101
|
Renaud L, Harris LG, Mani SK, Kasiganesan H, Chou JC, Baicu CF, Van Laer A, Akerman AW, Stroud RE, Jones JA, Zile MR, Menick DR. HDACs Regulate miR-133a Expression in Pressure Overload-Induced Cardiac Fibrosis. Circ Heart Fail 2015; 8:1094-104. [PMID: 26371176 DOI: 10.1161/circheartfailure.114.001781] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/02/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) and histone deacetylases (HDACs) serve a significant role in the pathogenesis of a variety of cardiovascular diseases. The transcriptional regulation of miRNAs is poorly understood in cardiac hypertrophy. We investigated whether the expression of miR-133a is epigenetically regulated by class I and IIb HDACs during hypertrophic remodeling. METHODS AND RESULTS Transverse aortic constriction (TAC) was performed in CD1 mice to induce pressure overload hypertrophy. Mice were treated with class I and IIb HDAC inhibitor (HDACi) via drinking water for 2 and 4 weeks post TAC. miRNA expression was determined by real-time polymerase chain reaction. Echocardiography was performed at baseline and post TAC end points for structural and functional assessment. Chromatin immunoprecipitation was used to identify HDACs and transcription factors associated with miR-133a promoter. miR-133a expression was downregulated by 0.7- and 0.5-fold at 2 and 4 weeks post TAC, respectively, when compared with vehicle control (P<0.05). HDAC inhibition prevented this significant decrease 2 weeks post TAC and maintained miR-133a expression near vehicle control levels, which coincided with (1) a decrease in connective tissue growth factor expression, (2) a reduction in cardiac fibrosis and left atrium diameter (marker of end-diastolic pressure), suggesting an improvement in diastolic function. Chromatin immunoprecipitation analysis revealed that HDAC1 and HDAC2 are present on the miR-133a enhancer regions. CONCLUSIONS The results reveal that HDACs play a role in the regulation of pressure overload-induced miR-133a downregulation. This work is the first to provide insight into an epigenetic-miRNA regulatory pathway in pressure overload-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Ludivine Renaud
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Lillianne G Harris
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Santhosh K Mani
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Harinath Kasiganesan
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - James C Chou
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Catalin F Baicu
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - An Van Laer
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Adam W Akerman
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Robert E Stroud
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Jeffrey A Jones
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Michael R Zile
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.)
| | - Donald R Menick
- From the Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute (L.R., L.G.H., S.K.M., H.K., C.F.B., A.V.L., M.R.Z., D.R.M.), Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgical Research (A.W.A., R.E.S., J.A.J.), and Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (J.C.C.), The Medical University of South Carolina, Charleston; and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J., M.R.Z., D.R.M.).
| |
Collapse
|
102
|
Mohamed IA, Mraiche F. Targeting osteopontin, the silent partner of Na+/H+ exchanger isoform 1 in cardiac remodeling. J Cell Physiol 2015; 230:2006-18. [PMID: 25677682 DOI: 10.1002/jcp.24958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/06/2015] [Indexed: 12/11/2022]
Abstract
Cardiac hypertrophy (CH), characterized by the enlargement of cardiomyocytes, fibrosis and apoptosis, contributes to cardiac remodeling, which if left unresolved results in heart failure. Understanding the signaling pathways underlying CH is necessary to identify potential therapeutic targets. The Na(+) /H(+) -exchanger isoform I (NHE1), a ubiquitously expressed glycoprotein and cardiac specific isoform, regulates intracellular pH. Recent studies have demonstrated that enhanced expression/activity of NHE1 contributes to cardiac remodeling and CH. Inhibition of NHE1 in both in vitro and in vivo models have suggested that inhibition of NHE1 protects against hypertrophy. However, clinical trials using NHE1 inhibitors have proven to be unsuccessful, suggesting that additional factors maybe contributing to cardiac remodeling. Recent studies have indicated that the upregulation of NHE1 is associated with enhanced levels of osteopontin (OPN) in the setting of CH. OPN has been demonstrated to be upregulated in left ventricular hypertrophy, dilated cardiomyopathy and in diabetic cardiomyopathy. The cellular interplay between OPN and NHE1 in the setting of CH remains unknown. This review focuses on the role of NHE1 and OPN in cardiac remodeling and emphasizes the signaling pathways implicating OPN in the NHE1-induced hypertrophic response.
Collapse
|
103
|
Kelloniemi A, Szabo Z, Serpi R, Näpänkangas J, Ohukainen P, Tenhunen O, Kaikkonen L, Koivisto E, Bagyura Z, Kerkelä R, Leosdottir M, Hedner T, Melander O, Ruskoaho H, Rysä J. The Early-Onset Myocardial Infarction Associated PHACTR1 Gene Regulates Skeletal and Cardiac Alpha-Actin Gene Expression. PLoS One 2015; 10:e0130502. [PMID: 26098115 PMCID: PMC4476650 DOI: 10.1371/journal.pone.0130502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
The phosphatase and actin regulator 1 (PHACTR1) locus is a very commonly identified hit in genome-wide association studies investigating coronary artery disease and myocardial infarction (MI). However, the function of PHACTR1 in the heart is still unknown. We characterized the mechanisms regulating Phactr1 expression in the heart, used adenoviral gene delivery to investigate the effects of Phactr1 on cardiac function, and analyzed the relationship between MI associated PHACTR1 allele and cardiac function in human subjects. Phactr1 mRNA and protein levels were markedly reduced (60%, P<0.01 and 90%, P<0.001, respectively) at 1 day after MI in rats. When the direct myocardial effects of Phactr1 were studied, the skeletal α-actin to cardiac α-actin isoform ratio was significantly higher (1.5-fold, P<0.05) at 3 days but 40% lower (P<0.05) at 2 weeks after adenovirus-mediated Phactr1 gene delivery into the anterior wall of the left ventricle. Similarly, the skeletal α-actin to cardiac α-actin ratio was lower at 2 weeks in infarcted hearts overexpressing Phactr1. In cultured neonatal cardiac myocytes, adenovirus-mediated Phactr1 overexpression for 48 hours markedly increased the skeletal α-actin to cardiac α-actin ratio, this being associated with an enhanced DNA binding activity of serum response factor. Phactr1 overexpression exerted no major effects on the expression of other cardiac genes or LV structure and function in normal and infarcted hearts during 2 weeks’ follow-up period. In human subjects, MI associated PHACTR1 allele was not associated significantly with cardiac function (n = 1550). Phactr1 seems to regulate the skeletal to cardiac α-actin isoform ratio.
Collapse
Affiliation(s)
- Annina Kelloniemi
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pauli Ohukainen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Olli Tenhunen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Elina Koivisto
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Zsolt Bagyura
- Heart Center, Semmelweis University, Budapest, Hungary
| | - Risto Kerkelä
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | | | - Thomas Hedner
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Melander
- Lund University, Department of Clinical Sciences, Malmö, Sweden
| | - Heikki Ruskoaho
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- * E-mail: (JR); (HR)
| | - Jaana Rysä
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- * E-mail: (JR); (HR)
| |
Collapse
|
104
|
Major JL, Salih M, Tuana BS. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. J Mol Cell Cardiol 2015; 84:179-90. [PMID: 25944088 DOI: 10.1016/j.yjmcc.2015.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/15/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
The E2F/Pocket protein (Rb) pathway regulates cell growth, differentiation, and death by modulating gene expression. We previously examined this pathway in the myocardium via manipulation of the unique E2F repressor, E2F6, which is believed to repress gene activity independently of Rb. Mice with targeted expression of E2F6 in postnatal myocardium developed dilated cardiomyopathy (DCM) without hypertrophic growth. We assessed the mechanisms of the apparent failure of compensatory hypertrophic growth as well as their response to the β-adrenergic agonist isoproterenol. As early as 2 weeks, E2F6 transgenic (Tg) mice present with dilated thinner left ventricles and significantly reduced ejection fraction and fractional shortening which persists at 6 weeks of age, but with no apparent increase in left ventricle weight: body weight (LVW:BW). E2F6-Tg mice treated with isoproterenol (6.1 mg/kg/day) show double the increase in LVW:BW than their Wt counterparts (32% vs 16%, p-value: 0.007). Western blot analysis revealed the activation of the adrenergic pathway in Tg heart tissue under basal conditions with ~2-fold increase in the level of β2-adrenergic receptors (p-value: 8.9E-05), protein kinase A catalytic subunit (PKA-C) (p-value: 0.0176), activated c-Src tyrosine-protein kinase (p-value: 0.0002), extracellular receptor kinase 2 (ERK2) (p-value: 0.0005), and induction of the anti-apoptotic protein Bcl2 (p-value 0. 0.00001). In contrast, a ~60% decrease in the cardiac growth regulator: AKT1 (p-value 0.0001) and a ~four fold increase in cyclic AMP dependent phosphodiesterase 4D (PDE4D), the negative regulator of PKA activity, were evident in the myocardium of E2F6-Tg mice. The expression of E2F3 was down-regulated by E2F6, but was restored by isoproterenol. Further, Rb expression was down-regulated in Tg mice in response to isoproterenol implying a net activation of the E2F pathway. Thus the unique regulation of E2F activity by E2F6 renders the myocardium hypersensitive to adrenergic stimulus resulting in robust hypertrophic growth. These data reveal a novel interplay between the E2F pathway, β2-adrenergic/PKA/PDE4D, and ERK/c-Src axis in fine tuning the pathological hypertrophic growth response. E2F6 deregulates E2F3 such that pro-hypertrophic growth and survival are enhanced via β2-adrenergic signaling however this response is outweighed by the induction of anti-hypertrophic signals so that left ventricle dilation proceeds without any increase in muscle mass.
