10.1152/ajpendo.00665.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular and organ metabolism affects organismal lifespan. Aging is characterized by increased risks for metabolic disorders, with age-associated degenerative diseases exhibiting varying degrees of mitochondrial dysfunction. The traditional view of the role of mitochondria generated reactive oxygen species (ROS) in cellular aging, assumed to be causative and simply detrimental for a long time now, is in need of reassessment. While there is little doubt that high levels of ROS are detrimental, mounting evidence points toward a lifespan extension effect exerted by mild to moderate ROS elevation. Dietary caloric restriction, inhibition of insulin-like growth factor-I signaling, and inhibition of the nutrient-sensing mechanistic target of rapamycin are robust longevity-promoting interventions. All of these appear to elicit mitochondrial retrograde signaling processes (defined as signaling from the mitochondria to the rest of the cell, for example, the mitochondrial unfolded protein response, or UPR(mt)). The effects of mitochondrial retrograde signaling may even spread to other cells/tissues in a noncell autonomous manner by yet unidentified signaling mediators. Multiple recent publications support the notion that an evolutionarily conserved, mitochondria-initiated signaling is central to the genetic and epigenetic regulation of cellular aging and organismal lifespan.
Collapse
Affiliation(s)
- Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore; and
| | | | | | | |
Collapse
|
149
|
Kovanecz I, Gelfand R, Masouminia M, Gharib S, Segura D, Vernet D, Rajfer J, Li DK, Kannan K, Gonzalez-Cadavid NF. Oral Bisphenol A (BPA) given to rats at moderate doses is associated with erectile dysfunction, cavernosal lipofibrosis and alterations of global gene transcription. Int J Impot Res 2014; 26:67-75. [PMID: 24305612 PMCID: PMC4098849 DOI: 10.1038/ijir.2013.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA), a suspected reproductive biohazard and endocrine disruptor, released from plastics is associated with ED in occupationally exposed workers. However, in rats, despite the induction of hypogonadism, apoptosis of the penile corporal smooth muscle (SM), fat infiltration into the cavernosal tissue and changes in global gene expression with the intraperitoneal administration of high dose BPA, ED was not observed. We investigated whether BPA administered orally rather than intraperitoneally to rats for longer periods and lower doses will lead to ED. Main outcome measures are ED, histological, and biochemical markers in rat penile tissues. In all, 2.5-month-old rats were given drinking water daily without and with BPA at 1 and 0.1 mg kg(-1) per day. Two months later, erectile function was determined by cavernosometry and electrical field stimulation (EFS) and serum levels of testosterone (T), estradiol (E2) and BPA were measured. Penile tissue sections were assayed by Masson (SM/collagen), Oil Red O (fat), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (apoptosis), immunohistochemistry for Oct4 (stem cells), and α-SM actin/calponin (SM and myofibroblasts), applying quantitative image analysis. Other markers were assayed by western blotting. DNA microarrays/microRNA (miR) assays defined transcription profiles. Orally administered BPA did not affect body weight, but (1) decreased serum T and E2; (2) reduced the EFS response and increased the drop rate; (3) increased within the corporal tissue the presence of fat, myofibroblasts and apoptosis; (4) lowered the contents of SM and stem cells, but not nerve terminals; and (5) caused alterations in the transcriptional profiles for both mRNA and miRs within the penile shaft. Long-term exposure of rats to oral BPA caused a moderate corporal veno-occlusive dysfunction (CVOD), possibly due to alterations within the corporal tissue that pose gene transcriptional changes related to inflammation, fibrosis and epithelial/mesenchymal transition (EMT).
Collapse
Affiliation(s)
- I Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - R Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA
| | - M Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
| | - S Gharib
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
| | - D Segura
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
| | - D Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA
| | - J Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - DK Li
- Department of Health Research and Policy, Stanford University, Stanford, CA
- Division of Research, Kaiser Permanente
| | - K Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - NF Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA
| |
Collapse
|
150
|
Balistreri CR, Candore G, Lio D, Carruba G. Prostate cancer: from the pathophysiologic implications of some genetic risk factors to translation in personalized cancer treatments. Cancer Gene Ther 2014; 21:2-11. [PMID: 24407349 DOI: 10.1038/cgt.2013.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 02/07/2023]
|