Collapse
Affiliation(s)
- Jennifer L Major
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada.
| |
Collapse
|
105
|
Cross-sectional analysis of serum calcium levels for associations with left ventricular hypertrophy in normocalcemia individuals with type 2 diabetes. Cardiovasc Diabetol 2015; 14:43. [PMID: 25924883 PMCID: PMC4422420 DOI: 10.1186/s12933-015-0200-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/15/2015] [Indexed: 01/19/2023] Open
Abstract
Background Left ventricular hypertrophy (LVH) is prevalent in patients with type 2 diabetes mellitus (T2DM). Recent studies show that an increase in albumin-adjusted serum calcium level is associated with an elevated risk of T2DM. We speculate that increased serum calcium levels in T2DM patients are related to LVH prevalence. Methods In this echocardiographic study, 833 normocalcemia and normophosphatemia patients with T2DM were enrolled. The associations between serum calcium and metabolic parameters, left ventricular mass index (LVMI), as well as the rate of LVH were examined using bivariate linear correlation, multivariate linear regression and logistic regression, respectively. The predictive performance of serum calcium for LVH was evaluated using the area under the receiver operating characteristic curve (AUC). Results Patients with LVH have significantly higher serum calcium than those without LVH. Serum calcium was positively associated with total cholesterol, triglycerides, low-density lipoprotein cholesterol, serum uric acid, HOMA-IR and fasting plasma glucose. Multivariate linear regression analysis demonstrated that serum calcium was independently associated with LVMI (p < 0.001). In comparison with patients in the lowest serum calcium quartile, the odds ratio (OR) for LVH in patients in the highest quartile was 2.909 (95% CI 1.792-4.720; p < 0.001). When serum calcium was analyzed as a continuous variable, per 1 mg/dl increase, the OR (95% CI) for LVH was [2.400 (1.552-3.713); p < 0.001]. Serum calcium can predict LVH (AUC = 0.617; 95% CI (0.577-0.656); p < 0.001). Conclusions Albumin-adjusted serum calcium is associated with an increased risk of LVH in patients with T2DM.
Collapse
|
106
|
Abstract
Various human diseases can disrupt the balance between muscle contraction and relaxation. Sarcomeric modulators can be used to readjust this balance either indirectly by intervening in signalling pathways or directly through interaction with the muscle proteins that control contraction. Such agents represent a novel approach to treating any condition in which striated muscle function is compromised, including heart failure, cardiomyopathies, skeletal myopathies and a wide range of neuromuscular conditions. Here, we review agents that modulate the mechanical function of the sarcomere, focusing on emerging compounds that target myosin or the troponin complex.
Collapse
|
107
|
Song HK, Kim J, Lee JS, Nho KJ, Jeong HC, Kim J, Ahn Y, Park WJ, Kim DH. Pik3ip1 modulates cardiac hypertrophy by inhibiting PI3K pathway. PLoS One 2015; 10:e0122251. [PMID: 25826393 PMCID: PMC4380398 DOI: 10.1371/journal.pone.0122251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/10/2015] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is an adaptive response to various physiological and pathological stimuli. Phosphoinositide-3 kinase (PI3K) is a highly conserved lipid kinase involved in physiological cardiac hypertrophy (PHH). PI3K interacting protein1 (Pik3ip1) shares homology with the p85 regulatory subunit of PI3K and is known to interact with the p110 catalytic subunit of PI3K, leading to attenuation of PI3K activity in liver and immune cells. However, the role of Pik3ip1 in the heart remains unknown. In the present study, the effects of Pik3ip1 on cardiac hypertrophy were examined. We found that the expression level of Pik3ip1 was markedly higher in cardiomyocytes than in fibroblasts. The interaction of Pik3ip1 with the p110a subunit of PI3K in the heart was identified by immunoprecipitation using neonatal rat cardiomyocytes (NRCM). Approximately 35% knockdown of Pik3ip1 was sufficient to induce myocardial hypertrophy. Pik3ip1 deficiency was shown to lead to activation of PI3K/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway, increasing protein synthesis and cell size. However, adenovirus-mediated overexpression of Pik3ip1 attenuated PI3K-mediated cardiac hypertrophy. Pik3ip1 was upregulated by PHH due to swimming training, but not by pathological cardiac hypertrophy (PAH) due to pressure-overload, suggesting that Pik3ip1 plays a compensatory negative role for PHH. Collectively, our results elucidate the mechanisms for the roles of Pik3ip1 in PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Hong Ki Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiyeon Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jong Sub Lee
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Kyoung Jin Nho
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hae Chang Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jihwa Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
108
|
Kim JO, Song DW, Kwon EJ, Hong SE, Song HK, Min CK, Kim DH. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One 2015; 10:e0122509. [PMID: 25767890 PMCID: PMC4358957 DOI: 10.1371/journal.pone.0122509] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/11/2015] [Indexed: 01/15/2023] Open
Abstract
MicroRNA (miRNA) is an endogenous non-coding RNA species that either inhibits RNA translation or promotes degradation of target mRNAs. miRNAs often regulate cellular signaling by targeting multiple genes within the pathways. In the present study, using Gene Set Analysis, a useful bioinformatics tool to identify miRNAs with multiple target genes in the same pathways, we identified miR-185 as a key candidate regulator of cardiac hypertrophy. Using a mouse model, we found that miR-185 was significantly down-regulated in myocardial cells during cardiac hypertrophy induced by transverse aortic constriction. To confirm that miR-185 is an anti-hypertrophic miRNA, genetic manipulation studies such as overexpression and knock-down of miR-185 in neonatal rat ventricular myocytes were conducted. The results showed that up-regulation of miR-185 led to anti-hypertrophic effects, while down-regulation led to pro-hypertrophic effects, suggesting that miR-185 has an anti-hypertrophic role in the heart. Our study further identified Camk2d, Ncx1, and Nfatc3 as direct targets of miR-185. The activity of Nuclear Factor of Activated T-cell (NFAT) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) was negatively regulated by miR-185 as assessed by NFAT-luciferase activity and western blotting. The expression of phospho-phospholamban (Thr-17), a marker of CaMKIIδ activity, was also significantly reduced by miR-185. In conclusion, miR-185 effectively blocked cardiac hypertrophy signaling through multiple targets, rendering it a potential drug target for diseases such as heart failure.
Collapse
Affiliation(s)
- Jin Ock Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Dong Woo Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Jeong Kwon
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Seong-Eui Hong
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hong Ki Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Choon Kee Min
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| |
Collapse
|
109
|
Fetal-adult cardiac transcriptome analysis in rats with contrasting left ventricular mass reveals new candidates for cardiac hypertrophy. PLoS One 2015; 10:e0116807. [PMID: 25646840 PMCID: PMC4315412 DOI: 10.1371/journal.pone.0116807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/15/2014] [Indexed: 01/20/2023] Open
Abstract
Reactivation of fetal gene expression patterns has been implicated in common cardiac diseases in adult life including left ventricular (LV) hypertrophy (LVH) in arterial hypertension. Thus, increased wall stress and neurohumoral activation are discussed to induce the return to expression of fetal genes after birth in LVH. We therefore aimed to identify novel potential candidates for LVH by analyzing fetal-adult cardiac gene expression in a genetic rat model of hypertension, i.e. the stroke-prone spontaneously hypertensive rat (SHRSP). To this end we performed genome-wide transcriptome analysis in SHRSP to identify differences in expression patterns between day 20 of fetal development (E20) and adult animals in week 14 in comparison to a normotensive rat strain with contrasting low LV mass, i.e. Fischer (F344). 15232 probes were detected as expressed in LV tissue obtained from rats at E20 and week 14 (p < 0.05) and subsequently screened for differential expression. We identified 24 genes with SHRSP specific up-regulation and 21 genes with down-regulation as compared to F344. Further bioinformatic analysis presented Efcab6 as a new candidate for LVH that showed only in the hypertensive SHRSP rat differential expression during development (logFC = 2.41, p < 0.001) and was significantly higher expressed in adult SHRSP rats compared with adult F344 (+ 76%) and adult normotensive Wistar-Kyoto rats (+ 82%). Thus, it represents an interesting new target for further functional analyses and the elucidation of mechanisms leading to LVH. Here we report a new approach to identify candidate genes for cardiac hypertrophy by combining the analysis of gene expression differences between strains with a contrasting cardiac phenotype with a comparison of fetal-adult cardiac expression patterns.
Collapse
|
110
|
Andrews M, Giger ML, Roman BB. Manganese-enhanced MRI detection of impaired calcium regulation in a mouse model of cardiac hypertrophy. NMR IN BIOMEDICINE 2015; 28:255-263. [PMID: 25523065 PMCID: PMC4451202 DOI: 10.1002/nbm.3249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to use manganese (Mn)-enhanced MRI (MEMRI) to detect changes in calcium handling associated with cardiac hypertrophy in a mouse model, and to determine whether the impact of creatine kinase ablation is detectable using this method. Male C57BL/6 (C57, n = 11) and male creatine kinase double-knockout (CK-M/Mito(-/-) , DBKO, n = 12) mice were imaged using the saturation recovery Look-Locker T1 mapping sequence before and after the development of cardiac hypertrophy. Hypertrophy was induced via subcutaneous continuous 3-day infusion of isoproterenol, and sham mice not subjected to cardiac hypertrophy were also imaged. During each scan, the contrast agent Mn was administered and the resulting change in R1 (=1/T1) was calculated. Two anatomical regions of interest (ROIs) were considered, the left-ventricular free wall (LVFW) and the septum, and one ROI in an Mn-containing standard placed next to the mouse. We found statistically significant (p < 0.05) decreases in the uptake of Mn in both the LVFW and septum following the induction of cardiac hypertrophy. No statistically significant decreases were detected in the standard, and no statistically significant differences were found among the sham mice. Using a murine model, we successfully demonstrated that changes in Mn uptake as a result of cardiac hypertrophy are detectable using the functional contrast agent and calcium mimetic Mn. Our measurements showed a decrease in the relaxivity (R1) of the myocardium following cardiac hypertrophy compared with normal control mice.
Collapse
|
111
|
Locatelli J, Monteiro de Assis LV, Morais Araújo C, Carvalho Alzamora A, Wanderson Geraldo de Lima, Campagnole-Santos MJ, Augusto dos Santos R, Isoldi MC. Swimming training promotes cardiac remodeling and alters the expression of mRNA and protein levels involved in calcium handling in hypertensive rats. Life Sci 2015; 117:67-74. [PMID: 25283082 DOI: 10.1016/j.lfs.2014.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/09/2014] [Accepted: 09/20/2014] [Indexed: 11/26/2022]
Abstract
AIM The aim of this study was to identify the effects of swimming training on the mRNA expression and protein levels of the calcium handling proteins in the hearts of renovascular hypertensive rats submitted to swimming protocol during 6 weeks. MAIN METHODS Fischer rats with renovascular hypertension 2-kidney 1-clip (2K1C) and SHAM groups were divided among sedentary and exercised groups. The exercise protocol lasted for 6 weeks (1 h/day, 5×/week), and the mean arterial pressure, cardiomyocytes hypertrophy parameters, mRNA expression and protein levels of some calcium handling proteins in the left ventricle were evaluated. KEY FINDINGS Swimming training was able to reduce the levels of mean arterial pressure in the hypertensive group compared to 2K1C SED, and to promote cardiac hypertrophy in SHAM EX and 2K1C EX groups in comparison to the respective control groups. The mRNA levels of B-type natriuretic peptide were reduced in the 2K1C EX when compared to 2K1C SED. The mRNA and protein levels of the sarcoplasmic reticulum Ca2 +-ATPase increased after the swimming training in SHAM and 2K1C groups. The mRNA and protein levels of phospholamban, displayed an increase in their levels in the exercised SHAM and in hypertensive rats in comparison to their respective controls; while mRNA levels of Na+/Ca2 + exchanger was reduced in the left ventricle comparing to the sedentary hypertensive rats. SIGNIFICANCE Taken altogether, we provide evidence that the aerobic training may lead to cardiac remodeling, and modulate the calcium handling proteins expression in the heart of hypertensive rats.
Collapse
|
112
|
5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism. Arch Toxicol 2015; 90:359-73. [DOI: 10.1007/s00204-014-1419-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023]
|
113
|
Magi S, Nasti AA, Gratteri S, Castaldo P, Bompadre S, Amoroso S, Lariccia V. Gram-negative endotoxin lipopolysaccharide induces cardiac hypertrophy: Detrimental role of Na+–Ca2+ exchanger. Eur J Pharmacol 2015; 746:31-40. [PMID: 25445045 DOI: 10.1016/j.ejphar.2014.10.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 01/18/2023]
|
114
|
Andersen ND, Ramachandran KV, Bao MM, Kirby ML, Pitt GS, Hutson MR. Calcium signaling regulates ventricular hypertrophy during development independent of contraction or blood flow. J Mol Cell Cardiol 2014; 80:1-9. [PMID: 25536179 DOI: 10.1016/j.yjmcc.2014.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
In utero interventions aimed at restoring left ventricular hemodynamic forces in fetuses with prenatally diagnosed hypoplastic left heart syndrome failed to stimulate ventricular myocardial growth during gestation, suggesting chamber growth during development may not rely upon fluid forces. We therefore hypothesized that ventricular hypertrophy during development may depend upon fundamental Ca(2+)-dependent growth pathways that function independent of hemodynamic forces. To test this hypothesis, zebrafish embryos were treated with inhibitors or activators of Ca(2+) signaling in the presence or absence of contraction during the period of chamber development. Abolishment of contractile function alone in the setting of preserved Ca(2+) signaling did not impair ventricular hypertrophy. In contrast, inhibition of L-type voltage-gated Ca(2+) influx abolished contraction and led to reduced ventricular hypertrophy, whereas increasing L-type voltage-gated Ca(2+) influx led to enhanced ventricular hypertrophy in either the presence or absence of contraction. Similarly, inhibition of the downstream Ca(2+)-sensitive phosphatase calcineurin, a known regulator of adult cardiac hypertrophy, led to reduced ventricular hypertrophy in the presence or absence of contraction, whereas hypertrophy was rescued in the absence of L-type voltage-gated Ca(2+) influx and contraction by expression of a constitutively active calcineurin. These data suggest that ventricular cardiomyocyte hypertrophy during chamber formation is dependent upon Ca(2+) signaling pathways that are unaffected by heart function or hemodynamic forces. Disruption of Ca(2+)-dependent hypertrophy during heart development may therefore represent one mechanism for impaired chamber formation that is not related to impaired blood flow.
Collapse
Affiliation(s)
- Nicholas D Andersen
- Department of Surgery (Cardiovascular and Thoracic), Duke University Medical Center, Durham, NC, USA.
| | - Kapil V Ramachandran
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC, USA
| | - Michelle M Bao
- Department of Pediatrics (Neonatology), Duke University Medical Center, Durham, NC, USA
| | - Margaret L Kirby
- Department of Pediatrics (Neonatology), Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Geoffrey S Pitt
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Molecular Cancer Biology, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Mary R Hutson
- Department of Pediatrics (Neonatology), Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
115
|
Wu JP, Hsieh CH, Ho TJ, Kuo WW, Yeh YL, Lin CC, Kuo CH, Huang CY. Secondhand smoke exposure toxicity accelerates age-related cardiac disease in old hamsters. BMC Cardiovasc Disord 2014; 14:195. [PMID: 25524239 PMCID: PMC4349676 DOI: 10.1186/1471-2261-14-195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background Aging is associated with physiological or pathological left ventricular hypertrophy (LVH) cardiac changes. Secondhand smoke (SHS) exposure is associated with pathological LVH. The action mechanism in cardiac concentric hypertrophy from SHS exposure is understood, but the transition contributed from SHS exposure is not. To determine whether exposure to SHS has an impact on age-induced LVH we examined young and old hamsters that underwent SHS exposure in a chamber for 30 mins. Methods Morphological and histological studies were then conducted using hematoxylin and eosin (H&E) and Masson’s trichrome staining. Echocardiographic analysis was used to determine left ventricular wall thickness and function. LVH related protein expression levels were detected by western blot analysis. Results The results showed that both young and aged hamsters exposed to SHS exhibited increased heart weights and left ventricular weights, left ventricular posterior wall thickness and intraventricular septum systolic and diastolic pressure also increased. However, left ventricular function systolic and diastolic pressure deteriorated. H&E and Masson’s trichrome staining results showed LV papillary muscles were ruptured, resulting in lower cardiac function at the myocardial level. LV muscle fiber arrangement was disordered and collagen accumulation occurred. Concentric LVH related protein molecular markers increased only in young hamsters exposed to SHS. However, this declined with hamster age. By contrast, eccentric LVH related proteins increased in aging hamsters exposed the SHS. Pro-inflammatory proteins, IL-6, TNF-α, JAK1, STAT3, and SIRTI expression increased in aging hamsters exposed to SHS. Conclusions We suggest that SHS exposure induces a pro-inflammatory response that results in concentric transition to aging eccentric LVH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
116
|
Mitra A, Basak T, Ahmad S, Datta K, Datta R, Sengupta S, Sarkar S. Comparative Proteome Profiling during Cardiac Hypertrophy and Myocardial Infarction Reveals Altered Glucose Oxidation by Differential Activation of Pyruvate Dehydrogenase E1 Component Subunit β. J Mol Biol 2014; 427:2104-20. [PMID: 25451023 DOI: 10.1016/j.jmb.2014.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/09/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy and myocardial infarction (MI) are two etiologically different disease forms with varied pathological characteristics. However, the precise molecular mechanisms and specific causal proteins associated with these diseases are obscure to date. In this study, a comparative cardiac proteome profiling was performed in Wistar rat models for diseased and control (sham) groups using two-dimensional difference gel electrophoresis followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified using Protein Pilot™ software (version 4.0) and were subjected to stringent statistical analysis. Alteration of key proteins was validated by Western blot analysis. The differentially expressed protein sets identified in this study were associated with different functional groups, involving various metabolic pathways, stress responses, cytoskeletal organization, apoptotic signaling and other miscellaneous functions. It was further deciphered that altered energy metabolism during hypertrophy in comparison to MI may be predominantly attributed to induced glucose oxidation level, via reduced phosphorylation of pyruvate dehydrogenase E1 component subunit β (PDHE1-B) protein during hypertrophy. This study reports for the first time the global changes in rat cardiac proteome during two etiologically different cardiac diseases and identifies key signaling regulators modulating ontogeny of these two diseases culminating in heart failure. This study also pointed toward differential activation of PDHE1-B that accounts for upregulation of glucose oxidation during hypertrophy. Downstream analysis of altered proteome and the associated modulators would enhance our present knowledge regarding altered pathophysiology of these two etiologically different cardiac disease forms.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Shadab Ahmad
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Kaberi Datta
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Ritwik Datta
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India.
| |
Collapse
|
117
|
Rayabarapu N, Patel BM. Beneficial role of tamoxifen in isoproterenol-induced myocardial infarction. Can J Physiol Pharmacol 2014; 92:849-57. [DOI: 10.1139/cjpp-2013-0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ER-α and ER-β agonist 17β-estradiol is reported to attenuate cardiac hypertrophy. Tamoxifen is a selective estrogen receptor modulator. Hence, the objective of this study was to investigate the effects of tamoxifen in myocardial infarction. For this, tamoxifen was administered to Sprague–Dawley rats for 1–14 days, and isoproterenol (ISO) (100 mg·(kg body mass)−1·day−1) was administered subcutaneously on the 13th and 14th days of the study in order to induce myocardial infarction, after which, various biochemical, cardiac, and morphometric parameters were evaluated. ISO produced significant dyslipidemia, hypertension, bradycardia, oxidative stress, and an increase in serum cardiac markers. Treatment with tamoxifen significantly controlled dyslipidemia, hypertension, bradycardia, oxidative stress, and reduced serum cardiac markers. The ISO control rats exhibited significant increases in the infarct size of the left ventricle (LV), LV cavity area, cardiac and LV hypertrophic indices, LV-wall thickness, cardiomyocyte diameter, and area. Treatment with tamoxifen significantly reduced infarction as well as hypertrophic and morphometric parameters. ISO also produced significant increases in the LV collagen level, decreases in Na+K+ATPase activity, and a reduction in the rate of pressure development and decay, which were prevented by tamoxifen treatment. The protective effect of tamoxifen on myocardial infarct was further confirmed by histopathological examination. Our data thus suggest that tamoxifen exerts beneficial effects in ISO-induced myocardial infarction.
Collapse
Affiliation(s)
- Nihar Rayabarapu
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| | - Bhoomika M. Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| |
Collapse
|
118
|
Ussher JR, Fillmore N, Keung W, Mori J, Beker DL, Wagg CS, Jaswal JS, Lopaschuk GD. Trimetazidine Therapy Prevents Obesity-Induced Cardiomyopathy in Mice. Can J Cardiol 2014; 30:940-4. [DOI: 10.1016/j.cjca.2014.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 11/27/2022] Open
|
119
|
Sowah D, Brown BF, Quon A, Alvarez BV, Casey JR. Resistance to cardiomyocyte hypertrophy in ae3-/- mice, deficient in the AE3 Cl-/HCO3- exchanger. BMC Cardiovasc Disord 2014; 14:89. [PMID: 25047106 PMCID: PMC4120010 DOI: 10.1186/1471-2261-14-89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022] Open
Abstract
Background Cardiac hypertrophy is central to the etiology of heart failure. Understanding the molecular pathways promoting cardiac hypertrophy may identify new targets for therapeutic intervention. Sodium-proton exchanger (NHE1) activity and expression levels in the heart are elevated in many models of hypertrophy through protein kinase C (PKC)/MAPK/ERK/p90RSK pathway stimulation. Sustained NHE1 activity, however, requires an acid-loading pathway. Evidence suggests that the Cl−/HCO3− exchanger, AE3, provides this acid load. Here we explored the role of AE3 in the hypertrophic growth cascade of cardiomyocytes. Methods AE3-deficient (ae3−/−) mice were compared to wildtype (WT) littermates to examine the role of AE3 protein in the development of cardiomyocyte hypertrophy. Mouse hearts were assessed by echocardiography. As well, responses of cultured cardiomyocytes to hypertrophic stimuli were measured. pH regulation capacity of ae3−/− and WT cardiomyocytes was assessed in cultured cells loaded with the pH-sensitive dye, BCECF-AM. Results ae3−/− mice were indistinguishable from wild type (WT) mice in terms of cardiovascular performance. Stimulation of ae3−/− cardiomyocytes with hypertrophic agonists did not increase cardiac growth or reactivate the fetal gene program. ae3−/− mice are thus protected from pro-hypertrophic stimulation. Steady state intracellular pH (pHi) in ae3−/− cardiomyocytes was not significantly different from WT, but the rate of recovery of pHi from imposed alkalosis was significantly slower in ae3−/− cardiomyocytes. Conclusions These data reveal the importance of AE3-mediated Cl−/HCO3− exchange in cardiovascular pH regulation and the development of cardiomyocyte hypertrophy. Pharmacological antagonism of AE3 is an attractive approach in the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | - Joseph R Casey
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2H7, Canada.
| |
Collapse
|
120
|
Pennanen C, Parra V, López-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejías P, Kuzmicic J, Chiong M, Zorzano A, Rothermel BA, Lavandero S. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci 2014; 127:2659-71. [PMID: 24777478 PMCID: PMC4058110 DOI: 10.1242/jcs.139394] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 03/20/2014] [Indexed: 12/12/2022] Open
Abstract
Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca(2+), activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling.
Collapse
Affiliation(s)
- Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Andrea Del Campo
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Tomás Gutierrez
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo Rivera-Mejías
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Jovan Kuzmicic
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain Departamento de Bioquímica í Biología molecular, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
121
|
Norris AW, Bahr TM, Scholz TD, Peterson ES, Volk KA, Segar JL. Angiotensin II-induced cardiovascular load regulates cardiac remodeling and related gene expression in late-gestation fetal sheep. Pediatr Res 2014; 75:689-696. [PMID: 24614802 PMCID: PMC4251591 DOI: 10.1038/pr.2014.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiotensin II (ANG II) stimulates fetal heart growth, although little is known regarding changes in cardiomyocyte endowment or the molecular pathways mediating the response. We measured cardiomyocyte proliferation and morphology in ANG II-treated fetal sheep and assessed transcriptional pathway responses in ANG II and losartan (an ANG II type 1 receptor antagonist) treated fetuses. METHODS In twin-gestation pregnant sheep, one fetus received ANG II (50 μg/kg/min i.v.) or losartan (20 mg/kg/d i.v.) for 7 d; noninstrumented twins served as controls. RESULTS ANG II produced increases in heart mass, cardiomyocyte area (left ventricle (LV) and right ventricle mononucleated and LV binucleated cells), and the percentage of Ki-67-positive mononucleated cells in the LV (all P < 0.05). ANG II and losartan produced generally opposing changes in gene expression, affecting an estimated 55% of the represented transcriptome. The most prominent significantly affected biological pathways included those involved in cytoskeletal remodeling and cell cycle activity. CONCLUSION ANG II produces an increase in fetal cardiac mass via cardiomyocyte hypertrophy and likely hyperplasia, involving transcriptional responses in cytoskeletal remodeling and cell cycle pathways.
Collapse
Affiliation(s)
- Andrew W. Norris
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy M. Bahr
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Thomas D. Scholz
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Emily S. Peterson
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ken A. Volk
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jeffrey L. Segar
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Corresponding Author: Jeffrey L. Segar, MD Professor, Department of Pediatrics University of Iowa Carver College of Medicine University of Iowa Children's Hospital 200 Hawkins Drive, Iowa City, IA 52242 319.356.7244 (phone) 319.356.4685 (facsimile)
| |
Collapse
|
122
|
Liu L, Aguirre SA, Evering WEN, Hirakawa BP, May JR, Palacio K, Wang J, Zhang Y, Stevens GJ. miR-208a as a Biomarker of Isoproterenol-induced Cardiac Injury in Sod2+/− and C57BL/6J Wild-type Mice. Toxicol Pathol 2014; 42:1117-29. [DOI: 10.1177/0192623314525684] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This investigation examined microRNA-208a (miR-208a) as a potential biomarker of isoproterenol (ISO)-induced cardiac injury in superoxide dismutase-2 ( Sod2+/−) and the wild-type mice, and the potential sensitivity of Sod2+/− mice to ISO-induced toxicity. A single intraperitoneal injection of ISO was administered to age-matched wild-type and Sod2+/− mice at 0, 80, or 160 mg/kg. Plasma miR-208a, cardiac troponin I (cTnI), and ISO systemic exposure were measured at various time points postdose. Hearts were collected for histopathology examination and for tissue expression of miR-208a and myosin heavy chain 7. ISO administration caused increases in cTnI and miR-208a plasma levels that correlated with myocardial damage; however, the magnitude of increase differed according to the types of mice. At similar ISO systemic exposure, the magnitude of cTnI was greater in wild-type mice compared to Sod2+/− mice; however, the magnitude of miR-208a was greater in Sod2+/− mice than that of the wild-type mice. Myocardial degeneration occurred at ≥3 hr in the wild-type and ≥6 hr in Sod2+/− mice. At ≥24 hr after ISO administration, miR-208a appeared superior to cTnI in indicating myocardial injury in both wild-type and Sod2+/− mice. Sod2+/− mice were not more sensitive than wild-type mice to ISO-induced toxicity.
Collapse
Affiliation(s)
- Ling Liu
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, California, USA
| | - Shirley A. Aguirre
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, California, USA
| | - Winston E. N. Evering
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, California, USA
| | - Brad P. Hirakawa
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, California, USA
| | - Jeffrey R. May
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, California, USA
| | - Kimbie Palacio
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, California, USA
| | - Jianying Wang
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, California, USA
| | - Yizhong Zhang
- Pfizer Global Research and Development, Bioanalytical Research, Groton, Connecticut, USA
| | - Gregory J. Stevens
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, California, USA
| |
Collapse
|
123
|
Role of noncoding RNAs in the regulation of P-TEFb availability and enzymatic activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:643805. [PMID: 24701579 PMCID: PMC3950470 DOI: 10.1155/2014/643805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/13/2014] [Indexed: 11/23/2022]
Abstract
P-TEFb is a transcriptional factor that specifically regulates the elongation step of RNA polymerase II-dependent transcription and its activity strictly required for Human Immunodeficiency Virus (HIV) infection and during cardiac differentiation. P-TEFb role has emerged as a crucial regulator of transcription elongation and its activity found finely tuned in vivo at transcriptional level as well as posttranscriptionally by dynamic association with different multisubunit molecular particles. Both physiological and pathological cellular signals rapidly converge on P-TEFb regulation by modifying expression and activity of the complex to allow cells to properly respond to different stimuli. In this review we will give a panoramic view on P-TEFb regulation by noncoding RNAs in both physiological and pathological conditions.
Collapse
|
124
|
Duscher D, Maan ZN, Wong VW, Rennert RC, Januszyk M, Rodrigues M, Hu M, Whitmore AJ, Whittam AJ, Longaker MT, Gurtner GC. Mechanotransduction and fibrosis. J Biomech 2014; 47:1997-2005. [PMID: 24709567 DOI: 10.1016/j.jbiomech.2014.03.031] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 01/06/2023]
Abstract
Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. A thorough understanding of the various signaling pathways involved is essential to formulate strategies to combat fibrosis and scarring. While initial efforts focused primarily on the biochemical mechanisms involved in scar formation, more recent research has revealed a central role for mechanical forces in modulating these pathways. Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor W Wong
- Department of Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert C Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie Rodrigues
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Arnetha J Whitmore
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander J Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
125
|
Mehrotra A, Joe B, de la Serna IL. SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension. J Cell Physiol 2014; 228:2337-42. [PMID: 23702776 DOI: 10.1002/jcp.24404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 01/03/2023]
Abstract
Pathological cardiac hypertrophy is characterized by a sustained increase in cardiomyocyte size and re-activation of the fetal cardiac gene program. Previous studies implicated SWI/SNF chromatin remodeling enzymes as regulators of the fetal cardiac gene program in surgical models of cardiac hypertrophy. Although hypertension is a common risk factor for developing cardiac hypertrophy, there has not yet been any investigation into the role of SWI/SNF enzymes in cardiac hypertrophy using genetic models of hypertension. In this study, we tested the hypothesis that components of the SWI/SNF complex are activated and recruited to promoters that regulate the fetal cardiac gene program in hearts that become hypertrophic as a result of salt induced hypertension. Utilizing the Dahl salt-sensitive (S) rat model, we found that the protein levels of several SWI/SNF subunits required for heart development, Brg1, Baf180, and Baf60c, are elevated in hypertrophic hearts from S rats fed a high salt diet compared with normotensive hearts from Dahl salt-resistant (R) rats fed the same diet. Furthermore, we detected significantly higher levels of SWI/SNF subunit enrichment as well as evidence of more accessible chromatin structure on two fetal cardiac gene promoters in hearts from S rats compared with R rats. Our data implicate SWI/SNF chromatin remodeling enzymes as regulators of gene expression in cardiac hypertrophy resulting from salt induced hypertension. Thus we provide novel insights into the epigenetic mechanisms by which salt induced hypertension leads to cardiac hypertrophy.
Collapse
Affiliation(s)
- Aanchal Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | | | |
Collapse
|
126
|
Songstad NT, Johansen D, How OJ, Kaaresen PI, Ytrehus K, Acharya G. Effect of transverse aortic constriction on cardiac structure, function and gene expression in pregnant rats. PLoS One 2014; 9:e89559. [PMID: 24586871 PMCID: PMC3930736 DOI: 10.1371/journal.pone.0089559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/21/2014] [Indexed: 01/08/2023] Open
Abstract
Background There is an increased risk of heart failure and pulmonary edema in pregnancies complicated by hypertensive disorders. However, in a previous study we found that pregnancy protects against fibrosis and preserves angiogenesis in a rat model of angiotensin II induced cardiac hypertrophy. In this study we test the hypothesis that pregnancy protects against negative effects of increased afterload. Methods Pregnant (gestational day 5.5–8.5) and non-pregnant Wistar rats were randomized to transverse aortic constriction (TAC) or sham surgery. After 14.2±0.14 days echocardiography was performed. Aortic blood pressure and left ventricular (LV) pressure-volume loops were obtained using a conductance catheter. LV collagen content and cardiomyocyte circumference were measured. Myocardial gene expression was assessed by real-time polymerase chain reaction. Results Heart weight was increased by TAC (p<0.001) but not by pregnancy. Cardiac myocyte circumference was larger in pregnant compared to non-pregnant rats independent of TAC (p = 0.01), however TAC per se did not affect this parameter. Collagen content in LV myocardium was not affected by pregnancy or TAC. TAC increased stroke work more in pregnant rats (34.1±2.4 vs 17.5±2.4 mmHg/mL, p<0.001) than in non-pregnant (28.2±1.7 vs 20.9±1.5 mmHg/mL, p = 0.06). However, it did not lead to overt heart failure in any group. In pregnant rats, α-MHC gene expression was reduced by TAC. Increased in the expression of β-MHC gene was higher in pregnant (5-fold) compared to non-pregnant rats (2-fold) after TAC (p = 0.001). Nine out of the 19 genes related to cardiac remodeling were affected by pregnancy independent of TAC. Conclusions This study did not support the hypothesis that pregnancy is cardioprotective against the negative effects of increased afterload. Some differences in cardiac structure, function and gene expression between pregnant and non-pregnant rats following TAC indicated that afterload increase is less tolerated in pregnancy.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/growth & development
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cells, Cultured
- Constriction, Pathologic/genetics
- Constriction, Pathologic/metabolism
- Constriction, Pathologic/pathology
- Echocardiography
- Female
- Fibrosis/metabolism
- Fibrosis/pathology
- Gene Expression
- Heart/physiopathology
- Immunoenzyme Techniques
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Pregnancy
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Nils Thomas Songstad
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Pediatrics, University Hospital of Northern Norway, Tromsø, Norway
- * E-mail:
| | - David Johansen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Ole-Jacob How
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Per Ivar Kaaresen
- Department of Pediatrics, University Hospital of Northern Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Ganesh Acharya
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Obstetrics and Gynecology, University Hospital of Northern Norway, Tromsø, Norway
| |
Collapse
|
127
|
Guo J, Sachs F, Meng F. Fluorescence-based force/tension sensors: a novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid Redox Signal 2014; 20:986-99. [PMID: 24205787 PMCID: PMC3924807 DOI: 10.1089/ars.2013.5708] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SIGNIFICANCE Three signaling systems, chemical, electrical, and mechanical, ubiquitously contribute to cellular activities. There is limited information on the mechanical signaling system because of a lack of tools to measure stress in specific proteins. Although significant advances in methodologies such as atomic force microscopy and laser tweezers have achieved great success in single molecules and measuring the mean properties of cells and tissues, they cannot deal with specific proteins in live cells. RECENT ADVANCES To remedy the situation, we developed a family of genetically encoded optical force sensors to measure the stress in structural proteins in living cells. The sensors can be incorporated into specific proteins and are not harmful in transgenic animals. The chimeric proteins distribute and function as their wild-type counterparts, and local stress can be read out from changes in Förster resonance energy transfer (FRET). CRITICAL ISSUES Our original sensor used two mutant green fluorescence proteins linked by an alpha helix that served as a linking spring. Ever since, we have improved the probe design in a number of ways. For example, we replaced the helical linker with more common elastic protein domains to better match the compliance of the wild-type hosts. We greatly improved sensitivity by using the angular dependence of FRET rather than the distance dependence as the transduction mechanism, because that has nearly 100% efficiency at rest and nearly zero when stretched. FUTURE DIRECTIONS These probes enable researchers to investigate the roles of mechanical force in cellular activities at the level of single molecules, cells, tissues, and whole animals.
Collapse
Affiliation(s)
- Jun Guo
- 1 Department of Biochemistry, Nanjing Medical University , Nanjing, People's Republic of China
| | | | | |
Collapse
|
128
|
Ji WT, Chen HR, Lin CH, Lee JW, Lee CC. Monocyte chemotactic protein 1 (MCP-1) modulates pro-survival signaling to promote progression of head and neck squamous cell carcinoma. PLoS One 2014; 9:e88952. [PMID: 24586454 PMCID: PMC3929549 DOI: 10.1371/journal.pone.0088952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 01/16/2014] [Indexed: 12/04/2022] Open
Abstract
Background Monocyte chemotactic protein-1 (MCP-1) recruits monocytes and macrophages to inflammation sites, and inflammatory infiltration correlates with the progression of head and neck squamous cell carcinoma (HNSCC). This study aims to determine whether MCP-1 expression is related to HNSCC malignancy and patient survival. We also investigated the relationship between MCP-1 expression and the phosphorylation state of the pro-survival pathway factors Akt, ERK, and STAT3. Methods Expression of MCP-1 and related proteins in HNSCC cell lines was investigated using western blotting. HNSCC patients (34) without distant metastasis at diagnosis were recruited for tissue specimen evaluation of MCP-1 expression and clinical outcomes. The relationship between MCP-1 expression and survival was evaluated using the Cox proportional hazard model with stepwise selection. Results High-grade HNSCC cell lines were found to have higher levels of active Akt, ERK, and/or STAT3 than did lower grade cell lines under serum-free condition. OCSL, the most malignant cell line, had the highest level of endogenous MCP-1. Administration of exogenous recombinant MCP-1 increased phosphorylation of Akt, ERK, and STAT3 in a dose- and time-dependent manner and increased cellular resistance to serum starvation. Inhibition of Akt, ERK, or STAT3 reduced cell growth and caused cell death. Long-term survival of HNSCC patients was negatively associated with the histological intensity of MCP-1, implicating MCP-1 as a potential prognostic marker for HNSCC. Conclusions These results suggest that overexpressed MCP-1 in cancer cells may promote HNSCC progression through upregulating pro-survival signaling pathways. High cellular MCP-1 expression is related to poor overall survival rate in HNSCC patients.
Collapse
Affiliation(s)
- Wen-Tsai Ji
- Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, College of Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Hau-Ren Chen
- Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, College of Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Chun-Hsuan Lin
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Jeng-Woei Lee
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- * E-mail: (C-CL); (J-WL)
| | - Ching-Chih Lee
- Department of Otolaryngology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
- * E-mail: (C-CL); (J-WL)
| |
Collapse
|
129
|
Medford HM, Cox EJ, Miller LE, Marsh SA. Consuming a Western diet for two weeks suppresses fetal genes in mouse hearts. Am J Physiol Regul Integr Comp Physiol 2014; 306:R519-26. [PMID: 24523346 DOI: 10.1152/ajpregu.00253.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diets high in sugar and saturated fat (Western diet) contribute to obesity and pathophysiology of metabolic syndrome. A common physiological response to obesity is hypertension, which induces cardiac remodeling and hypertrophy. Hypertrophy is regulated at the level of chromatin by repressor element 1-silencing transcription factor (REST), and pathological hypertrophy is associated with reexpression of a fetal cardiac gene program. Reactivation of fetal genes is commonly observed in hypertension-induced hypertrophy; however, this response is blunted in diabetic hearts, partially due to upregulation of the posttranslational modification O-linked-β-N-acetylglucosamine (O-GlcNAc) to proteins by O-GlcNAc transferase (OGT). OGT and O-GlcNAc are found in chromatin-modifying complexes, but it is unknown whether they play a role in Western diet-induced hypertrophic remodeling. Therefore, we investigated the interactions between O-GlcNAc, OGT, and the fetal gene-regulating transcription factor complex REST/mammalian switch-independent 3A/histone deacetylase (HDAC). Five-week-old male C57BL/6 mice were fed a Western (n = 12) or control diet (n = 12) for 2 wk to examine the early hypertrophic response. Western diet-fed mice exhibited fasting hyperglycemia and increased body weight (P < 0.05). As expected for this short duration of feeding, cardiac hypertrophy was not yet evident. We found that REST is O-GlcNAcylated and physically interacts with OGT in mouse hearts. Western blot analysis showed that HDAC protein levels were not different between groups; however, relative to controls, Western diet hearts showed increased REST and decreased ANP and skeletal α-actin. Transcript levels of HDAC2 and cardiac α-actin were decreased in Western diet hearts. These data suggest that REST coordinates regulation of diet-induced hypertrophy at the level of chromatin.
Collapse
Affiliation(s)
- Heidi M Medford
- Graduate Program in Pharmaceutical Sciences, Washington State University, Spokane, Washington; and
| | | | | | | |
Collapse
|
130
|
Oliveira-Junior SA, Martinez PF, Guizoni DM, Campos DHS, Fernandes T, Oliveira EM, Okoshi MP, Okoshi K, Padovani CR, Cicogna AC. AT1 receptor blockade attenuates insulin resistance and myocardial remodeling in rats with diet-induced obesity. PLoS One 2014; 9:e86447. [PMID: 24466104 PMCID: PMC3900554 DOI: 10.1371/journal.pone.0086447] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although obesity has been associated with metabolic and cardiac disturbances, the carrier mechanisms for these responses are poorly understood. This study analyzed whether angiotensin II blockade attenuates metabolic and cardiovascular disorders in rats with diet-induced obesity. MATERIAL AND METHODS Wistar-Kyoto (n = 40) rats were subjected to control (C; 3.2 kcal/g) and hypercaloric diets (OB; 4.6 kcal/g) for 30 weeks. Subsequently, rats were distributed to four groups: C, CL, OB, and OBL. L groups received Losartan (30 mg/kg/day) for five weeks. After this period we performed in vivo glucose tolerance and insulin tolerance tests, and measured triacylglycerol, insulin, angiotensin-converting enzyme activity (ACE), and leptin levels. Cardiovascular analyzes included systolic blood pressure (SBP), echocardiography, myocardial morphometric study, myosin heavy chain composition, and measurements of myocardial protein levels of angiotensin, extracellular signal-regulated (ERK1/2), c-Jun amino-terminal kinases (JNK), insulin receptor subunit β (βIR), and phosphatidylinositol 3-kinase (PI3K) by Western Blot. RESULTS Glucose metabolism, insulin, lipid, and ACE activity disorders observed with obesity were minimized by Losartan. Moreover, obesity was associated with increased SBP, myocardial hypertrophy, interstitial fibrosis and improved systolic performance; these effects were also minimized with Losartan. On a molecular level, OB exhibited higher ERK, Tyr-phosphorylated βIR, and PI3K expression, and reduced myocardial angiotensin and JNK expression. ERK and JNK expression were regulated in the presence of Losartan, while angiotensin, Tyr-βRI, total and Tyr-phosphorylated PI3K expression were elevated in the OBL group. CONCLUSION Angiotensin II blockade with Losartan attenuates obesity-induced metabolic and cardiovascular changes.
Collapse
Affiliation(s)
- Silvio A. Oliveira-Junior
- Botucatu Medical School, São Paulo State University, Botucatu, Brazil
- School of Physiotherapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Paula F. Martinez
- Botucatu Medical School, São Paulo State University, Botucatu, Brazil
- School of Physiotherapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | | | - Tiago Fernandes
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Edilamar M. Oliveira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Marina P. Okoshi
- Botucatu Medical School, São Paulo State University, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, São Paulo State University, Botucatu, Brazil
| | - Carlos R. Padovani
- Botucatu Biosciences Institute, São Paulo State University, Botucatu, Brazil
| | | |
Collapse
|
131
|
Krüppel-like transcription factor 11 (KLF11) overexpression inhibits cardiac hypertrophy and fibrosis in mice. Biochem Biophys Res Commun 2014; 443:683-8. [DOI: 10.1016/j.bbrc.2013.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 02/02/2023]
|
132
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
133
|
Kuo HF, Lai YJ, Wu JC, Lee KT, Chu CS, Chen IJ, Wu JR, Wu BN. A xanthine-derivative K(+)-channel opener protects against serotonin-induced cardiomyocyte hypertrophy via the modulation of protein kinases. Int J Biol Sci 2013; 10:64-72. [PMID: 24391452 PMCID: PMC3879592 DOI: 10.7150/ijbs.7894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/13/2022] Open
Abstract
This study investigated whether KMUP-1, a xanthine-derivative K+ channel opener, could prevent serotonin-induced hypertrophy in H9c2 cardiomyocytes via L-type Ca2+ channels (LTCCs). Rat heart-derived H9c2 cells were incubated with serotonin (10 μM) for 4 days. The cell size increased by 155.5%, and this was reversed by KMUP-1 (≥1 μM), and attenuated by the LTCC blocker verapamil (1 μM) and the 5-HT2A antagonist ketanserin (0.1 μM), but unaffected by the 5-HT2B antagonist SB206553. A perforated whole-cell patch-clamp technique was used to investigate Ca2+ currents through LTCCs in serotonin-induced H9c2 hypertrophy, in which cell capacitance and current density were increased. The LTCC current (ICa,L) increased ~2.9-fold in serotonin-elicited H9c2 hypertrophy, which was attenuated by verapamil and ketanserin, but not affected by SB206553 (0.1 μM). Serotonin-increased ICa,L was reduced by KMUP-1, PKA and PKC inhibitors (H-89, 1 μM and chelerythrine, 1 μM) while the current was enhanced by the PKC activator PMA, (1 μM) but not the PKA activator 8-Br-cAMP (100 μM), and was abolished by KMUP-1. In contrast, serotonin-increased ICa,L was blunted by the PKG activator 8-Br-cGMP (100 μM), but unaffected by the PKG inhibitor KT5823 (1 μM). Notably, KMUP-1 blocked serotonin-increased ICa,L but this was partially reversed by KT5823. In conclusion, serotonin-increased ICa,L could be due to activated 5-HT2A receptor-mediated PKA and PKC cascades, and/or indirect interaction with PKG. KMUP-1 prevents serotonin-induced H9c2 cardiomyocyte hypertrophy, which can be attributed to its PKA and PKC inhibition, and/or PKG stimulation.
Collapse
Affiliation(s)
- Hsuan-Fu Kuo
- 1. Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Jie Lai
- 2. Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Chou Wu
- 3. Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Kun-Tai Lee
- 4. Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- 1. Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; 4. Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- 2. Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiunn-Ren Wu
- 5. Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- 2. Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
134
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
135
|
Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy. PLoS One 2013; 8:e82979. [PMID: 24349409 PMCID: PMC3859602 DOI: 10.1371/journal.pone.0082979] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors are highly conserved signaling molecules that have been implicated in postnatal cardiac remodeling. However, it is not known whether cardiomyocyte-expressed FGF receptors are necessary or sufficient for ventricular remodeling in the adult heart. To determine whether cardiomyocytes were competent to respond to an activated FGF receptor, and to determine if this signal would result in the development of hypertrophy, we engineered a doxycycline (DOX)-inducible, cardiomyocyte-specific, constitutively active FGF receptor mouse model (αMHC-rtTA, TRE-caFgfr1-myc). Echocardiographic and hemodynamic analysis indicated that acute expression of caFGFR1 rapidly and directly increased cardiac contractility, while chronic expression resulted in significant hypertrophy with preservation of systolic function. Subsequent histologic analysis showed increased cardiomyocyte cross-sectional area and regions of myocyte disarray and fibrosis, classic features of hypertrophic cardiomyopathy (HCM). Analysis of downstream pathways revealed a lack of clear activation of classical FGF-mediated signaling pathways, but did demonstrate a reduction in Serca2 expression and troponin I phosphorylation. Isolated ventricular myocytes showed enhanced contractility and reduced relaxation, an effect that was partially reversed by inhibition of actin-myosin interactions. We conclude that adult cardiomyocytes are competent to transduce FGF signaling and that FGF signaling is sufficient to promote increased cardiomyocyte contractility in vitro and in vivo through enhanced intrinsic actin-myosin interactions. Long-term, FGFR overexpression results in HCM with a dynamic outflow tract obstruction, and may serve as a unique model of HCM.
Collapse
|
136
|
Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2403-13. [DOI: 10.1016/j.bbadis.2013.07.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
|
137
|
Duygu B, Poels EM, da Costa Martins PA. Genetics and epigenetics of arrhythmia and heart failure. Front Genet 2013; 4:219. [PMID: 24198825 PMCID: PMC3812794 DOI: 10.3389/fgene.2013.00219] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
Heart failure (HF) is the end stage of several pathological cardiac conditions including myocardial infarction, cardiac hypertrophy and hypertension. Various molecular and cellular mechanisms are involved in the development of HF. At the molecular level, the onset of HF is associated with reprogramming of gene expression, including downregulation of the alpha-myosin heavy chain (α-MHC) gene and sarcoplasmic reticulum Ca 2+ ATPase genes and reactivation of specific fetal cardiac genes such as atrial natriuretic factor and brain natriuretic peptide. These deviations in gene expression result in structural and electrophysiological changes, which eventually progress to HF. Cardiac arrhythmia is caused by altered conduction properties of the heart, which may arise in response to ischemia, inflammation, fibrosis, aging or from genetic factors. Because changes in the gene transcription program may have crucial consequences as deteriorated cardiac function, understanding the molecular mechanisms involved in the process has become a priority in the field. In this context, various studies besides having identified different DNA methylation patterns in HF patients, have also focused on specific disease processes and their underlying mechanisms, also introducing new concepts such as epigenomics. This review highlights specific genetic mutations associated with the onset and progression of HF, also providing an introduction to epigenetic mechanisms such as histone modifications, DNA methylation and RNA-based modification, and highlights the relation between epigenetics, arrhythmogenesis and HF.
Collapse
Affiliation(s)
- Burcu Duygu
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Maastricht, Netherlands
| | | | | |
Collapse
|
138
|
Horton JS, Buckley CL, Alvarez EM, Schorlemmer A, Stokes AJ. The calcium release-activated calcium channel Orai1 represents a crucial component in hypertrophic compensation and the development of dilated cardiomyopathy. Channels (Austin) 2013; 8:35-48. [PMID: 24135962 DOI: 10.4161/chan.26581] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
As exceptionally calcium selective store-operated channels, Orai channels play a prominent role in cellular calcium signaling. While most studied in the immune system, we are beginning to recognize that Orai1 provides unique calcium signaling pathways in numerous tissue contexts. To assess the involvement of Orai1 in cardiac hypertrophy we used transverse aortic constriction to model pressure overload cardiac hypertrophy and heart failure in Orai1 deficient mice. We demonstrate that Orai1 deficient mice have significantly decreased survival in this pressure overload model. Transthoracic echocardiography reveals that Orai1 deficient mice develop rapid dilated cardiomyopathy, with greater loss of function, and histological and molecular data indicate that this pathology is associated with significant apoptosis, but not major differences in cellular hypertrophy, fibrosis, and some major hypertrophic makers. Orai1 represents a crucial calcium entry mechanism in the compensation of the heart to pressure overload over-load, and the development of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jaime S Horton
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA; Department of Cell & Molecular Biology; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Cadie L Buckley
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA; Department of Molecular Biosciences & Bioengineering; University of Hawaii; Honolulu, HI USA
| | - Ernest M Alvarez
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA; Department of Cell & Molecular Biology; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Anita Schorlemmer
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA; Department of Molecular Biosciences & Bioengineering; University of Hawaii; Honolulu, HI USA
| | - Alexander J Stokes
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA; Department of Cell & Molecular Biology; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA; Department of Molecular Biosciences & Bioengineering; University of Hawaii; Honolulu, HI USA; Chaminade University; Honolulu, HI USA
| |
Collapse
|
139
|
Zhao Z, Liu T, Wang X, Li G. MicroRNAs as novel antiarrhythmic targets for atrial fibrillation. Int J Cardiol 2013; 168:e135-e137. [PMID: 23978363 DOI: 10.1016/j.ijcard.2013.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/28/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Zhiqiang Zhao
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | | | | | | |
Collapse
|
140
|
Carlson C, Koonce C, Aoyama N, Einhorn S, Fiene S, Thompson A, Swanson B, Anson B, Kattman S. Phenotypic screening with human iPS cell-derived cardiomyocytes: HTS-compatible assays for interrogating cardiac hypertrophy. ACTA ACUST UNITED AC 2013; 18:1203-11. [PMID: 24071917 DOI: 10.1177/1087057113500812] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major hurdle for cardiovascular disease researchers has been the lack of robust and physiologically relevant cell-based assays for drug discovery. Derivation of cardiomyocytes from human-induced pluripotent stem (iPS) cells at high purity, quality, and quantity enables the development of relevant models of human cardiac disease with source material that meets the demands of high-throughput screening (HTS). Here we demonstrate the utility of iPS cell-derived cardiomyocytes as an in vitro model of cardiac hypertrophy. Exposure of cardiomyocytes to endothelin 1 (ET-1) leads to reactivation of fetal genes, increased cell size, and robust expression of B-type natriuretic peptide (BNP). Using this system, we developed a suite of assays focused on BNP detection, most notably a high-content imaging-based assay designed for phenotypic screening. Miniaturization of this assay to a 384-well format enabled the profiling of a small set of tool compounds known to modulate the hypertrophic response. The assays described here provide consistent and reliable results and have the potential to increase our understanding of the many mechanisms underlying this complex cardiac condition. Moreover, the HTS-compatible workflow allows for the incorporation of human biology into early phases of drug discovery and development.
Collapse
Affiliation(s)
- Coby Carlson
- 1Cellular Dynamics International, Madison, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Arechederra M, Carmona R, González-Nuñez M, Gutiérrez-Uzquiza A, Bragado P, Cruz-González I, Cano E, Guerrero C, Sánchez A, López-Novoa JM, Schneider MD, Maina F, Muñoz-Chápuli R, Porras A. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2204-15. [PMID: 23994610 DOI: 10.1016/j.bbadis.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.
Collapse
Affiliation(s)
- María Arechederra
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Growth inhibition and compensation in response to neonatal hypoxia in rats. Pediatr Res 2013; 74:111-20. [PMID: 23842077 PMCID: PMC3737398 DOI: 10.1038/pr.2013.80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/30/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hypoxia (Hx) is an important disease mechanism in prematurity, childhood asthma, and obesity. In children, Hx results in chronic inflammation. METHODS We investigated the effects of Hx (12% O2) during postnatal days 2-20 in rats. Control groups were normoxic control (Nc), and normoxic growth restricted (Gr) (14-pup litters). RESULTS The Hx-exposed and Gr rats had similar decreases in growth. Hx increased plasma tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels and decreased insulin-like growth factor 1 (IGF-I) and vascular endothelial growth factor (VEGF) levels. Hx resulted in hypertrophy of the right ventricle (RV) but disproportionate decrements in limb skeletal muscle (SM) growth. miR-206 was depressed in the hypertrophied RV of Hx rats but was increased in growth-retarded SM. Hx resulted in decreased RV messenger RNA (mRNA) level for myostatin but had no effect on SM myostatin. The mRNA for Hx-sensitive factors such as hypoxia inducible factor-1α (HIF-1α) was depressed in the RV of Hx rats, suggesting negative feedback. CONCLUSION The results indicate that Hx induces a proinflammatory state that depresses growth-regulating mechanisms and that tissues critical for survival, such as the heart, can escape from this general regulatory program to sustain life. This study identifies accessible biomarkers for evaluating the impact of interventions designed to mitigate the long-term deleterious consequences of Hx that all too often occur in babies born prematurely.
Collapse
|
143
|
Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy. Herz 2013; 39:390-6. [PMID: 23784363 DOI: 10.1007/s00059-013-3849-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cardiac hypertrophy is an adaptive process of the heart in response to various stimuli, but sustained cardiac hypertrophy will finally lead to heart failure. Sulforaphane-extracted from cruciferous vegetables of the genus Brassica such as broccoli, brussels sprouts, and cabbage-has been evaluated for its anticarcinogenic and antioxidant effects. AIMS To investigate the effect of sulforaphane on angiotensin II (Ang II)-induced cardiac hypertrophy in vitro. METHODS Embryonic rat heart-derived H9c2 cells were co-incubated with sulforaphane and Ang II. The cell surface area and mRNA levels of hypertrophic markers were measured to clarify the effect of sulforaphane on cardiac hypertrophy. The underlying mechanism was further investigated by detecting the activation of Akt and NF-κB signaling pathways. RESULTS We found that H9c2 cells pretreated with sulforaphane were protected from Ang II-induced hypertrophy. The increasing mRNA levels of ANP, BNP, and β-MHC in Ang II-stimulated cells were also down-regulated after sulforaphane treatment. Moreover, sulforaphane repressed the Ang II-induced phosphorylation of Akt, GSK3β, mTOR, eIF4e, as well as of IκBα and NF-κB. CONCLUSION Based on our results, sulforaphane attenuates Ang II-induced hypertrophy of H9c2 cardiomyocytes mediated by the inhibition of intracellular signaling pathways including Akt and NF-κB.
Collapse
|
144
|
Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy. PLoS One 2013; 8:e64757. [PMID: 23737997 PMCID: PMC3667197 DOI: 10.1371/journal.pone.0064757] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/18/2013] [Indexed: 02/05/2023] Open
Abstract
Left ventricular hypertrophy is a maladaptive response to pressure overload and an important risk factor for heart failure. Intermedin (IMD), a multi-functional peptide, plays important roles in cardiovascular protection. In this study, we revealed an autophagy-dependent mechanism involved in IMD’s protection against cardiac remodeling and cardiomyocyte death in heart hypertrophy. We observed that transverse aortic contraction (TAC) induction, Ang II or ISO exposure induced remarkable increase in the expression of endogenous IMD and its receptor components, CRLR, RAMP1 and RAMP3, in mouse hearts and H9c2 cell cultures, respectively. Furthermore, the heart size, heart weight/body weight ratios, cardiomyocyte size and apoptosis, interstitial collagen, hypertrophic markers including ANP and BNP expression were also significantly increased, which were effectively suppressed by IMD supplementation. In addition, IMD induced capillary angiogenesis and improved functions in hypertrophic hearts. We further observed that IMD induced strong autophagy in hypertrophic hearts and cultured cells, which was paralleling with the decrease in cardiomyocyte size and apoptosis. Furthermore, an autophagy inhibitor, 3-MA, was used to block the IMD-augmented autophagy level, and then the protection of IMD on cardiomyocyte hypertrophy and apoptosis was almost abrogated. We also observed that IMD supplementation stirred intracellular cAMP production, and augmented the ERK1/2 phosphorylation induced by Ang II/ISO exposure in H9c2 cells. In addition, we inhibited PI3K, PKA and MAPK/ERK1/2 signaling pathways by using wortamannin, H89 and PD98059, respectively, in H9c2 cells co-incubating with both IMD and Ang II or ISO, and observed that these inhibitors effectively reduced IMD-augmented autophagy level, but only H89 and PD98059 pre-incubation abrogated the anti-apoptotic action of IMD. These results indicate that the endogenous IMD and its receptor complexes are induced in hypertrophic cardiomyocytes and proposed to play an important role in the pathogenesis of cardiac hypertrophy, and the autophagy stirred by IMD supplementation is involved in its protection against cardiomyocyte hypertrophy and apoptosis through the activation of both cAMP/PKA and MAPK/ERK1/2 pathways.
Collapse
|
145
|
Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci U S A 2013; 110:9770-5. [PMID: 23716679 DOI: 10.1073/pnas.1304913110] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The lack of a robust pipeline of medical therapeutic agents for the treatment of heart disease may be partially attributed to the lack of in vitro models that recapitulate the essential structure-function relationships of healthy and diseased myocardium. We designed and built a system to mimic mechanical overload in vitro by applying cyclic stretch to engineered laminar ventricular tissue on a stretchable chip. To test our model, we quantified changes in gene expression, myocyte architecture, calcium handling, and contractile function and compared our results vs. several decades of animal studies and clinical observations. Cyclic stretch activated gene expression profiles characteristic of pathological remodeling, including decreased α- to β-myosin heavy chain ratios, and induced maladaptive changes to myocyte shape and sarcomere alignment. In stretched tissues, calcium transients resembled those reported in failing myocytes and peak systolic stress was significantly reduced. Our results suggest that failing myocardium, as defined genetically, structurally, and functionally, can be replicated in an in vitro microsystem by faithfully recapitulating the structural and mechanical microenvironment of the diseased heart.
Collapse
|
146
|
Ames EG, Lawson MJ, Mackey AJ, Holmes JW. Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy. J Mol Cell Cardiol 2013; 62:99-107. [PMID: 23688780 DOI: 10.1016/j.yjmcc.2013.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are re-expressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy. We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA. We find a striking degree of overlap between the isoforms expressed differentially in fetal and pressure-overloaded hearts compared to control: forty-four percent of the isoforms with significantly altered expression in TAC hearts are also expressed at significantly different levels in fetal hearts compared to control (P<0.001). The isoforms that are shared between hypertrophy and fetal heart development are significantly enriched for genes involved in cytoskeletal organization, RNA processing, developmental processes, and metabolic enzymes. Our data strongly support the concept that mRNA splicing patterns normally associated with heart development recur as part of the hypertrophic response to pressure overload. These findings suggest that cardiac hypertrophy shares post-transcriptional as well as transcriptional regulatory mechanisms with fetal heart development.
Collapse
Affiliation(s)
- E G Ames
- Department of Biomedical Engineering, University of Virginia, Health System Box 800759, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
147
|
Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy. Exp Cell Res 2013; 319:1804-1814. [PMID: 23664835 DOI: 10.1016/j.yexcr.2013.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 04/22/2013] [Accepted: 04/28/2013] [Indexed: 01/14/2023]
Abstract
Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α1-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy.
Collapse
|
148
|
Ruppert C, Deiss K, Herrmann S, Vidal M, Oezkur M, Gorski A, Weidemann F, Lohse MJ, Lorenz K. Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc Natl Acad Sci U S A 2013; 110:7440-5. [PMID: 23589880 PMCID: PMC3645583 DOI: 10.1073/pnas.1221999110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are central mediators of cardiac hypertrophy and are discussed as potential therapeutic targets. However, direct inhibition of ERK1/2 leads to exacerbated cardiomyocyte death and impaired heart function. We have previously identified ERK(Thr188) autophosphorylation as a regulatory phosphorylation of ERK1/2 that is a key factor in cardiac hypertrophy. Here, we investigated whether interference with ERK(Thr188) phosphorylation permits the impairment of ERK1/2-mediated cardiac hypertrophy without increasing cardiomyocyte death. The impact of ERK(Thr188) phosphorylation on cardiomyocyte hypertrophy and cell survival was analyzed in isolated cells and in mice using the mutant ERK2(T188A), which is dominant-negative for ERK(Thr188) signaling. ERK2(T188A) efficiently attenuated cardiomyocyte hypertrophic responses to phenylephrine and to chronic pressure overload, but it affected neither antiapoptotic ERK1/2 signaling nor overall physiological cardiac function. In contrast to its inhibition of pathological hypertrophy, ERK2(T188A) did not interfere with physiological cardiac growth occurring with age or upon voluntary exercise. A preferential role of ERK(Thr188) phosphorylation in pathological types of hypertrophy was also seen in patients with aortic valve stenosis: ERK(Thr188) phosphorylation was increased 8.5 ± 1.3-fold in high-gradient, rapidly progressing cases (≥40 mmHg gradient), whereas in low-gradient, slowly progressing cases, the increase was not significant. Because interference with ERK(Thr188) phosphorylation (i) inhibits pathological hypertrophy and (ii) does not impair antiapoptotic ERK1/2 signaling and because ERK(Thr188) phosphorylation shows strong prevalence for aortic stenosis patients with rapidly progressing course, we conclude that interference with ERK(Thr188) phosphorylation offers the possibility to selectively address pathological types of cardiac hypertrophy.
Collapse
Affiliation(s)
- Catharina Ruppert
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Comprehensive Heart Failure Center, and
| | - Katharina Deiss
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Sebastian Herrmann
- Comprehensive Heart Failure Center, and
- Departments of Internal Medicine I and
| | - Marie Vidal
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Mehmet Oezkur
- Comprehensive Heart Failure Center, and
- Thoracic and Cardiovascular Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; and
| | - Armin Gorski
- Comprehensive Heart Failure Center, and
- Thoracic and Cardiovascular Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; and
| | - Frank Weidemann
- Comprehensive Heart Failure Center, and
- Departments of Internal Medicine I and
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Comprehensive Heart Failure Center, and
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Comprehensive Heart Failure Center, and
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
149
|
Oliveira Junior SA, Padovani CR, Rodrigues SA, Silva NR, Martinez PF, Campos DH, Okoshi MP, Okoshi K, Dal-Pai M, Cicogna AC. Extensive impact of saturated fatty acids on metabolic and cardiovascular profile in rats with diet-induced obesity: a canonical analysis. Cardiovasc Diabetol 2013; 12:65. [PMID: 23587409 PMCID: PMC3679825 DOI: 10.1186/1475-2840-12-65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/06/2013] [Indexed: 12/25/2022] Open
Abstract
Background Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Methods Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Results Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling measurements while unsaturated lipid consumption was inversely correlated with these effects. Conclusion Hypercaloric diet was associated with glycemic metabolism and systolic blood pressure disorders and cardiac remodeling. These effects directly and inversely correlated with saturated and unsaturated lipid consumption, respectively.
Collapse
|
150
|
Dibble CT, Shimbo D, Barr RG, Bagiella E, Chahal H, Ventetuolo CE, Herrington DM, Lima JAC, Bluemke DA, Kawut SM. Brachial artery diameter and the right ventricle: the Multi-Ethnic Study of Atherosclerosis-right ventricle study. Chest 2013; 142:1399-1405. [PMID: 22661452 DOI: 10.1378/chest.12-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Endothelial dysfunction is associated with left ventricular morphology and long-term cardiovascular outcomes. The purpose of this study was to assess the relationship between both baseline brachial artery diameter and peripheral endothelial function (assessed by brachial artery ultrasonography) and right ventricular (RV) mass, RV end-diastolic volume (RVEDV), and RV ejection fraction (RVEF). METHODS The Multi-Ethnic Study of Atherosclerosis (MESA) performed cardiac MRI and brachial artery ultrasonography on participants without clinical cardiovascular disease. Baseline brachial artery diameter and flow-mediated dilation were assessed. RESULTS The mean age was 60.9 years, and 49.4% of subjects were men (n = 2,425). In adjusted models, larger brachial artery diameter was strongly associated with greater RV mass (β = 0.55 g, P < .001), larger RVEDV (β = 3.99 mL, P < .001), and decreased RVEF (β = -0.46%, P = .03). These relationships persisted after further adjustment for the respective left ventricular parameters. Flow-mediated dilation was not associated with RV mass or RVEF and was only weakly associated with RVEDV. CONCLUSIONS Brachial artery diameter is associated with greater RV mass and RVEDV, as well as lower RVEF. Changes in the systemic arterial circulation may have pathophysiologic links to pulmonary vascular dysfunction or abnormalities in RV perfusion.
Collapse
Affiliation(s)
- Christopher T Dibble
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daichi Shimbo
- Department of Medicine, Mailman School of Public Health, Columbia University, New York, NY
| | - R Graham Barr
- Department of Medicine, Mailman School of Public Health, Columbia University, New York, NY; College of Physicians and Surgeons, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Emilia Bagiella
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Harjit Chahal
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI
| | - David M Herrington
- Department of Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Joao A C Lima
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - David A Bluemke
- Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|